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Abstract

Natural language programming automatically
generates code based on a user’s text query. Re-
cent solutions are either data-driven or natural
language understanding (NLU)-driven. How-
ever, the data-driven synthesizer requires a
large number of query-code pairs for training,
which hinders its application to low-resource
programming languages with growing domains
whose functionality and grammar can be ac-
tively updated. NLU-driven synthesizers solve
this problem, but their code generation is slow
and their performance rapidly saturates in the
presence of ever-increasing data. In this pa-
per, we propose a circular training framework,
Colead, which co-evolves both the data-driven
synthesizer and the NLU-driven synthesizer
to achieve high-quality code generation in the
presence of data scarcity and domain growth.
The NLU-driven synthesizer generates query-
code pairs to update the data-driven synthesizer,
which shares a part of its updated model to im-
prove the NLU-driven synthesizers, enabling
the co-evolution of both. Experiments show
that Colead gives better results than the base-
lines in the presence of domain growth and data
scarcity, and Colead consistently improves
the performance of both data-driven and NLU-
driven synthesizers over the co-evolvement.

1 Introduction

Natural language (NL) programming aims to auto-
matically generate programming code based on a
user’s text query (Xu et al., 2022b). It has gained
increasing research interest in recent years and has
a wide range of applications, not only providing an
intuitive programming interface that democratizes
artificial intelligence to common users (Chen et al.,
2021) but also reducing the time and labor cost
of turning ideas into code implementations (Yagh-
mazadeh et al., 2017; Desai et al., 2016).

Typical NL programming approaches can be
categorized as rule-driven or data-driven. A rule-
driven synthesizer generates code through prede-

Query in TextEditing domain:
Eliminate the line which does not contain colon in any word of the sentence

API Update:
Before: Remove(selectString, condition)
After: Remove(selectString, condition, iter_scope)

Expected DSL code after API update:
REMOVE(SelectString(LINETOKEN(),

BConditionOccurrence(NOT(CONTAINS(STRING(colon))), ALL())),
IterationScope(LINESCOPE(), BConditionOccurrence(ALWAYS(), ALL())))

Output of Untuned CodeT5 after API update:
REMOVE(SelectString(LINETOKEN(),

BConditionOccurrence(NOT(CONTAINS(STRING(colon))),ALL())))

New argument

Figure 1: An example of a data-driven model generating
code after one API updates in TextEditing (Desai et al.,
2016) domain. The API REMOVE has a new argument.
Without re-training, CodeT5 fails to accommodate this
update (shown in blue) and will still generate code for
the outdated API (shown in green boxes).

fined domain-specific rules, which requires expert
knowledge. It made progress in early NL pro-
gramming research (Le et al., 2013) but gradu-
ally lost its appeal due to technical difficulties in
adapting to different programming languages. In
parallel, data-driven synthesizers based on deep
learning techniques have dominated recent stud-
ies (Bavishi et al., 2019; Gu et al., 2016; Li et al.,
2022). They generate code through a neural net-
work model. Training of the models requires large
amounts of parallel data (Polosukhin and Skidanov,
2018), where each text prompt is paired with a
corresponding piece of code. Data-driven synthe-
sizers tend to outperform rule-driven synthesizers
in many general-purpose languages (GPLs), like
Python, C++, etc., which have massive parallel data
available.

However, there are plenty of domain-specific lan-
guages (DSLs) that are low-resource. Some DSLs
are dedicated to a specific application domain and
has few usages and scarce parallel data. The prob-
lem of data scarcity hinders the application of data-
driven synthesizers. Another challenging problem
is the domain growth of programming languages,
which are constantly updated in terms of grammar
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and functionality. Figure 1 shows an example of a
data-driven model (CodeT5) that cannot generate
correct code after an API update. To adapt to these
updates, data-driven synthesizers require frequent
re-training, and it would be labor-intensive and
time-consuming to collect new data for the update.

Natural language understanding (NLU)-driven
synthesizers have recently been proposed as a com-
promise between rule-driven and data-driven syn-
thesizers (Nan et al., 2020, 2021; Young et al.,
2022; Nan et al., 2022). It circumvents the huge
need for parallel data in training by utilizing input
user queries and API documentation. Whenever
the language is updated with a new API and pro-
gramming grammar, only the API documentation
needs to be modified accordingly to generate the
new functional code. However, NLU-driven syn-
thesizers have some limitations. To generate code,
grammar and dependency graphs need to be built
and traversed, which can be time-consuming and a
bottleneck to the speed of code generation. As the
training data increases, NLU-driven synthesizers
quickly reach performance saturation and become
inferior to data-driven synthesizers.

In this paper, we propose a co-evolving frame-
work, Colead (for “Co-learning Rule and Data
from Documention") that combines NLU-driven
and data-driven synthesizers to exploit their com-
plementary strengths and enable code generation
in the presence of data scarcity and domain growth
(Blum and Mitchell, 1998). Colead consists of
three key components: a retriever, an NLU-driven
synthesizer, and a data-driven synthesizer. The
retriever fetches information most relevant to the
user’s text query from the API documentation.
Given the information, the NLU-driven synthe-
sizer constructs a grammar graph and a dependency
graph to generate code. The generated code is
paired with the user query to train the data-driven
synthesizer, which in turn shares its updated en-
coder with the NLU-driven synthesizer, leading to
the co-evolvement of both. We summarize contri-
butions as follows:

• We propose a co-evolving framework,
Colead, that combines data-driven and
NLU-driven synthesizers to achieve their
complementary strengths and enable code
generation in the presence of data scarcity
and domain growth.

• Experimental results on two datasets from dis-
tinct domains, Text Editing, and ATIS, demon-

strate the effectiveness of Colead and show
that it can work efficiently in domain growth.

• Our study shows that using both synthesiz-
ers together can lead to better performance in
solving problems than using only one synthe-
sizer. We show that the NLU-driven synthe-
sizer proves effective in addressing the chal-
lenge of limited data availability, while the
data-driven synthesizer capitalizes on parallel
computing for efficient inference. They com-
plement each other, compensating for their
respective drawbacks.

2 Related Work

Large language models pre-trained on vast amounts
of code have achieved significant progress in recent
years (Li et al., 2022; Chen et al., 2021). These
models can be classified as encoder-only, decoder-
only, or encoder-decoder. An encoder-only model
predicts masked code fragments based on their sur-
roundings. It converts code into effective vector
representations and facilitates a myriad of down-
stream tasks, such as code summarization (Ah-
mad et al., 2020), code classification (Gilda, 2017),
and code clone detection (Ain et al., 2019; Fang
et al., 2020). The representative models include
CuBERT (Kanade et al., 2020), CodeBERT (Feng
et al., 2020), and GraphCodeBERT (Guo et al.,
2021). By contrast, a decoder-only model, such as
CodeGPT (Lu et al., 2021), CODEGEN (Nijkamp
et al., 2022), CERT (Zan et al., 2022), and Codex
(Chen et al., 2021), predicts the next token given
the previous tokens in an auto-regressive manner.
However, these models are not a perfect fit for nat-
ural language programming tasks.

An encoder-decoder model first uses an encoder
to encode the input sequence and then decodes
it with a decoder into an output sequence condi-
tioned on the input sequence. CodeT5 (Wang et al.,
2021; Le et al., 2022), PLBART (Ahmad et al.,
2021), PolyCoder (Xu et al., 2022a), and Alpha-
Code (Li et al., 2022) are examples of such models
in code. Encoder-decoder models perform well on
conditional code generation, such as code anno-
tation, natural language programming, etc. Note
that both decoder-only and encoder-decoder mod-
els can be employed directly for code generation.
These models all share the drawback of requiring
an abundance of data.

On the contrary, natural language understanding-
driven approaches (Nan et al., 2020, 2021; Young
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Figure 2: The overview of Colead. The main components are the retriever, the NLU-driven synthesizer, and the
data-driven synthesizer. Retriever creates a circle by connecting NLU-driven and data-driven components, which
serves as a basis for co-evolvement. This circle evolves iteratively to enhance each other’s performance.

et al., 2022; Nan et al., 2022) require no training
examples. They apply NLP techniques to both natu-
ral language (NL) queries and API documentations,
extract the key components inside the NL queries
and compose the mapped APIs into code expres-
sions following the domain grammar. However,
NLU-driven methods are not as powerful as data-
driven models when there is a lot of data available
for training.

3 Methodology

The major challenge of this work is how to ef-
ficiently connect the NLU-driven and data-driven
synthesizers so that the joined framework possesses
the ability to alleviate data scarcity and domain
growth problems while ensuring performance lim-
its and inference speed. The Colead framework
is proposed to address this challenge, as shown in
Fig 2. It has three key components: a retriever, an
NLU-driven synthesizer, and a data-driven synthe-
sizer.

3.1 Cycle of Co-evolvement

pThe cycle of co-evolvement is the core of our ap-
proach. It starts with the retriever fetching the rel-
evant API documentation based on the user’s text
query. With the retrieved API documentation and
the input query, the NLU-driven synthesizer gen-
erates the corresponding code without query-code
pairs. Then, the generated code is paired with the
query to train the data-driven synthesizer, which in
turn shares its well-trained encoder to update the re-
triever. The updated retriever has a better matching
ability and improves the data-driven synthesizer. In
this way, the whole process forms a positive circle
and co-evolution can be achieved.

The NLU-driven synthesizer, as the teacher of
the data-driven synthesizer, reduces the huge de-

mand on human labor to collect query-code pairs,
which mitigates the data scarcity issue of DSLs. In
addition, the introduced retriever can handle code
generation for DSL in domain growth, where the
DSL is under active development with frequent
updates of new API functions. When new APIs
are developed, they only need to be registered in
the documentation. New queries from users along
with the information retrieved from the updated
documentation can be fed into the NLU-driven syn-
thesizer to generate new functional code, which
enables the supervised training of the data-driven
synthesizer.

3.2 Retriever

The retriever is a shared front end of both the NLU-
driven and the data-driven synthesizers. It maps
a user’s natural language query to the related API
description in the documentation.

Specifically, both the natural language query and
the API documentation are tokenized by Stanford-
CoreNLP (Manning et al., 2014). Initially, exact
match is performed based on the description to
get the API associated with the query. In other
words, the keyword of the query must be present
in the API description. Such strict match condi-
tion is hard to satisfy, making the retriever fail to
retrieve relevant keywords for many queries. To
relax the condition and make fuzzy match possible,
after the first round of co-evolution, the encoder of
the data-driven synthesizer is leveraged to generate
dense vector representations of tokens. Two to-
kens are considered to be matched when the cosine
similarity of their vector representations exceeds a
pre-defined threshold, which is tuned to have the
best result based on experiments.

To realize fuzzy match, the encoder of CodeT5
and SimCSE (Gao et al., 2021) are explored in our
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Figure 3: General structure diagram of NLU-driven
code generator. It has three main components: a domain
knowledge constructor, an NLP engine, and a grammar-
graph–based translation module. The grammar graph
enables the generated code to follow DSL grammar
explicitly. The dependency graph guides the generation
of code to follow the logic of the query.

experiment. SimCSE is a simple contrastive learn-
ing method that learns embeddings from unlabeled
or labeled data. In our experiments, SimCSE is
trained only on the queries and API documentation
and employed for extracting token embedding.

3.3 NLU-driven Synthesizer

With the retrieved API and user queries, the NLU-
driven synthesizer generates the corresponding
code by following DSL grammar rules without
learning from any specific parallel data.

A typical NLU-driven synthesizer has three com-
ponents as shown in Fig 3 3: a domain knowledge
constructor that processes the domain knowledge
to aid code synthesis; an NLP engine that converts
an NL-based query to a dependency graph and a
grammar-graph–based translation module that gen-
erates code based on the dependency graph. The
domain knowledge constructor takes two files as in-
put: a document containing all the input and output
parameters of the API and their descriptions, and a
grammar file containing the context-free grammar
written in Backus-Naur form (BNF) (Wikipedia
contributors, 2022). The constructor parses the
input file and generates two outputs: an API knowl-
edge base for semantic mapping between NL-based
queries and APIs, and a grammar graph that defines
the search space for code generation. The NLP
engine accepts NL-based queries and produces a
dependency graph using various NLP techniques,
including POS tagging, Lemmatization, NER, and
dependency analysis. This dependency graph is

Figure 4: General architecture diagram of a data-driven
synthesizer. A data-driven synthesizer can accept nat-
ural language queries directly and generate code after
training on parallel data. As the training data and model
size grow, the performance of the data-driven synthe-
sizer will also progress.

sent to the grammar-graph–based translation mod-
ule for code generation.

As a "white box" approach, NLU-driven synthe-
sizers are easy to interpret. Synthesis errors can
be diagnosed and corrected by humans. However,
designing such a synthesizer requires rich expert
knowledge. The grammar rules require extensive
modifications when adopted to a new program lan-
guage.

3.4 Data-driven Synthesizer

NLU-driven synthesizers follow grammar rules de-
signed by humans, which cannot cover all situa-
tions. The data-driven synthesizer can bridge this
gap. It is based on neural networks and outputs the
code directly given an input query as Fig 4. The
large neural networks have demonstrated impres-
sive success in many NLP tasks, including code
generation. We experiment with two pre-trained
language models, namely PyCodeGPT (Zan et al.,
2022) and CodeT5 (Wang et al., 2021). Our pre-
liminary results show that PyCodeGPT does not
perform as well as CodeT5. A possible explanation
is that the CodeT5 is an encoder-decoder model,
which is more suitable for NL-based code gener-
ation. Therefore, we choose CodeT5 as the data-
driven synthesizer in our experiments. We also
explore CodeT5 in small, base, and large sizes and
find that CodeT5-small performed the best. This
may be due to the fact that our dataset is small and
large models are prone to overfitting.

4 Experiments

Experiments are conducted to answer the following
research questions:

• RQ1: Can the data-driven synthesizer benefit
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DSL Query Code

Text Editing Insert ":" after 1st word.

INSERT(STRING(:),
Position(AFTER(WORDTOKEN()),
IntegerSet(INTEGER(1))),
IterationScope(LINESCOPE(),
BConditionOccurrence(ALWAYS(), ALL())))

ATIS
I would like to find the cheapest flight
from Baltimore to Atlanta

EXTRACT_ROW_MIN_F(COL_FARE()),
AtomicRowPredSet(
AtomicRowPred(EQ_DEPARTS(CITY(baltimore),
ANY(), ANY(), ANY(), ANY()),
EQ_ARRIVES(CITY(atlanta),
ANY(), ANY(), ANY(), ANY())))

Table 1: Examples of Text Editing and ATIS. The text editing language was created to allow consumers to use
text editing features without knowing how to program. The Air Travel Information System (ATIS) is a DSL for
accessing air travel information.

from the NLU-driven synthesizer of Colead
in the presence of domain growth?

• RQ2: Can NLU-driven synthesizers gener-
ate training examples of sufficient quality to
address data scarcity?

• RQ3: Can the Colead enable the NLU-driven
synthesizer and the data-driven synthesizer to
complete their co-evolvement?

4.1 Experimental Setup

The proposed Colead is evaluated on two popu-
lar datasets that are collected from different DSLs.
Notably, due to the difficulty of collecting DSL
data, current DSL datasets typically have only a
few hundred entries.

• Text Editing 1 is a DSL with 52 APIs in total.
It is designed for end-users of Office Suite ap-
plications to do text editing without the need
of understanding the grammar and semantics
of regular expressions, conditionals, loops, etc.
The dataset for Text Editing consists of 467
query-code pairs.

• Air Travel Information System (ATIS) 2 is
a DSL that provides support of predicates and
expressions for querying air travel informa-
tion, such as arrival/departure locations, times,
dates, prices, etc. It is based on SQL-style
operations, with 51 APIs in total. The dataset
of ATIS consists of 535 query-code pairs.

Table 1 presents examples of query-code pairs
in two DSL datasets. It can be observed that DSL’s

1shorturl.at/npFIS
2shorturl.at/sxyS5

grammar format is different from GPL, and DSLs
are usually single lines of code to accomplish opera-
tions. In addition, because DSLs require functions
to be streamlined and compressed, the logic for
writing is different from GPL. As a result, data-
driven synthesizers trained on the GPLs cannot be
deployed for these DSLs without fine-tuning.

We propose to use the Exact Match as the mea-
sure, i.e., the generated code is considered correct
when it is exactly the same as the original code.
Although we do not have test cases to test whether
the generated code is correct due to the scarcity
of DSL data, it is reasonable to use Exact Match
because of the small range of variation in DSLs.
We follow the dataset setup commonly used in ma-
chine learning, with a ratio of 8:2 for training and
validation of the dataset.

Table 3 shows the results of the growing ATIS
domain.

4.2 Scenario of Domain Growth

Programming languages are non-static. They are
constantly growing and being updated with new
functionality. Such domain growth is common in
the real world, especially for DSLs.
To answer RQ1, we simulate this situation by in-
crementally adding and updating the APIs in the
DSL documentation and adding new query code
pairs associated with these new APIs to the training
and validation datasets.

We divide the data into three groups, called Orig-
inal Task (OT), Incompletely New Task (INT), and
Completely New Task (CNT), as described in the
caption of Table 2. In the original task, the origi-
nal DSL implemented only basic API functionality.
As the language evolves, new high-level APIs are
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Stage 1 Stage 2 Stage 3
ot int cnt ot int cnt ot int cnt

Golden Data
OT OT+INT OT+CNT

82.54 00.00 00.00 86.13 80.00 00.00 88.88 00.00 80.00

Baseline
OT OT+INT OT+CNT
- 84.12 43.33 00.00 77.77 00.00 43.33

OT OT+INT OT+CNT
Ours (Colead)

- 85.71 50.00 00.00 85.71 00.00 50.00

Table 2: We train CodeT5 (Wang et al., 2021) on the growing TextEditing domain and use the Exact Match results.
i) OT and ot, INT and int, CNT and cnt represent the training and validation set of Original Task(OT), Incompletely
New Task(INT) and Complete New Task(CNT). ii) Markers without underlines mean that they belong to the golden
dataset. Markers with underlines mean that the code for this dataset is generated from HISyn (Nan et al., 2020).
Markers with double underlines mean that the data pairs in this dataset are 5 samples drawn from the correct
dataset. iii) In Stage 1, only the Original Task is the subject of experiments. Stage 2 involves both Original Task and
Incompletely New Task. In Stage 3, both Original Task and Complete New Task are the subjects of experiments.

Stage 1 Stage 2 Stage 3
ot int cnt ot int cnt ot int cnt

Golden Data
OT OT+INT OT+CNT

79.76 00.00 00.00 96.42 70.83 00.00 95.00 00.00 00.00

Baseline
OT OT+INT OT+CNT
- 97.61 45.83 00.00 97.38 00.00 56.52

OT OT+INT OT+CNT
Ours (Colead)

- 97.62 25.00 00.00 97.61 00.00 17.39

Table 3: We also train CodeT5 (Wang et al., 2021) on the growing ATIS domain and use the same format as Table 2.

added. They may be incomplete and only partially
functional. We refer to the data of these new APIs
as Incompletely New Task. Finally, new APIs are
developed and completed, bringing data for Com-
pletely New Task. For example, in the Original
Task in the text editing domain, there is no RE-
MOVE API. As shown in Table 4, the Incompletely
New Task introduces the REMOVE API with lim-
ited functionality. In the Complete New Task, the
IterationScope parameter is added to set the itera-
tion scope to make REMOVE API complete.

Experiments are divided into three stages. In
Stage 1, experiments are carried out on Original
Task only. In Stage 2, Original Task and Incom-
pletely New Task are included. And in Stage 3,
Original Task and Completely New Task are in-
cluded. We use three different data settings to train
CodeT5 (Wang et al., 2021). The results are shown
in Table 2. HISyn (Nan et al., 2020) tends to gener-
ate multiple code candidates because it is common
for HISyn to construct graphs and traverse them to
find several paths that satisfy its requirements. We
choose to construct the dataset by selecting only

Incompletely New Task (INT)

REMOVE(SelectString(NUMBERTOKEN(),
BConditionOccurrence(
BETWEENCOND(STRING(colon),
STRING(colon),IMM()),ALL())))

Complete New Task (CNT)

REMOVE(SelectString(NUMBERTOKEN(),
BConditionOccurrence(
BETWEENCOND(STRING(colon),
STRING(colon), IMM()), ALL())),
IterationScope(LINESCOPE(),
BConditionOccurrence(ALWAYS(), ALL())))

Table 4: Examples of Incompletely New Task (INT)
and Complete New Task (CNT). Notably, Original Task
(OT) has no new task. Thus, we omit its table illustration
for brevity. Compared with INT, the IterationScope
is added to the REMOVE API to enable it to set the
iteration scope in CNT.

the shortest of all candidates, as the results show
that it is better than selecting all candidates. Al-
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though selecting all candidates has a larger quantity,
a number of incorrect codes introduce noise and
reduce data quality. The row "Golden" implies the
accuracy that CodeT5 can achieve with exactly the
right data. This is the best result we can expect
from our strategy. We want the exact matching ac-
curacy of the “Ours" row to be as close as possible
to the "Golden" row. Similar results are obtained
for ATIS, shown in Table 3.

Stage 1: This stage represents the early develop-
ment of the DSL, where new tasks have not yet
been introduced. At this stage, the training set
has only examples of the Original Task. CodeT5
trained on data from the Original Task performs
well on the corresponding validation set but has an
accuracy of 0 on the validation set of the new task.
Although these validation sets belong to the same
domain, CodeT5 cannot handle the new API. This
indicates that the model trained with the old data
cannot handle the new API.

Stage 2: This stage represents a DSL in an in-
termediate stage, where a new task has been intro-
duced, but it is still incomplete and simple. In order
to generate the code for the new task, we need to
supplement the corresponding API grammar and
description. CodeT5 trained with the data gener-
ated by our method accomplishes the same adap-
tation to the Incompletely New Task as CodeT5
trained with the complete data. By adding the new
task-related APIs to the documentation, our method
is able to generate data that can be used for training
in this stage.

Stage 3: This stage represents a DSL in its final
stage, where a new task has been introduced and its
development has been completed. Our method re-
quires that both the corresponding grammar and the
description in the API documentation be updated to
be considered complete. Training data containing
complete query-code pairs allows CodeT5 to learn
the complete API, completing the migration from
Incompletely New Task to Completely New Task.
The data generated by our method accomplishes
this as well, proving that it not only works on new
tasks but can be applied to task updates as well.

From the above three stages, we can observe
that our method can consistently provide data to
CodeT5 for training in domain growth.

4.3 Scenario of Data Scarcity

Data scarcity occurs frequently in DSLs, as a num-
ber of DSLs are designed for specific applications.
To answer RQ2, we analyze the performance of
our method in solving the data scarcity problem.
To establish a point of comparison, we set a base-
line by including five relevant examples from the
new task (specifically, the Incomplete New Task in
Stage 2 and the Complete New Task in Stage 3) in
the training set. This will be used as a baseline for
evaluating the performance of our method.

The results are summarized in Table 2, from
which it can be observed that our method outper-
forms the baseline in all stages. Compared to
CodeT5 trained with golden data in Stage 1, the
evaluation results of the baseline and Colead on
Original Task in Stage 2 increase by 1.58% and
3.17% respectively. This indicates that the com-
monality of the new task with the old task allows
the introduction of new task data to enhance the
model’s ability to handle the old task. The change
in the evaluation results for Incomplete New Task
is more pronounced, with the baseline and Colead
increasing from 0 to 43.33% and 50.00%, respec-
tively. In Stage 3, the same changes continue to
appear for the Completely New Task. To sum up,
the above results show that our method can have
better help than providing a few positive samples.

4.4 Study of Co-evolvement

To answer RQ3, we experimentally verify the ef-
fectiveness of Colead co-evolving on both NLU-
driven synthesizers and data-driven synthesizers.

We observe the performance changes of the two
synthesizers throughout their co-evolvement. For
CodeT5, we use a setup similar to the third stage
in Section 4.2, i.e., using the code generated by
HISyn for training. For HISyn, since it does not re-
quire training, we use the entire dataset for testing.
To highlight the role of the retriever, we use docu-
ments whose descriptions have not been manually
optimized, which places a higher demand on the
matching ability of the retriever. We introduce Sim-
CSE (Gao et al., 2021) as the baseline for compari-
son. The loop starts with an exact match retriever,
which is then replaced by a trained CodeT5 en-
coder. From Table 5, we can observe that Colead
leads consistent improvements to CodeT5 during
the loop. The "Original" row represents the results
of CodeT5 trained on the data generated by HISyn
using the exact match retriever.
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CodeT5 HISyn
TextEditing ATIS TextEditing ATIS

Baselines SimCSE 59.59 62.62 22.79 8.95
Original 56.99 62.62 23.48 10.48

Ours(Colead) Loop 1 58.06 63.55 23.44 10.37
Loop 2 59.14 65.42 24.27 10.63
Loop 3 60.22 61.68 24.42 10.37

Table 5: Exact Match accuracy of CodeT5 in the loops of Colead is on the left. Exact Match accuracy of HISyn
with different retrievers in the loops of Colead is on the right. The first four lines belong to the Co-evolvement loop
of Colead. SimCSE is independent of the circle and is not part of it. The bolded numbers are the best results.

Loop 1: From the original to Loop 1, the Ex-
act Match of CodeT5 increases from 56.99%
to 58.06% on the TextEditing dataset and from
62.62% to 63.55% on the ATIS dataset, which is
contributed by replacing the exact match retriever
with the encoder of the CodeT5. Meanwhile, the
Exact Match of HISyn slightly decreases but it ex-
ceeds the Original later.

Loop 2: CodeT5 continues to improve its perfor-
mance by 1.08% and 1.87% on the TextEditing and
ATIS datasets. We can observe that while SimCSE
can outperform Original and Loop 1, Colead out-
performs SimCSE after Loop 2. HISyn continues
to improve by 0.83% and 0.26% on the TextEditing
and ATIS datasets, and it outperforms Original and
SimCSE.

Loop 3: In Loop 3, CodeT5 and HISyn perform
best among these cases on the TextEditing dataset.
However, it is observed that the accuracy of ATIS
decreased, which is unexpected. By diagnosing the
grammar and dependency graphs, we are able to
determine the root cause of the errors. Our analy-
sis shows that the fuzzy match retriever increases
the number of candidate APIs for mapping. The
expansion of the range of candidate APIs exceeds
the capability of HISyn, resulting in a degradation
of the quality of the generated code.

We analyzed how Colead can improve NLU-
driven synthesizers with reference to specific ex-
amples. Table 6 shows a specific case where the
original HISyn generation failed but succeeded
in Colead. The original HISyn generation fails
because the semantic mapping in the retriever is
not sufficient to handle the ambiguity of natural
language. The updated retriever in Colead com-
pensates for this shortcoming. We know from the
grammar graph construction log that the original
HISyn does not map the word "Remove" to the RE-

Query Remove colon before every line
Original INSERT(STRING(colon),

Position(BEFORE(LINETOKEN()),ALL()),
IterationScope(LINESCOPE(),
BConditionOccurrence(ALWAYS(),ALL())))

Colead

REMOVE(SelectString(STRING(colon),
BConditionOccurrence(
BEFORECOND(LINETOKEN(),IMM()),ALL())),
IterationScope(LINESCOPE(),
BConditionOccurrence(ALWAYS(),ALL())))

Query Remove colon before every line
Original INSERT(STRING(colon),

Position(BEFORE(LINETOKEN()),ALL()),
IterationScope(LINESCOPE(),
BConditionOccurrence(ALWAYS(),ALL())))

Colead

REMOVE(
SelectString(STRING(colon),
BConditionOccurrence(
BEFORECOND(LINETOKEN(),IMM()),ALL())),
IterationScope(LINESCOPE(),
BConditionOccurrence(ALWAYS(),ALL())))

Table 6: Comparison between the original HISyn and
Colead generated code. In the example of the table, the
original is wrong and Colead is correct. The original
HISyn make a wrong decision for the query because it
could not map near-synonyms.

MOVE API correctly but the wrong INSERT API.
The reason is that the description in the API doc-
umentation does not explicitly include "Remove".
The fuzzy match retriever is able to correctly match
the corresponding API and therefore get the correct
code.

From Table 5, we find that the performance trend
of HISyn is similar to that of CodeT5. Although
occasionally decreasing at the same time, they con-
sistently improve with the cycle, which proves that
they are co-evolving.

5 Discussion

We try ChatGPT (Ouyang et al., 2022a) to ac-
complish our task and compare it to our approach.
To ensure that ChatGPT has the same data situation
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Query Insert colon before every 1st word
Ours INSERT(STRING(colon),

Position(BEFORE(WORDTOKEN()),
IntegerSet(INTEGER(1))),
IterationScope(LINESCOPE(),
BConditionOccurrence(ALWAYS(), ALL())))

0-shot
ChatGPT

insert ":", start all

5-shot
ChatGPT

INSERT STRING(colon)
Position(BEFORE(1st()), ALL())
IterationScope(LINESCOPE(),
BConditionOccurrence(ALWAYS(), ALL()))

Table 7: Comparison between ChatGPT and Colead
generated code. In the example of the table, 0-shot
ChatGPT is completely wrong and Colead is correct.
But 5-shot ChatGPT performs well.

as our approach, we feed the entire grammar and
documentation into ChatGPT. We use the prompt
"Based on the above grammar and documentation,
write DSL code to accomplish my query" to in-
struct ChatGPT and prepend 5 query-code pairs in
the 5-shot setting.

In Table 7, we observed a difference in per-
formance between ChatGPT and Colead. While
Colead can output exactly the right answer, the per-
formance of 0-shot ChatGPT and 5-shot ChatGPT
is very different.

ChatGPT does not require any additional train-
ing. It utilizes contextual information to provide
inferences, which demonstrates its versatility and
adaptability to various tasks. However, if no sam-
ple is provided, ChatGPT would not perform well.
0-shot ChatGPT partially understands the request
and outputs plausible code. 5-shot ChatGPT gen-
erates an almost correct answer, but the grammar
is not standardized enough. While correcting it
once could easily solve the problem, this step alone
incurs significant labor costs, whereas Colead is
generated strictly according to grammatical rules,
and thus has a much smaller probability of gram-
matical errors.

6 Conclusion and Future Work

Domain growth and data scarcity are two chal-
lenges that hinder the application of code gen-
eration to DSLs. We have shown that our pro-
posed Colead framework can effectively mitigate
these problems. Our framework combines NLU-
driven and data-driven synthesizers, where the
NLU-driven synthesizer alleviates the data-hungry
issue of the data-driven one and the data-driven syn-
thesizer provides better semantic mapping for the

NLU-driven synthesizer to improve code quality.
Future work should consider code generation by

leveraging grammar rules to regularize language
models. Components in the NLU-driven synthe-
sizer can be further improved, e.g., semantic map-
ping, NLP engines, etc. More powerful language
models, such as GPT3 (Brown et al., 2020; Ouyang
et al., 2022b), can be leveraged to improve the data-
driven synthesizer.

Limitations

Number of datasets. Due to the limited num-
ber of publicly available DSL datasets, the authors
evaluate their method on two DSL datasets. In
order to fully validate the capability of the pro-
posed method, it would be desirable to collect more
real-world datasets. One potential approach is to
manually collect DSL data for a domain, however,
this would be costly. Another approach is to apply
active learning methods (Ren et al., 2021) to auto-
matically identify relevant datasets as alternative
DSL datasets.

Ethics Statement

The authors declare that they adhere to general
ethical principles, professional responsibility, prin-
ciples of professional leadership, and ethical guide-
lines. In studies involving human participants, all
procedures were in accordance with ACL’s ethics
policy.
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