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Abstract

Frame semantic parsing is an important compo-
nent of task-oriented dialogue systems. Current
models rely on a significant amount training
data to successfully identify the intent and slots
in the user’s input utterance. This creates a
significant barrier for adding new domains to
virtual assistant capabilities, as creation of this
data requires highly specialized NLP expertise.
In this work we propose OpenFSP, a frame-
work that allows for easy creation of new do-
mains from a handful of simple labels that can
be generated without specific NLP knowledge.
Our approach relies on creating a small, but
expressive, set of domain agnostic slot types
that enables easy annotation of new domains.
Given such annotation, a matching algorithm
relying on sentence encoders predicts the in-
tent and slots for domains defined by end-users.
Experiments on the TopV2 dataset shows that
our model trained on these simple labels have
strong performance against supervised base-
lines.

1 Introduction

Frame semantic parsing is an important sub-
problem with many applications, and in particu-
lar is critical for task-oriented dialogue assistants
to identify the desired action (intent) and specific
details (slots) (Coucke et al., 2018; Gupta et al.,
2019). This is typically modeled as a semantic
parsing problem (usually solved via a combination
of ML and rules) with custom ontology that re-
flects capabilities of the system. Creation of this
custom ontology, and annotation of consistent data
is highly non-trivial, and typically requires special-
ized skills (Ahmad et al., 2021). This limits exten-
sion of the ontology and generation of parsing data
to a small group of experts.

On the other hand, intent-slot concepts map
well to functions and arguments of an API call,

∗These authors contributed equally.

def read_message(sender: Contact):

Domain 
Agnostic
Ontology 
(Intents 
+ Slots)

Class: Message
DA SLOT:[SL:OTHER_OPEN_TEXT]

LABELS: "Bye", "OK?", "Love you!"

CLASS: Contact 
DA SLOT:[SL:PROPER_NAME]

LABELS: "Adrian", "Mark", "Susan"

Step #1: define class types with slots + simple labels

def send_massage(receiver: Contact, message: Message):

Step #2: declare functions + args

Figure 1: Illustration of proposed OpenFSP framework
with a domain agnostic ontology and simple labels pro-
vided by the software developer (natural language tex-
tual examples). OpenFSP can facilitate the development
of new domains and automatic construction of new on-
tologies by decoding functions or API specifications.

a paradigm well understood by software develop-
ers. Therefore, making extension to the parser is
the primary blocker to enabling support for new
capabilities (domains) within a task-oriented assis-
tant system. As shown in Figure 1, our goal is to
enable non-NLP experts to define allowed intent-
slot combinations, and provide a small amount of
non-NLP specialized labels, which we call simple
labels. These data enable the creation of a parser
for those intent-slot combinations. This new prob-
lem definition lies somewhere between zero-shot
and few-shot learning. It requires zero fully an-
notated semantic parse examples, but does require
some human produced labels.

To this end, we develop a framework called
Open Frame Semantic Parser (OpenFSP). Open-
FSP takes as input the developer’s defined func-
tions and their annotations to augment an existing
assistant system for new tasks. Underlying Open-
FSP is a two module model consisting of a general
semantic parser and a matching module. The gen-



55

eral semantic parser can identify the intent and
slots according to the pre-defined domain agnos-
tic ontology, while the matching module will take
this intermediate representation and match them to
the specific function and arguments defined in the
domain specific ontology.

In summary, our contributions are: (1) we for-
malize a new framework, namely OpenFSP, that
allows for easy development of new domains with-
out much expertise knowledge from software de-
velopers (2) we define a general-purpose domain
agnostic ontology by analysing the semantic sim-
ilarity of slots from TopV2 (Chen et al., 2020b),
a well established task-oriented semantic parsing
dataset (3) we propose an approach consisting of a
parser and a matching module that can outperform
strong baselines in the simple labels setting.

2 Related Work

Data-Efficient Semantic Parsing In one of the
first attempts to use data-efficient methods to per-
form frame semantic parsing, (Bapna et al., 2017)
applied recurrent neural networks to perform semi-
supervised intent classification and slot filling
(IC/SF) while leveraging natural language descrip-
tions of slot labels. The work of Krone et al.
(2020) more clearly formalized few-shot learning
for IC/SF, while providing a few-shot split of three
public datasets. Wilson et al. (2019) implemented
and deployed a kiosk virtual assistant, which could
handle multiple modalities by learning from a few
examples using analogical learning.

Multiple low resource IC/SF approaches were
proposed (Chen et al., 2020b; Desai et al., 2021;
Yin et al., 2022; Basu et al., 2022). All of these ap-
proaches either rely on a non-trivial amount of train-
ing data (hundreds to thousands of examples), or
use a fixed set of intents and slots, making it harder
to adapt to new domains. Our matching module
shares some similarities with retrieval based sys-
tems (Yu et al., 2021; Shrivastava et al., 2022),
however these methods learn from standard utter-
ance and semantic frames, instead of simple textual
labels for each slot and intent. This is an impor-
tant differentiator, as the annotation of even a small
number of semantic frames requires overcoming a
significant knowledge barrier.

Sentence Encoders for Language Understand-
ing One key aspect of our matching module is to
encode the textual spans using sentence encoders.
These models have the advantage of working well

in low resource settings, and have been used in
many applications including natural language in-
ference (Conneau et al., 2017), semantic textual
similarity (Reimers and Gurevych, 2019), dense
passage retrieval (Karpukhin et al., 2020; Izacard
and Grave, 2021), natural language explanations
(Neves Ribeiro et al., 2022), and many others. The
idea of using sentence embeddings for text classifi-
cation has been previously explored (Perone et al.,
2018; Piao, 2021). Most notably, the work of Tun-
stall et al. (2022) proposed SETFIT, a prompt-free
model that can learn text classification tasks from
a handful of examples. However, none of these
works directly applied to semantic parsing which
require multiple consistent predictions from the
input utterance.

Task-Oriented Ontologies Task-oriented dia-
logue systems are natural language interfaces for a
system that parses user utterances. A common
approach in these systems is the use of ontolo-
gies to represent domain information (Wessel et al.,
2019). In general, such ontologies can be created
manually using rule-based techniques, which is
a highly accurate but time consuming and expen-
sive approach that usually requires domain experts
(Meditskos et al., 2020), or via ontology induc-
tion approaches using machine learning (Poon and
Domingos, 2010). While these approaches both
involve trade-offs, curated ontologies can also be
created via simplification of an existing ontology
based on custom needs (Kutiyanawala et al., 2018;
Laadidi and Bahaj, 2018). On the other hand, our
work simplifies the ontological creation by abstract-
ing the existing functions and arguments defined
by the application itself.

3 Problem Definition

The standard frame semantic parsing has two main
tasks which maps the input utterance x with tokens
x1, . . . , xn to some structured output frame y. For
the slot-filling task, the output frame F consists
of a set of m non-overlapping spans and their re-
spective labels F = {(si, ei, li)}mi=1 indicating that
subsequence x[si:ei] has label li ∈ L, where L is
the set of possible labels (e.g., the text span “noon
tomorrow” has the label SL:DATE_TIME). The
intent classification assigns a label to the whole
utterance. For simplicity, we assume that the intent
can be thought of as another slot filling with si = 0
and ei = n, with li as the intent type.

To simplify annotation efforts, we define an on-
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DA Parse 
Training Data

New Domain
Simple Labels + 
Target Frames

DA 
Ontology 

Utterance
input x
(string)

DS Frame
output y

(intent + slots)

DA Frame
intermediate y'
(intent + slots)

DAP
(parser)

DSM
(matching)

[IN:FRAME [SL:SCOPE_TEMPORAL tonight ] 
[SL:SCOPE_LOC San Francisco ] ]

"what's happening in San 
Francisco tonight?"

[IN:GET_EVENT [SL:DATE_TIME tonight ] 
[SL:LOCATION San Francisco ] ]

Figure 2: System overview with two components, namely the domain agnostic parser (DAP) and the domain
specific matching (DSM).

tology with a set of domain-agnostic labels LA,
where |LA| << |L|. These domain-agnostic labels
can be interpreted as generic “label types”, with
an existing many-to-one mapping ψ : L → LA

between the two sets. This mapping is further de-
scribed in Appendix A.1. In our proposed simple
label setting, training data for new domains will
not include x, but only a subsequence of the tokens
defined by the frame spans. The number of exam-
ples for each slot will be relatively small, with 5
to 50 examples per slot type. The set of all possi-
ble domain specific target frames F ∗ (i.e., defined
functions and their arguments) is assumed to be
known a priory.

4 Approach

Our model is comprised of two main components,
the domain agnostic parser (DAP) and the domain
specific matching (DSM). The system overview is
shown in Figure 2. The DAP is trained to take
the input utterance x and output a domain agnostic
frame FA, where span labels belong to LA. Af-
terwards the DSM module will score the potential
domain specific frames from F ∗ according to their
similarity to the domain agnostic frame FA.

The DAP module can be any frame seman-
tic parser. Ours is built on a span-pointer net-
work (Shrivastava et al., 2021), which is a non-
autoregressive parser that replaces the decoding
from text generation with span predictions. It is
trained on domain agnostic data obtained from ex-
isting domain specific data using the slot label func-
tion ψ.

The DSM module has to learn a similarity func-
tion between a text span and its slot label (same
applies to intents). Since the slot label scoring
function has to be done in a few-shot setting, the

DSM module uses a sentence encoder ϕ (Reimers
and Gurevych, 2019) with a classification head on
top. The module modifies a pre-trained transformer
language model fine tuned to output semantically
meaningful sentence embeddings.

The sentence encoder ϕ is tailored to work on
generic text, minimizing the distance between se-
mantically similar sentences while maximizing the
distance of dissimilar sentences. We use a classi-
fication head H over the produced sentence em-
bedding of a given text span x. Therefore, the
probability score of a label li can be computed as
follows:

P (li|x) =
exp(H(ϕ(x))i)∑|L|
j=1 exp(H(ϕ(x))j)

(1)

Note that the input training data does not con-
tain fully annotated domain specific frames (only
text and their intent-slot labels). For this reason,
the DSM module has to aggregate these individ-
ual intent and slot probability scores to predict the
full frame scores. The similarity score for a tar-
get domain specific frame F = {(si, ei, li)}|F |

i=1

given a query domain agnostic parse FA =

{(sAi , eAi , lAi )}
|FA|
i=1 is given by:

sim(F, FA) = max
F ′∈S(F )

1

|F ′|

|F ′|∑
i=1

P (li|x[sAi :eAi ])

(2)
Where S(F ) is the set of all slot permutations of

F . To make the final prediction, we also check that
the typing between domain agnostic and domain
specific types match. Therefore DSM selects the
best frame F ∈ F ∗ using the formula:
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argmax
F∈F ∗

{
0 if ∃i : ψ(li) ̸= lAi
sim(F, FA) otherwise

(3)

Note that for each new domain, only a very small
set of parameters are trained (namely, the classifi-
cation head H), which makes this approach com-
putationally efficient.

4.1 Data

We conduct experiments using the TopV2 (Chen
et al., 2020b), a multi-domain dataset contain-
ing intent and slot annotations for task-oriented
dialogue systems. We select a subset of the
data points, ignoring the ones containing more
than one intent (even though our method would
also work for nested frames) or utterances with
IN:UNSUPPORTED intent label. The final
dataset contains a total of eight different do-
mains (namely: alarm, event, messaging,
music, navigation, reminder, timer, and
weather). The dataset is then split into train
(104278), evaluation (14509) and test (32654) sets.

5 Experiments

5.1 Evaluation Setup

We conduct experiments to evaluate how well a
model can adapt to a new unseen domain by lever-
aging the “simple labels” for this new domain. To
simulate this adaptation process we perform mul-
tiple test rounds, where each of the eight TopV2
domains are treated as unseen domains. We use
frame accuracy as a metric, which refers to the
ratio of examples where the system correctly pre-
dicts all the frame’s spans and labels. The results
for each left-out domain are averaged to obtain the
final metrics. Each label li ∈ L of the unseen do-
main will be assigned a few textual examples that
will be used for training. In our experiments we
use 5, 10 and 50 examples per unseen domain’s
label.

5.2 Baselines

The first two methods are used as baselines and can
be seen as soft upper bounds. They do not follow
the “simple labels” settings, and use the full train-
ing data for the new domains instead. Other two
methods are used to further evaluate the different
implementation choices of the model, as ablation
studies.
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W.O. Head + Type
W.O. Head
Proposed Model

Fully Supervised
Majority Vote

Figure 3: Main experiment results with different number
of examples per label.

Majority Vote This simple method always se-
lects the most commonly occurring intent and slots
for a given domain. It uses the DAP module to gen-
erate FA, and assigns the domain specific labels
according to the number of occurrences of F ∈ F ∗

(such that |F | = |FA|) in the training data.

Fully Supervised Uses the same architecture as
the DAP (semantic parser) module, but it is trained
using the full training data. Despite not being at all
a fair comparison with the simple label settings, we
include these baseline results as a way to visualize
the best-case scenario.

W.O. Head This method does not use a classifi-
cation head H , instead, it predicts the class label by
selecting the example with highest semantic simi-
larity with the input text using the cosine similarity
score.

W.O. Head + Type This method not only uses
the classification head, but also disregards the type
constraint in Equation 3 such that the best frame is
always argmaxF∈F ∗ (sim(F, FA)).

5.3 Implementation Details

The span-pointer architecture used by the DAP
module is a encoder-decoder model based on
RoBERTa (Liu et al., 2019), with the encoder con-
taining 12 layers and the decoder containing 1 layer.
We train the model for 85 epochs using a learning
rate of 1.67 · 10−5. The sentence encoder used
in the DSM module is built on top of a 36 layer
XLM-R model (Conneau et al., 2019) fine-tuned
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Eval. Setting messa. alarm music event navig. remind. timer weath. avg.

Standard 86.7 67.6 55.5 73.9 60.6 58.5 72.7 79.6 69.4
+ Golden Parse 93.9 50.1 60.7 88.7 60.7 78.7 78.7 89.1 75.1
+ Recall@3 92.9 78.8 65.0 82.2 75.0 68.9 78.9 90.2 79.0
+ Intent Acc. 96.9 82.3 76.6 97.9 78.6 61.5 80.4 85.7 82.5

Table 1: Break down of results by domain for different evaluation settings. The results shown correspond to a single
run of our proposed model with 50 labels per example.

to capture general sentence similarity. When fine-
tuning the models we used a machine containing
two NVIDIA Tesla P100 graphics processing units.
Note that the underlying models used are relatively
small when compared to current large language
models (Sanh et al., 2019) and would be suitable
for “on-the-edge” device computation.

5.4 Results

We perform three test runs with different random
seeds for each evaluation setting, which influences
both the model initialization and the set of training
examples per label. The main results are shown
in Figure 3. The baselines using the full training
data (i.e., Fully Supervised and Majority Vote) are
shown as dashed lines, and their results do not
change according to the x-axis. The remaining
results show the mean (and standard deviation as
the shaded region) among the three test runs.

The results show that our proposed model outper-
forms most of the baselines, with numbers compa-
rable to the fully supervised baseline (77.9% of its
frame accuracy with 50 examples per label), even
though it relies on a much smaller and simplified
version of the training data.

There are a few other takeaways. First, we no-
tice that increasing the number of “simple label”
training examples significantly improves the frame
accuracy. However, only five training examples is
enough to produce decent results. More examples
also seem to increases the variance of the models
without a classification head. Second, the type fil-
tering from Equation 3 is one key aspect of why
the system can perform so well with so few ex-
ample. Because of the generic nature of the do-
main agnostic ontology, filtering out invalid frames
greatly reduces the size of the target space F ∗, with
a size reduction of 96% for certain domains such
as messaging.

5.4.1 Results Break Down
To obtain further insights on the model, we show
the results broken down by domain in Table 1.
We used our proposed model trained on 50 ex-
amples per label, and different evaluation settings
described as follows. The Standard settings are the
same as the ones displayed in Figure 3. The Golden
Parse assumes that the DAP module outputs only
correct domain agnostic parses (i.e., the best-case
scenario for the parser). The Recall@3 results uses
the same model as the Standard setting, but checks
if the correct answer is in the top-3 scored matches
(instead of top-1) from DSM. Finally, the Intent
Acc. setting evaluates if the model correctly pre-
dicts the intent of the given input utterance. These
results help us answer the following questions:

How much error from the parser gets propa-
gated? We can notice from the Golden Parse re-
sults that there is a reasonable improvement (8.2%
increase) in accuracy when using the gold test
frames. This means that incorrect parses from the
DAP module certainly propagates forward and im-
proving the DAP module could certainly benefit
the system as a whole.

Is the matching module nearly missing the right
answer? When looking Recall@3 results, we no-
tice a significantly larger improvement in results
(13.8% increase). With an average mean reciprocal
ranking among all domains of 74.9. Having a high
frame score values in the top-3 is significant con-
sidering that on average the size among all domains
for the target space F ∗ is around 279.8 frames.

5.5 Error Analysis and Future Work

To understand the mistakes made by the OpenFSP
system we perform some error analysis and sug-
gest some possible improvement avenues for future
work. For this analysis we use the development set
and randomly sampled 100 output frames from dif-
ferent domains. We manually categorize the errors
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as follows.

Parsing Errors We notice that 45% of the errors
are due to parsing errors. This includes cases when
the DAP module predicts an incorrect number of
slots (∼93% among parsing errors) or when the
number of slots are correct, but some of the slots
have the incorrect labels (∼7% among parsing er-
rors). A future direction could be to use the DAP
and DSM modules to over-generate valid frames
and rank (Varges, 2006; Zhang and Wan, 2022),
which could circumvent parsing errors.

Intent Classification Error Another common
error was the mislabeling of the utterance’s in-
tent, corresponding to 32% of the manually cat-
egorized examples. This kind of error would
often happen between semantically similar in-
tents (e.g., IN:PREVIOUS_TRACK_MUSIC and
IN:REPLAY_MUSIC in the music domain) and
with examples from TopV2 that were labeled as un-
supported (e.g., IN:UNSUPPORTED_WEATHER
and IN:UNSUPPORTED_MUSIC) that often have
out of scope questions that are harder to classify
(e.g., “What is the hottest temperature this month”).
One possible future direction would be to use Con-
trastive Learning (Chen et al., 2020a; Basu et al.,
2022) that could improve the classification bound-
ary of similar examples.

Slot Classification Error The last 23% of the
errors were due to slot type misclassification.
Again, semantically similar slot types are more
challenging to classify. For instance, in the
alarm domain SL:DATE_TIME_RECURRING,
SL:DATE_TIME, SL:PERIOD and
SL:DURATION were particularly hard to
classify since they were all part of the same
domain agnostic type SL:SCOPE_TEMPORAL.
Another common issue was identifying proper
names (∼21% of the slot classification errors),
including artist, event, album, and playlist names.
A future direction would be to integrate a named
entity recognition module to help classify slots
involving proper names.

6 Conclusion

In this work we propose OpenFSP, a framework
designed to simplify the process of adapting an
existing task-oriented dialogue system to new do-
mains. This framework enables non-experts to au-
tomatically build new domain ontologies from well

defined software engineering concepts such as func-
tions and arguments. We define a general-purpose
domain agnostic ontology, that when combined
with textual examples of new slots and intents
(which we call simple labels), provides sufficient
data to adapt the system to a new domain.

Finally, we propose a two-module system that
can use these simple labels to reasonably parse in-
put utterances into the domain specific frames. Our
experiments show that the proposed model outper-
forms strong baselines and is able to obtain results
comparable with a fully supervised model (achiev-
ing 77.9% of its semantic frame accuracy). We
hope that our work will facilitate the development
of new assistant capabilities, allowing end-users to
interact with more software applications through
natural language.

Limitations

Domain-agnostic (DA) slots represent the overal
semantic space covered by underlying TopV2 slots.
Given their coarse-grain nature, DA slots are likely
to be distributed more or less evenly across all do-
mains. This assumption is key when training the
parser on data that does not contain a particular tar-
get domain. In addition, we find that our approach
is also sensitive to the types of linguistic structures
accounted for by each DA slot and works best when
these structures are consistent across domains.

More specifically, we conducted a series of
leave-one-out (LOO) experiments where a separate
parser was learned for each domain using train-
ing data from all other domains and then tested
on test data from the domain in question exclu-
sively. Error analysis of 100 randomly selected
predictions in our LOO model for the “alarm” do-
main revealed that 32% of the errors were utter-
ances such as “I want alarms set for next Mon-
day at 6.00am and 7.00am” where the model pre-
dicted [SL:SCOPE_TEMPORAL for next monday
at 6.00am ] and [SL:SCOPE_TEMPORAL 7.00am
] ] whereas a compound [SL:SCOPE_TEMPORAL
for next monday at 6.00am and 7.00am ] ] slot
was expected. Upon closer inspection, we ob-
served that these [SL:SCOPE_TEMPORAL X and
Y] compound nominal constructions appear pre-
dominantly (83.3%) in the alarm domain, hence
causing inaccurate predictions in a LOO model for
this domain.

For these types of errors to be mitigated in
our approach, [SL:SCOPE_TEMPORAL X and
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Y] constructions would need to either be more
evenly distributed across all domains, or re-
annotated as [ [SL:SCOPE_TEMPORAL X] and
[SL:SCOPE_TEMPORAL Y] ] in the alarm do-
main to improve homogeneity in the data.

Ethics Statement

No private data or non-public information was used
in this work.
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A Appendix

A.1 Domain Agnostic Ontology
To create our domain-agnostic ontology, we man-
ually reviewed all existing slots in the TopV2
ontology and categorized the semantic nature of
each slot. We then conflated semantically-similar
TopV2 slots under overarching, domain-agnostic
terms that cover the overall semantic space of
the underlying TopV2 slots. For instance, we
categorize slots that indicate the user is request-
ing a "to-do item", "reminder," and "alarm" as
roughly the overall "deliverable" item that is
being requested, hence conflating the domain-
specific slots SL:TODO, SL:METHOD_TIMER,
and SL:ALARM_NAME under the domain-agnostic
slot SL:DELIVERABLE. Table 2 contains the
mapping between the TopV2 ontology and the do-
main agnostic ontology used in this work.
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Domain-agnostic (DA) slots Domain-specific (DS) slots
SL:DELIVERABLE SL:TYPE_REACTION, SL:TODO, SL:TODO_NEW

SL:METHOD_TIMER, SL:TIMER_NAME, SL:ALARM_NAME

SL:RECIPIENT SL:RECIPIENT, SL:PERSON_REMINDED_ADDED,

SL:PERSON_REMINDED_REMOVED, SL:PERSON_REMINDED,

SL:ATTENDEE_REMOVED, SL:ATTENDEE_ADDED

SL:SCOPE_TEMPORAL SL:DATE_TIME, SL:DATE_TIME_RECURRING,

SL:DURATION, SL:PERIOD,

SL:RECURRING_DATE_TIME, SL:TIME_ZONE,

SL:DATE_TIME_DEPARTURE, SL:DATE_TIME_ARRIVAL,

SL:FREQUENCY, SL:RECURRING_DATE_TIME_NEW,

SL:DATE_TIME_NEW, SL:SCOPE_TEMPORAL_RECURRING

SL:SCOPE_LOC SL:LOCATION, SL:POINT_ON_MAP,

SL:LOCATION_HOME, SL:LOCATION_USER,

SL:LOCATION_MODIFIER, SL:WAYPOINT_ADDED,

SL:LOCATION_WORK

SL:SCOPE_DISAM SL:ORDINAL, SL:TYPE_CONTENT, SL:GROUP,

SL:RESOURCE, SL:CONTENT_EMOJI,

SL:TYPE_CONTACT, SL:MUTUAL_EMPLOYER,

SL:MUTUAL_SCHOOL, SL:TYPE_INFO,

SL:MUTUAL_LOCATION, SL:CONTACT_RELATED,

SL:MUSIC_GENRE, SL:UNIT_DISTANCE,

SL:WEATHER_TEMPERATURE_UNIT, SL:MEASUREMENT_UNIT,

SL:METHOD_RETRIEVAL_REMINDER

SL:OTHER_OPEN_TEXT SL:CATEGORY_EVENT,

SL:SEARCH_RADIUS, SL:ATTRIBUTE_EVENT,

SL:CATEGORY_LOCATION, SL:NAME_EVENT,

SL:ATTENDEE, SL:ATTENDEE_EVENT,

SL:TYPE_RELATION, SL:ORGANIZER_EVENT,

SL:TAG_MESSAGE, SL:CONTENT_EXACT,

SL:MUSIC_TYPE, SL:MUSIC_TRACK_TITLE,

SL:MUSIC_ALBUM_TITLE, SL:MUSIC_PLAYLIST_TITLE,

SL:MUSIC_RADIO_ID, SL:METHOD_TRAVEL,

SL:JOB, SL:WEATHER_ATTRIBUTE,

SL:OBSTRUCTION_AVOID, SL:ROAD_CONDITION_AVOID,

SL:ROAD_CONDITION

SL:NUMS SL:AMOUNT, SL:AGE

SL:PROPER_NAME SL:NAME_EVENT, SL:CONTACT,

SL:ORGANIZER_EVENT, SL:SENDER,

SL:MUSIC_TRACK_TITLE, SL:MUSIC_PROVIDER_NAME,

SL:MUSIC_ALBUM_TITLE, SL:MUSIC_ARTIST_NAME,

SL:SOURCE, SL:DESTINATION, SL:PATH, SL:PATH_AVOID,

SL:WAYPOINT_AVOID, SL:LOCATION_CURRENT,

SL:PATH_AVOID, SL:WAYPOINT_AVOID,

SL:LOCATION_CURRENT, SL:WAYPOINT,

SL:ATTENDEE, SL:NAME_APP

Table 2: Mapping between TopV2 ontology and our proposed domain agnostic ontology.


