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Message from the Organizers

Welcome to the second edition of the Workshop on Pattern-based Approaches to NLP in the Age of
Deep Learning (Pan-DL)! Our workshop is being organized in a hybrid format on December 6, 2023, in
conjunction with the 2023 Conference on Empirical Methods in Natural Language Processing (EMNLP).

In the past year, the natural language processing (NLP) field (and the world at large!) has been hit by the
large language model (LLM) "tsunami." This happened for the right reasons: LLMs perform extremely
well in a multitude of NLP tasks, often with minimal training and, perhaps for the first time, have made
NLP technology extremely approachable to non-expert users. However, LLMs are not perfect: they are
not really explainable, they are not pliable, i.e., they cannot be easily modified to correct any errors
observed, and they are not efficient due to the overhead of decoding. In contrast, rule-based methods
are more transparent to subject matter experts; they are amenable to having a human in the loop through
intervention, manipulation and incorporation of domain knowledge; and further the resulting systems
tend to be lightweight and fast. This workshop focuses on all aspects of rule-based approaches, including
their application, representation, and interpretability, as well as their strengths and weaknesses relative
to state-of-the-art machine learning approaches.

Considering the large number of potential directions in this neuro-symbolic space, we emphasized
inclusivity in our workshop. We received 19 submissions and accepted 10 for oral presentation. This
resulted in an overall acceptance rate of 52%. Our workshop also includes 6 presentations of papers that
were accepted in Findings of EMNLP.

In addition to the oral presentations of the accepted papers, our workshop includes a keynote talk by
Yunyao Li, who has made many important contributions to the field of symbolic approaches for natural
language processing. Further, the workshop contains a panel that will discuss the merits and limitations
of rules in the new LLM era. The panelists will be academics with expertise in both neural- and rule-
based methods, industry experts that employ these methods for commercial products, and subject matter
experts that have used rule-based methods for domain-specific applications.

We thank Yunyao Li and the panelists for their important contribution to our workshop!

Finally, we are thankful to the members of the program committee for their insightful reviews! We are
confident that all submissions have benefited from their expert feedback. Their contribution was a key
factor for accepting a diverse and high-quality list of papers, which we hope will make the first edition
of the Pan-DL workshop a success, and will motivate many future editions.

Pan-DL 2023 Organizers
December 6, 2023
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Abstract

Relation extraction (RE) has achieved remark-
able progress with the help of pre-trained lan-
guage models. However, existing RE models
are usually incapable of handling two situa-
tions: implicit expressions and long-tail rela-
tion classes, caused by language complexity
and data sparsity. Further, these approaches and
models are largely inaccessible to users who
don’t have direct access to large language mod-
els (LLMs) and/or infrastructure for supervised
training or fine-tuning. Rule-based systems
also struggle with implicit expressions. Apart
from this, Real world financial documents such
as various 10-X reports (including 10-K, 10-Q,
etc.) of publicly traded companies pose an-
other challenge to rule-based systems in terms
of longer and complex sentences. In this pa-
per, we introduce a simple approach that con-
sults training relations at test time through a
nearest-neighbor search over dense vectors of
lexico-syntactic patterns and provides a simple
yet effective means to tackle the above issues.
We evaluate our approach on REFinD and show
that our method achieves state-of-the-art per-
formance. We further show that it can provide
a good start for human in the loop setup when
a small number of annotations are available
and it is also beneficial when domain experts
can provide high quality patterns. Our code is
available at 1.

1 Introduction

Relation extraction (RE) from text is a fundamental
problem in NLP and information retrieval, which
facilitates various tasks like knowledge graph con-
struction, question answering and semantic search.
Recent studies (Zhang et al., 2020; Zeng et al.,
2020; Lin et al., 2020; Wang and Lu, 2020; Cheng
et al., 2020; Zhong and Chen, 2021) in supervised
RE take advantage of pre-trained language models

1https://github.com/pawan2411/PAN-DL_Refind
*Equal Contribution

Figure 1: Relation Extraction example, here both orga-
nizations are connected with "acquired by" relation.

(PLMs) and achieve SOTA performances by fine-
tuning PLMs with a relation classifier. However,
(Wan et al., 2022) observes that existing RE models
are usually incapable of handling two RE-specific
situations: implicit expressions and long-tail rela-
tion types.

Implicit expression refers to the situation
whereas relation is expressed as the underlying
message that is not explicitly stated or shown. In
Figure 1, relation "acquired_by(organization, or-
ganization)" occurs implicitly. Such underlying
messages can easily confuse the relation classifier.

The other problem of long-tail relation classes
is caused by data sparsity in training. For example,
the REFinD dataset (Kaur et al., 2023) comprises
45.5 % of the no_relation instances. The most
frequent class in the dataset - “per:title:title” has
4,468 training examples, while over 14 out of 22
classes have less than 500 examples. The majority
class can easily dominate model predictions and
lead to low performance on long-tail classes.

Recently, ICL (In-Context Learning) based ap-
proach (Wan et al., 2023) is utilized for RE tasks.
The approach achieves improvements over not
only existing GPT-3 baselines, but also on fully-
supervised baselines even with only a limited num-
ber of demonstrations provided in the prompt.
Specifically, it achieves SOTA performances on
the Semeval and SciERC datasets, and competi-
tive performances on the TACRED and (Zhang
et al., 2017a) ACE05 datasets. (Rajpoot and Parikh,
2023) utilized the GPT-4 under ICL framework on
REFinD and achieved 3rd rank in the shared task.

However, retrieval of examples to demonstrate
is a key factor in the overall performance on these
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pipelines. Finding efficient demonstrates often re-
lies on learning-based retrieval (Ye et al., 2023;
Rubin et al., 2022). These learning-based retrievers
use annotated data and a LLM. This type of re-
trieval strategy comes with the increased cost (API,
infrastructure etc.), time as more experiments are
required because most LLMs are black box and it
also needs special expertise.

Apart from the implicit expression challenge
mentioned above, REFinD poses another challenge
to rule-based systems in terms of longer and com-
plex sentences. For example, (Kaur et al., 2023)
cites that the average sentence length in the RE-
FinD dataset is 53.7 while the average sentence
length in the TACRED dataset (Zhang et al., 2017b)
is 36.2. Further, As per (Kaur et al., 2023), REFinD
includes more complex sentences than TACRED,
with an average entity-pair distance of 11, com-
pared to 8 in TACRED. Because of this, writing
rules at surface text level is a challenge. Hence,
rules at lexico-syntactic level is the need of the
hour. However, strict matching of these rules can
yield high precision but low recall result due to ac-
curacy of syntactic parsing. Hence, a robust fuzzy
pattern matching system is required.

Inspired by recent studies (Wan et al., 2022;
Khandelwal et al., 2019; Guu et al., 2020; Meng
et al., 2021) using k-Nearest Neighbor to retrieve
diverse expressions for language generation tasks,
we introduce a simple but effective approach that
consults training relations at test time through
a nearest-neighbor search over dense vectors of
lexico-syntactic patterns and provides a simple
yet effective means to tackle the above issues.
Our method achieves an improvement of 1.18%
over baseline (F1-score - 0.7516). We achieved
our results using commodity hardware within a
day. That’s why our approach is easier to deploy,
lightweight and fast. We further show that our
approach can provide a good start (F1-score of
0.5122) for human in the loop setup when a small
number of annotations (approx. 10% of training
data) are available and it is also beneficial (F1-score
of 0.6939 with approx. 10% of training data) when
domain experts can provide high quality patterns.

2 Preliminary Background

2.1 Task Definition

Let C denote the input context and e1 in C, e2 in
C denote the pair of entity pairs. Given a set of
predefined relations classes R, relation extraction

Figure 2: Patterns extracted by our pipeline

aims to predict the relation y in R between the pair
of entities (e1, e2) within the context C,or if there is
no predefined relation between them, predict y="no
relation".

2.2 Data

The REFinD dataset (Kaur et al., 2023) is the
largest relation extraction dataset for financial doc-
uments to date. Overall REFinD contains around
29K instances and 22 relations among 8 types of
entity pairs. REFinD is created using raw text
from various 10-X reports (including 10-K, 10-Q,
etc.broadly known as 10-X) of publicly traded com-
panies obtained from US Securities and Exchange
Commission.

3 Nearest Neighbor Search over
Vectorized Lexico-Syntactic Patterns

3.1 Generating Lexico-Syntactic Patterns

We replaced words representing entities of interest
with their entity types given in the dataset.

Instead of conducting nearest neighbor search
on a complete sentence, we applied Spacy Depen-
dency Parser2 and considered the shortest depen-
dency path (henceforth SDP) between two entities
to deal with long and complex sentences with the
intuition that considering all sentence words can
do more harm in search. SDP is essential for rela-
tionship identification in most cases.

We apply Spacy NER on REFinD sentences and
replace actual named entities with their types to
create higher-level patterns.

We also enriched all SDP words with their De-
pendency Labels to utilize structure information in
our search.

For each sentence, we create 4 patterns: 1. SDP
words only (SDP) 2. SDP words with named
entities replaced with their types (SDP-NER) 3.
SDP words enriched with their Dependency Labels
(SDP-DEP) 4. SDP words with named entities re-
placed with their types and also enriched with their
Dependency Labels (SDP-DEP-NER). Example
patterns are shown in Figure 2.

2https://spacy.io/
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3.2 Generating Dense Vectors for
Lexico-Syntactic Patterns

We converted all 4 types of Lexico-Syntactic Pat-
terns into Dense Vectors as it performs better than
Sparse Vectors. To create a vector, we employed
an all-mpnet-base-v23 sentence encoder. We also
created vectors for original sentences using the en-
coder.

3.3 Creating Class Specific Indices

For each pattern type mentioned above, we created
21 dense vector indices each representing a rela-
tionship class except ’no_relation’ class. We split
’no_relation’ training data instances into 8 splits as
per entity-type pairs such as "Person-Organization",
"Organization-Organization" etc. and created in-
dices for each split. In this way, there are 29 indices
in total for each pattern type. Each element of the
index represents a vectorized lexico-syntactic pat-
tern for each training example. For around 11.89%
of the training sentences, we faced issues in gen-
erating dependency tree and/or SDP. To deal with
this, we also created another 29 indices containing
dense vectors for original sentences.

3.4 Conducting Nearest Neighbor Search

After configuring lexico-syntactic pattern type and
value of K, Given a test sentence and an entity-
type pair, we first create a vector representing its
lexico-syntactic pattern obtained using steps de-
scribed above. With the entity-type pair, appropri-
ate relation class indices are selected for search.
The pattern vector is searched in every appropri-
ate class index using cosine similarity and top K
vectors from each class index are obtained. The
similarity scores of each of these top K vectors are
averaged and the class having the highest similarity
score is selected. In the case of syntactic parsing
failures, as a fallback strategy, a vector of the orig-
inal sentence is created and is used against class
specific sentence indices in search the same way as
mentioned above.

3https://huggingface.co/sentence-transformers/all-mpnet-
base-v2

Pattern K F1-score
SDP 14 0.7552
SDP-NER 12 0.7538
SDP-DEP 11 0.7610
SDP-DEP-NER 14 0.7634
Winner on leaderboard (baseline) 4 - 0.7516

Table 1: Comparison on performance on REFinD dev
data
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Figure 3: Sensitivity Analysis

SDP+DEP+NER

4 Experiment Settings

4.1 Dataset
The REFinD dataset (Kaur et al., 2023) released
with the shared task is a part of "Knowledge Discov-
ery from Unstructured Data in Financial Services"
(KDF) workshop which is collocated with SIGIR
2023. There are 20070, 4306 and 4300 instances
of training data, development data and public test
data respectively. The organizers have released
training data, development data and public test data
with gold labels but haven’t released private test
data with gold labels. Because of that, we are not
able to benchmark our system against the winners
of the shared task. Since, leaderboard 4 and gold
labels on development data is available, we have
benchmarked our approach against the leaders of
development data. We have used training data and
public test data to create class specific indices to
perform nearest neighbor search for development
data sentences.

4.2 Hardware Resources
We have used a laptop with 16GB RAM and Intel®
Core™ i7-7500U CPU @ 2.70GHz × 4 CPU to

4https://codalab.lisn.upsaclay.fr/competitions/11770

3



produce these results.

4.3 Efforts

Given the dataset, all setup and experiments are
conducted within a day.

5 Results

We conducted experiments with 4 different pattern
types. To find the best value of K, we have created a
10% split from the training data and experimented
with different values of K (1 to 20). During eval-
uation, we faced issues in generating dependency
tree and/or SDP for around 8.7% instances and for
those instances, indices containing sentence vec-
tors were used as fallback strategy. The results in
Table 1 show that our best F1-score is 0.7634 for
SDP-DEP-NER pattern and K=14 (Top K vectors)
and our method shows improvement of 1.18% over
baseline. Figure 3 shows how sensitive this ap-
proach is with respect to different values of K. This
confirms our intuition that there is value in utiliz-
ing vectorized lexico-syntactic patterns to deal with
long and complex sentences and implicit expres-
sions. Further, splitting instances as per the class
and performing lazy classification over these splits
can help in dealing with the dataset with long-tail
relation classes.

To explore the effectiveness of our approach
in human in the loop situation, we conducted a
few experiments as shown in Figure 4. We ran-
domly selected N patterns per class from the train-
ing data and built indices with those patterns only.
We tried different values of N. With N=100 and
K=1 (derived from dev split), we achieved an F1-
score of 0.5122 with around 10% of the original
training data. It shows that the vectorized lexico-
syntactic patterns and the cosine similarity based
scoring can be a good start to label similar instances
when the number of annotations are less. This
method can be used in human in the loop setup
to either filter out similar instances (explore) or to
find similar instances (exploit) for further human
review/annotation.

To explore the effectiveness of our approach
when domain experts are available and can pro-
vide high quality patterns specially for the task like
this which is restricted to a particular domain, types
of documents, types of entities and a handful of re-
lations, we conducted a few experiments as shown
in Figure 4. To approximate this experiment, we
selected N training patterns from each class which

occurs frequently in Top K search when develop-
ment patterns are classified correctly. We call these
patterns the Most-Frequent Patterns. We built in-
dices with those patterns only. As shown in Figure
4, with N=100 and K=4 (derived from dev split),
we achieved an F1-score of 0.6939 (6.95% less
than the best result) with around 10% of the origi-
nal training data. It shows that it can bridge gaps
quickly with a small amount of high quality pat-
terns.

0 25 50 75 100
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0.5
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1
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F1
-S

co
re

Figure 4: Training Patterns Selection

Randomly selected; K=1
Most-Frequent; K=4

6 Conclusion

Our approach consults training relations at test time
through a nearest-neighbor search over dense vec-
tors of lexico-syntactic patterns. We evaluated our
approach on REFinD and show that our method
achieves state-of-the-art performance without any
direct access to large language models (LLMs)
or supervised training or fine-tuning or any hand-
crafted rules. We achieved our results using a com-
modity hardware within a day. That’s why our
approach is easier to deploy, lightweight and fast.
We further explores that our approach can provide
a good start for human in the loop setup when a
small number of annotations are available and it
can be also beneficial when domain experts can
provide high quality patterns.

7 Limitations

Since our method is based on nearest neighbors
search, it’s sensitive to the value of K. Further-
more, our method is also very sensitive to syntactic
parsing and NER. Our vectors are not optimal rep-
resentations because our syntactic patterns are not
a natural fit for the sentence encoder.
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Abstract
Linguistic structures can implicitly imply di-
verse types of event relations that have been
previously underexplored. For example, the
sentence “John was cooking freshly made noo-
dles for the family gathering” contains no ex-
plicit temporal indicators between the events,
such as before. Despite this, it is easy for hu-
mans to conclude, based on syntax, that the noo-
dles were made before John started cooking,
and that the family gathering starts after John
starts cooking. We introduce Linguistically en-
hanced Event TemporAl relation Framework
(LEAF), a simple and effective approach to ac-
quiring rich temporal knowledge of events from
large-scale corpora. This method improves
pre-trained language models by automatically
extracting temporal relation knowledge from
unannotated corpora using diverse temporal
knowledge patterns. We begin by manually cu-
rating a comprehensive list of atomic patterns
that imply temporal relations between events.
These patterns involve event pairs in which
one event is contained within the argument of
the other. Using transitivity, we discover com-
positional patterns and assign labels to event
pairs involving these patterns. Finally, we make
language models learn the rich knowledge by
pre-training with the acquired temporal rela-
tion supervision. Experiments show that our
method outperforms or rivals previous models
on two event relation datasets: MATRES and
TB-Dense. Our approach is also simpler from
past works and excels at identifying complex
compositional event relations.

1 Introduction

Event temporal relation extraction can help us bet-
ter organize event flow and understand how events
develop. For example, in news articles, understand-
ing the causal relationships between events can
help us better understand why certain events oc-
curred (Tan et al., 2022; Zhang et al., 2023). In
medical records, understanding the temporal rela-
tionships between events can help us better track a

patient’s medical history (Cheng et al., 2013; Lee
et al., 2018).

Recently, there have been works focusing on first
acquiring temporal relation knowledge automati-
cally and then injecting the acquired knowledge via
pre-training. For example, ECONET (Han et al.,
2021b) uses explicit keyword search to retrieve the
sentences that contain temporal indicators such as
before, after, during, and previously as supervi-
sion. However, they do not fully exploit knowledge
from sentence linguistic structures. While Zhou
et al. 2020a make an attempt to utilize linguistic
structures by extracting patterns from semantic role
labeling (SRL) parses (Gardner et al., 2018; Shi
and Lin, 2019), much of the linguistic information
available is under-explored and they only utilize
keywords found in an event’s temporal argument.
Moreover, previous works which utilize linguistic
structure for event relation knowledge do not apply
them to neural networks (D’Souza and Ng, 2013;
Chambers et al., 2014).

We find that there is rich, implicit event knowl-
edge in the linguistic structures that has not been
explicitly leveraged in the past. For example, con-
sider the sentence “John was cooking freshly made
noodles for the family gathering as Adam ar-
rived”. Notice that in this sentence, there is only
one explicit mention of the temporal relationship
between any of the events, which is that John was
cooking as Adam arrived. However, it is possi-
ble to extract five times the number of relations
according to linguistic structures (Figure 1):
Relation 1: The noodles were made before John
started cooking, since adjectives of event objects
all occur before the event occurs.
Relation 2: John started cooking before family
gathering began, since an event always starts be-
fore its purpose event.
Relation 3: The noodles were made before
Adam arrived, since we know from the above re-
lations that the noodles were made before John
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Figure 1: Process of utilizing temporal knowledge patterns to acquire temporal relation supervision for pre-training.
An arrow a –> b indicates that event “a" starts before event “b". We first obtain the SRL annotations for all events
(shown are the annotations for “cooking" and “told"). Then, using a list of atomic patterns, we automatically extract
temporal relationships between a target event and other events in its arguments (shown by the single colored arrows).
Finally, we use transitivity rules to find compositional relations (shown by the arrows with two colors). The table on
the right shows the patterns corresponding to each relation. Note that this figure displays a subset of the entire set of
patterns we use.

started cooking, and Adam arrived as cooking
was started.
Relation 4: The noodles were made before the
family gathering, since we know from the above
relations that the noodles were made before John
began cooking, and John began cooking before
family gathering started.
Relation 5: Adam arrived before family gath-
ering, since we know from the above relations
that Adam arrived as John was cooking, and John
starts cooking before the family gathering.

To this end, we propose LEAF, a Linguistically
enhanced Event temporAl relation Framework.
Our method aims at capturing a diverse set of lin-
guistic structures implicitly indicating temporal re-
lations (a.k.a, temporal knowledge patterns), and
uses them to facilitate language models to learn
richer temporal knowledge. We start by manually
curating a diverse list of atomic patterns that com-
monly imply certain temporal relations (Appendix
A). These patterns involve pairs of events where
one event is contained within the argument struc-
ture of the other. For example, a target event always
starts after events in its prototypical patient (PPT)
argument, and we can use this atomic pattern to
find that cooking starts after made (Figure 1). Our
list encompasses an extension of patterns from pre-

vious works (Zhou et al., 2020a) along with novel
patterns, including the PPT pattern.

As illustrated in Figure 1, if we consider only
atomic patterns, many temporal relations are still
overlooked. The events made, gathering, and ar-
rived are not within one another’s arguments, yet
they still hold temporal relations. To capture these
relations, we also gather compositional patterns.
These are connections between two events that are
not directly linked in their argument structures and
are derived by utilizing the transitivity of atomic
patterns. From applying these temporal knowledge
patterns, we are able to extract two more atomic
relations (relations 1-2) and three more composi-
tional relations (relations 3-5) from the example
sentence than knowledge acquisition methods rely-
ing only on temporal indicator word searching.

To deploy temporal knowledge patterns for ob-
taining training supervision at scale, we use Al-
lenNLP’s SRL parser (Gardner et al., 2018; Shi
and Lin, 2019) on raw text. We then search the
collected patterns to determine if any patterns ap-
pear in the SRL annotations of a given sentence.
Once a pattern is found, the corresponding tem-
poral relation of the pattern can then be used as
supervision to further pre-train language models.
With this method, we collect millions of event re-
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lation supervisions for pre-training from the raw
Gigaword headline corpus (Graff et al., 2003; Rush
et al., 2015). This includes around 3.8M atomic
relations and 140K compositional relations.

Our method effectively helps pre-trained lan-
guage models learn rich temporal knowledge.
LEAF demonstrates an improvement of up to 9
F1 over vanilla BERTBASE and RoBERTaBASE

on MATRES (Ning et al., 2018) and TB-Dense
(Cassidy et al., 2014). It also delivers competitive
performance with previous state-of-the-art (SOTA)
methods that use temporal indicators and complex
fine-tuning layers. Moreover, it greatly exceeds
3-shot ChatGPT (OpenAI, 2023) by over 37 F1
points. We also perform ablation studies, which
verify that both types of temporal knowledge pat-
terns contribute to high performance. Finally, with
the aid of acquired atomic and compositional rela-
tion supervision, LEAF shows an increase of up to
6.8 F1 points over baselines on challenging cases
involving compositional relation prediction.

2 Related Work

In the early stages of event relation research, ex-
perts often used traditional machine learning meth-
ods to classify relations (Chklovski and Pantel,
2004; Mani et al., 2006; Pitler and Nenkova, 2009;
Mirza, 2014). These methods required experts
to manually identify features and use external re-
sources, which was time-consuming and labor-
intensive. Recently, there have emerged a great
number of attempts to incorporate temporal relation
knowledge into neural network models (Cheng and
Miyao, 2017; Goyal and Durrett, 2019; Xie et al.,
2022). One branch of this involves incorporating
additional temporal knowledge in the fine-tuning
stage on fully labeled datasets, then evaluating on
the respective dataset. Some add additional param-
eters to train (Tan et al., 2021; Hwang et al., 2022;
Lu et al., 2022; Wen and Ji, 2021), while others
only add objectives during fine-tuning (Wang et al.,
2022a; Zhang et al., 2022).

Another branch called weak supervision is more
closely related to our work. Weak supervision does
not require expensive manually labeled training
data, but instead automatically labels unannotated
corpora (Xie et al., 2022). This allows for greater
transferability of knowledge between tasks, as well
as ease of scalability. There are several popular
methods for extracting event temporal relations us-
ing weakly supervised data. One approach is to

perform a keyword search (Zhao et al., 2021; Han
et al., 2021b). Another approach is to use a teacher
model to label event relations (Ballesteros et al.,
2020). The most closely related to our work is
Zhou et al. 2020a, which uses keywords within a
single SRL semantic tag to extract relational knowl-
edge. However, this is only a small subset of all
available syntactic knowledge. In this work, we
expand the range of syntactic structures used to ex-
tract relation knowledge, enabling language models
to learn more diverse and complex knowledge.

3 Method

3.1 Overview

In this section, we describe our method for extract-
ing temporal relation knowledge from unlabeled
data and continually pre-train a language model
to inject this knowledge. We begin by providing
background on syntactic and semantic terminology
(§3.2). Next, we offer a precise definition of atomic
patterns and expand on the original patterns discov-
ered through our work (§3.3.1). We then discuss
the process of culminating compositional patterns
and their importance (§3.3.2). In §3.4, we detail
how we obtain temporal relation supervision with
our collected patterns. Finally, we show how to
use the relation supervision to pre-train language
models (§3.5).

3.2 Background of Syntactic and Semantic
Terminology

In this section, we introduce background on syntac-
tic and semantic terminology involved in LEAF.

An event refers to a specific occurrence of some-
thing that happens in a certain time and a certain
place involving one or more participants, which
can usually be described as a change of state (Li
et al., 2022). Following previous works, we define
the relation between two events by the occurrence
of their start time (Ning et al., 2018). Consider
the sentence “John was cooking freshly made noo-
dles for the family gathering” and its two events
e1 = cooking and e2 = made. In this sentence,
cooking clearly starts after made, so we would
label the relation between e1 and e2 as “after”.
Specifically, we consider three temporal relation-
ships for the temporal relation supervision in pre-
training stage: before, after, and simultaneous.

Verbs are elements that encode events and hold
arguments. For example, in the sentence “John
was cooking freshly made noodles for the family
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gathering as Adam arrived,” the verb cooking
takes four semantic arguments: agent, prototypical
patient (PPT), purpose (PRP), and temporal (TMP)
(Figure 2). “John” is the agent, “freshly made noo-
dles” is the PPT, “for the family gathering” is the
PRP argument, and “as Adam arrived” is the TMP ar-
gument. Arguments are the key components of our
collected temporal knowledge patterns introduced
in §3.3.

3.3 Temporal Knowledge Patterns

Temporal knowledge patterns are linguistic struc-
tures which usually imply certain temporal rela-
tions. The goal in collecting patterns is to extract
rich event temporal knowledge from unlabeled text,
allowing for harvesting of large-scale pre-training
supervision. In this section, we introduce how we
curate a diverse suite of atomic and compositional
patterns, covering a vast range of linguistic infor-
mation.

3.3.1 Atomic Patterns
Atomic patterns involve pairs of events where one
event is contained within the argument structure
of the other. Take the example “John was cooking
freshly made noodles for the family gathering as
Adam arrived.” Since made, gathering, and ar-
rived are all within cooking’s argument, atomic
patterns may underlie the linguistic structures be-
tween cooking and the other three events (Figure
1). To curate atomic patterns that likely indicate
certain temporal relations, we analyze examples
from existing temporal relation datasets (Han et al.,
2021a; Ning et al., 2020; Wang et al., 2022b). A
subset of the atomic pattern list can be found in
Table 1, and the comprehensive list can be found in
Appendix A. Our list of atomic patterns includes
both extensions of patterns explored in previous
works (Zhou et al., 2020a) and novel patterns with
linguistic structures implicitly expressing temporal
relations.

One example of an atomic pattern that does not
make use of any explicit temporal indicators is the
prototypical patient (PPT) modifier pattern. A PPT
is an event argument that undergoes change or is
affected by the target event. We find that events
which modify the PPT of a target event start before
the respective target event. In the sentence previ-
ously mentioned, after observing that the PPT of
cooking is “freshly made noodles,” we can use
this pattern to extract the relation that made starts
before cooking (Figure 2). As events are com-

monly accompanied by PPT arguments in everyday
English, detecting PPT patterns help obtain abun-
dant temporal relation supervision for further pre-
training.

The general PRP tag pattern and the general CAU
tag pattern are two other examples of atomic pat-
terns which do not use explicit temporal indicators.
Both of these require no keyword occurrences and
we can easily detect them with SRL tools. Two
examples are shown in Figure 1.

3.3.2 Compositional Patterns
As displayed in Figure 1, many event pairs do not
appear in each other’s arguments, and thus their
relationships cannot be concluded with just atomic
patterns. For example, in the sentence “John was
cooking freshly made noodles for the family gath-
ering as Adam arrived,” none of made, gathering,
or arrived are in each other’s arguments, yet there
still exists temporal relations between them. Com-
positional patterns involve pairs of such events that
are not in each other’s arguments. These patterns
are higher in difficulty than atomic patterns, as the
events are more loosely connected with each other
according to the syntax. Previous works have ex-
plored only atomic relations between two events
to provide supervision (Zhou et al., 2020a; Han
et al., 2021b), without considering compositional
patterns. We value the importance of composi-
tional temporal relational knowledge and further
leverage it as sources of additional supervision to
better tackle the challenges. This allows us to not
only capture more linguistically complex relations,
but also inter-sentence relations.

Compositional patterns frequently appear under
the following circumstance: consider three events
e1, e2, e3, where e1 is not in e3’s arguments, e3 is
not in e1’s arguments, but e2 is in both e1 and e3’s
arguments. In a scenario where atomic patterns
find that e1 occurs before e2, and e2 occurs before
e3, then we can also utilize transitivity to conclude
e1 occurs before e3 without e3 being in any of e1’s
arguments and e1 being in any of e3’s arguments.

We cumulate a comprehensive list of all possible
compositional patterns that can result from transi-
tivity between two atomic patterns. Then, we use
these compositional patterns to extract composi-
tional relations from SRL annotated text.

3.4 Creating Supervision From Patterns

In this section, we detail the algorithm we deploy
in order to extract temporal relations from raw text.
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Figure 2: Examples to acquire temporal relation supervision via pattern matching. From a single sentence (top-left),
we get the semantic arguments for each event using the SRL parser. The PPT pattern can help extract the relation
that “made” starts before “cooking” (cyan), and the PRP pattern is used to conclude that “cooking” starts before
“gathering” (purple). Finally, we use compositional patterns to gather complex relationships. We use the transitivity
of the two atomic patterns to extract that “made” starts before “gathering” (cyan + purple box).

Names Temporal Relations Example Sentences Explanations

CAU After John cooked noodles [because he was hungry ]. John cooked after he was hungry

PRP Before John cooked noodles [for the family gathering ]. John cooked before the family gathering

PPT After John cooked [freshly made noodles]. The noodles were made before John cooked them

Table 1: Subset of atomic patterns. CAU and PRP correspond to events in the causal and purpose tag, respectively.
The PPT row refers to prototypical patient tags. These patterns indicate that all events in that tag hold the respective
temporal relation to the target event.

We begin with the unannotated Gigaword head-
lines corpus1 (Graff et al., 2003; Rush et al., 2015),
which consists of around 3.8M news headline sen-
tences. Then, we obtain SRL annotations of the
headline sentences with SRL parser. The parser
provides all arguments for each event within a head-
line. For example, in the sentence in Figure 2, each
event made, cooking, gathering, and arrived will
have its arguments labeled. Concretely, we use Al-
lenNLP semantic role labeling (SRL) parser (Gard-
ner et al., 2018; Shi and Lin, 2019) to obtain de-
tailed annotation of events and the specific roles of
their arguments.

With each event’s arguments annotated by SRL
tools, we iterate through each event and detect the
existence of temporal knowledge patterns (§3.3) in
each sentence. Specifically, given a target event,
we first examine whether there are any atomic pat-
terns underlying the linguistic structure of the given
texts. If there is, we are able to extract relations
between the target event and the events within its

1https://huggingface.co/datasets/gigaword

arguments. For example, PPT pattern is detected
and helps us extract the relation that made starts
before cooking. The PRP pattern can also be found
to conclude that cooking starts before gathering.
Finally, we use our list of compositional patterns
to extract compositional relations between events
which do not occur within each other’s arguments.
The process of obtaining compositional relations
must also follow the principle of temporal rela-
tion transitivity. A compositional relation that we
extract in the above sentence is that made starts
before gathering, by transitivity of the two atomic
relations above (Figure 2).

In total, we extract 3.8M atomic relations and
140K compositional relations with our collected
temporal knowledge patterns. The extracted rela-
tions are all treated as the temporal relation super-
vision for later pre-training. To verify the accuracy
of the acquired supervision, we got 2 undergrad-
uate students to annotate 50 instances each. We
observe that 86% of the sampled instances are cor-
rect. This indicates the reliability of our process
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for automatically acquiring supervision.

3.5 Pre-training LMs with Acquired
Temporal Knowledge

In this section, we introduce our pre-training
method to make LMs learn rich temporal knowl-
edge with our acquired relation supervision.

Specifically, we adopt BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019) as our base
models and initialize the models with their pre-
trained parameters. The masked language model-
ing (MLM) objective is one of our leveraged pre-
training objectives. Suppose that there is an input
sequence X = [x1, x2, ..., xn], where xi indicates
the token at the i-th index. The pre-training objec-
tive is to minimize the negative log-likelihood of
predicting the masked tokens given the contexts.
Thus, LMLM is the cross-entropy loss value of pre-
dicting the masked tokens. We use the traditional
BERT masking technique where 15% of tokens are
either masked, replaced with a random token, or
left unchanged (Devlin et al., 2019). Additionally,
following previous work, we target 25% of event
tokens for one of these transformations (Han et al.,
2021b; Zhou et al., 2020a; Kimura et al., 2022).

Along with the traditional MLM pre-training
objective, to let our models learn the acquired
temporal knowledge, we utilize a temporal rela-
tion prediction objective (Ballesteros et al., 2020;
Wang et al., 2020) as the other pre-training ob-
jective. Consider the contextualized embeddings
H = [h1,h2, ...,hn] obtained from our base mod-
els. Let hi, hj be the contextualized representa-
tions for the tokens of e1 and e2, respectively2, and
let gp, gs be their element-wise Hadamard product
and subtraction (Zhou et al., 2020b; Wang et al.,
2020). We then feed [hi : hj : gp : gs] into a
multi-class classifier, where each class corresponds
to one of the three considered temporal relations
before, after, and simultaneous, to obtain ŷ. We
define the temporal relation objective LREL as:

LREL = − 1

m

m∑

i=1

yi log(softmax(ŷi)), (1)

where y is the one-hot ground-truth vector and m
is the number of training instances.

Our final loss function is thus:

L = LMLM + LREL. (2)
2For events that span multiple tokens, we simply take the

first token of the event as the representation.

4 Experiments

In this section, we present experiments to demon-
strate the effectiveness of LEAF for acquiring rich
temporal relation knowledge. LEAF is capable of
assisting LMs achieve high performance on multi-
ple downstream event relation benchmarks. It facil-
itates base models to perform comparable with pre-
vious SOTA models (Section 4.2). We also verify
the significance of pre-training objectives and data
by conducting ablation studies (Section 4.3). Next,
we reveal our method’s effectiveness at predicting
compositional relations (Section 4.4). Finally, we
perform a case study to analyze LEAF’s effective-
ness at learning patterns that were seen and those
that were unseen during pre-training (Section 4.5).

4.1 Experimental Setup

For our experiments, we pre-train both BERTBASE

and RoBERTaBASE on our extracted data (De-
vlin et al., 2019; Liu et al., 2019). We train
on 4 GeForce GTX 1080 Ti’s for 3 epochs.
For BERTBASE , we use a 1e-4 learning rate,
0.2 dropout rate, and a batch size of 32. For
RoBERTaBASE , we use a 5e-5 learning rate, 0.3
dropout rate, and a batch size of 24.

For evaluation, we consider two temporal re-
lation extraction datasets: MATRES (Ning et al.,
2018) and TB-Dense (Cassidy et al., 2014). Details
for the datasets can be found in Appendix B. For
both datasets, we train a new classifier head with
m output dimensions, where m is the number of
labels of the respective dataset. We fine-tune for
10 epochs on both datasets, and following previ-
ous works, we report the micro-F1 score for each
dataset (Wang et al., 2020).

4.2 Comparisons with Existing Systems

We compare our proposed method with two base
models BERT and RoBERTa. We also demonstrate
the effectiveness of LEAF in comparison with pre-
vious SOTA models.

4.2.1 Base-Models: BERT and RoBERTa
To evaluate the effectiveness of our method,
we compare the performance of LEAF-enhanced
BERTBASE and RoBERTaBASE with their respec-
tive vanilla counterparts. The results in Table 2
show that LEAF-enhanced models outperform the
vanilla models on both datasets by a large margin.
In particular, LEAF can bring 9-11 F1 improve-
ment over vanilla RoBERTaBASE . This demon-
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MATRES TB-Dense
BERTBASE 73.7 58.1
+ LEAF 81.3 63.2
RoBERTaBASE 73.1 55.7
+ LEAF 82.1 66.7

ChatGPT(0-shot) 26.2 22.0
ChatGPT(3-shot) 49.2 29.1
Bi-LSTM (Cheng and Miyao, 2017) 59.5 48.4
TacoLM+ (Zhou et al., 2020a) 63.5 40.1
Goyal and Durrett (2019) 68.6 —
BERE-p (Hwang et al., 2022) 71.1 —
EventPlus (Ma et al., 2021) 75.5 64.5
SP+ILP (Ning et al., 2017) 76.3 58.4
Wang et al. (2020) 78.8 —
Poincaré Event Embeddings (Tan et al., 2021) 78.9 —
United-Framework (base) (Huang et al., 2023) 79.3 66.4
ECONET (Han et al., 2021b) 79.3 66.8
HGRU+knowledge (Tan et al., 2021) 80.5 —
Ballesteros et al. (2020) 81.6 —
Wen and Ji (2021) 81.7 —

Table 2: Overall experimental results. Following previ-
ous works, we report micro-F1 score for both datasets.
+ denotes our reproduced results. Note that ECONET
is based on RoBERTaLARGE , which is 3× bigger than
our base models. We still outperform ECONET on MA-
TRES by a large margin.

strates the benefits of pre-training with rich tempo-
ral knowledge acquired with LEAF methods.

4.2.2 Previous SOTA Models
We also compare LEAF method to 12 previous
SOTA models, and find that LEAF leads to com-
petitive performance on both datasets. Along with
being simpler in design, our method requires train-
ing no additional parameters beyond a classifier,
and outperforms other models with over triple the
parameters. This includes outperforming Event-
Plus (Ma et al., 2021), a pipeline which uses twice
the parameters of our model, by 6.6 F1. Wen and Ji
(2021) and ECONET (Han et al., 2021b) are based
on RoBERTaLARGE , which is 3 times larger than
RoBERTaBASE . Nevertheless, RoBERTaBASE +
LEAF surpasses both models as well.

4.2.3 Models Relying Only on Explicit
Temporal Indicators

LEAF focuses on capturing richer temporal knowl-
edge implicitly expressed in texts. In contrast, pre-
vious works about temporal knowledge acquisition
merely utilize explicit indicators when gathering
temporal knowledge from text. In this section, we
verify the importance of implicit indicators by com-
paring our model to those that do not utilize this
extra information when curating temporal patterns.
The two models that we compare with in this sec-
tion are ECONET and TacoLM.

In order to automatically gather temporal in-

formation for supervision, ECONET (Han et al.,
2021b) collects a list of keywords that each imply
a certain temporal relationship. For example, the
words “before, until, and preceding” all imply the
same temporal relation between events. However,
they ignore crucial linguistic information by only
doing keyword search for their patterns, limiting
their scope to explicitly stated temporal relations.
Results in Table 2 show that although the base
model of ECONET is RoBERTaLARGE which is
3× bigger than our base models, LEAF can still
outperform ECONET by 2.8 F1 on MATRES and
achieve nearly the same performance on TB-Dense.

The major limiting factor of TacoLM discussed
in §3.3.1 is that they only use a small subset of
linguistic information to extract their temporal re-
lation knowledge. In particular, they only con-
sider the temporal arguments of events when ac-
quiring temporal relation supervision. We con-
duct experiments to reproduce TacoLM based on
BERTBASE and then evaluate the model on these
two datasets. Results are shown in Table 2. Despite
being trained on ~21M data, TacoLM underper-
forms BERTBASE + LEAF by a large margin.

4.2.4 ChatGPT
In this section, we analyze the performance of Chat-
GPT (gpt-3.5-turbo on 05-20-2023) on the two
downstream datasets. We first design three differ-
ent prompts, and for each prompt, we have a zero-
shot and a three-shot variant, totalling six prompts
per evaluation task (Appendix C). We then eval-
uate ChatGPT on TB-Dense and MATRES. Re-
sults can be found in Table 2. Aligning with past
findings (Kauf et al., 2022; Yuan et al., 2023), we
observe that ChatGPT does poorly at identifying
event temporal relations. Both the 3-shot and the
zero-shot F1 scores are significantly worse than
BERTBASE + LEAF.

4.3 Ablations

Ablation study for pre-training objectives. To
verify the significance of our pre-training objec-
tives towards the better model performance, we
conduct ablation studies to examine the effect of re-
moving MLM and temporal relationship prediction
objectives. Results can be found in Table 3. We
find that for both datasets, removing either MLM
or temporal relationship prediction objective leads
to a worse performance than pre-training with both
objectives. This indicates that both objectives are
crucial in allowing the model to learn temporal
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MATRES TB-Dense

BERTBASE 73.7 58.1
+ LEAF 81.3 63.2

- TMP REL 80.2 62.0
- MLM 56.6 29.7
- Atomic 79.6 60.7
- Compositional 79.9 59.9

Table 3: Ablation studies of the training objectives and
patterns. The addition of LEAF improves the perfor-
mance of BERTBASE on each dataset. The combination
of the two training objectives is effective, as removing
either one lowers performance on the two datasets. The
combination of both types of temporal knowledge pat-
terns also proves to be crucial, as removing either one
also lowers performance on both datasets.

knowledge and generalize to downstream tasks.

Ablation study for pre-training data. To ver-
ify the value of both atomic and compositional
relations, we pre-train BERTBASE without atomic
and compositional relations acquired by LEAF. Re-
sults can be found in the Table 3. We find that
for both datasets, removing either atomic or com-
positional relations in the pre-training stage leads
to worse performance than training with both rela-
tions. Especially, we find that although there are
only 140K acquired compositional relations, train-
ing with these 140K relations performs on par with
training with 3.8M atomic relations. This further
emphasizes the contribution of considering compo-
sitional relations to temporal relation tasks.

4.4 Predicting Compositional Relations
It is intuitive that correctly extracting composi-
tional relations is more challenging than identifying
atomic relations. In this section, we explore the ca-
pability of our model to extract challenging compo-
sitional relations. We take the subset of MATRES
and TB-Dense that contain compositional relations,
and evaluate both base models BERTBASE and
RoBERTaBASE and their LEAF-enhanced counter-
parts. Results are displayed in Table 4. We observe
that further pre-training with the relation supervi-
sion derived from LEAF enhances base models at
identifying compositional relations. This is likely
due to us giving explicit compositional relation
supervision during pre-training.

We also perform ablation studies to evaluate
the impact of atomic and composition relations
acquired by LEAF on the subsets MATRES-C and
TB-Dense-C. As shown in Table 4, we find that

MATRES-C TB-Dense-C

BERTBASE 72.8 53.2
+ LEAF 78.5 57.0

- Atomic 81.0† 60.1†

- Compositional 75.1 53.1

RoBERTaBASE 74.6 55.2
+ LEAF 81.1 62.0

Table 4: Results on the instances involving composi-
tional relations in MATRES and TB-Dense. -C denotes
the dataset subset with only compositional relations.
For both subsets, the addition of LEAF significantly
increases F1 score. Although the performance marked
with † is better than BERTBASE + LEAF, the overall
performance of the corresponding baseline is lower than
BERTBASE + LEAF 1.4 and 3.3 F1 on MATRES and
TB-Dense.

BERTBASE trained with only compositional re-
lations performs better on both datasets than the
model trained with only atomic relations. It even
surpasses BERTBASE + LEAF, which is trained
with the whole set of acquired relation supervision.
This verifies that the compositional relations ex-
tracted are effective at assisting the model in tack-
ling challenging compositional relation extraction.
However, as shown in Table 3, training with the
mere compositional relations does not bring better
overall performance on MATRES and TB-Dense.
Overall, training with all the relations obtained by
LEAF is a better solution that achieves competitive
overall extraction performance and predicts chal-
lenging temporal relations with greater accuracy.

4.5 Case Study

In this section, we examine specific instances
where the model demonstrates an ability to grasp
patterns that were not seen during pre-training as
well as instances which display the model’s capac-
ity to effectively learn atomic and compositional
patterns.

We present cases that confirm the effectiveness
of exposing the model to out extracted patterns pat-
terns during pre-training. In Figure 3, we observe
examples where the model learns to correctly iden-
tify atomic and compositional relations after pre-
training. These are examples in which the model
fails to identify the relationship correctly without
pre-training, and succeeds after pre-training. This
shows the effectiveness of our patterns, equipping
the model with a robust understanding of complex
relations, enhancing its ability to make accurate
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Figure 3: Examples of relations that were learned by pre-training with acquired patterns. These are instances
in which the model labels the relation incorrectly without pre-training, and correctly after pre-training. For the
compositional pattern, we see the event “announced” revealing a relation between “impounded” and “miss” (sentence
3). These otherwise do not have a trivial relation, because “miss” is not in the arguments of “impounded” (sentence
1) and “impounded” is not in the arguments of “miss” (sentence 2). Our model effectively identifies this relation
after pre-training. For the atomic pattern, we see that vanilla RoBERTa fails on atomic relations, while LEAF
can help to capture this case. For the noun-verb relation sentences, we see two examples where the model learns
relations between a noun event (in red) and a verb event (in blue), despite not having seen any during pre-training.

predictions and adapt to new, unseen data.

Because the SRL parser only annotates verb
events during pre-training, our model only sees
verb-verb relations during pre-training. Despite
this fact, LEAF has shown a remarkable ability
to learn noun-verb relations that are not acquired
without the pattern supervision. This is evidenced
by the two examples illustrated in Figure 3. The
model’s ability to grasp these relations suggests
that the patterns we provided during training have
a potential beyond their explicit supervision.

5 Conclusions

In conclusion, our proposed LEAF framework
demonstrates the effectiveness of using diverse lin-
guistic structures to extract rich temporal knowl-
edge of events from large-scale corpora. The ex-
tracted knowledge is able to enhance language mod-
els via a simple pre-training procedure. Our ap-
proach outperforms or rivals previous models on
MATRES and TB-Dense, and excels at identifying
complex compositional event relations.

6 Limitations

Our model’s scope for event relations does not in-
clude all types of events. Specifically, the captured
temporal relationships used for pre-training super-
vision does not cover noun-verb and noun-noun
event pairs. Another limitation is that our model
is only as good as the SRL annotations are. If the
SRL annotations are noisy, then so will be our data.
Also, due to the limits of computation resources,
the scale of our base models are only around 110M
parameters. We hope to extend to larger-scale ex-
periments once better computational resources are
available for use.
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Appendix

A List of Atomic Patterns

In Table 5, we provide a comprehensive list of pat-
terns used to extract the data. The top section out-
lines general semantic tag patterns. If a target event
possesses any of these arguments, all argument
events will hold the specified temporal relationship
with the target event. The bottom section includes
tag and beginning word patterns, consisting of a
three-letter capitalized tag followed by a word. If
an argument begins with such a keyword, all events
within the argument will hold the temporal relation
with the target event. The to pattern specifies that
all semantic arguments beginning with to indicate
that the target event occurs before the events in the
tag. Modal verbs indicates that any argumenta-
tive event modified by a modal verb will hold the
designated temporal relationship with the target
event.

B Dataset Statistics

In Table 6, we display the statistics for both
datasets. Both datasets provide gold event labels,
and the task is to predict the temporal relation be-
tween two provided events.

C ChatGPT Prompts

Below are the three ChatGPT prompts that we av-
eraged the performance over. For three-shot, we
simply repeated the prompt four times, with the
first three times also including the answer to the
passage. Note that all examples are the ones we
used for MATRES. For TB-Dense, because there
are more labels, we added more options for Chat-
GPT to choose from. For each example, the exam-
ple sentence replaces {sentence}, and the names
of the left and right event replace {left_event} and
{right_event}.

1. Context: {sentence}
Based on the above paragraph, what can we
conclude about the events “{left_event}" and
“{right_event}"?
Please choose one of the following:
- “{left_event}" started before “{right_event}"
- “{left_event}" started after “{right_event}"
- “{left_event}" and “{right_event}" started
simultaneously
- The temporal relationship between
“{left_event}" and “{right_event}" is vague

2. Read the following and determine the
temporal relationship between the events
“{left_event}" and “{right_event}":
Context: {sentence}
Options:
- “{left_event}" started before “{right_event}"
- “{left_event}" started after “{right_event}"
- “{left_event}" and “{right_event}" started
simultaneously
- The temporal relationship between
“{left_event}" and “{right_event}" is vague

3. Description: Given a passage, and two events
“{left_event}" and “{right_event}", determine
the temporal relationship between the events,
choosing between one of the following
options:
- “{left_event}" started before “{right_event}"
- “{left_event}" started after “{right_event}"
- “{left_event}" and “{right_event}" started
simultaneously
- The temporal relationship between
“{left_event}" and “{right_event}" is vague
Passage: {sentence}
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Names Temporal Relations Example Sentences Explanations

CAU After John cooked noodles [because he was hungry ]. John cooked after he was hungry

PRP Before John cooked noodles [for the family gathering ]. John cooked before the family gathering

PPT After John cooked [freshly made noodles]. The noodles were made before John cooked them

to Before John cooked noodles [to cure his boredom] John cooked before his boredom was cured

TMP when After [When he got hungry ], John cooked noodles. John cooked after he got hungry

TMP following... After John cooked noodles [following a request from
Adam].

John cooked after Adam requested

TMP after... After John cooked noodles [after Adam arrived ]. John cooked after Adam arrived

TMP before... Before John cooked noodles [before Adam arrived ]. John cooked before Adam arrived

TMP during... Simultaneous John cooked noodles[during the storm ]. It stormed while John cooked noodles

TMP while... Simultaneous John cooked noodles [while it was snowing ]. It snowed while John cooked noodles

TMP as... Simultaneous John cooked noodles [as Adam arrived ]. Adam arrived while John cooked noodles

ADV while... Simultaneous John cooked noodles, [while Adam was unamused
by his jokes].

Adam was unamused while John cooked noodles

ADV if... After John cooks noodles [if he is bored ]. John cooks after he is bored

Modal Verbs Before John cooked noodles and [Adam will eat them]. John cooks noodles before Adam eats

Table 5: Full list of atomic patterns. Three letter abbreviations indicate semantic tags. Patterns that only consist of a
tag (e.g., PPT) indicate that all events in that tag hold the respective temporal relation to the target verb. The patterns
that have a tag (e.g., TMP) and a word (e.g., during) indicate the pattern whose semantic tag starts with the word.

Train Validation Test Labels
MATRES 5,036 1,296 827 Vague, before, after, simultaneous
TB-Dense 4,032 629 1,427 Vague, before, after, simultaneous, includes, is_included

Table 6: Statistics for both datasets. Note that TB-Dense has all of the labels of MATRES, plus two additional
labels: includes and is_included.
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Abstract

Recently, end-to-end trained models for
multiple-choice commonsense question an-
swering (QA) have delivered promising re-
sults. However, such question-answering sys-
tems cannot be directly applied in real-world
scenarios where answer candidates are not pro-
vided. Hence, a new benchmark challenge
set for open-ended commonsense reasoning
(OpenCSR) has been recently released, which
contains natural science questions without any
predefined choices. On the OpenCSR chal-
lenge set, many questions require implicit
multi-hop reasoning and have a large decision
space, reflecting the difficult nature of this task.
Existing work on OpenCSR sorely focuses on
improving the retrieval process, which extracts
relevant factual sentences from a textual knowl-
edge base, leaving the important and non-trivial
reasoning task outside the scope. In this work,
we extend the scope to include a reasoner that
constructs a question-dependent open knowl-
edge graph based on retrieved supporting facts
and employs a sequential subgraph reasoning
process to predict the answer. The subgraph
itself can be seen as a concise and compact
graphical explanation of the prediction. Experi-
ments on two OpenCSR datasets show that the
proposed model achieves great performance on
benchmark OpenCSR datasets.

1 Introduction

Commonsense reasoning has long been considered
an essential topic in artificial intelligence. Most
approaches work on the setting of multiple-choice
question answering [8, 3], which selects an answer
choice by scoring the question-choice pairs. How-
ever, the multiple-choice setting is not applicable
in many real-world scenarios since many question-
answering tasks do not provide answer candidates.
As a step towards making commonsense reasoning

∗work done while internship at Baidu.

research more realistic and useful, open-ended com-
monsense reasoning (OpenCSR) has been intro-
duced [9], which explores a commonsense knowl-
edge corpus to answer commonsense questions.
OpenCSR often requires multi-hop reasoning, i.e.,
the model should conclude the answer by reasoning
over two or more facts from the knowledge corpus,
which makes this task much more challenging. Lin
et al. [9] proposed a retrieval-based method, called
DrFact, by combining the maximum inner product
search and symbolic links between facts. However,
DrFact does not put much effort on the reason-
ing module to re-rank the retrieved facts. To this
end, we proposed an integrated subgraph reason-
ing approach for OpenCSR with end-to-end learn-
ing, which iteratively employs a retriever to extract
question-relevant facts from a knowledge corpus
and a reasoner over the extracted facts. Given a
commonsense question, the proposed approach ap-
plies DPR [6] to extract relevant facts from a textual
knowledge corpus, converts the retrieved natural
language facts into a graph-structured format using
Open Information Annotation (OIA) [10] and per-
forms subgraph reasoning on the constructed joint
OIA-graph using a multi-relational graph attention
network. Specifically, the reasoner first performs
entity linking from the giving question to the joint
OIA-graph. Then it starts from the linked entities
(nodes), and iteratively samples relevant edges with
a pruning procedure to form an enclosing subgraph
around the question. The reasoning procedure takes
into account both structural information, i.e., graph
structure of the joint OIA graph, and semantic infor-
mation, i.e., language representation of questions
and facts. After several rounds of retrieval and
pruning, the model predicts the answer from the
concepts in the subgraph.

Our contributions are as follows: (1) we inves-
tigate how to perform a cooperative retrieval-and-
reasoning in open-ended commonsense question
answering. To the best of our knowledge, our
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(a) (b)

Figure 1: (a) The OIA graph of "Plants supply the fungi with carbohydrates, in return, making it a symbiotic
relationship." There are two types of nodes: constant and predicate. Constant nodes are simple nominal phrases
while predicate nodes include simple verbal phrases and prepositional phrases. Edges in OIA graphs are labeled.
pred.arg.n denotes the n-th arguments of a predicate node, mod indicates the modification, and as:pred.arg.n
expresses an reversed relation of pred.arg.n. (b) The joint OIA graph consists of two factoid sentences that share the
concepts "fungi" and "symbiotic relationship".

work is the first retrieve-and-reasoning approach
for OpenCSR. (2) We present experimental re-
sults that show our model achieves great results
on the benchmark OpenCSR dataset with an ab-
lation study demonstrating the performance gain
of integration structural information and semantic
information. (3) The proposed method can poten-
tially homogenize structured, i.e., knowledge base,
and unstructured commonsense knowledge, i.e.,
textual corpus for answering open-ended common-
sense questions since it can unify both knowledge
formats into a graph-structured format.

2 Related Work

Commonsense Reasoning Traditional common-
sense reasoning (CSR) techniques are mainly de-
signed for multiple-choice QA. For instance, to
independently score each decision, KagNet [8] and
MHGRN [3] both leverage external commonsense
knowledge graphs as structural priors. Although ef-
fective in selecting the best response for a multiple-
choice question, these techniques are less useful for
real-world situations because answer candidates are
frequently unavailable. By fine-tuning a text-to-text
transformer, UnifiedQA [7] generated answers to
questions. However, a drawback of multiple-choice
QA models is that they do not provide intermedi-
ate explanations for their answers, making them
less suitable in many real-world scenarios. Lin et
al. [9] introduced the open-ended commonsense
reasoning and proposed DrFact to directly retrieve
relevant facts, and then use the concepts mentioned
in the top-ranked facts as answer predictions.

Subgraph Reasoning Many recent works learn
representations of localized subgraphs. Alsentzer
et al. [1] introduced a subgraph neural network to
learn disentangled subgraph representations using a
novel subgraph routing mechanism. Teru et al. [11]
proposed a graph neural network that reasons over

local subgraph structures and performs inductive
relation predictions. Han et al. [4] developed an
explainable reasoning framework for forecasting
future links on temporal knowledge graphs by em-
ploying a sequential reasoning process over local
subgraphs.

3 Our Approach

Retrieving Relevant Facts Following the dense
passage retrieval work [6], we use a bi-encoder
transformer architecture that learns to maximize
the inner product of the representation of a ques-
tion and the relevant factual sentences from the
knowledge corpus containing correct answers to
the given question.

Constructing Question-dependent Joint OIA-
Graph Following the steps in [10], we convert
each retrieved factual sentence into an OIA-graph
as shown in Figure 1a. For each node in an OIA
graph, we link it with nodes in the OIA graphs of
other sentences that include the same concept. We
label this kind of link as shared concepts. As shown
in Figure 1b, the factoid sentences "Plants supply
the fungi with carbohydrates, in return, making it a
symbiotic relationship." and "Fungi participate in
symbiotic relationships to obtain their food." shares
the same concepts "fungi" and "symbiotic relation-
ship". Then, we construct a joint OIA-graph Gjoint

by linking nodes that share the same concepts in
different OIA graphs.

Subgraph Reasoning on the Joint OIA-Graph
Inspired by [5], we conduct reasoning on a dynami-
cally expanded inference graph Ginf extracted from
the joint OIA-graph. Given a commonsense ques-
tion q, we build an initial inference graph via entity
linking between the question q and the joint OIA-
graph. We find all nodes of Gjoint that share the
same concepts as q includes. We set such OIA-
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Figure 2: Model Architecture.

nodes to be the initial nodes of the inference graph
Ginf. The inference graph expands by sampling
one-hop neighbors of initial nodes in Gjoint. Be-
sides, we propose a semantic-following operation
to build skip connections between the initial nodes
and their multi-hop neighbors. Taking a node v in
Ginf as an example, we compute the inner-product
similarity between its representation and the rep-
resentation of other nodes in Gjoint obtained by
the retrieval and add the top K nodes into Ginf

by linking them with v. The contribution of the
semantic-following has two folds: 1) It speeds up
the reasoning process and broadens the receptive
field of the subgraph reasoner by adding skip con-
nections between multi-hop neighbors; 2) It allows
the subgraph reasoner to take into account both
semantic-relevant and symbolic-linked nodes re-
garding a given question. Next, we feed Ginf into a
relational graph attention layer that takes node em-
bedding as the input, computes an attention score
for each edge indicating the relevance to the given
question, and produces a question-dependent rep-
resentation for each node using message passing.
Instead of treating all neighbors with equal impor-
tance in the massage passing, we take the question
information into account and assign varying im-
portance levels to each neighbor by calculating the
following question-dependent attention score:

elvu(q, pk) = Wl
s(h

l−1
v ||pl−1

k ||hl−1
q )T

Wl
t(h

l−1
u ||pl−1

k ||hl−1
q ),

(1)

where elvu(q, pk) is the attention score of the edge
(v, pk, u) regarding the question q, pk corresponds
to the edge type between the source node v and the
target node u, Wl

s and Wl
t are two weight matrices

for capturing the dependencies between question
representations and source node features specified
for source node and target node, respectively. pk

is the edge embedding indicating the relationship
between u and v. hl−1

v denotes the hidden represen-
tation of the node v at the (l − 1)th inference step.

When l = 1, i.e., for the first layer, h0
v is the ag-

gregated token representation from Bert. Then, we
compute the normalized attention score αl

vu(q, pk)
using the softmax function. Once obtained, we
aggregate the representations of the sampled neigh-
bors of node v denoted as N̂v and weight them
using the normalized attention scores, which are
written as

hl
v(q) =

∑

u∈N̂v

αl
vu(q, pk)h

l−1
u (q). (2)

Answer Prediction We compute the plausibility
score slv,q of node v to be the answer of question q

at the lth inference step as follows:

slv,q = smips(q, fv)+
∑

u∈N̂ v

∑

pk∈Puv

αl
uv(q, pk)a

l−1
u,q ,

(3)
where smips(q, fv) denotes the relevance score of
the retrieved fact fv, which mentions the node v,
regarding the question q by the maximum inner
product search. Since the same concept may ap-
pear in different nodes in the inference graph, we
aggregate the plausibility score of nodes that share
the same concept to assign each concept a unique
attention score:

slci,q = g(slv,q|v(c) = ci), for v ∈ VGinf , (4)

where slci,q denotes the plausibility score of concept
ci, VGinf is the set of nodes in inference graph Ginf.
v(c) represents the concept included in node v, and
g(·) represents a score aggregation function. Here
we use the maximum function.

Inference Graph Expansion and Pruning After
several iterations of expansion, the inference graph
Ginf would grow rapidly and cover almost all nodes.
To prevent the inference graph from exploding, we
reduce the graph size by pruning the edges with
a small plausibility score and keeping the edges
with K largest contribution scores. After running
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Datasets ARC-Open OBQA-Open

Model H@50 H@100 R@50 R@100 H@50 H@100 R@50 R@100

DPR 68.67 78.62 28.93 38.63 54.47 67.73 15.17 22.34
DrKIT 67.63 77.89 27.57 37.29 61.74 75.92 18.18 27.10
DrFact 71.60 80.38 31.48 40.93 69.01 80.03 21.27 30.32
Our model 72.76 80.38 31.09 40.24 62.30 73.80 18.11 26.83

Table 1: Results of the Hit@K and Rec@K (K=50/100) in % on OpenCSR.

L inference steps, the model selects the concept
with the highest plausibility score in Ginf as the
answer to the given question, where the inference
graph itself serves as a graphical explanation.

Loss Function We use the binary cross-entropy
as the loss function, which is

L = − 1

|Q|
∑

q∈Q

1

|Cinf
q |

∑

ci∈Cinf
q

(yci,q log(
sLci,q∑

cj∈Cinf
q

sLcj ,q
)

+ (1− yci,q) log((1−
sLci,q∑

cj∈Cinf
q

sLcj ,q
))),

where Cinf
q represents the set of concepts in the

inference graph of the question q, yci,q represents
the binary label that indicates whether ci is an an-
swer for q, and Q denotes the question set. sLci,q
denotes the plausibility score of concept ci at the
final inference step.

4 Experiments

Fact corpus and concept vocabulary Following
settings in [9], GenericsKB-Best corpus serves as
the main commonsense knowledge source that con-
tains 1,025,413 unique facts. All sentences in the
corpus are provided with concepts, which are fre-
quent noun chunks, using the spaCy toolkit. There
are 80,524 concepts in total.

Datasets and evaluation metrics We evaluate
our model on two benchmark open-ended com-
monsense reasoning datasets, i.e., ARC-Open and
OBQA-Open [9], that contain 6600 and 5288 ques-
tions, separately. Every question could be an-
swered using various concepts, where the average
answer is 6.8 and 7.7 in ARC-Open and OBQA-
Open. Each dataset provides the set of true answer
concepts for each question. We use two metrics,
Hits@K and Recall@K, where Hits@K denotes
the percentage of times that at least one true con-
cept appears in the top k of ranked concepts.

Experimental Results We compare our model
with DPR [6], DrKIT [2], and DrFact [9]. Recall

that our model applies DPR as the retriever so it
is a straightforward baseline. And DrFact is the
strongest baseline in OpenCSR. As shown in Ta-
ble 1, our model outperforms DPR and DrKIT on
ARC-Open and achieves on-par performance as
DrFact. All results are averaged over three trials.
We provide implementation details in Appendix B
and attach the source code in the supplementary
material.

Datasets ARC-Open

Model H@50 H@100 R@50 R@100

Model w/ SC 72.76 80.38 31.09 40.24
Model w/o SC 71.74 79.65 30.56 39.75

Table 2: Ablation Study on ARC-Open: we investigate
the gain of adding skip connections (SC) to semantically
relevant multi-hop neighbors.

Ablation Study Recall that the proposed sub-
graph reasoner takes into account both the struc-
turally linked one-hop neighbors and semantically
relevant multi-hop neighbors by expanding the in-
ference graph Ginf . Table 2 shows an ablation
study in that we disable the reasoner to add seman-
tically relevant multi-hop neighbors while infer-
ence graph expansion called Model w/o SC, demon-
strating the performance gain of integrating both
structural and semantic information.

5 Conclusion

We present a novel graph-guided neural symbolic
commonsense reasoning approach for the open-
ended commonsense reasoning task. Specifically,
The proposed method integrates both structural de-
pendency information between facts and seman-
tic information by constructing an open informa-
tion annotation graph and employing a semantic-
following operation. The model achieved state-
of-the-art performance on two benchmark datasets
while being more interpretable.
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Limitations

The proposed model performs a sequential reason-
ing process, and thus, may cause long inference
time when answering requires a quite long multi-
hop reasoning chain. Besides, the "share-link",
which connects nodes that share the same concept,
would have a significant amount in some datasets
and make the underlying graph much denser. It
would make it difficult for the model to decide the
expansion direction of the subgraph.
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Appendices

A The license of the Artifacts

The datasets we used in this work are proposed
by Lin et al. [9] which is licensed under the MIT
License.

About the model we proposed in this work, we
will release it and give the license, copyright in-
formation, and terms of use once the paper gets
accepted.

B Implementation

We tune the hyperparameters of our models using
the random search and report the best configuration
in the source code in the supplementary material.
The training costs 73 GPU hours on the ARC-Open
dataset and 50 GPU hours on the OBQA-Open
dataset with NVIDIA A40 instance.
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Abstract

In this paper, we describe M-FleNS, a multi-
lingual flexible plug-and-play architecture de-
signed to accommodate neural and symbolic
modules, and initially instantiated with rule-
based modules. We focus on using M-FleNS
for the specific purpose of building new re-
sources for Irish, a language currently under-
represented in the NLP landscape. We present
the general M-FleNS framework and how we
use it to build an Irish Natural Language Gener-
ation system for verbalising part of the DB-
pedia ontology and building a multilayered
dataset with rich linguistic annotations. Via au-
tomatic and human assessments of the output
texts we show that with very limited resources
we can create a system that reaches high levels
of fluency and semantic accuracy, while having
very low energy and memory requirements.

1 Introduction

Natural Language Generation (NLG) for tasks in-
cluding dialogue-turn generation and fact verbalisa-
tion is increasingly widely used in commercial sys-
tems. Despite recent spectacular advances achieved
by LLMs, in application contexts where accuracy
and reliability are crucial, many commercial sys-
tems continue to use the same old template filler
systems that have been around at least since the
1980s.1 The other two main categories of NLG
systems are neural language-model based (NLMB)
systems, currently extremely popular in research
systems, and rule and grammar based (RGB) sys-
tems, currently very unpopular. In contrast to
template-based (TB) systems, NLMB systems have

1E.g. Arria NLG: https://www.arria.com/.

very high Coverage, while also sharing TB systems’
high Fluency and Robustness. However, the dis-
advantage of an NLMB system is that it cannot
be guaranteed that the output will be free of gram-
matical errors or even that it will be semantically
accurate. The latter is of particular concern as
NLMB systems cannot be trusted not to omit essen-
tial content, make things up, or even insult users.
Moreover, such systems also tend not to be built for
low-resource languages (LRLs) languages because
of the large amounts of data needed to build them.
Finally, NLMB systems often suffer from low Vari-
ation, and very low Energy Efficiency, with the
best current models having shockingly high carbon
footprints. RGB systems on the other hand have
become increasingly unpopular since the NLP field
switched first to statistical systems, then to neural
systems. While RGB systems tend to have low
Coverage, suprasentential Fluency, and Robustness
as well as having to be built manually, they can be
guaranteed to have high Accuracy and Grammat-
icality, as well as being efficient in terms of data
and energy requirements, and suitable for LRLs.

According to the European Language Equality
report for Irish (Lynn, 2022), Irish is a low-resource
language. In a survey of available resources for
European languages, on a scale of 1-4, Irish was
classified as 4 having "weak or no support", and
ranked 31st out of the 33 European languages sur-
veyed. The report identifies a range of language
technology gaps, mainly due to the lack of underly-
ing data resources, dedicated funding and skill-sets,
and finds that to date there has been little or no
system development for Automatic Subtitling, In-
formation Retrieval, Information Extraction, Natu-
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Reiter&Dale Tasks M-FleNS Tasks M-FleNS Input M-FleNS Output Output type

Content determination — — — —

Discourse planning Linguistic structuring Structured data PredArg DAG

Sentence aggregation Text planning* PredArg PredArg-Agg DAG

Lexicalisation

Lexicalisation PredArg(-Agg) PredArg-Lex DAG
Comm. structuring PredArg-Lex PredArg-Th DAG
Deep sent. structuring PredArg-Th DSynt DT
Surf. sent. structuring DSynt SSynt DT
Synt. aggregation* SSynt SSynt-Agg DT

REG REG* SSynt(-Agg) SSynt-Pro DT

Linguistic realisation Word ord. and agree. resolution SSynt(-Agg/-Pro) DMorph Chain
Surface form retrieval DMorph SMorph Chain

Table 1: The M-FleNS architecture (see Appendix D for illustration): the tasks, their respective input, output (used
as module name), structure type (DAG = Directed Acyclic Graph; DT = Dependency Tree) and correspondence with
Reiter and Dale (1997)’s tasks. * Denotes optional modules, i.e., grammatical texts can be produced without them.

ral Language Generation, Semantic Role Labelling,
and other areas. The report recommends a long
term strategy of support for dedicated LT educa-
tion and training, investment in data collection and
annotation, and the development of LT tools.

The Digital Plan for the Irish Language (Depart-
ment of Tourism, Culture, Arts, Gaeltacht, Sport
Media, 2022) notes that urgent action is needed if
Irish is to benefit from the digital revolution and to
survive the threat of digital extinction. It notes two
complementary approaches, knowledge-based and
data-driven machine-learning methods, and states
that both are needed and each brings specific ad-
vantages. A linguistic knowledge base provides
a digital, explicit account of the structure of con-
temporary Irish which is an important goal in it-
self, while machine-learning approaches can offer
a quick and less labour-intensive route to devel-
oping certain technologies. Both approaches are
needed and, especially in the context or LRLs, can
be combined in specific systems.

In this paper, we present a flexible plug-and-play
architecture that addresses both knowledge-based
and machine-learning-based gaps in Irish Natural
Language Processing, by releasing a generation
system and a rich dataset. While the current (single)
Multilingual Flexible Neuro-Symbolic (M-FleNS)
system is multilingual –generating text also e.g. in
English, French, Spanish, and Catalan-, we focus
here on its instantiation with rule-based modules
for the generation of Irish texts from DBpedia triple
sets. Below, we start by describing and motivating
our architecture (Section 2). Next we describe the
WebNLG dataset, the FORGe generator and the
Irish morphology tools (Section 3) we use. We

present the extension to WebNLG data-to-text for
Irish, and evaluate it via metrics and human as-
sessment; we also present a new Irish dataset with
rich linguistic annotations produced with our in-
stantiated architecture (Section 4). We finish with
a discussion of related work (Section 5). The gen-
eration pipeline,2 dataset3 and an interactive demo
for the generation of short Wikipedia pages in Irish
or English4 are all publicly available.

2 A plug-and-play architecture for system
and resource building

2.1 Modular structure
While end-to-end approaches are popular in current
NLG systems (Dušek et al., 2018; Castro Ferreira
et al., 2020), they are more data-hungry and com-
putationally far more expensive (therefore more
energy intensive) than corresponding modular ar-
chitectures (Dušek et al., 2020). Furthermore, re-
cent evidence shows that splitting the generation
process into sub-steps can lead to better output
texts (Castro Ferreira et al., 2019; Moryossef et al.,
2019; Puduppully and Lapata, 2021; Kasner and
Dusek, 2022). We seek to leverage this advantage
by giving our M-FleNS framework a sequential ar-
chitecture where each module corresponds to spe-
cific (sub)tasks of the natural language generation
process roughly corresponding to the pipeline ar-
chitecture originally established by Reiter and Dale
(1997). Table 1 lists the M-FleNS modules in terms

2https://github.com/mille-s/DCU_TCD-FORGe_
WebNLG23

3https://github.com/mille-s/Mod-D2T/
4https://github.com/mille-s/WikipediaPage_

Generator
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of the tasks they perform, alongside the tasks/-
modules identified in Reiter and Dale’s pipeline
to which they roughly correspond.5

2.2 Rich linguistic representations

Each of the 10 different modules shown in Ta-
ble 1 provides as output one or more well de-
fined, rich, and linguistically motivated represen-
tations. The intermediate representations in M-
FleNS are all graphs that can be grouped into three
main types: (i) predicate-argument directed acyclic
graphs (DAGs) for semantic information; (ii) un-
ordered dependency trees (DTs) for syntactic infor-
mation; and (iii) chains for morphological infor-
mation. These intermediate representations loosely
follow the different levels of Meaning-Text Theory
(Mel’čuk, 1973). In the instantiated version of the
pipeline presented in this paper, the input struc-
tured data is the WebNLG data (Aquilina et al.,
2023), made of DBpedia triple sets, and we use the
FORGe grammar-based generator to produce the in-
termediate representations (Mille et al., 2019) and
the Irish NLP toolkit (Dhonnchadha et al., 2003) to
produce the final representation: details about the
dataset and tools are provided in Section 3.

2.3 Addressing technology gaps

With our modular approach we aim not only at de-
veloping a first system for Irish NLG, but also at
producing new data that will allow for addressing
more of the technology gaps identified in the Euro-
pean Language Equality report. For instance, with
the generator we can produce a large amount of
semantic and syntactic structures; syntactic struc-
tures paired with texts can be used to train syntactic
parsers, while semantic structures paired with text
can be used to train semantic role labelers. Using in
parallel syntactic and semantic structures, tools can
be trained that convert one into the other to build
smaller modules to be combined with other tools
(e.g. an existing syntactic parser). All ten inter-
mediate representations can be also be used for ex-
plainability, language teaching, etc. In Section 4.6
we provide details on how we used our architecture
to produce linguistically annotated data.

3 Data and tools

In the following subsections, we describe the
dataset (WebNLG) and tools (FORGe and Irish
NLP) we use in our experiments.

5This table is adapted from (Mille et al., 2023).

3.1 The WebNLG dataset

The WebNLG dataset (Aquilina et al., 2023) is a
data-to-text benchmark consisting of {input, out-
put} pairs, where the input is a set of n triples
(1 ≤ n ≤ 7), the output a set of m texts that ver-
balise the triple set. In Figure 1, n = 3 and m = 1.

DBpedia triples are the building blocks of the
inputs, and consist of three related elements called
a Property, a Subject and an Object in Semantic
Web terminology. A Subject (denoted by DB-Subj
in this paper) is usually an entity that has a Property
and a value for this Property, which is the Object
(DB-Obj). E.g. in Figure 1, the entity Agra_Airport
is associated with 3 properties: location, operatin-
gOrganisation and icaoLocationIdentifier. The se-
mantics of each property is defined by DBpedia
editors,6 but in most cases, the Property of the DB-
Subj is DB-Obj makes it clear (e.g., The location of
Agra Airport is India, The operating organisation
of Agra Airport the Indian Air Force, and the ICAO
location identifier of Agra Airport is VIAG.).

WebNLG 2017 (Gardent et al., 2017) consisted
of (only) an English task. For WebNLG 2020, the
English dataset was extended with more proper-
ties, and it also included Russian texts (Castro Fer-
reira et al., 2020); in both cases, the texts were
collected via manual effort (crowdsourcing) . The
third edition of the task in 2023 focused on four
low-resource languages: Irish, Welsh, Breton and
Maltese, for which the texts for the training data are
the machine-translated 2020 English texts, while
the texts in the test and development data were
translated by professional translators. All inputs
are the same as the 2020 inputs.

3.2 The FORGe multilingual generator

FORGe (Mille et al., 2019) is a multilingual
rule-based generator that takes as input minimal
predicate-argument (PredArg) structures. It re-
alises the last four consecutive steps of the tradi-
tional NLG pipeline (Reiter and Dale, 1997) (sen-
tence aggregation, lexicalisation,7 referring expres-
sion generation and linguistic realisation, see Ta-
ble 1). Each of the four steps is implemented as one
or more graph transducer(s) that successively map
the input PredArg onto different dependency-based
intermediate linguistic representations.

6See http://mappings.dbpedia.org/index.php/
How_to_edit_the_DBpedia_Ontology.

7We refer to a more surface-oriented lexicalisation here,
with, e.g., function words, as opposed to the “deep” lexicalisa-
tion of the main concepts described in Section 4.1.
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Figure 1: A WebNLG data point (EN: ’Agra airport, whose ICAO identifier is VIAG, is operated by the IAF.’)

A mix of language-independent and language-
specific rules build these intermediate represen-
tations using additional knowledge contained in
language-specific dictionaries. From the perspec-
tive of multilingualism, there are 3 types (T1-T3) of
rules in FORGe: fully language-independent rules
(T1, ∼82% of all rules); rules that apply to a sub-
set of languages (T2, ∼6.5 languages on average,
∼3% of rules); and language-specific rules, which
apply to one single language (T3, ∼15% of rules).
In the description of the extensions of FORGe for
Irish below, we refer to these three types.

FORGe uses three different dictionaries to store:

• Mappings between concepts and lexical units,
e.g. located {GA={lex=lonnaithe_JJ_01}}.

• Lexical unit descriptions, e.g. lon-
naithe_JJ_01 {lemma = lonnaithe; pos
= JJ; preposition_arg2 = i }, where i ‘in’ is
required on the second argument of lonnaithe:
lonnaithe i X ‘located in X’.

• Generic language-specific knowledge, such
as the type of word order or morphological
agreement triggered by surface-oriented de-
pendencies (e.g. in English a direct object is
by default after its governing verb in the sen-
tence, and a determiner receives case, number
and gender from its governing noun).

The input PredArg structures are very similar
to the Facts in ILEX’s Content potential struc-
tures (O’Donnell et al., 2001), or the Message
triples in NaturalOWL (Androutsopoulos et al.,
2013), with the difference that all predicates in
the PredArg structures are generally intended to
represent atomic meanings (e.g. main + run-
way as opposed to mainRunway), allowing for
more flexible processing. The first part of the
generation pipeline, which produces aggregated
predicate-argument graphs, is also comparable to
ILEX (O’Donnell et al., 2001), while the surface
realisation is largely inspired by MARQUIS (Wan-
ner et al., 2010). FORGe shares not only its general

architecture with these two systems, but also the
use of lexical resources with subcategorisation in-
formation and of a multilingual core of rules.

FORGe was adapted to the WebNLG’20 dataset
for the generation of English texts and has a multi-
lingual core of rules, but is not able to generate text
in a new language off-the-shelf. However, adapting
it to a new language is relatively easy, so it is a
good candidate for building the first Irish generator.
In Section 4, we report on the extensions we carried
out to FORGe so as to be able to generate WebNLG
Irish texts. We use the whole FORGe pipeline ex-
cept for the surface form generation, for which we
use the existing Irish NLP tools (see Section 3.3).

3.3 Irish NLP tools
The Irish NLP tools suite8 includes finite-state
transducers for Irish morphology generation (Dhon-
nchadha et al., 2003). These tools handle tokeni-
sation and morphological analysis/generation of
the inflected forms of Irish headwords coded in the
finite-state lexicons. The tools were initially devel-
oped using xfst (Xerox finite state tools) (Beesley
and Karttunen, 2003) and later converted to use
foma tools (Hulden, 2009).9 Finite-state transduc-
ers model a two-level morphology where a lexi-
cal description is mapped to a surface form, e.g.
déan+Verb+VT+FutInd maps to the future tense
form déanfaidh of the transitive verb déan ’make’.
The transducers can be used to generate inflected
forms of words for NLG and CALL applications,
and the same transducers work in the opposite di-
rection for morphological analysis as part of NLP
applications including PoS tagging and parsing.

4 M-FleNS for Irish Natural Language
Generation

In this section, we describe our pipeline for the
generation of Irish texts from DBpedia triples,

8https://www.scss.tcd.ie/~uidhonne/irish.utf8.
htm

9https://fomafst.github.io/
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DB-Subj located DB-Obj
dpos=NP class=Location

A1
A2

Figure 2: Sample PredArg template corresponding to
the location property.

including Subject and Object label retrieval and
predicate-argument template crafting (4.1), exten-
sions to FORGe and lexical resource building for
Irish (4.2), the connection between FORGe and
Irish NLP tools (4.3) and post-processing of out-
puts (4.4). We then provide an evaluation of the
generator (4.5) and describe a new dataset (4.6).
All resources are available; see Footnotes 2, 3, 4.

4.1 PredArg templates and their instantiation

The linguistic structuring step consists of mapping
the WebNLG input triple sets onto abstract linguis-
tic (predicate-argument) structures. For this, we
follow the approach of the FORGe submission
at WebNLG’17 (Mille et al., 2019), i.e. we use
PredArg templates in the PropBank style (Kings-
bury and Palmer, 2002) that correspond to each
individual property and instantiate them by replac-
ing the DB-Subj and DB-Obj placeholders with
their respective lexicalisations. The instantiated
templates are then grouped based on their DB-Subj
and ordered in descending frequency of appearance
of the DB-Subj in the input triple set (e.g. triples
with a DB-Subj that has 3 mentions come before
those with 2 mentions). Figure 2 shows a PredArg
template, instantiated in Figure 4 in Appendix A.

Lexicalisation of properties. We handcrafted
templates for all properties of the training, devel-
opment and test splits of the WebNLG’23 dataset.
There are 411 different properties, and since several
properties can be verbalised the same way,10 the
total number of unique templates is lower (381).

In an effort to possibly reduce the human effort
in the crafting of the templates in future develop-
ments of our (or others’) system, we tried to reduce
to a maximum the number of different templates to
cover all properties. After examining the 411 prop-
erties and defining corresponding templates, we
assigned each property a specific type according to
the kind of information that it is transmitting. We
defined 23 type labels such as PART OF/MEMBER
OF, ORIGIN LOCATION, SET MEMBERSHIP,

10Properties such as municipality, district, or country are
mapped to the same template as location, shown in Figure 2.

[X] HAS [QTY] ENTITY, etc. Each type is associ-
ated with a sentence template and a basic PredArg
that can be used to verbalise the properties asso-
ciated to it. We plan to use these basic labels to
speed up the future extension of the generator.

Lexicalisation of DB-Subj and DB-Obj values.
For each triple, the property and its pertinent do-
main and range classes determine whether the DB-
Subj/Obj values will be lexicalised using their En-
glish or Irish label (human readable name). To ob-
tain the latter, we take advantage of the owl:sameAs
relation that links the DB-Subj/Obj entity of the
English DBpedia to its equivalent entity in the Irish
DBpedia version; if no equivalent entity is con-
tained in the localised DBpedia version, we fall
back to Google translate,11 giving as input the En-
glish label without any further context.

4.2 Extensions to FORGe

We extended the available version of FORGe in two
aspects: (i) manual crafting of the three types of
dictionaries, and (ii) implementation of language-
specific rules to cover the idiosyncracies of Irish.
With respect to dictionaries, we added 457 map-
pings between concepts and lexical units and as
many lexical unit descriptions, and we manually
crafted the generic language-specific dictionary.
For rules, we implemented 76 rules that apply ex-
clusively to Irish (T3), which represents 2.78% of
rules; Table 2 shows the breakdown of language-
agnostic and language-specific rules per module.
We also activated 65 existing T2 rules for Irish.

As Table 2 shows, 4 modules require Irish-
specific rules: deep sentence structuring, surface
sentence structuring, word order and agreement
resolution and morphology processing; next we list
the phenomena that required T3 and most T2 rules.

Deep sentence structuring
Relative particles (T3): the particle a is introduced
to link the modified noun and the main verb in
relative clauses; in case of prepositional relatives,
the particle has a different form depending on the
tense of the verb (present a, past ar).

Passive (T3): in Irish there are two alternative
constructions where a passive form would be used
in English. If the data refers to an action/event,
an autonomous main verb form is used, e.g. for
the triple Acharya_Institute_of_Technology |
established | 2000, bunaíodh, the autonomous

11We used the publicly available Translator module of the
googletrans (version 3.1.0a0) library.
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ID FORGe module # rl % lang. ind. rl # T3 GA rl % T3 GA rl

1 Text planning 553 99.82 0 0
2 Lexicalisation 183 97.81 0 0
3 Communicative structuring 258 97.29 0 0
4 Deep sentence structuring 345 78.84 3 0.87
5 Surface sentence structuring 477 68.97 17 3.56
6 Syntactic aggregation 215 93.02 0 0
7 Referring Expression Generation 237 96.2 0 0
8 Word order and agreement resolution 265 50.57 17 6.42
9 Morphology processing 201 45.77 39 19.4

All modules 2,734 81.82 76 2.78

Table 2: Number of rules, proportion of language-independent rules, and number and % of Irish-specific (T3) rules
(rl) per FORGe module.

form of the verb bunaigh ‘to establish’ is used, as
in Bunaíodh Institiúid Teicneolaíochta Acharya sa
bhliain 2000, ’Acharya Institute of Technology was
established in the year 2000’. Alternatively, where
a state/location is referred to, e.g. for the triple
MotorSport_Vision|city|Longfield, we have
tá, the present tense of the auxiliary verb bí ‘to be’,
and the past participle lonnaithe ‘located’, as in Tá
MotorSport Vision lonnaithe i gcathair Longfield,
’MotorSport Vision is located in Longfield’.

Non-verbal copula (T3): Irish has two copular
constructions. The verbal copula bí is used for
changeable properties whereas the non-verbal cop-
ula is is used for more permanent properties such
as area code, e.g. for Darlington | areaCode
| 01325 we have Is é cód ceantair Darlington ná
01325, where is connects cód ceantair Darlington
’Darlington area code’ with its value, and the pro-
noun é agrees with the gender and number of the
noun cód ’code’.

Surface sentence structuring
Determiners (T3): a definite determiner is only
introduced on a noun N if N’s dependent is not a
definite noun or a proper noun.

Dependencies (T2, 22 rules in common with
Catalan, Greek, Spanish, French, Italian and Por-
tuguese): surface-oriented dependencies are intro-
duced as, e.g., subject, direct object, modifier, etc.

Word order and agreement resolution
Genitive chains (T3): in a chain of genitive ele-
ments, only the last element maintains the genitive
case, e.g. in the case of ‘the length of the runway of
the aerodrome’, only the last element ‘aerodrome’
has genitive case as in Is é fad rúidbhealach an
aeradróim 1,095m.

Word order class (T3): when an element is estab-
lished as a member of a class, the class name goes

right after the copula, as in Is milseog é Bionico
‘Bionico is a dessert’.

Possessive pronoun agreement (T3): the seman-
tic number and gender of a possessor triggers agree-
ment on the possessed. In the case of the triple
India | leader | T._S._Thakur, the copular
construction generates the text Tá T.S. Shakur ina
cheannaire ar an India, ’T. S. Thakur is a leader of
India’, where we have the present tense of the ver-
bal copula bí, followed by the subject ‘T. S. Thakur’
and the subject complement ’ina cheannaire ar an
India’. The complement has a possessive pronoun
ina that agrees in gender and number with the sub-
ject, i.e. ina is masculine singular reflecting the
subject ‘T. S. Thakur’ and it triggers masculine sin-
gular agreement on the noun cheannaire ‘leader’.

Ellipsis (T3): some rules look for pronouns to
elide, in particular in relative and non-verbal copu-
lar constructions. Irish is a VSO language so a spe-
cific rule checks for repeated subjects on the right
of the verb and replaces them with pronouns.12

Order between siblings (T2, 29 rules in common
with Catalan, Greek, Spanish, French, Portuguese
and sometimes Italian): for instance, in many lan-
guages, the determiner usually goes before all other
dependents of the noun.

Morphology processing
Concatenations (T3): don is a contraction of do an
‘for the’ as in Scríobh Nicholas Brodszky an ceol
don scannán meaning ‘Nicholas Brodszky wrote
the music for the film’.

Prefixes (T3): vowel-initial masculine nouns fol-
lowing the determiner an receive a t- prefix as in
Rugadh an t-aisteoir Bill Oddie in Rochdale mean-
ing ‘The actor Bill Oddie was born in Rochdale’.

12Strictly speaking, this rule belongs to the REG module
but since it has the same conditions of application as ellipsis in
other languages, it was left in this module for the time being.
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The preposition le triggers a prefix h- on following
nouns starting with a vowel, and some past verbs
get the prefix d’.

Mutations (T3): word-initial mutations are com-
mon in Irish and fulfil many grammatical functions,
for example the noun cathair ‘city’ has various
mutations depending on the number and gender of
the possessive pronoun, e.g. there is lenition in mo
chathair ‘my city’, eclipsis in ár gcathair ‘our city’
and no mutation in a cathair ‘her city’.

Verbal Adj/N, Prep. declension, V flags (T3):
other rules cover the conversion of some adjectives
and nouns into their verbal counterparts, the
inflection of some prepositions and the insertion of
a tag that flags vowel-initial verbs, as required by
the morphology generator.

4.3 Interfacing FORGe with Irish NLP tools
In order to match the inputs expected by Irish NLP
tools, we process FORGe outputs with regular ex-
pressions to replace reserved characters, introduce
a ‘+’ separator between morphological tags, and in-
sert single line breaks between consecutive words
and double line breaks between consecutive texts.

4.4 Post-processing
The post-processing consists of regular expressions
to revert reserved characters to their original form,
true-case and clean the texts, and take care of pre-
fixing, hyphenation, contraction, lenition and eclip-
sis phenomena triggered by the inflected forms of
words; see Appendix A for an example.

4.5 Evaluation
We report on both automatic and human evalua-
tions of the quality of the texts generated with our
pipeline (DCU/TCD in Tables 3 and 4). Both eval-
uations were carried out as part of the WebNLG’23
shared task by the task organisers; see details in the
task overview paper (Aquilina et al., 2023).

BLEU BERT_F1

DCU-NLG 20.40 0.81
DCU/TCD 16.66 0.77

IREL 15.66 0.78
Cuni-Wue 15.87 0.77

Baseline 11.63 0.76

Table 3: WebNLG’23 automatic evaluation results.

For the automatic evaluations, outputs from
all systems were compared to the reference

human-translated Irish texts (1,779 test texts), and
BLEU (Papineni et al., 2002), TER (Snover et al.,
2006), chrF++ (Popović, 2017) and BERTScore
(Zhang et al., 2019) were computed; see results in
Table 3. For the human assessment, the organisers
selected randomly the same 100 outputs for each
system (and the corresponding 100 reference texts)
and asked professional translators to rate the texts
on a scale of 1 to 5 according to 4 criteria: Fluency
and Absence of Repetition to capture the intrin-
sic quality of the texts, and Absence of Omission
and Absence of Additions to capture the semantic
faithfulness of the text with respect to the input
triple sets; see Table 4 for results.

System Flu. Add. Omi. Rep.

Human 4.07 0.81 0.82 0.96
DCU-NLG 3.83 0.83 0.85 0.97
DCU/TCD 3.35 0.84 0.81 0.89

IREL 3.39 0.65 0.58 0.94
Cuni-Wue 2.98 0.55 0.51 0.92

Table 4: Results of the WebNLG’23 human evaluation;
Human = human-translated texts, Flu. = Fluency, Add.
= Absence of addition, Omi. = Absence of omission,
Rep. = Absence of repetition.

Considering that all other systems including the
baseline are combinations of (very) large language
models (to generate English texts) and machine
translation (to translate to Irish), we were surprised
to see that our rule-based pipeline performed well
in the automatic evaluations: we obtained a BLEU
score only 4 points below the highest scoring sys-
tem (a combination of GPT3.5 and Google Trans-
late (Lorandi and Belz, 2023)), and higher that all
non-GPT-based submissions. As comparison, for
English text generation at WebNLG’20 (Castro Fer-
reira et al., 2020), the FORGe-based submission
was 13 BLEU points lower than the highest scoring
system and one of the lowest BLEU overall.13 Our
absolute BLEU score is much lower than FORGe’s
scores on English at WebNLG’20 (over 40); this is
at least partly because BLEU was calculated with
only one reference (compared to 2,5 on average
in English, which produces higher scores), but it
could also be due to the fact that we created our
lexicalisations without reference to the gold Irish
texts, i.e. surface similarity is likely to be low.

13There was significantly more gold data available in En-
glish compared to Irish.
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The results of the human evaluation show that
DCU/TCD-FORGe is on a par with the human
references and the best system for Absence of Ad-
ditions, Absence of Omissions and Repetition (no
statistical difference in the scores according to the
organisers), but is significantly less good in terms
of Fluency. Part of the reason for this can be
found in our own preliminary quality assessment of
the output texts, during which Irish speakers men-
tioned that the way the information is packaged
into sentences (Text planning task) is often unnat-
ural, which directly affects the Fluency of texts.
We plan to address this issue by replacing the text
planning module by a statistical component.

Our system does not reach the level that can be
achieved with very large language models, but un-
like the latter, it is inherently energy- and resource-
efficient: our complete pipeline has a disk space of
about 8MB and runs with less than 1GB of RAM;
it generates the whole WebNLG test set (1,779
texts) in about 15 min (0.5 sec/text). The genera-
tion pipeline is also reusable; it currently covers
datasets such as E2E (Novikova et al., 2017) or
Rotowire (Wiseman et al., 2017) in English, and
adapting it to new domains is straightforward.

4.6 A new Irish dataset with rich annotations

Along with our architecture and our generation
pipeline, we also release an Irish multilayer dataset
with rich linguistically motivated intermediate rep-
resentations. In order to create the dataset, we apply
our whole generation pipeline described in Section
4 and save the intermediate representations in the
process. The resulting dataset has ten layers, which
correspond to the ten layers shown in Table 1.

Representations at all layers are multi-sentence
graphs that can be grouped into the three main types
from Section 2: directed acyclic graphs for seman-
tic information, unordered dependency trees for
syntactic information, and chains for morphologi-
cal information. Nodes are connected across layers
through individual IDs, and coreference is explic-
itly marked. Intermediate representations are repre-
sented as CoNLL-U tables.14 Because CoNLL-U
is a linear format that we use to represent unordered
graphs and trees, we delimit sentences by <SENT>

at the end of a group of nodes. All lines before
<SENT> belong to the same sentence, but their rel-
ative order in the ConNLL-U file is not relevant.
However, the order in which the sentences appear

14https://universaldependencies.org/format.html

does correspond to their order in the text. For levels
that are chains, the order of the lines is the order of
the elements in the sentence. Detailed descriptions
of format and levels can be found in (Mille et al.,
2023); tagsets used, dataset statistics and sample
structures are provided in Appendix B, C and D.

Due to the modular system architecture, dataset
construction is flexible enough to allow the gen-
eration of a myriad of dataset variants in terms
of verbalisation, sentence grouping/structuring,
output simplicity/complexity, etc., simply by
(de)activating optional modules (Table 1) or by in-
troducing variation during the linguistic structuring
task –thus providing multiple ways of verbalising
each input triple. In contrast to neural generation,
our approach ensures that output texts are faithful
to the input, and will not contain inaccuracies, bi-
ases or offensive language. The dataset is publicly
available, see Footnote 3.

5 Related work

Rule-based NLG. There is a long tradition of
rule-based natural language generation systems
such as REALPRO (Lavoie and Rainbow, 1997),
ILEX (O’Donnell et al., 2001), IGEN (Varges
and Mellish, 2001), SimpleNLG (Gatt and Reiter,
2009), MARQUIS (Wanner et al., 2010; Bouayad-
Agha et al., 2012), OpenCCG (White and Rajku-
mar, 2012), NaturalOwl (Androutsopoulos et al.,
2013), GenDR (Lareau et al., 2018) and others.
More recently, RDFJSREALB (Lapalme, 2020)
and FORGe (Mille et al., 2019) were adapted to
WebNLG, but none were able to generate Irish text.
Note that the idea of decomposing the generation
process into steps has been the standard before the
emergence of end-to-end systems, and that previ-
ous work on NLG already based their modules on
the Meaning-Text theory, going back to REALPRO
(Lavoie and Rainbow, 1997) and MARQUIS (Wan-
ner et al., 2010). It is however the first time that a
plug-and-play architecture is proposed with these
modules, and the first time that an Irish rule-based
NLG system is developed.
Irish datasets and language resources. There are
few freely available monolingual Irish corpora, and
moreover, domain-specific Irish datasets are scarce.
Resources are mostly targeted towards machine
translation and/or language analysis tasks. With
the exception of the WebNLG 2023 data (and now
the data presented in this paper), no datasets exist
for text generation tasks (Lynn, 2023).
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Monolingual corpora. Monolingual data include
the New Corpus for Ireland (with fiction, news re-
ports, official documents, etc.) (Kilgarriff et al.,
2006), the unshuffled Irish portion of the 2019
OSCAR corpus (Suárez et al., 2019), the Gaois
Corpus of Contemporary Irish (Ní Loingsigh et al.,
2017), with news media and e-zines, or the Irish
Wikipedia Vicipéid,15 which draws directly from
Fréamh an Eolais, an Irish-language encyclopedia
of science and technology.16 Moreover, a corpus of
idioms (Ní Loingsigh, 2016) and Universal Depen-
dency treebanks such as Irish UD (Lynn and Foster,
2016), pre-standard Irish UD (Scannell, 2022) and
TwittIrish (Cassidy et al., 2022) are available.
Bilingual/Parallel corpora. Significant advances
have been made in the collection and availability
of bilingual corpora, including: (i) ParaCrawl v7
(Bañón et al., 2020), a collection of parallel corpora
crawled from multi-lingual websites; (ii) the Gaois
Parallel Corpus17 of 26M Irish words and 24.5M
English words; and in particular, (iii) the Irish-EU
English-Irish Parallel Corpus which was a direct
outcome of the European Language Resource Co-
ordination project (ELRC18). This resource con-
tains 195K+ parallel sentences, collected from var-
ious public bodies and government departments re-
leased via ELRC-SHARE19. In Ireland all national
translation data is collected by eSTÓR.20

Irish tools and Models. The European Language
Grid21 catalogue lists a number of multilingual
tools and services that support Irish (e.g. Bitextor,
Opus MT, Systran). Irish NLP tools (Uí Dhonn-
chadha, 2009) offers the only suite of text analysis
in Irish. Transformer Language Models (LM) such
as multilingual BERT (M-BERT) (Devlin et al.,
2019), and the language-agnostic BERT Sentence
Embedding (Feng et al., 2022)) support Irish. The
monolingual Irish gaBERT LM was trained on
over 7.9M sentences, and outperforms baselines
for tasks such as dependency parsing and multi-
word expression identification. (Barry et al., 2022).

6 Conclusions

We have presented a high-accuracy, energy and
resource-efficient system for generating Irish text

15https://dumps.wikimedia.org/gawiki/
16https://ga.wikipedia.org/wiki
17https://www.gaois.ie/crp/ga/
18https://lr-coordination.eu/node/2
19https://elrc-share.eu/
20https://estor.ie/
21https://live.european-language-grid.eu/

which achieves a satisfactory quality of output. Its
modular architecture means that shortcomings can
potentially be remedied by training statistical mod-
ules, such as a text structuring module for improved
fluency, or by including enhanced rule-based mod-
ules which can be added to the pipeline.

This type of modular rule-based NLG system
is particularly suitable for low-resource languages,
where large amounts of training data is not avail-
able, and can play an important role in generating
accurate fact-based online language content, such
as Wikipedia pages. Such systems can be devel-
oped incrementally and language documentation is
an inherent and valuable by-product of the system.
In addition, rule-based systems tend to suffer less
from the negative and harmful biases which have
been identified in the application of some LLMs.

Limitations

Generation pipeline. Coverage and robustness of
rule-based NLG: Although our experiments show
that we are able to overcome some of the draw-
backs of LLMs, the main bottleneck of any rule-
based system remains coverage and robustness. In
addition, it can be difficult for someone who is
not familiar with the rule systems to edit it, and it
usually requires knowledge of the language.

Dataset. Our dataset differs from previous work
in that we do not use human-written texts; since
texts are synthetic and produced by a deterministic
generator, their variety and quality is limited by
the knowledge encoded in the generator (in partic-
ular, they generally lack the naturalness of human-
written texts), and they represent only a fraction of
what is possible for a language to express.

The current intermediate representations are
well-formed at all layers, but we are conscious that
some phenomena would require some additional
analysis; as e.g. the syntactic representations of
copulas and their é pronoun (see Section 4.2).

Acknowledgements

Mille’s contribution was funded by the European
Union under the Marie Skłodowska-Curie grant
agreement No 101062572 (M-FleNS).

Ethics Statement

Given that we do not resort to using language mod-
els nor to human evaluation with people who are
not authors of this paper, the present work has no
ethics implication that we are aware of.

33



References
Ion Androutsopoulos, Gerasimos Lampouras, and Dim-

itrios Galanis. 2013. Generating natural language
descriptions from owl ontologies: the naturalowl
system. Journal of Artificial Intelligence Research,
48:671–715.

Enrico Aquilina, Anya Belz, Claudia Borg, Liam
Cripwell, Claire Gardent, Albert Gatt, John Judge,
Michela Lorandi, Anna Nikiforoskaya, William Soto-
Martinez, and Craig Thomson. 2023. The 2023
WebNLG shared task on low resource languages:
Overview and evaluation results. In Proceedings
of the Workshop on Multimodal, Multilingual Natu-
ral Language Generation and Multilingual WebNLG
Challenge, page tbd, Prague, Czech Republic.

Marta Bañón, Pinzhen Chen, Barry Haddow, Kenneth
Heafield, Hieu Hoang, Miquel Esplà-Gomis, Mikel L.
Forcada, Amir Kamran, Faheem Kirefu, Philipp
Koehn, Sergio Ortiz Rojas, Leopoldo Pla Sempere,
Gema Ramírez-Sánchez, Elsa Sarrías, Marek Strelec,
Brian Thompson, William Waites, Dion Wiggins, and
Jaume Zaragoza. 2020. ParaCrawl: Web-scale acqui-
sition of parallel corpora. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 4555–4567, Online. Association
for Computational Linguistics.

James Barry, Joachim Wagner, Lauren Cassidy, Alan
Cowap, Teresa Lynn, Abigail Walsh, Mícheál J Ó
Meachair, and Jennifer Foster. 2022. gaBERT–an
Irish Language Model. In Proceedings of the Thir-
teenth Language Resources and Evaluation Confer-
ence, pages 4774–4788, Marseille,France.

Kenneth R Beesley and Lauri Karttunen. 2003. Finite-
state morphology: Xerox tools and techniques. CSLI,
Stanford.

Nadjet Bouayad-Agha, Gerard Casamayor, Simon Mille,
Marco Rospocher, Horacio Saggion, Luciano Ser-
afini, and Leo Wanner. 2012. From ontology to nl:
Generation of multilingual user-oriented environmen-
tal reports. In International Conference on Appli-
cation of Natural Language to Information Systems,
pages 216–221. Springer.

Lauren Cassidy, Teresa Lynn, James Barry, and Jennifer
Foster. 2022. TwittIrish: A Universal Dependencies
treebank of tweets in modern Irish. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 6869–6884, Dublin, Ireland.

Thiago Castro Ferreira, Claire Gardent, Nikolai Ilinykh,
Chris van der Lee, Simon Mille, Diego Moussallem,
and Anastasia Shimorina. 2020. The 2020 bilingual,
bi-directional WebNLG+ shared task: Overview and
evaluation results (WebNLG+ 2020). In Proceed-
ings of the 3rd International Workshop on Natu-
ral Language Generation from the Semantic Web
(WebNLG+), pages 55–76, Dublin, Ireland (Virtual).
Association for Computational Linguistics.

Thiago Castro Ferreira, Chris van der Lee, Emiel
van Miltenburg, and Emiel Krahmer. 2019. Neu-
ral data-to-text generation: A comparison between
pipeline and end-to-end architectures. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 552–562, Hong
Kong, China. Association for Computational Lin-
guistics.

Department of Tourism, Culture, Arts, Gaeltacht,
Sport Media. 2022. Digital plan for the irish
language: Speech and language technologies
2023-2027. Technical report, Government of Ireland:
Available at https://assets.gov.ie/250129/
1425436f-e1da-4661-8483-92d9ddb4a716.pdf.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Uí Dhonnchadha, Caoilfhionn Nic Pháidín, and
Josef Van Genabith. 2003. Design, implementa-
tion and evaluation of an inflectional morphology
finite state transducer for Irish. Machine Translation,
18:173–193.
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Maja Popović. 2017. chrF++: words helping charac-
ter n-grams. In Proceedings of the Second Confer-
ence on Machine Translation, pages 612–618, Copen-
hagen, Denmark. Association for Computational Lin-
guistics.

Ratish Puduppully and Mirella Lapata. 2021. Data-to-
text generation with macro planning. Transactions of
the Association for Computational Linguistics, 9:510–
527.

Ehud Reiter and Robert Dale. 1997. Building applied
natural language generation systems. Natural Lan-
guage Engineering, 3(1):57–87.

Kevin Scannell. 2022. Diachronic parsing of pre-
standard Irish. In Proceedings of the 4th Celtic
Language Technology Workshop within LREC2022,
pages 7–13, Marseille, France.

Matthew Snover, Bonnie Dorr, Rich Schwartz, Linnea
Micciulla, and John Makhoul. 2006. A study of trans-
lation edit rate with targeted human annotation. In
Proceedings of the 7th Conference of the Association
for Machine Translation in the Americas: Technical
Papers, pages 223–231, Cambridge, Massachusetts,
USA. Association for Machine Translation in the
Americas.

Pedro Javier Ortiz Suárez, Benoît Sagot, and Laurent
Romary. 2019. Asynchronous pipeline for process-
ing huge corpora on medium to low resource infras-
tructures. In 7th Workshop on the Challenges in the
Management of Large Corpora (CMLC-7), Marseille,
France. Leibniz-Institut für Deutsche Sprache.

Elaine Uí Dhonnchadha. 2009. Part-of-speech tagging
and partial parsing for Irish using finite-state trans-
ducers and constraint grammar. Ph.D. thesis, Dublin
City University.

Sebastian Varges and Chris Mellish. 2001. Instance-
based natural language generation. In Second Meet-
ing of the North American Chapter of the Association
for Computational Linguistics.

Leo Wanner, Bernd Bohnet, Nadjet Bouayad-Agha,
Francois Lareau, and Daniel Nicklaß. 2010. MAR-
QUIS: Generation of user-tailored multilingual air
quality bulletins. Applied Artificial Intelligence,
24(10):914–952.

Michael White and Rajakrishnan Rajkumar. 2012. Min-
imal dependency length in realization ranking. In
Proceedings of the 2012 Joint Conference on Empir-
ical Methods in Natural Language Processing and
Computational Natural Language Learning, pages
244–255, Jeju Island, Korea. Association for Compu-
tational Linguistics.

Sam Wiseman, Stuart Shieber, and Alexander Rush.
2017. Challenges in data-to-document generation.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2253–2263, Copenhagen, Denmark. Association for
Computational Linguistics.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. arXiv preprint
arXiv:1904.09675.

A Sample input and output structures

The figures in the next page illustrate the genera-
tion process starting from an input triple set that
corresponds to the following English text:

Agra Airport, operated by Indian Air Force, is
located in India. Its ICAO location identifier is
VIAG.

Figure 3 shows a WebNLG’23 input, and Fig-
ure 4 shows the output of the lexicalisation module.
The FORGe, morphology and post-processing out-
puts are shown in a one-word-per-line format in
Table 5. The output Irish text is the following:

Tá Agra Airport, reáchtáilte ag Indian Air Force,
lonnaithe ins An India. Tá VIAG in a aitheantóir
suímh ICAO.

B Irish dataset: Tagsets used

The edge labels for semantic graphs come mainly
from PropBank (Kingsbury and Palmer, 2002),
plus some generic labels such as Location and Time;
see Table 6. The ones for deep syntactic trees come
from Meaning-Text Theory (Mel’čuk, 1988); see
Table 7. As for surface syntactic edge labels, they
are our own; see Table 8.

C Irish dataset: Statistics

There are 13,211, 1,667 and 1,779 texts in the train-
ing, development and test splits respectively. Ta-
bles 9-10 provide an overview of the number of
nodes and sentences per text for all splits. Our 10
intermediate layers contain over 2 million nodes.

D Irish dataset: Sample structures

The annotations are released in CoNLL-U format,
but because of space constraints, we have truncated
the data in Tables 11–20 below: (i) we dropped
unused columns and renamed the remaining ones
for readability; (ii) we removed feature names to
retain only their values; (iii) we omit the metadata,
which specifies the text ID, the level of representa-
tion (see the captions) and the corresponding text
string. The showcased structures all correspond to
the same text as in Appendix A.
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Figure 3: A sample WebNLG input with 3 triples (same as Figure 1)

Figure 4: Lexicalisation output: instantiated PredArg templates

FORGe Morphology Post-processing

bí+Verb+PresInd tá Tá
Agra_Airport+Noun+Masc+Com+Sg Agra_Airport Agra Airport

, , ,
reáchtáilte reáchtáilte reáchtáilte

ag ag ag
Indian_Air_Force+Noun+Masc+Com+Sg Indian_Air_Force Indian Air Force

, , ,
lonnaithe+Adj+Masc+Com+Sg lonnaithe lonnaithe

i i ins
An_India+Noun+Masc+Com+Sg An_India An India

. . .
bí+Verb+PresInd tá Tá

VIAG+Noun+Masc+Com+Sg VIAG VIAG
i i in
a a a

aitheantóir+Noun+Masc+Com+Sg aitheantóir aitheantóir
suímh suímh suímh

ICAO+Noun+Masc+Com+Sg ICAO ICAO
.

Table 5: FORGe, morphology and post-processing outputs (one word per line for convenience)
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Label Description Example

A0–A6 n-th argument of a predicate or quasi-predicate speak→ English
Location location born→ Paris
Time time build→ 1932
NonCore inverted first argument of a predicate runway→ second
Set list of elements and→ speak
Elaboration (i) none of governor or dependent are argument of the other above me→ 610m

(ii) unknown argument slot

Table 6: Edge labels of semantic graphs

Label Description Example

I–VI n-th complement of a syntactic predicate speak→ English
ATTR modifier runway→ second
COORD coordination staff members→ and
APPEND parenthetical modifier Hypermarcas Brazil→ (s.a.)

Table 7: Edge labels of deep syntactic trees

Label Description

adjunct backgrounded adverbial
adv general adverbial (not restrictive nor backgrounded)
agent between non-finite verb and its 1st argument
analyt_pass between passive auxiliary and main verb
appos nominal noun modifier (apposition)
attr prepositional noun modifier (attributive)
aux_phras between elements of multi-word proper nouns
compar between adjective and comparative
compar_conj complement of a comparative conjunction
coord between 1st conjunct and conjunction
coord_conj between conjunction and 2nd conjunct
copul complement of a copula
det determiner of a noun
dobj direct object
iobj indirect object
modal between modal verb and main verb
modif adjectival or participial noun modifier
obl_compl complement (argument) of a noun
obl_obj prepositional object (not direct or indirect)
prepos complement of a preposition
quant numeral noun modifier (quantificative)
quasi_subj grammatical (usually empty) subject
restr restrictive adverbial or modifier (adjacent to governor)
relat clausal noun modifier (relative)
sub_conj complement of a subordinating conjunction
subj subject of verb

Table 8: Edge labels of Irish surface syntactic trees
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Layer N S

PredArg 152,750 48,776
PredArg-Agg 134,008 31,065
PredArg-Lex 134,008 31,065
PredArg-Comm 143,343 31,065
DSynt 175,019 31,065
SSynt 254,128 31,065
SSynt-Agg 255,499 29,215
REG 254,355 29,215
DMorph 283,593 29,228
Text 285,727 29,228

Table 9: Total number of nodes (N) and sentences (S) per layer.

Layer N S N/S

PredArg 9.2 2.9 3.1
PredArg-Agg 8.0 1.9 4.4
PredArg-Lex 8.0 1.9 4.4
PredArg-Comm 8.6 1.9 4.7
DSynt 10.5 1.9 5.7
SSynt 15.3 1.9 8.3
SSynt-Agg 15.3 1.8 8.9
REG 15.3 1.8 8.8
DMorph 17.0 1.8 9.8
Text 17.2 1.8 9.9

Table 10: Average number of nodes (N), sentences (S) and nodes per sentence (N/S) for each text, per layer.

ID Semanteme Features Head Rel Misc

1 located _ 0 root src=1
2 Agra_Airport ne 1 A1 coref=0|src=2
3 An_India location|ne 1 A2 coref=1|src=3
4 <SENT> _ _ _ _
5 operate pres 0 root src=4
6 Indian_Air_Force ne 5 A1 coref=2|src=6
7 Agra_Airport def|ne 5 A2 coref=0|src=5
8 <SENT> _ _ _ _
9 ICAO_location_identifier def 0 root src=7
10 Agra_Airport _ 9 A2 coref=0|src=8
11 VIAG ne 9 A1 coref=3|src=9
12 <SENT> _ _ _ _

Table 11: Predicate-argument structure (PredArg).

ID Semanteme Features Head Rel Misc

1 located rheme 0 root src=1
2 An_India location|ne 1 A2 coref=1|src=3
3 operate pres 0 root src=4
4 Indian_Air_Force ne 3 A1 coref=2|src=6
5 Agra_Airport ne 1,3 A1,A2 coref=0|src=2
6 <SENT> _ _ _ _
7 ICAO_location_identifier def 0 root src=7
8 Agra_Airport _ 7 A2 coref=0|src=8
9 VIAG ne 7 A1 coref=3|src=9
10 <SENT> _ _ _ _

Table 12: Aggregated predicate-argument structure (PredArg-Agg; corresponds to Figure 4).
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ID Semanteme POS Features Head Rel Misc

1 located JJ jj|rheme 0 root src=1
2 An_India NP location|ne 1 A2 src=3
3 operate VB pres|vb 0 root src=4
4 Indian_Air_Force NP ne 3 A1 src=6
5 Agra_Airport NP ne 1,3 A1,A2 coref=0|src=2
6 <SENT> _ _ _ _ _
7 ICAO_location_identifier NN def|nn 0 root src=7
8 Agra_Airport NN _ 7 A2 coref=0|src=8
9 VIAG NP ne 7 A1 src=9
10 <SENT> _ _ _ _ _

Table 13: Lexicalised predicate-argument structure (PredArg-Lex).

ID Semanteme POS Features Head Rel Misc

1 reáchtáil VB pres 0 root src=4
2 lonnaithe JJ rheme 0 root src=1
3 Agra_Airport NP ne 1,2 A2,A1 coref=0|src=2
4 An_India NP location|ne 2 A2 src=3
5 Indian_Air_Force NP ne 1 A1 src=6
6 <SENT> _ _ _ _ _
7 aitheantóir NN def|rheme 0 root src=7
8 Agra_Airport NN _ 7 A2 coref=0|src=8
9 VIAG NP ne 7 A1 src=9
10 <SENT> _ _ _ _ _

Table 14: Predicate-argument structure with thematicity (PredArg-Th).

ID Lexeme POS Features Head Rel Misc

1 bí VB fin|decl|act 0 root src=1
2 Agra_Airport NP _ 1 I coref=0|src=2
3 reáchtáil VB part|pres 2 ATTR src=4
4 Indian_Air_Force NP _ 3 I src=6
5 lonnaithe JJ _ 1 II src=1
6 An_India NP location 5 II src=3
7 <SENT> _ _ _ _ _
8 bí VB masc|act|fin|decl 0 root src=7
9 VIAG NP _ 8 I src=9
10 aitheantóir NN masc|gen|sg 8 II src=7
11 Agra_Airport NN sg 10 II coref=0|src=8
12 <SENT> _ _ _ _ _

Table 15: Deep syntactic representation (DSynt).

ID Lexeme POS Features Head Rel Misc

1 bí VB decl|fin|ind|pres 0 root src=1
2 lonnaithe JJ acc 1 dobj src=1
3 Agra_Airport NP nom|masc|sg|ne 1 subj coref=0|src=2
4 reáchtáil VB part 3 modif src=4
5 ag IN _ 4 agent src=6
6 i IN _ 2 obl_compl src=3
7 An_India NP sg|dat|location|masc|ne 6 prepos src=3
8 Indian_Air_Force NP nom|masc|sg|ne 5 prepos src=6
9 <SENT> _ _ _ _ _
10 bí VB pres|decl|fin|masc|ind 0 root src=7
11 i IN gen 10 obl_obj src=7
12 aitheantóir NN dat|masc|sg|gen 11 prepos src=7
13 ar IN _ 12 obl_compl src=8
14 Agra_Airport NN dat|masc|sg 13 prepos coref=0|src=8
15 VIAG NP nom|masc|sg|ne 10 subj src=9
16 suímh ICAO NN sg|masc|nom 12 restr src=7
17 a DT - 12 det src=7
18 <SENT> _ _ _ _ _

Table 16: Surface syntactic representation (SSynt).
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ID Lexeme POS Features Head Rel Misc

1 bí VB ind|sg|sg|decl|fin|pres 0 root src=1
2 lonnaithe JJ sg|sg|acc 1 dobj src=1
3 i IN sg|sg 2 obl_compl src=3
4 Agra_Airport NP sg|nom|sg|masc|masc|ne 1 subj coref=0|src=2
5 reáchtáil VB sg|sg|part 4 modif src=4
6 ag IN sg|sg 5 agent src=6
7 Indian_Air_Force NP nom|masc|sg|masc|sg|ne 6 prepos src=6
8 An_India NP masc|sg|dat|location|masc|sg|ne 3 prepos src=3
9 <SENT> _ _ _ _ _
10 bí VB pres|sg|sg|decl|fin|masc|masc|ind 0 root src=7
11 i IN sg|sg|gen 10 obl_obj src=7
12 aitheantóir NN dat|sg|masc|gen|masc|sg 11 prepos src=7
13 ar IN sg|sg 12 obl_compl src=8
14 Agra_Airport NN masc|dat|masc|sg|sg 13 prepos coref=0|src=8
15 VIAG NP nom|sg|masc|masc|sg|ne 10 subj src=9
16 suímh ICAO NN sg|sg|masc|nom|masc 12 restr src=7
17 a DT -|sg|sg 12 det src=7
18 <SENT> _ _ _ _ _

Table 17: Aggregated surface syntactic representation (SSynt-Agg).

ID Lexeme POS Features Head Rel Misc

1 bí VB sg|sg|decl|fin|pres|ind 0 root src=1
2 lonnaithe JJ sg|acc|sg 1 dobj src=1
3 i IN sg|sg 2 obl_compl src=3
4 Agra_Airport NP masc|sg|sg|nom|masc|ne 1 subj coref=0|src=2
5 reáchtáil VB part|sg|sg 4 modif src=4
6 An_India NP location|masc|masc|sg|dat|sg|ne 3 prepos src=3
7 ag IN sg|sg 5 agent src=6
8 Indian_Air_Force NP masc|masc|sg|sg|nom|ne 7 prepos src=6
9 <SENT> _ _ _ _ _
10 bí VB pres|ind|masc|sg|decl|sg|fin|masc 0 root src=7
11 i IN sg|sg|gen 10 obl_obj src=7
12 aitheantóir NN masc|gen|masc|sg|sg|dat 11 prepos src=7
13 _PRO_ PP masc|sg|dat|masc|sg 12 obl_compl coref=0|src=8
14 suímh ICAO NN masc|sg|nom|masc|sg 12 restr src=7
15 VIAG NP masc|sg|sg|nom|masc|ne 10 subj src=9
16 <SENT> _ _ _ _ _

Table 18: Pronominalised surface syntactic representation (SSynt-Pro).

ID Word POS Features Misc

1 bí VB pres|vi|decl|fin|sg|ind src=1
2 Agra_Airport NP nom|masc|sg|invar coref=0|src=2
3 reáchtáil VB nom|part|masc|sg|vti src=4
4 ag IN sg src=6
5 Indian_Air_Force NP sg|nom|masc|invar src=6
6 lonnaithe JJ sg|acc|masc src=1
7 i IN sg src=3
8 An_India NP dat|masc|sg|invar src=3
9 . _ _ src=-
10 bí VB ind|pres|vi|sg|decl|fin|masc src=7
11 VIAG NP nom|masc|sg|invar src=9
12 i IN sg src=7
13 _PRO_ PP dat|masc|sg coref=0|src=8
14 aitheantóir NN masc|sg|dat src=7
15 suímh ICAO NN nom|masc|sg src=7
16 . _ _ src=-

Table 19: Deep morphological representation (DMorph).
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ID Word POS Misc

1 bí%Verb%PresInd VB src=1
2 Agra_Airport%Noun%Masc%Com%Sg NP coref=0|src=2
3 , _ src=-
4 reáchtáilte VB src=4
5 ag IN src=6
6 Indian_Air_Force%Noun%Masc%Com%Sg NP src=6
7 , _ src=-
8 lonnaithe%Adj%Masc%Com%Sg JJ src=1
9 i IN src=3
10 An_India%Noun%Masc%Com%Sg NP src=3
11 . _ src=-
12 bí%Verb%PresInd VB src=7
13 VIAG%Noun%Masc%Com%Sg NP src=9
14 i IN src=7
15 a PP coref=0|src=8
16 aitheantóir%Noun%Masc%Com%Sg NN src=7
17 suímh ICAO%Noun%Masc%Com%Sg NN src=7
18 . _ src=-

Table 20: Surface morphological representation (SMorph; corresponds to Table 5).

42



Proceedings of the 2nd Workshop in Pattern-based Approaches to NLP in the Age of Deep Learning , pages 43–53
December 6, 2023. ©2023 Association for Computational Linguistics

Symbolic Planning and Code Generation for Grounded Dialogue

Justin T. Chiu
Cornell Tech

jtc257@cornell.edu

Wenting Zhao
Cornell University

wz346@cornell.edu

Derek Chen
Columbia University

dc3761@columbia.edu

Saujas Vaduguru
Carnegie Mellon University
svadugur@andrew.cmu.edu

Alexander M. Rush
Cornell Tech

arush@cornell.edu

Daniel Fried
Carnegie Mellon University

dfried@cs.cmu.edu

Abstract
Large language models (LLMs) excel at pro-
cessing and generating both text and code.
However, LLMs have had limited applicabil-
ity in grounded task-oriented dialogue as they
are difficult to steer toward task objectives and
fail to handle novel grounding. We present a
modular and interpretable grounded dialogue
system that addresses these shortcomings by
composing LLMs with a symbolic planner and
grounded code execution. Our system consists
of a reader and planner: the reader leverages
an LLM to convert partner utterances into exe-
cutable code, calling functions that perform
grounding. The translated code’s output is
stored to track dialogue state, while a sym-
bolic planner determines the next appropriate
response. We evaluate our system’s perfor-
mance on the demanding ONECOMMON di-
alogue task, involving collaborative reference
resolution on abstract images of scattered dots.
Our system substantially outperforms the pre-
vious state-of-the-art, including improving task
success in human evaluations from 56% to 69%
in the most challenging setting.

1 Introduction

Success in grounded task-oriented dialogue re-
quires intentional communication guided by strate-
gic planning (Cohen and Perrault, 1979; Traum,
1994; Walker et al., 2004; Rieser and Lemon, 2009;
Bakhtin et al., 2022, inter alia). Dialogue agents
must read partner utterances, update their beliefs,
then make a plan that furthers their goal. These
plans must take into account both dialogue history
and grounding, such as in an image. In end-to-
end systems based solely on large language models
(LLMs), this process is implicit and therefore diffi-
cult to control, requiring extra supervision (Chris-
tiano et al., 2023) or expensive search (Lu et al.,
2022) to improve. While recent work has taken
steps to rectify implicit reasoning via planning in
language space, where intermediate steps are gen-
erated by an LLM (Wei et al., 2022), there is no

SPC: Do you see a pair of dots, where the top left
dot is medium-sized and grey and the bottom
right dot is medium-sized and dark

Human: No
SPC: Do you see a pair of dots, where the top dot

is small-sized and light and the bottom dot is
medium-sized and grey

Human: Yes I see them. Is there a small grey dot
above the small light dot?

SPC: No. Is there a large size and dark color dot to
the left and below those?

Human: Yes and there is a small grey dot below them
as well for me.

SPC: Yes. Let’s select the small size and light color
one.

SPC: <select>
Human: <select>

Figure 1: An example grounded dialogue from
ONECOMMON. Our dialogue agent, SPC, and a human
partner have different but overlapping circular views of
a shared board. The agent and partner must collaborate
through dialogue in order to find and select a shared dot.
ONECOMMON demands careful, grounded reasoning.

guarantee that these approaches result in plans that
further task progress. Additionally, planning in lan-
guage space is expensive, requiring inference in an
LLM (Yarats and Lewis, 2017; Guez et al., 2012).

Rather than implicit or heuristic reasoning, we
are interested in explicit reasoning and planning
over symbolic actions. Symbolic actions are con-
trollable by construction, allowing system design-
ers to easily build in task-specific knowledge (He
et al., 2018; Bakhtin et al., 2022). This controlla-
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bility is crucial for obtaining task-specific success
using general tools, even with LLMs.

We provide an example from ONECOMMON, a
particularly challenging grounded dialogue game
(Udagawa and Aizawa, 2019). The goal of
ONECOMMON is to, through dialogue, identify
one dot in common with your partner, who has an
overlapping but different view of an underlying set
of dots, illustrated in Figure 1. The challenge in
ONECOMMON is grounding the contextual spatial
relationships described in language to dots.

Recent work has utilized code-generation for
grounded language understanding (Dídac et al.,
2023). In particular, they translate natural language
questions to code as an intermediate representation,
then execute that code to obtain an answer. Code
has a couple appealing properties as an intermedi-
ate representation: First, modern language models
are trained on a mixture of code and natural lan-
guage, affording them the capability of, with some
accuracy, translating between the two (Chen et al.,
2021). Second, code acts as a compositional knowl-
edge representation. This allows code-generation
systems to perform grounded compositional rea-
soning, provided a library of Python functions that
perform grounding (Liang et al., 2022).

We present a system, Symbolic Planning and
Code-generation (SPC), that reads by translating
partner utterances into code and plans based on
symbolic reasoning over what to say next. Code as
a compositional knowledge representation closely
mirrors the compositional nature of utterances,
which are composed of grounded parts. SPC plans
by optimizing expected information gain, which
has been shown to be effective at building a key
aspect of collaborative dialogue: common ground
(Yu et al., 2019; White et al., 2021; Chiu et al.,
2022). Symbolic planning allows SPC to explic-
itly and efficiently optimize for task success while
taking advantage of task-specific properties.

We evaluate our SPC system on the most chal-
lenging subset of the ONECOMMON task, com-
paring our system to the previous state-of-the-art
supervised system for the task (Fried et al., 2021).
In both evaluations with human partners and auto-
mated self-play evaluations, we find that our ap-
proach substantially outperforms the previous state-
of-the-art in task accuracy, improving from 56% to
69% accuracy, and obtains comparable task accu-
racy to human-human pairs on average.

2 Related Work

Prior work on collaborative reference games fo-
cuses on building common ground (He et al., 2017;
Haber et al., 2019; Khani et al., 2018). Prior work
by Fried et al. (2021) implements an approxima-
tion of pragmatic reasoning on ONECOMMON, but
plans in language space and utilizes supervised
models for mapping language to symbols. Khani
et al. (2018) plan in symbolic space, but without
natural language. We plan in symbolic space and
map from language to symbols via code generation.

Dialogue systems have a long history of reason-
ing with symbolic actions. When available, sym-
bolic actions have been found to improve the per-
formance of dialogue systems, especially in the set-
ting of grounded dialogue (Winograd, 1971; Young,
2006; He et al., 2018; Andreas et al., 2020; Bakhtin
et al., 2022). The closest work to ours is CICERO,
which utilizes symbolic planning in a system for
DIPLOMACY, a dialogue and strategy game that
requires negotiation and coordination between play-
ers (Bakhtin et al., 2022). CICERO requires a su-
pervised dataset to train their system. We use code
LLMs which require minimal supervision beyond
constructing a small perceptual grounding API.

Planning in dialogue systems has recently es-
chewed symbolic actions in favor of planning di-
rectly in text, where systems either perform roll-
outs, tree-search, or other forms of intermediate
reasoning in language. This allows system design-
ers to avoid manually defining symbolic actions
(Yarats and Lewis, 2017; Jang et al., 2020; Gandhi
et al., 2023). However, the accuracy of language-
space planners is still low in many settings (Fried
et al., 2021; Valmeekam et al., 2023). We focus on
symbolic planning, where planning is defined in a
space that ensures accuracy and controllability.

With the recent progress in large language mod-
eling, code generation for modular grounded sys-
tems has quickly gained interest. Grounded code
generation systems do not require task-specific
training data, making them cheap to apply. A
body of work utilizes a large language model for
instruction following by generating Python code
that makes calls to lower-level perception libraries
(Liang et al., 2022; Dídac et al., 2023; Gupta and
Kembhavi, 2022; Gao et al., 2023). This extends
prior work on executable semantic parsing (Liang,
2016; Johnson et al., 2017; Cheng et al., 2018)
with large language models. Concurrent work has
also utilized code-generation to interpret language,
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integrated with symbolic reasoning (Wong et al.,
2023). We apply these advances to the setting of
grounded task-oriented dialogue, where code gen-
eration grounds language to symbolic actions for
use in explicit planning.

3 Overview: Reference Games

Collaborative reference games pair an agent and a
partner in order to build common ground through
natural language dialogue (Haber et al., 2019;
Khani et al., 2018; He et al., 2017; Udagawa
and Aizawa, 2019). Mirroring realistic scenarios,
many reference games are also partially observ-
able, where the agent and partner have different
perspectives, and so they must resolve ambiguity.

ONECOMMON (Udagawa and Aizawa, 2019), as
shown in Figure 1, is a reference game that exem-
plifies two challenges: grounding and planning. In
ONECOMMON, the agent and partner see different
but overlapping views of a set of dots, and the goal
is to find and select one dot common to both play-
ers’ views. Grounding in ONECOMMON is particu-
larly difficult due to the dot-based visual context,
which requires abstract spatial reasoning. Planning
is complicated by the partial observability caused
by differing perspectives, which require agents to
use complex referring expressions in order to avoid
ambiguity.1 We focus on ONECOMMON due to its
simplicity and difficulty.

Our approach to grounded reference games sep-
arates symbolic reasoning from language, allowing
explicit steering. Our system, Symbolic Planning
and Code-generation (SPC), breaks down a turn
into three procedures: reading, planning, and writ-
ing. Reading and writing convert from language to
symbols and vice versa, while planning reasons in
purely symbolic space.

The agent maintains a belief distribution over
possible worlds, z, representing task-specific un-
knowns. The goal of dialogue is to gain informa-
tion about z until the agent is confident enough to
end the game. At each turn, the agent reads the
partner’s utterance u, converting it into a symbolic
action, p(x|u). This symbolic action potentially
builds upon the action x′ of a previous utterance,

1The contexts in ONECOMMON were constructed to make
referring expressions challenging and context-dependent. For
example, if the agent sees only light dots, a relatively ‘dark’
dot for the agent may not be considered dark at all by the part-
ner.ONECOMMON is an ideal testbed for pragmatic methods
that reason about contextual meaning. While our approach
does not address pragmatics, we hope future work will.

u′. The agent then plans in symbolic space. The
system uses reasoning to update its belief state,
p(z|u) =

∑
x p(z|x)p(x|u), then produces a re-

sponse y∗ of what to say next, which it describes
in language to the partner. There is additionally a
templated write module for generating a response
from y∗ described in Appendix C.

In ONECOMMON, given a set of dots D, the state
z ∈ {0, 1}|D| represents which dots the agent be-
lieves are contained (1) and not contained (0) in the
partner’s view, illustrated in Figure 3. We call a set
of dots a configuration. The action representation
of partner, x and x′, and agent utterances, y∗, alike
is also a configuration in {0, 1}|D|, as well as any
answers or confirmations to previous questions.

4 Reading: From Language to Symbols

Reading in SPC requires interpreting utterances to
a grounded symbolic action, which in turn facili-
tates the planning stage. Consider the following
exchange:

Agent: Do you see a triangle of dark dots?
Partner: Yes, is there a small grey one below it?

Reading has several challenges. First, reading
requires grounding utterances in context, e.g. the
shapes and relations. Second, utterances are com-
positional. For example, the partner utterance
builds on top of the previous utterance through
coreference. Finally, a reading system must act
quickly, as real-time dialogue systems require rea-
sonable response times.

4.1 Code Generation

In SPC, reading is implemented as code generation.
Given a dialogue, we generate Python code2 which
is then used as a meaning function to produce a
distribution over all valid interpretations of the ut-
terance’s symbolic action (Figure 2). The code
calls perceptual library functions with grounded
semantics, drawn from a task-specific API. This
perceptual library allows the system to both ground
elements of the utterance and compositionally build
upon previous utterances. Consider the following
abbreviated example, based on ONECOMMON:

2We target Python as our code representation since it is
well-understood by large language models. However, in prin-
ciple, our system could target other languages such as Prolog
or SQL.
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from perceptual_library import is_small, ...
dot1, dot2, dot3, ... = get_dots()

Agent: Do you see a triangle of dark dots?

agent_configs = set([
Config(dot1, dot2, dot3),
Config(dot3, dot4, dot1)

])

Partner: Yes, is there a small grey one below it?

def turn(prev_configs):
configs = set()
for prev_config in prev_configs:

for dot in single_dots(exclude=prev_config):
if (
is_small(dot)
and is_grey(dot)
and is_below(dot, prev_config)

):
configs.add(Config(dot, prev_config))

return configs
partner_configs_x = turn(agent_configs)

The code in the meaning function is imperative, but
represents a set of declarative constraints represent-
ing p(x|u).3 The meaning function for the partner
turn, turn(prev_configs), takes as input the dis-
tribution over symbolic actions of a previous turn,
p(x′), and yields a set of possible interpretations of
the current turn, p(x|u) =

∑
x′ p(x|u, x′)p(x′).4

Because utterances can have multiple valid interpre-
tations due to ambiguity, prev_configs represents
a distribution.5

Within turn, we consider all valid configura-
tions while marginalizing over x′, i.e. interpreta-
tions in prev_configs. For each interpretation,
each dot is considered. If the new dot satisfies the
semantics of the utterance, checked step-by-step
via grounded perceptual library functions such as
is_small(d), then it is a valid interpretation of
the current utterance and is used to create a new
Config.

The perceptual library functions are drawn from
a manually-defined library. For ONECOMMON,
we define these functions using domain-specific
knowledge:

def is_small(d): return d.size < -0.3

The perceptual library for ONECOMMON can be

3In ONECOMMON, the distribution over symbolic actions
p(x|u) is represented as represented as a categorical distribu-
tion over configurations with probabilities based on the size
of the circumcircle.

4The symbolic action of a previous turn x′ may also depend
on other previous utterances u′. For simplicity, we omit that
in the notation.

5SPC is able to intentionally produce ambiguous descrip-
tions if that improves task success, as illustrated in this exam-
ple.

Partner utterance: "Is there a big light dot next to a big dark one?"

Agent: "Yes. Is there a smaller black one below them?"

Partner utterance u: "No, but there is a small grey dot below them."

Symbolic actions p(x|u)

,

Symbolic actions p(x’)

,

def turn(prev_dots =           ):
    ...
    is_small...
    is_grey...
    is_below(dot, prev_dots)
    ...
    return configs

,

Figure 2: Overview of Reading. The generated meaning
function for utterance u takes the previous symbolic
action distribution p(x′) from a prior turn and yields the
interpretations p(x|u), using code as a compositional
representation (Section 4).

found here.

4.2 Prompting

Reading is implemented with large language model
(LLM) code generation. While LLMs can generate
accurate code, full code specifications (Section 4.1)
are lengthy and therefore too slow to generate for
real-time use. We break down code generation into
four steps, where some steps do not require any
calls to an LLM. Decreasing the number of output
tokens guarantees a speedup, assuming consistent
latency. See the code for details on the code LLM
and prompts we use.6

Dialogue Act: Classify partner utterances as one of
three dialogue acts: Start a NEW line of questioning,
ask a FOLLOW-UP question, END the dialogue.
Reference: Predict which previous turn x′ the utter-
ance is following up on, if any:

Agent: Do you see a triangle?
Partner: Yes, is there a small grey dot below it?

dialogue act: follow-up
refer: turn 1

6We release the code here.
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The system grounds the dots mentioned in the pre-
vious turn: agent_configs, which is stored by the
system. This allows referring to other turns besides
the previous.

Constraint Generation: Predict the new dots men-
tioned in the partner utterance alongside code frag-
ments that express the semantics, without the boil-
erplate code, in the example above:

Partner: Yes, is there a small grey one below it?

1 new dot
is_small(dot)
is_grey(dot)
is_below(dot, prev_dots)

Compose: Finally, we utilize a template to com-
pose all of this information back into the full code
representation for execution.

5 Planning: From Symbols to Responses

To perform well in collaborative reference games,
it is essential to build common ground quickly and
accurately by carefully reasoning about what infor-
mation has been gathered so far, as well as what to
say next. SPC addresses these desiderata by plan-
ning in symbolic space, over the symbolic actions
produced by reading.

We have two challenges: First, to incorporate the
new information from the partner’s utterance while
accounting for task-specific grounding as well as
dialogue history. Second, given this new informa-
tion, the system must decide either to end the game
or how to improve the probability of success.

Planning requires us to model the actions of the
partner given the shared state. To do this we need
task specific models of our partner, p(x | z), and
our partner’s reponse to us, p(x|z, y). In ONECOM-
MON, we model both of these by a heuristic func-
tion considering set overlap and dot proximity, de-
scribed in Appendix D.

5.1 Belief update

Starting from a prior over the previous belief p(z),
we incorporate probabilistic evidence from the ut-
terance p(x|u). This requires marginalizing over
all valid symbolic actions x from the reading step.
In practice, p(x|u) is sparse, and symbols x with
non-zero support are very similar. We therefore
approximate this marginalization with a point esti-

mate:

p(z|u) =
∑

x

p(z|x)p(x|u)

=
∑

x

p(x|z)p(z)
p(x)

p(x|u)

≈
∑

x

p(x|z)p(z)
p(x)

1(x = x∗)

∝ p(x∗ | z)p(z),

(1)

where x∗ = argmaxx p(x|u).
We give an example of this process in Figure 3.

In this case, a ‘big light dot next to a big dark one’
could have two valid interpretations, the big light
dot and the black dot to the left, or the other black
dot to the right. We approximate this distribution
with the most likely interpretation x∗. In ONECOM-
MON, we use the most compact7 as x∗, yielding
the black dot on the left. The belief state is then
updated to p(z|u), shown in Figure 3 (center).

5.2 Planning
Given the updated belief, SPC then plans its next
action. The challenge here is to ensure task success,
e.g. finding one dot in common. This requires
both exploring by building common ground, then
exploiting that knowledge to win the game.

We formalize exploration as the expected infor-
mation gain, a quantity that codifies how much the
agent can expect to learn about possible worlds z
after taking an action (Lindley, 1956). That action
then elicits a response from the partner, providing
information about the uncertain world state. For
example, if the agent has asked about a set of dots
and already received a ‘no’, then asking further
questions about those dots would not reduce uncer-
tainty.

Formally, we optimize

y∗ = argmax
y

H[z|u]− Exy |y [H[z | u, y, xy]] ,
(2)

where H[z|u] is the entropy of the current belief8

and H[z | u, y, xy] the entropy of the posterior
distribution. This second term is the key part of
the objective. Assuming that we take action y,
the expectation considers all hypothetical future

7We define the compactness of a configuration as the radius
of the circumcircle. An ideal approximation would take into
account more context, such as the relative sizes.

8The belief entropy H[z|u] in the definition of information
gain is constant with respect to the plan x, and can be dropped
from the objective.
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Figure 3: Overview of Planning. Partner utterances are interpreted by a meaning function generated by a code LLM
(read), producing a distribution over valid symbolic interpretations, p(x|u). This is used to symbolically update the
belief state, p(z|u), increasing the probability of worlds (shared dots) that are consistent with x. This belief state is
used to symbolically plan the agent’s next utterance, y∗, by optimizing the expected information gain, which is
described to the partner (write).

partner responses xy. We are penalized if after
seeing these responses, we are still uncertain about
the common ground z. This objective therefore
encourages actions that reduce uncertainty. 9

SPC chooses to exploit and end the game with
the following heuristic: If the system is confident
in success, i.e. the probability of task success is
greater than hyperparameter θ (set to 0.8), SPC
ends the game.

6 Experimental Setup

We conduct two evaluations of SPC on the
ONECOMMON task. We compare to the state-of-
the-art baseline system of Fried et al. (2021), which
we refer to as Imitate. Imitate is a pipelined system,
where each part is fully supervised. Imitate uses a
neural representation of dialogue history in com-
bination with a neural-CRF reference resolution
module to understand grounded language. In order
to generate, Imitate relies on a pragmatic planning
procedure, which plans in a mixture of symbolic
and language space, prioritizing descriptions of
dots that are easily understood.

We first perform human evaluation, evaluating
the task success of systems when paired with hu-
man partners. This setting is challenging, requiring
the system to handle both the linguistically diverse

9The distribution p(xy|y) =
∑

z p(xy|y, z)p(z) also uses
the partner response model p(xy|y, z).

utterances and a range of strategies of human part-
ners. We recruit 19 workers from Amazon’s Me-
chanical Turk to play with one of three partners:
SPC, the most successful past system for the task
(Fried et al., 2021), or another human. We pay $15
per hour, with $1.00 per game at an average of 4
minutes per game. We additionally give a bonus of
$0.15 for every game. We use 100 visual contexts
from the most difficult10 partition of ONECOM-
MON. We pay workers $1.00 per game, with a
$0.15 bonus if they win. We collect 287 completed
dialogues in total, where both players selected a
dot.

We secondarily evaluate systems in self-play,
where systems are paired with a copy of themselves.
This isolates strategic efficiency by ensuring the
agent’s partner has the same skill as the agent. The
200 games share the same contexts across systems.

We include an additional system in self-play,
GPT4 2-shot11, which gets two full human dia-
logues as examples. Each human dialogue example
starts with a description of the context the agent
sees. The full prompts can be viewed here.

Parameterization For code generation, during
the reading phase we use GPT-412 (OpenAI, 2023).

10The number of shared dots is four.
11We do not include GPT4 2-shot in human evaluation, as

its self-play evaluation is very poor.
12Specifically gpt-4-0613.
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Agent Success Turns Games

SPC 68.8% 7.77 96
Imitate 55.6% 6.61 117
Human 67.6% 5.03 74
Human† 65.8% 4.97 2,189

Table 1: The average success rate, average number
of turns, and total number of games between agents
and human partners on the hardest setting of ONECOM-
MON, with 4 shared dots. † indicates statistics from the
ONECOMMON dataset (Udagawa and Aizawa, 2019).

The symbolic actions in ONECOMMON consist of
sets of dots and confirmations, while the belief
over symbolic states, p(z), captures which dot con-
figurations are shared and is designed to account
for dot proximity. Further details on the prior are
given in Appendix D. The symbolic partner models,
p(x | z) and p(x | y, z), are drawn from Chiu et al.
(2022), and incorporate a similar bias based on dot
proximity.

7 Results

Human evaluation In human evaluation, SPC
obtains substantially higher task accuracy than the
baseline model of Fried et al. (2021), and is com-
parable to human performance on average. This
demonstrates that the combination of symbolic
information-gain planning and code-generation in
SPC is more effective than the baseline’s language-
space planning objective and supervised reference
resolution.

We see a more nuanced story when conducting a
skill-based analysis of the human evaluation results,
presented in Figure 4. A worker’s skill is given by
their average success rate with other human part-
ners. The x-axis of the graph, the minimum success
rate, increasingly filters workers from left to right:
the left side of the graph shows all workers, while
the far right shows only those workers who won
nearly all of their human-human games. Skilled hu-
man partners have a higher success rate with other
humans, as opposed to when partnered with SPC.
Additionally, the success rate of SPC improves
with human skill, while the success rate of human
partners with the baseline system, Imitate, remains
relatively constant across skill levels, implying that
SPC is more responsive than the baseline to strate-
gies used by humans.

SPC also takes more turns on average than both
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Figure 4: Success rate of the different agent types with
human partners, with progressive filtering of human
partners by their success rate along the x-axis. Shaded
regions give standard errors.

Agent Avg |u| Median |u|
SPC 6.95 4
Imitate 9.62 8
Human 15.06 14

Table 2: The average and median number of words per
utterance by human partners for different agent types in
human evaluation.

the baseline and human-human games. We hy-
pothesize that this difference is caused by shorter
human partner responses to the system, and there-
fore less information shared by the human partner.
In Table 2, we confirm that the average and median
number of words per human utterance are signifi-
cantly lower for humans partnered with SPC than
any other agent type.

Self-play Similarly to human evaluation, SPC
outperforms the baseline Imitate system in self-
play as shown in Table 3. Compared to the baseline,
SPC takes more turns on average, but has a higher
success rate. We attribute both the longer games
and higher success to symbolic planning, which
ensures conservative playing. Interestingly, SPC
self-play takes fewer turns on average than SPC-
human pairings. We hypothesize that this is due
to both copies of SPC communicating a consistent
amount of information every turn. This also high-
lights the importance of human evaluation, which
evaluates with a large population of partners.

We also find that GPT4 2-shot performs poorly
in self-play. We attribute this to overly-agreeable
responses, where the agents choose a dot without
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Agent Success Avg # turns

SPC 84.0% 4.83
Imitate 63.5% 3.31
GPT4 2-shot 19.0% 9.26
Human† 65.8% 4.97

Table 3: The success rate of different agents in 200 self-
play games on the hardest setting of ONECOMMON,
with 4 shared dots. A higher success rate is better. The
human performance is from the ONECOMMON dataset
(Udagawa and Aizawa, 2019).

Prompt style Acc Time (s) Len

SPC 86.7% 5 36
Full 84.0% 18 176

Table 4: The average accuracy, speed, and output length
(number of tokens) for the sequential and full code gen-
eration methods in our benchmark reading task.

thorough verification or reasoning. This occurs
despite the much longer dialogues, in comparison
to all other agent types.

8 Analysis

Qualitative analysis We present a qualitative ex-
ample of a dialogue between SPC and a human
partner in Figure 5. This long dialogue illustrates
the benefits of explicit belief updates and planning:
The conversation starts off with many rejections,
which the agent uses to deduce the shared configu-
rations. Eventually, a common set of dots is found
and the game ends in a success. Without explicit
planning, it would have been unlikely for SPC to
have succeeded at the end of the conversation.

Reading speed analysis We perform a speed ab-
lation of the code-generation prompt in SPC. SPC
uses a sequence of steps for reading, involving dia-
logue act classification, code fragment generation,
and composing the full code representation based
on the output of these steps. We compare this to a
prompt that generates the full meaning function.

We evaluate both of these prompts in a reading
task, where the goal is to read utterances generated
by SPC and recover the underlying plans, measured
by accuracy. In Table 4, we see that both styles
of prompts have similar similar accuracy, but the
sequential, decomposed approach is much faster
due to shorter outputs.

SPC: Do you see a pair of dots, where the bottom dot
is medium-sized and dark and the top dot is
small-sized and light

Human: No. Do you see a pair of medium sized dots,
close together, one is dark grey the other
light grey. The light grey one is slightly above
and the left of the dark one.

SPC: No. Do you see a pair of dots, where the left dot
is medium-sized and dark and the right dot is
medium-sized and light

Human: No, do you see a lone medium sized grey dot?
SPC: No. Do you see a pair of dots, where the left dot

is medium-sized and light and the right dot is
small-sized and grey

Human: No. do you see a pair where the right one is
medium and grey and the left one is smaller and
lighter. The smaller one is slightly below the
medium sized one.

SPC: Yes. Is there a medium size and light color dot
to the right and below those?

Human: Yes
SPC: Let’s select the medium size and grey color one.
Human: <select>
SPC: <select>

Figure 5: An example dialogue between SPC and a
human partner.

9 Conclusion

We present Symbolic Planning and Code-
generation (SPC), a method that approaches
grounded task-oriented dialogue by separating sym-
bolic reasoning from language. Our approach uses
an LLM to generate executable code functions
which represent the meaning of utterances, map-
ping from language to symbolic actions. We then
symbolically track task progress using Bayesian
reasoning, and explicitly plan the best actions to
take next using an information gain objective. De-
spite using minimal supervision, beyond a task-
specific API and few-shot examples, our approach
substantially outperforms the state-of-the-art sys-
tem for the ONECOMMON task in both human eval-
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uations and automatic self-play evaluations.
Our work contrasts with recent work on plan-

ning in language space, which reasons implicitly
(Wei et al., 2022; Yarats and Lewis, 2017; Guez
et al., 2012). While less flexible than language rea-
soning, symbolic reasoning is both interpretable
and modular. Future work should seek to improve
the flexibility of symbolic reasoning (Wong et al.,
2023).

Our work also represents a first step toward us-
ing general-purpose code as a representation for
downstream dialogue and interaction tasks. Future
work might explore code-based representations that
afford more flexible interaction with people, e.g.,
representing a broader range of user actions, both
linguistic and grounded, to construct broadly useful
interactive systems. An ideal system would be able
to synthesize these representations with minimal
manual intervention.
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Limitations

Our system performs code execution given human
input, opening our system to several risks, such
as code injection and unauthorized access. Future
work must strive to integrate code execution capa-
bilities in a secure manner.

Our approach also requires the manual engineer-
ing of a domain-specific API, as well as a symbolic
representation. Future work should seek to alle-
viate the amount of manual engineering in order
to improve flexibility. We hope that methods in
program synthesis can provide a solution.
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A Prompt details

All prompts rely on few-shot prompting. Refor-
mat has 5 few-shot examples, Classify has two
dialogues with 15-turns total, Confirm has 9 exam-
ples, and Understand has two dialogues with 15
turns total. All examples were based loosely on 10
examples from the human-human games collected
in OneCommon by Udagawa and Aizawa (2019).
The same prompts were used in every context. The
full prompts can be found here.

B Prompt ablation

We present an additional experiment on how the
choice of few-shot examples affects the code con-
straint generation prompt, which is a key compo-
nent of the reading step. The code constraints ex-
press the relationships between the mentioned dots,
e.g. whether they form a triangle or their relative
positions, shapes, and colors.

We take the first human utterance from 20 games
in human evaluation and examine whether the
parsed answer changes when the prompt examples
are changed. The 15 examples in the constraint
generation prompt were labeled by hand. Since
we cannot sample another 15 examples, we instead
sub-sample 5 random examples out of 15 for a
5-shot prompt. We report the average agreement
between 5-shot prompts and the original 15-shot
prompt across 5 trials: 99%, with a standard devia-
tion of 2%. This implies the constraint generation
prompt is not sensitive to prompt example choice
at the 5-shot level and prompts could be further
optimized.

We perform the same experiment with 5 trials
of 1-shot prompts and see an average agreement
rate of 34% with a standard deviation of 42%. This
implies that given a single example, the prompt
example matters.

We also find that a zero-shot prompt is unable to
generate output in the correct format.

C Writing

We utilize three templates for writing, one for each
dialogue act.
START: Do you see a pair of dots, where the
{position} dot is {size}-sized and {color}
and the {position} dot is {size}-sized and
{color}?
FOLLOW-UP: Is there a {size} size and
{color} color dot {position} those?
SELECT: Let’s select the {size} size and
{color} color one. <selection>

D Parameterization

We give the parameterization of the belief prior,
p(z) for ONECOMMON.

Our goal in designing the prior is to ensure that
the closer dots are, the more likely they are to be of
the same state: either all shared or not. This reflects
the contiguity of ONECOMMON perspectives.

The prior is given by

p(z) ∝ exp(f(z)), (3)

where f(z) is given the sum of the edges of a mini-
mum spanning tree for the dots in z. The weights
of this spanning tree are determined by the rank
of how close the dots are to each other. The edge
between the nearest neighbor of a dot and the dot
itself gets assigned a weight of 0, the 2nd nearest
neighbor a weight of 1, and so on.

E Relation to prior work in semantic
parsing and dialogue state tracking

Prior work in semantic parsing for dialogue state
tracking, such as in SMCalFlow (Andreas et al.,
2020), does not ground in a visual context and
also requires strategic, collaborative planning due
to OneCommon’s symmetric roles. Agents must
both give and request information strategically.
This type of strategic reasoning is not explored
in prior works in semantic parsing and dialogue
state tracking. Our technical contribution is unify-
ing grounded language understanding and strategic
symbolic reasoning with code generation. In par-
ticular, the reading phase of SPC was designed for
spatial reasoning in OneCommon.
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Abstract

Frame semantic parsing is an important compo-
nent of task-oriented dialogue systems. Current
models rely on a significant amount training
data to successfully identify the intent and slots
in the user’s input utterance. This creates a
significant barrier for adding new domains to
virtual assistant capabilities, as creation of this
data requires highly specialized NLP expertise.
In this work we propose OpenFSP, a frame-
work that allows for easy creation of new do-
mains from a handful of simple labels that can
be generated without specific NLP knowledge.
Our approach relies on creating a small, but
expressive, set of domain agnostic slot types
that enables easy annotation of new domains.
Given such annotation, a matching algorithm
relying on sentence encoders predicts the in-
tent and slots for domains defined by end-users.
Experiments on the TopV2 dataset shows that
our model trained on these simple labels have
strong performance against supervised base-
lines.

1 Introduction

Frame semantic parsing is an important sub-
problem with many applications, and in particu-
lar is critical for task-oriented dialogue assistants
to identify the desired action (intent) and specific
details (slots) (Coucke et al., 2018; Gupta et al.,
2019). This is typically modeled as a semantic
parsing problem (usually solved via a combination
of ML and rules) with custom ontology that re-
flects capabilities of the system. Creation of this
custom ontology, and annotation of consistent data
is highly non-trivial, and typically requires special-
ized skills (Ahmad et al., 2021). This limits exten-
sion of the ontology and generation of parsing data
to a small group of experts.

On the other hand, intent-slot concepts map
well to functions and arguments of an API call,

∗These authors contributed equally.

def read_message(sender: Contact):

Domain 
Agnostic
Ontology 
(Intents 
+ Slots)

Class: Message
DA SLOT:[SL:OTHER_OPEN_TEXT]

LABELS: "Bye", "OK?", "Love you!"

CLASS: Contact 
DA SLOT:[SL:PROPER_NAME]

LABELS: "Adrian", "Mark", "Susan"

Step #1: define class types with slots + simple labels

def send_massage(receiver: Contact, message: Message):

Step #2: declare functions + args

Figure 1: Illustration of proposed OpenFSP framework
with a domain agnostic ontology and simple labels pro-
vided by the software developer (natural language tex-
tual examples). OpenFSP can facilitate the development
of new domains and automatic construction of new on-
tologies by decoding functions or API specifications.

a paradigm well understood by software develop-
ers. Therefore, making extension to the parser is
the primary blocker to enabling support for new
capabilities (domains) within a task-oriented assis-
tant system. As shown in Figure 1, our goal is to
enable non-NLP experts to define allowed intent-
slot combinations, and provide a small amount of
non-NLP specialized labels, which we call simple
labels. These data enable the creation of a parser
for those intent-slot combinations. This new prob-
lem definition lies somewhere between zero-shot
and few-shot learning. It requires zero fully an-
notated semantic parse examples, but does require
some human produced labels.

To this end, we develop a framework called
Open Frame Semantic Parser (OpenFSP). Open-
FSP takes as input the developer’s defined func-
tions and their annotations to augment an existing
assistant system for new tasks. Underlying Open-
FSP is a two module model consisting of a general
semantic parser and a matching module. The gen-
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eral semantic parser can identify the intent and
slots according to the pre-defined domain agnos-
tic ontology, while the matching module will take
this intermediate representation and match them to
the specific function and arguments defined in the
domain specific ontology.

In summary, our contributions are: (1) we for-
malize a new framework, namely OpenFSP, that
allows for easy development of new domains with-
out much expertise knowledge from software de-
velopers (2) we define a general-purpose domain
agnostic ontology by analysing the semantic sim-
ilarity of slots from TopV2 (Chen et al., 2020b),
a well established task-oriented semantic parsing
dataset (3) we propose an approach consisting of a
parser and a matching module that can outperform
strong baselines in the simple labels setting.

2 Related Work

Data-Efficient Semantic Parsing In one of the
first attempts to use data-efficient methods to per-
form frame semantic parsing, (Bapna et al., 2017)
applied recurrent neural networks to perform semi-
supervised intent classification and slot filling
(IC/SF) while leveraging natural language descrip-
tions of slot labels. The work of Krone et al.
(2020) more clearly formalized few-shot learning
for IC/SF, while providing a few-shot split of three
public datasets. Wilson et al. (2019) implemented
and deployed a kiosk virtual assistant, which could
handle multiple modalities by learning from a few
examples using analogical learning.

Multiple low resource IC/SF approaches were
proposed (Chen et al., 2020b; Desai et al., 2021;
Yin et al., 2022; Basu et al., 2022). All of these ap-
proaches either rely on a non-trivial amount of train-
ing data (hundreds to thousands of examples), or
use a fixed set of intents and slots, making it harder
to adapt to new domains. Our matching module
shares some similarities with retrieval based sys-
tems (Yu et al., 2021; Shrivastava et al., 2022),
however these methods learn from standard utter-
ance and semantic frames, instead of simple textual
labels for each slot and intent. This is an impor-
tant differentiator, as the annotation of even a small
number of semantic frames requires overcoming a
significant knowledge barrier.

Sentence Encoders for Language Understand-
ing One key aspect of our matching module is to
encode the textual spans using sentence encoders.
These models have the advantage of working well

in low resource settings, and have been used in
many applications including natural language in-
ference (Conneau et al., 2017), semantic textual
similarity (Reimers and Gurevych, 2019), dense
passage retrieval (Karpukhin et al., 2020; Izacard
and Grave, 2021), natural language explanations
(Neves Ribeiro et al., 2022), and many others. The
idea of using sentence embeddings for text classifi-
cation has been previously explored (Perone et al.,
2018; Piao, 2021). Most notably, the work of Tun-
stall et al. (2022) proposed SETFIT, a prompt-free
model that can learn text classification tasks from
a handful of examples. However, none of these
works directly applied to semantic parsing which
require multiple consistent predictions from the
input utterance.

Task-Oriented Ontologies Task-oriented dia-
logue systems are natural language interfaces for a
system that parses user utterances. A common
approach in these systems is the use of ontolo-
gies to represent domain information (Wessel et al.,
2019). In general, such ontologies can be created
manually using rule-based techniques, which is
a highly accurate but time consuming and expen-
sive approach that usually requires domain experts
(Meditskos et al., 2020), or via ontology induc-
tion approaches using machine learning (Poon and
Domingos, 2010). While these approaches both
involve trade-offs, curated ontologies can also be
created via simplification of an existing ontology
based on custom needs (Kutiyanawala et al., 2018;
Laadidi and Bahaj, 2018). On the other hand, our
work simplifies the ontological creation by abstract-
ing the existing functions and arguments defined
by the application itself.

3 Problem Definition

The standard frame semantic parsing has two main
tasks which maps the input utterance x with tokens
x1, . . . , xn to some structured output frame y. For
the slot-filling task, the output frame F consists
of a set of m non-overlapping spans and their re-
spective labels F = {(si, ei, li)}mi=1 indicating that
subsequence x[si:ei] has label li ∈ L, where L is
the set of possible labels (e.g., the text span “noon
tomorrow” has the label SL:DATE_TIME). The
intent classification assigns a label to the whole
utterance. For simplicity, we assume that the intent
can be thought of as another slot filling with si = 0
and ei = n, with li as the intent type.

To simplify annotation efforts, we define an on-
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DA Parse 
Training Data

New Domain
Simple Labels + 
Target Frames

DA 
Ontology 

Utterance
input x
(string)

DS Frame
output y

(intent + slots)

DA Frame
intermediate y'
(intent + slots)

DAP
(parser)

DSM
(matching)

[IN:FRAME [SL:SCOPE_TEMPORAL tonight ] 
[SL:SCOPE_LOC San Francisco ] ]

"what's happening in San 
Francisco tonight?"

[IN:GET_EVENT [SL:DATE_TIME tonight ] 
[SL:LOCATION San Francisco ] ]

Figure 2: System overview with two components, namely the domain agnostic parser (DAP) and the domain
specific matching (DSM).

tology with a set of domain-agnostic labels LA,
where |LA| << |L|. These domain-agnostic labels
can be interpreted as generic “label types”, with
an existing many-to-one mapping ψ : L → LA

between the two sets. This mapping is further de-
scribed in Appendix A.1. In our proposed simple
label setting, training data for new domains will
not include x, but only a subsequence of the tokens
defined by the frame spans. The number of exam-
ples for each slot will be relatively small, with 5
to 50 examples per slot type. The set of all possi-
ble domain specific target frames F ∗ (i.e., defined
functions and their arguments) is assumed to be
known a priory.

4 Approach

Our model is comprised of two main components,
the domain agnostic parser (DAP) and the domain
specific matching (DSM). The system overview is
shown in Figure 2. The DAP is trained to take
the input utterance x and output a domain agnostic
frame FA, where span labels belong to LA. Af-
terwards the DSM module will score the potential
domain specific frames from F ∗ according to their
similarity to the domain agnostic frame FA.

The DAP module can be any frame seman-
tic parser. Ours is built on a span-pointer net-
work (Shrivastava et al., 2021), which is a non-
autoregressive parser that replaces the decoding
from text generation with span predictions. It is
trained on domain agnostic data obtained from ex-
isting domain specific data using the slot label func-
tion ψ.

The DSM module has to learn a similarity func-
tion between a text span and its slot label (same
applies to intents). Since the slot label scoring
function has to be done in a few-shot setting, the

DSM module uses a sentence encoder ϕ (Reimers
and Gurevych, 2019) with a classification head on
top. The module modifies a pre-trained transformer
language model fine tuned to output semantically
meaningful sentence embeddings.

The sentence encoder ϕ is tailored to work on
generic text, minimizing the distance between se-
mantically similar sentences while maximizing the
distance of dissimilar sentences. We use a classi-
fication head H over the produced sentence em-
bedding of a given text span x. Therefore, the
probability score of a label li can be computed as
follows:

P (li|x) =
exp(H(ϕ(x))i)∑|L|
j=1 exp(H(ϕ(x))j)

(1)

Note that the input training data does not con-
tain fully annotated domain specific frames (only
text and their intent-slot labels). For this reason,
the DSM module has to aggregate these individ-
ual intent and slot probability scores to predict the
full frame scores. The similarity score for a tar-
get domain specific frame F = {(si, ei, li)}|F |

i=1

given a query domain agnostic parse FA =

{(sAi , eAi , lAi )}
|FA|
i=1 is given by:

sim(F, FA) = max
F ′∈S(F )

1

|F ′|

|F ′|∑

i=1

P (li|x[sAi :eAi ])

(2)
Where S(F ) is the set of all slot permutations of

F . To make the final prediction, we also check that
the typing between domain agnostic and domain
specific types match. Therefore DSM selects the
best frame F ∈ F ∗ using the formula:
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argmax
F∈F ∗

{
0 if ∃i : ψ(li) ̸= lAi
sim(F, FA) otherwise

(3)

Note that for each new domain, only a very small
set of parameters are trained (namely, the classifi-
cation head H), which makes this approach com-
putationally efficient.

4.1 Data

We conduct experiments using the TopV2 (Chen
et al., 2020b), a multi-domain dataset contain-
ing intent and slot annotations for task-oriented
dialogue systems. We select a subset of the
data points, ignoring the ones containing more
than one intent (even though our method would
also work for nested frames) or utterances with
IN:UNSUPPORTED intent label. The final
dataset contains a total of eight different do-
mains (namely: alarm, event, messaging,
music, navigation, reminder, timer, and
weather). The dataset is then split into train
(104278), evaluation (14509) and test (32654) sets.

5 Experiments

5.1 Evaluation Setup

We conduct experiments to evaluate how well a
model can adapt to a new unseen domain by lever-
aging the “simple labels” for this new domain. To
simulate this adaptation process we perform mul-
tiple test rounds, where each of the eight TopV2
domains are treated as unseen domains. We use
frame accuracy as a metric, which refers to the
ratio of examples where the system correctly pre-
dicts all the frame’s spans and labels. The results
for each left-out domain are averaged to obtain the
final metrics. Each label li ∈ L of the unseen do-
main will be assigned a few textual examples that
will be used for training. In our experiments we
use 5, 10 and 50 examples per unseen domain’s
label.

5.2 Baselines

The first two methods are used as baselines and can
be seen as soft upper bounds. They do not follow
the “simple labels” settings, and use the full train-
ing data for the new domains instead. Other two
methods are used to further evaluate the different
implementation choices of the model, as ablation
studies.
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Figure 3: Main experiment results with different number
of examples per label.

Majority Vote This simple method always se-
lects the most commonly occurring intent and slots
for a given domain. It uses the DAP module to gen-
erate FA, and assigns the domain specific labels
according to the number of occurrences of F ∈ F ∗

(such that |F | = |FA|) in the training data.

Fully Supervised Uses the same architecture as
the DAP (semantic parser) module, but it is trained
using the full training data. Despite not being at all
a fair comparison with the simple label settings, we
include these baseline results as a way to visualize
the best-case scenario.

W.O. Head This method does not use a classifi-
cation head H , instead, it predicts the class label by
selecting the example with highest semantic simi-
larity with the input text using the cosine similarity
score.

W.O. Head + Type This method not only uses
the classification head, but also disregards the type
constraint in Equation 3 such that the best frame is
always argmaxF∈F ∗ (sim(F, FA)).

5.3 Implementation Details

The span-pointer architecture used by the DAP
module is a encoder-decoder model based on
RoBERTa (Liu et al., 2019), with the encoder con-
taining 12 layers and the decoder containing 1 layer.
We train the model for 85 epochs using a learning
rate of 1.67 · 10−5. The sentence encoder used
in the DSM module is built on top of a 36 layer
XLM-R model (Conneau et al., 2019) fine-tuned
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Eval. Setting messa. alarm music event navig. remind. timer weath. avg.

Standard 86.7 67.6 55.5 73.9 60.6 58.5 72.7 79.6 69.4
+ Golden Parse 93.9 50.1 60.7 88.7 60.7 78.7 78.7 89.1 75.1
+ Recall@3 92.9 78.8 65.0 82.2 75.0 68.9 78.9 90.2 79.0
+ Intent Acc. 96.9 82.3 76.6 97.9 78.6 61.5 80.4 85.7 82.5

Table 1: Break down of results by domain for different evaluation settings. The results shown correspond to a single
run of our proposed model with 50 labels per example.

to capture general sentence similarity. When fine-
tuning the models we used a machine containing
two NVIDIA Tesla P100 graphics processing units.
Note that the underlying models used are relatively
small when compared to current large language
models (Sanh et al., 2019) and would be suitable
for “on-the-edge” device computation.

5.4 Results

We perform three test runs with different random
seeds for each evaluation setting, which influences
both the model initialization and the set of training
examples per label. The main results are shown
in Figure 3. The baselines using the full training
data (i.e., Fully Supervised and Majority Vote) are
shown as dashed lines, and their results do not
change according to the x-axis. The remaining
results show the mean (and standard deviation as
the shaded region) among the three test runs.

The results show that our proposed model outper-
forms most of the baselines, with numbers compa-
rable to the fully supervised baseline (77.9% of its
frame accuracy with 50 examples per label), even
though it relies on a much smaller and simplified
version of the training data.

There are a few other takeaways. First, we no-
tice that increasing the number of “simple label”
training examples significantly improves the frame
accuracy. However, only five training examples is
enough to produce decent results. More examples
also seem to increases the variance of the models
without a classification head. Second, the type fil-
tering from Equation 3 is one key aspect of why
the system can perform so well with so few ex-
ample. Because of the generic nature of the do-
main agnostic ontology, filtering out invalid frames
greatly reduces the size of the target space F ∗, with
a size reduction of 96% for certain domains such
as messaging.

5.4.1 Results Break Down
To obtain further insights on the model, we show
the results broken down by domain in Table 1.
We used our proposed model trained on 50 ex-
amples per label, and different evaluation settings
described as follows. The Standard settings are the
same as the ones displayed in Figure 3. The Golden
Parse assumes that the DAP module outputs only
correct domain agnostic parses (i.e., the best-case
scenario for the parser). The Recall@3 results uses
the same model as the Standard setting, but checks
if the correct answer is in the top-3 scored matches
(instead of top-1) from DSM. Finally, the Intent
Acc. setting evaluates if the model correctly pre-
dicts the intent of the given input utterance. These
results help us answer the following questions:

How much error from the parser gets propa-
gated? We can notice from the Golden Parse re-
sults that there is a reasonable improvement (8.2%
increase) in accuracy when using the gold test
frames. This means that incorrect parses from the
DAP module certainly propagates forward and im-
proving the DAP module could certainly benefit
the system as a whole.

Is the matching module nearly missing the right
answer? When looking Recall@3 results, we no-
tice a significantly larger improvement in results
(13.8% increase). With an average mean reciprocal
ranking among all domains of 74.9. Having a high
frame score values in the top-3 is significant con-
sidering that on average the size among all domains
for the target space F ∗ is around 279.8 frames.

5.5 Error Analysis and Future Work

To understand the mistakes made by the OpenFSP
system we perform some error analysis and sug-
gest some possible improvement avenues for future
work. For this analysis we use the development set
and randomly sampled 100 output frames from dif-
ferent domains. We manually categorize the errors
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as follows.

Parsing Errors We notice that 45% of the errors
are due to parsing errors. This includes cases when
the DAP module predicts an incorrect number of
slots (∼93% among parsing errors) or when the
number of slots are correct, but some of the slots
have the incorrect labels (∼7% among parsing er-
rors). A future direction could be to use the DAP
and DSM modules to over-generate valid frames
and rank (Varges, 2006; Zhang and Wan, 2022),
which could circumvent parsing errors.

Intent Classification Error Another common
error was the mislabeling of the utterance’s in-
tent, corresponding to 32% of the manually cat-
egorized examples. This kind of error would
often happen between semantically similar in-
tents (e.g., IN:PREVIOUS_TRACK_MUSIC and
IN:REPLAY_MUSIC in the music domain) and
with examples from TopV2 that were labeled as un-
supported (e.g., IN:UNSUPPORTED_WEATHER
and IN:UNSUPPORTED_MUSIC) that often have
out of scope questions that are harder to classify
(e.g., “What is the hottest temperature this month”).
One possible future direction would be to use Con-
trastive Learning (Chen et al., 2020a; Basu et al.,
2022) that could improve the classification bound-
ary of similar examples.

Slot Classification Error The last 23% of the
errors were due to slot type misclassification.
Again, semantically similar slot types are more
challenging to classify. For instance, in the
alarm domain SL:DATE_TIME_RECURRING,
SL:DATE_TIME, SL:PERIOD and
SL:DURATION were particularly hard to
classify since they were all part of the same
domain agnostic type SL:SCOPE_TEMPORAL.
Another common issue was identifying proper
names (∼21% of the slot classification errors),
including artist, event, album, and playlist names.
A future direction would be to integrate a named
entity recognition module to help classify slots
involving proper names.

6 Conclusion

In this work we propose OpenFSP, a framework
designed to simplify the process of adapting an
existing task-oriented dialogue system to new do-
mains. This framework enables non-experts to au-
tomatically build new domain ontologies from well

defined software engineering concepts such as func-
tions and arguments. We define a general-purpose
domain agnostic ontology, that when combined
with textual examples of new slots and intents
(which we call simple labels), provides sufficient
data to adapt the system to a new domain.

Finally, we propose a two-module system that
can use these simple labels to reasonably parse in-
put utterances into the domain specific frames. Our
experiments show that the proposed model outper-
forms strong baselines and is able to obtain results
comparable with a fully supervised model (achiev-
ing 77.9% of its semantic frame accuracy). We
hope that our work will facilitate the development
of new assistant capabilities, allowing end-users to
interact with more software applications through
natural language.

Limitations

Domain-agnostic (DA) slots represent the overal
semantic space covered by underlying TopV2 slots.
Given their coarse-grain nature, DA slots are likely
to be distributed more or less evenly across all do-
mains. This assumption is key when training the
parser on data that does not contain a particular tar-
get domain. In addition, we find that our approach
is also sensitive to the types of linguistic structures
accounted for by each DA slot and works best when
these structures are consistent across domains.

More specifically, we conducted a series of
leave-one-out (LOO) experiments where a separate
parser was learned for each domain using train-
ing data from all other domains and then tested
on test data from the domain in question exclu-
sively. Error analysis of 100 randomly selected
predictions in our LOO model for the “alarm” do-
main revealed that 32% of the errors were utter-
ances such as “I want alarms set for next Mon-
day at 6.00am and 7.00am” where the model pre-
dicted [SL:SCOPE_TEMPORAL for next monday
at 6.00am ] and [SL:SCOPE_TEMPORAL 7.00am
] ] whereas a compound [SL:SCOPE_TEMPORAL
for next monday at 6.00am and 7.00am ] ] slot
was expected. Upon closer inspection, we ob-
served that these [SL:SCOPE_TEMPORAL X and
Y] compound nominal constructions appear pre-
dominantly (83.3%) in the alarm domain, hence
causing inaccurate predictions in a LOO model for
this domain.

For these types of errors to be mitigated in
our approach, [SL:SCOPE_TEMPORAL X and
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Y] constructions would need to either be more
evenly distributed across all domains, or re-
annotated as [ [SL:SCOPE_TEMPORAL X] and
[SL:SCOPE_TEMPORAL Y] ] in the alarm do-
main to improve homogeneity in the data.

Ethics Statement

No private data or non-public information was used
in this work.
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A Appendix

A.1 Domain Agnostic Ontology
To create our domain-agnostic ontology, we man-
ually reviewed all existing slots in the TopV2
ontology and categorized the semantic nature of
each slot. We then conflated semantically-similar
TopV2 slots under overarching, domain-agnostic
terms that cover the overall semantic space of
the underlying TopV2 slots. For instance, we
categorize slots that indicate the user is request-
ing a "to-do item", "reminder," and "alarm" as
roughly the overall "deliverable" item that is
being requested, hence conflating the domain-
specific slots SL:TODO, SL:METHOD_TIMER,
and SL:ALARM_NAME under the domain-agnostic
slot SL:DELIVERABLE. Table 2 contains the
mapping between the TopV2 ontology and the do-
main agnostic ontology used in this work.
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Domain-agnostic (DA) slots Domain-specific (DS) slots
SL:DELIVERABLE SL:TYPE_REACTION, SL:TODO, SL:TODO_NEW

SL:METHOD_TIMER, SL:TIMER_NAME, SL:ALARM_NAME

SL:RECIPIENT SL:RECIPIENT, SL:PERSON_REMINDED_ADDED,

SL:PERSON_REMINDED_REMOVED, SL:PERSON_REMINDED,

SL:ATTENDEE_REMOVED, SL:ATTENDEE_ADDED

SL:SCOPE_TEMPORAL SL:DATE_TIME, SL:DATE_TIME_RECURRING,

SL:DURATION, SL:PERIOD,

SL:RECURRING_DATE_TIME, SL:TIME_ZONE,

SL:DATE_TIME_DEPARTURE, SL:DATE_TIME_ARRIVAL,

SL:FREQUENCY, SL:RECURRING_DATE_TIME_NEW,

SL:DATE_TIME_NEW, SL:SCOPE_TEMPORAL_RECURRING

SL:SCOPE_LOC SL:LOCATION, SL:POINT_ON_MAP,

SL:LOCATION_HOME, SL:LOCATION_USER,

SL:LOCATION_MODIFIER, SL:WAYPOINT_ADDED,

SL:LOCATION_WORK

SL:SCOPE_DISAM SL:ORDINAL, SL:TYPE_CONTENT, SL:GROUP,

SL:RESOURCE, SL:CONTENT_EMOJI,

SL:TYPE_CONTACT, SL:MUTUAL_EMPLOYER,

SL:MUTUAL_SCHOOL, SL:TYPE_INFO,

SL:MUTUAL_LOCATION, SL:CONTACT_RELATED,

SL:MUSIC_GENRE, SL:UNIT_DISTANCE,

SL:WEATHER_TEMPERATURE_UNIT, SL:MEASUREMENT_UNIT,

SL:METHOD_RETRIEVAL_REMINDER

SL:OTHER_OPEN_TEXT SL:CATEGORY_EVENT,

SL:SEARCH_RADIUS, SL:ATTRIBUTE_EVENT,

SL:CATEGORY_LOCATION, SL:NAME_EVENT,

SL:ATTENDEE, SL:ATTENDEE_EVENT,

SL:TYPE_RELATION, SL:ORGANIZER_EVENT,

SL:TAG_MESSAGE, SL:CONTENT_EXACT,

SL:MUSIC_TYPE, SL:MUSIC_TRACK_TITLE,

SL:MUSIC_ALBUM_TITLE, SL:MUSIC_PLAYLIST_TITLE,

SL:MUSIC_RADIO_ID, SL:METHOD_TRAVEL,

SL:JOB, SL:WEATHER_ATTRIBUTE,

SL:OBSTRUCTION_AVOID, SL:ROAD_CONDITION_AVOID,

SL:ROAD_CONDITION

SL:NUMS SL:AMOUNT, SL:AGE

SL:PROPER_NAME SL:NAME_EVENT, SL:CONTACT,

SL:ORGANIZER_EVENT, SL:SENDER,

SL:MUSIC_TRACK_TITLE, SL:MUSIC_PROVIDER_NAME,

SL:MUSIC_ALBUM_TITLE, SL:MUSIC_ARTIST_NAME,

SL:SOURCE, SL:DESTINATION, SL:PATH, SL:PATH_AVOID,

SL:WAYPOINT_AVOID, SL:LOCATION_CURRENT,

SL:PATH_AVOID, SL:WAYPOINT_AVOID,

SL:LOCATION_CURRENT, SL:WAYPOINT,

SL:ATTENDEE, SL:NAME_APP

Table 2: Mapping between TopV2 ontology and our proposed domain agnostic ontology.
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Abstract

Natural language programming automatically
generates code based on a user’s text query. Re-
cent solutions are either data-driven or natural
language understanding (NLU)-driven. How-
ever, the data-driven synthesizer requires a
large number of query-code pairs for training,
which hinders its application to low-resource
programming languages with growing domains
whose functionality and grammar can be ac-
tively updated. NLU-driven synthesizers solve
this problem, but their code generation is slow
and their performance rapidly saturates in the
presence of ever-increasing data. In this pa-
per, we propose a circular training framework,
Colead, which co-evolves both the data-driven
synthesizer and the NLU-driven synthesizer
to achieve high-quality code generation in the
presence of data scarcity and domain growth.
The NLU-driven synthesizer generates query-
code pairs to update the data-driven synthesizer,
which shares a part of its updated model to im-
prove the NLU-driven synthesizers, enabling
the co-evolution of both. Experiments show
that Colead gives better results than the base-
lines in the presence of domain growth and data
scarcity, and Colead consistently improves
the performance of both data-driven and NLU-
driven synthesizers over the co-evolvement.

1 Introduction

Natural language (NL) programming aims to auto-
matically generate programming code based on a
user’s text query (Xu et al., 2022b). It has gained
increasing research interest in recent years and has
a wide range of applications, not only providing an
intuitive programming interface that democratizes
artificial intelligence to common users (Chen et al.,
2021) but also reducing the time and labor cost
of turning ideas into code implementations (Yagh-
mazadeh et al., 2017; Desai et al., 2016).

Typical NL programming approaches can be
categorized as rule-driven or data-driven. A rule-
driven synthesizer generates code through prede-

Query in TextEditing domain:
Eliminate the line which does not contain colon in any word of the sentence

API Update:
Before: Remove(selectString, condition)
After: Remove(selectString, condition, iter_scope)

Expected DSL code after API update:
REMOVE(SelectString(LINETOKEN(),

BConditionOccurrence(NOT(CONTAINS(STRING(colon))), ALL())),
IterationScope(LINESCOPE(), BConditionOccurrence(ALWAYS(), ALL())))

Output of Untuned CodeT5 after API update:
REMOVE(SelectString(LINETOKEN(),

BConditionOccurrence(NOT(CONTAINS(STRING(colon))),ALL())))

New argument

Figure 1: An example of a data-driven model generating
code after one API updates in TextEditing (Desai et al.,
2016) domain. The API REMOVE has a new argument.
Without re-training, CodeT5 fails to accommodate this
update (shown in blue) and will still generate code for
the outdated API (shown in green boxes).

fined domain-specific rules, which requires expert
knowledge. It made progress in early NL pro-
gramming research (Le et al., 2013) but gradu-
ally lost its appeal due to technical difficulties in
adapting to different programming languages. In
parallel, data-driven synthesizers based on deep
learning techniques have dominated recent stud-
ies (Bavishi et al., 2019; Gu et al., 2016; Li et al.,
2022). They generate code through a neural net-
work model. Training of the models requires large
amounts of parallel data (Polosukhin and Skidanov,
2018), where each text prompt is paired with a
corresponding piece of code. Data-driven synthe-
sizers tend to outperform rule-driven synthesizers
in many general-purpose languages (GPLs), like
Python, C++, etc., which have massive parallel data
available.

However, there are plenty of domain-specific lan-
guages (DSLs) that are low-resource. Some DSLs
are dedicated to a specific application domain and
has few usages and scarce parallel data. The prob-
lem of data scarcity hinders the application of data-
driven synthesizers. Another challenging problem
is the domain growth of programming languages,
which are constantly updated in terms of grammar
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and functionality. Figure 1 shows an example of a
data-driven model (CodeT5) that cannot generate
correct code after an API update. To adapt to these
updates, data-driven synthesizers require frequent
re-training, and it would be labor-intensive and
time-consuming to collect new data for the update.

Natural language understanding (NLU)-driven
synthesizers have recently been proposed as a com-
promise between rule-driven and data-driven syn-
thesizers (Nan et al., 2020, 2021; Young et al.,
2022; Nan et al., 2022). It circumvents the huge
need for parallel data in training by utilizing input
user queries and API documentation. Whenever
the language is updated with a new API and pro-
gramming grammar, only the API documentation
needs to be modified accordingly to generate the
new functional code. However, NLU-driven syn-
thesizers have some limitations. To generate code,
grammar and dependency graphs need to be built
and traversed, which can be time-consuming and a
bottleneck to the speed of code generation. As the
training data increases, NLU-driven synthesizers
quickly reach performance saturation and become
inferior to data-driven synthesizers.

In this paper, we propose a co-evolving frame-
work, Colead (for “Co-learning Rule and Data
from Documention") that combines NLU-driven
and data-driven synthesizers to exploit their com-
plementary strengths and enable code generation
in the presence of data scarcity and domain growth
(Blum and Mitchell, 1998). Colead consists of
three key components: a retriever, an NLU-driven
synthesizer, and a data-driven synthesizer. The
retriever fetches information most relevant to the
user’s text query from the API documentation.
Given the information, the NLU-driven synthe-
sizer constructs a grammar graph and a dependency
graph to generate code. The generated code is
paired with the user query to train the data-driven
synthesizer, which in turn shares its updated en-
coder with the NLU-driven synthesizer, leading to
the co-evolvement of both. We summarize contri-
butions as follows:

• We propose a co-evolving framework,
Colead, that combines data-driven and
NLU-driven synthesizers to achieve their
complementary strengths and enable code
generation in the presence of data scarcity
and domain growth.

• Experimental results on two datasets from dis-
tinct domains, Text Editing, and ATIS, demon-

strate the effectiveness of Colead and show
that it can work efficiently in domain growth.

• Our study shows that using both synthesiz-
ers together can lead to better performance in
solving problems than using only one synthe-
sizer. We show that the NLU-driven synthe-
sizer proves effective in addressing the chal-
lenge of limited data availability, while the
data-driven synthesizer capitalizes on parallel
computing for efficient inference. They com-
plement each other, compensating for their
respective drawbacks.

2 Related Work

Large language models pre-trained on vast amounts
of code have achieved significant progress in recent
years (Li et al., 2022; Chen et al., 2021). These
models can be classified as encoder-only, decoder-
only, or encoder-decoder. An encoder-only model
predicts masked code fragments based on their sur-
roundings. It converts code into effective vector
representations and facilitates a myriad of down-
stream tasks, such as code summarization (Ah-
mad et al., 2020), code classification (Gilda, 2017),
and code clone detection (Ain et al., 2019; Fang
et al., 2020). The representative models include
CuBERT (Kanade et al., 2020), CodeBERT (Feng
et al., 2020), and GraphCodeBERT (Guo et al.,
2021). By contrast, a decoder-only model, such as
CodeGPT (Lu et al., 2021), CODEGEN (Nijkamp
et al., 2022), CERT (Zan et al., 2022), and Codex
(Chen et al., 2021), predicts the next token given
the previous tokens in an auto-regressive manner.
However, these models are not a perfect fit for nat-
ural language programming tasks.

An encoder-decoder model first uses an encoder
to encode the input sequence and then decodes
it with a decoder into an output sequence condi-
tioned on the input sequence. CodeT5 (Wang et al.,
2021; Le et al., 2022), PLBART (Ahmad et al.,
2021), PolyCoder (Xu et al., 2022a), and Alpha-
Code (Li et al., 2022) are examples of such models
in code. Encoder-decoder models perform well on
conditional code generation, such as code anno-
tation, natural language programming, etc. Note
that both decoder-only and encoder-decoder mod-
els can be employed directly for code generation.
These models all share the drawback of requiring
an abundance of data.

On the contrary, natural language understanding-
driven approaches (Nan et al., 2020, 2021; Young
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Figure 2: The overview of Colead. The main components are the retriever, the NLU-driven synthesizer, and the
data-driven synthesizer. Retriever creates a circle by connecting NLU-driven and data-driven components, which
serves as a basis for co-evolvement. This circle evolves iteratively to enhance each other’s performance.

et al., 2022; Nan et al., 2022) require no training
examples. They apply NLP techniques to both natu-
ral language (NL) queries and API documentations,
extract the key components inside the NL queries
and compose the mapped APIs into code expres-
sions following the domain grammar. However,
NLU-driven methods are not as powerful as data-
driven models when there is a lot of data available
for training.

3 Methodology

The major challenge of this work is how to ef-
ficiently connect the NLU-driven and data-driven
synthesizers so that the joined framework possesses
the ability to alleviate data scarcity and domain
growth problems while ensuring performance lim-
its and inference speed. The Colead framework
is proposed to address this challenge, as shown in
Fig 2. It has three key components: a retriever, an
NLU-driven synthesizer, and a data-driven synthe-
sizer.

3.1 Cycle of Co-evolvement

pThe cycle of co-evolvement is the core of our ap-
proach. It starts with the retriever fetching the rel-
evant API documentation based on the user’s text
query. With the retrieved API documentation and
the input query, the NLU-driven synthesizer gen-
erates the corresponding code without query-code
pairs. Then, the generated code is paired with the
query to train the data-driven synthesizer, which in
turn shares its well-trained encoder to update the re-
triever. The updated retriever has a better matching
ability and improves the data-driven synthesizer. In
this way, the whole process forms a positive circle
and co-evolution can be achieved.

The NLU-driven synthesizer, as the teacher of
the data-driven synthesizer, reduces the huge de-

mand on human labor to collect query-code pairs,
which mitigates the data scarcity issue of DSLs. In
addition, the introduced retriever can handle code
generation for DSL in domain growth, where the
DSL is under active development with frequent
updates of new API functions. When new APIs
are developed, they only need to be registered in
the documentation. New queries from users along
with the information retrieved from the updated
documentation can be fed into the NLU-driven syn-
thesizer to generate new functional code, which
enables the supervised training of the data-driven
synthesizer.

3.2 Retriever

The retriever is a shared front end of both the NLU-
driven and the data-driven synthesizers. It maps
a user’s natural language query to the related API
description in the documentation.

Specifically, both the natural language query and
the API documentation are tokenized by Stanford-
CoreNLP (Manning et al., 2014). Initially, exact
match is performed based on the description to
get the API associated with the query. In other
words, the keyword of the query must be present
in the API description. Such strict match condi-
tion is hard to satisfy, making the retriever fail to
retrieve relevant keywords for many queries. To
relax the condition and make fuzzy match possible,
after the first round of co-evolution, the encoder of
the data-driven synthesizer is leveraged to generate
dense vector representations of tokens. Two to-
kens are considered to be matched when the cosine
similarity of their vector representations exceeds a
pre-defined threshold, which is tuned to have the
best result based on experiments.

To realize fuzzy match, the encoder of CodeT5
and SimCSE (Gao et al., 2021) are explored in our
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Figure 3: General structure diagram of NLU-driven
code generator. It has three main components: a domain
knowledge constructor, an NLP engine, and a grammar-
graph–based translation module. The grammar graph
enables the generated code to follow DSL grammar
explicitly. The dependency graph guides the generation
of code to follow the logic of the query.

experiment. SimCSE is a simple contrastive learn-
ing method that learns embeddings from unlabeled
or labeled data. In our experiments, SimCSE is
trained only on the queries and API documentation
and employed for extracting token embedding.

3.3 NLU-driven Synthesizer

With the retrieved API and user queries, the NLU-
driven synthesizer generates the corresponding
code by following DSL grammar rules without
learning from any specific parallel data.

A typical NLU-driven synthesizer has three com-
ponents as shown in Fig 3 3: a domain knowledge
constructor that processes the domain knowledge
to aid code synthesis; an NLP engine that converts
an NL-based query to a dependency graph and a
grammar-graph–based translation module that gen-
erates code based on the dependency graph. The
domain knowledge constructor takes two files as in-
put: a document containing all the input and output
parameters of the API and their descriptions, and a
grammar file containing the context-free grammar
written in Backus-Naur form (BNF) (Wikipedia
contributors, 2022). The constructor parses the
input file and generates two outputs: an API knowl-
edge base for semantic mapping between NL-based
queries and APIs, and a grammar graph that defines
the search space for code generation. The NLP
engine accepts NL-based queries and produces a
dependency graph using various NLP techniques,
including POS tagging, Lemmatization, NER, and
dependency analysis. This dependency graph is

Figure 4: General architecture diagram of a data-driven
synthesizer. A data-driven synthesizer can accept nat-
ural language queries directly and generate code after
training on parallel data. As the training data and model
size grow, the performance of the data-driven synthe-
sizer will also progress.

sent to the grammar-graph–based translation mod-
ule for code generation.

As a "white box" approach, NLU-driven synthe-
sizers are easy to interpret. Synthesis errors can
be diagnosed and corrected by humans. However,
designing such a synthesizer requires rich expert
knowledge. The grammar rules require extensive
modifications when adopted to a new program lan-
guage.

3.4 Data-driven Synthesizer

NLU-driven synthesizers follow grammar rules de-
signed by humans, which cannot cover all situa-
tions. The data-driven synthesizer can bridge this
gap. It is based on neural networks and outputs the
code directly given an input query as Fig 4. The
large neural networks have demonstrated impres-
sive success in many NLP tasks, including code
generation. We experiment with two pre-trained
language models, namely PyCodeGPT (Zan et al.,
2022) and CodeT5 (Wang et al., 2021). Our pre-
liminary results show that PyCodeGPT does not
perform as well as CodeT5. A possible explanation
is that the CodeT5 is an encoder-decoder model,
which is more suitable for NL-based code gener-
ation. Therefore, we choose CodeT5 as the data-
driven synthesizer in our experiments. We also
explore CodeT5 in small, base, and large sizes and
find that CodeT5-small performed the best. This
may be due to the fact that our dataset is small and
large models are prone to overfitting.

4 Experiments

Experiments are conducted to answer the following
research questions:

• RQ1: Can the data-driven synthesizer benefit
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DSL Query Code

Text Editing Insert ":" after 1st word.

INSERT(STRING(:),
Position(AFTER(WORDTOKEN()),
IntegerSet(INTEGER(1))),
IterationScope(LINESCOPE(),
BConditionOccurrence(ALWAYS(), ALL())))

ATIS
I would like to find the cheapest flight
from Baltimore to Atlanta

EXTRACT_ROW_MIN_F(COL_FARE()),
AtomicRowPredSet(
AtomicRowPred(EQ_DEPARTS(CITY(baltimore),
ANY(), ANY(), ANY(), ANY()),
EQ_ARRIVES(CITY(atlanta),
ANY(), ANY(), ANY(), ANY())))

Table 1: Examples of Text Editing and ATIS. The text editing language was created to allow consumers to use
text editing features without knowing how to program. The Air Travel Information System (ATIS) is a DSL for
accessing air travel information.

from the NLU-driven synthesizer of Colead
in the presence of domain growth?

• RQ2: Can NLU-driven synthesizers gener-
ate training examples of sufficient quality to
address data scarcity?

• RQ3: Can the Colead enable the NLU-driven
synthesizer and the data-driven synthesizer to
complete their co-evolvement?

4.1 Experimental Setup

The proposed Colead is evaluated on two popu-
lar datasets that are collected from different DSLs.
Notably, due to the difficulty of collecting DSL
data, current DSL datasets typically have only a
few hundred entries.

• Text Editing 1 is a DSL with 52 APIs in total.
It is designed for end-users of Office Suite ap-
plications to do text editing without the need
of understanding the grammar and semantics
of regular expressions, conditionals, loops, etc.
The dataset for Text Editing consists of 467
query-code pairs.

• Air Travel Information System (ATIS) 2 is
a DSL that provides support of predicates and
expressions for querying air travel informa-
tion, such as arrival/departure locations, times,
dates, prices, etc. It is based on SQL-style
operations, with 51 APIs in total. The dataset
of ATIS consists of 535 query-code pairs.

Table 1 presents examples of query-code pairs
in two DSL datasets. It can be observed that DSL’s

1shorturl.at/npFIS
2shorturl.at/sxyS5

grammar format is different from GPL, and DSLs
are usually single lines of code to accomplish opera-
tions. In addition, because DSLs require functions
to be streamlined and compressed, the logic for
writing is different from GPL. As a result, data-
driven synthesizers trained on the GPLs cannot be
deployed for these DSLs without fine-tuning.

We propose to use the Exact Match as the mea-
sure, i.e., the generated code is considered correct
when it is exactly the same as the original code.
Although we do not have test cases to test whether
the generated code is correct due to the scarcity
of DSL data, it is reasonable to use Exact Match
because of the small range of variation in DSLs.
We follow the dataset setup commonly used in ma-
chine learning, with a ratio of 8:2 for training and
validation of the dataset.

Table 3 shows the results of the growing ATIS
domain.

4.2 Scenario of Domain Growth

Programming languages are non-static. They are
constantly growing and being updated with new
functionality. Such domain growth is common in
the real world, especially for DSLs.
To answer RQ1, we simulate this situation by in-
crementally adding and updating the APIs in the
DSL documentation and adding new query code
pairs associated with these new APIs to the training
and validation datasets.

We divide the data into three groups, called Orig-
inal Task (OT), Incompletely New Task (INT), and
Completely New Task (CNT), as described in the
caption of Table 2. In the original task, the origi-
nal DSL implemented only basic API functionality.
As the language evolves, new high-level APIs are
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Stage 1 Stage 2 Stage 3
ot int cnt ot int cnt ot int cnt

Golden Data
OT OT+INT OT+CNT

82.54 00.00 00.00 86.13 80.00 00.00 88.88 00.00 80.00

Baseline
OT OT+INT OT+CNT
- 84.12 43.33 00.00 77.77 00.00 43.33

OT OT+INT OT+CNT
Ours (Colead)

- 85.71 50.00 00.00 85.71 00.00 50.00

Table 2: We train CodeT5 (Wang et al., 2021) on the growing TextEditing domain and use the Exact Match results.
i) OT and ot, INT and int, CNT and cnt represent the training and validation set of Original Task(OT), Incompletely
New Task(INT) and Complete New Task(CNT). ii) Markers without underlines mean that they belong to the golden
dataset. Markers with underlines mean that the code for this dataset is generated from HISyn (Nan et al., 2020).
Markers with double underlines mean that the data pairs in this dataset are 5 samples drawn from the correct
dataset. iii) In Stage 1, only the Original Task is the subject of experiments. Stage 2 involves both Original Task and
Incompletely New Task. In Stage 3, both Original Task and Complete New Task are the subjects of experiments.

Stage 1 Stage 2 Stage 3
ot int cnt ot int cnt ot int cnt

Golden Data
OT OT+INT OT+CNT

79.76 00.00 00.00 96.42 70.83 00.00 95.00 00.00 00.00

Baseline
OT OT+INT OT+CNT
- 97.61 45.83 00.00 97.38 00.00 56.52

OT OT+INT OT+CNT
Ours (Colead)

- 97.62 25.00 00.00 97.61 00.00 17.39

Table 3: We also train CodeT5 (Wang et al., 2021) on the growing ATIS domain and use the same format as Table 2.

added. They may be incomplete and only partially
functional. We refer to the data of these new APIs
as Incompletely New Task. Finally, new APIs are
developed and completed, bringing data for Com-
pletely New Task. For example, in the Original
Task in the text editing domain, there is no RE-
MOVE API. As shown in Table 4, the Incompletely
New Task introduces the REMOVE API with lim-
ited functionality. In the Complete New Task, the
IterationScope parameter is added to set the itera-
tion scope to make REMOVE API complete.

Experiments are divided into three stages. In
Stage 1, experiments are carried out on Original
Task only. In Stage 2, Original Task and Incom-
pletely New Task are included. And in Stage 3,
Original Task and Completely New Task are in-
cluded. We use three different data settings to train
CodeT5 (Wang et al., 2021). The results are shown
in Table 2. HISyn (Nan et al., 2020) tends to gener-
ate multiple code candidates because it is common
for HISyn to construct graphs and traverse them to
find several paths that satisfy its requirements. We
choose to construct the dataset by selecting only

Incompletely New Task (INT)

REMOVE(SelectString(NUMBERTOKEN(),
BConditionOccurrence(
BETWEENCOND(STRING(colon),
STRING(colon),IMM()),ALL())))

Complete New Task (CNT)

REMOVE(SelectString(NUMBERTOKEN(),
BConditionOccurrence(
BETWEENCOND(STRING(colon),
STRING(colon), IMM()), ALL())),
IterationScope(LINESCOPE(),
BConditionOccurrence(ALWAYS(), ALL())))

Table 4: Examples of Incompletely New Task (INT)
and Complete New Task (CNT). Notably, Original Task
(OT) has no new task. Thus, we omit its table illustration
for brevity. Compared with INT, the IterationScope
is added to the REMOVE API to enable it to set the
iteration scope in CNT.

the shortest of all candidates, as the results show
that it is better than selecting all candidates. Al-
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though selecting all candidates has a larger quantity,
a number of incorrect codes introduce noise and
reduce data quality. The row "Golden" implies the
accuracy that CodeT5 can achieve with exactly the
right data. This is the best result we can expect
from our strategy. We want the exact matching ac-
curacy of the “Ours" row to be as close as possible
to the "Golden" row. Similar results are obtained
for ATIS, shown in Table 3.

Stage 1: This stage represents the early develop-
ment of the DSL, where new tasks have not yet
been introduced. At this stage, the training set
has only examples of the Original Task. CodeT5
trained on data from the Original Task performs
well on the corresponding validation set but has an
accuracy of 0 on the validation set of the new task.
Although these validation sets belong to the same
domain, CodeT5 cannot handle the new API. This
indicates that the model trained with the old data
cannot handle the new API.

Stage 2: This stage represents a DSL in an in-
termediate stage, where a new task has been intro-
duced, but it is still incomplete and simple. In order
to generate the code for the new task, we need to
supplement the corresponding API grammar and
description. CodeT5 trained with the data gener-
ated by our method accomplishes the same adap-
tation to the Incompletely New Task as CodeT5
trained with the complete data. By adding the new
task-related APIs to the documentation, our method
is able to generate data that can be used for training
in this stage.

Stage 3: This stage represents a DSL in its final
stage, where a new task has been introduced and its
development has been completed. Our method re-
quires that both the corresponding grammar and the
description in the API documentation be updated to
be considered complete. Training data containing
complete query-code pairs allows CodeT5 to learn
the complete API, completing the migration from
Incompletely New Task to Completely New Task.
The data generated by our method accomplishes
this as well, proving that it not only works on new
tasks but can be applied to task updates as well.

From the above three stages, we can observe
that our method can consistently provide data to
CodeT5 for training in domain growth.

4.3 Scenario of Data Scarcity

Data scarcity occurs frequently in DSLs, as a num-
ber of DSLs are designed for specific applications.
To answer RQ2, we analyze the performance of
our method in solving the data scarcity problem.
To establish a point of comparison, we set a base-
line by including five relevant examples from the
new task (specifically, the Incomplete New Task in
Stage 2 and the Complete New Task in Stage 3) in
the training set. This will be used as a baseline for
evaluating the performance of our method.

The results are summarized in Table 2, from
which it can be observed that our method outper-
forms the baseline in all stages. Compared to
CodeT5 trained with golden data in Stage 1, the
evaluation results of the baseline and Colead on
Original Task in Stage 2 increase by 1.58% and
3.17% respectively. This indicates that the com-
monality of the new task with the old task allows
the introduction of new task data to enhance the
model’s ability to handle the old task. The change
in the evaluation results for Incomplete New Task
is more pronounced, with the baseline and Colead
increasing from 0 to 43.33% and 50.00%, respec-
tively. In Stage 3, the same changes continue to
appear for the Completely New Task. To sum up,
the above results show that our method can have
better help than providing a few positive samples.

4.4 Study of Co-evolvement

To answer RQ3, we experimentally verify the ef-
fectiveness of Colead co-evolving on both NLU-
driven synthesizers and data-driven synthesizers.

We observe the performance changes of the two
synthesizers throughout their co-evolvement. For
CodeT5, we use a setup similar to the third stage
in Section 4.2, i.e., using the code generated by
HISyn for training. For HISyn, since it does not re-
quire training, we use the entire dataset for testing.
To highlight the role of the retriever, we use docu-
ments whose descriptions have not been manually
optimized, which places a higher demand on the
matching ability of the retriever. We introduce Sim-
CSE (Gao et al., 2021) as the baseline for compari-
son. The loop starts with an exact match retriever,
which is then replaced by a trained CodeT5 en-
coder. From Table 5, we can observe that Colead
leads consistent improvements to CodeT5 during
the loop. The "Original" row represents the results
of CodeT5 trained on the data generated by HISyn
using the exact match retriever.
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CodeT5 HISyn
TextEditing ATIS TextEditing ATIS

Baselines SimCSE 59.59 62.62 22.79 8.95
Original 56.99 62.62 23.48 10.48

Ours(Colead) Loop 1 58.06 63.55 23.44 10.37
Loop 2 59.14 65.42 24.27 10.63
Loop 3 60.22 61.68 24.42 10.37

Table 5: Exact Match accuracy of CodeT5 in the loops of Colead is on the left. Exact Match accuracy of HISyn
with different retrievers in the loops of Colead is on the right. The first four lines belong to the Co-evolvement loop
of Colead. SimCSE is independent of the circle and is not part of it. The bolded numbers are the best results.

Loop 1: From the original to Loop 1, the Ex-
act Match of CodeT5 increases from 56.99%
to 58.06% on the TextEditing dataset and from
62.62% to 63.55% on the ATIS dataset, which is
contributed by replacing the exact match retriever
with the encoder of the CodeT5. Meanwhile, the
Exact Match of HISyn slightly decreases but it ex-
ceeds the Original later.

Loop 2: CodeT5 continues to improve its perfor-
mance by 1.08% and 1.87% on the TextEditing and
ATIS datasets. We can observe that while SimCSE
can outperform Original and Loop 1, Colead out-
performs SimCSE after Loop 2. HISyn continues
to improve by 0.83% and 0.26% on the TextEditing
and ATIS datasets, and it outperforms Original and
SimCSE.

Loop 3: In Loop 3, CodeT5 and HISyn perform
best among these cases on the TextEditing dataset.
However, it is observed that the accuracy of ATIS
decreased, which is unexpected. By diagnosing the
grammar and dependency graphs, we are able to
determine the root cause of the errors. Our analy-
sis shows that the fuzzy match retriever increases
the number of candidate APIs for mapping. The
expansion of the range of candidate APIs exceeds
the capability of HISyn, resulting in a degradation
of the quality of the generated code.

We analyzed how Colead can improve NLU-
driven synthesizers with reference to specific ex-
amples. Table 6 shows a specific case where the
original HISyn generation failed but succeeded
in Colead. The original HISyn generation fails
because the semantic mapping in the retriever is
not sufficient to handle the ambiguity of natural
language. The updated retriever in Colead com-
pensates for this shortcoming. We know from the
grammar graph construction log that the original
HISyn does not map the word "Remove" to the RE-

Query Remove colon before every line
Original INSERT(STRING(colon),

Position(BEFORE(LINETOKEN()),ALL()),
IterationScope(LINESCOPE(),
BConditionOccurrence(ALWAYS(),ALL())))

Colead

REMOVE(SelectString(STRING(colon),
BConditionOccurrence(
BEFORECOND(LINETOKEN(),IMM()),ALL())),
IterationScope(LINESCOPE(),
BConditionOccurrence(ALWAYS(),ALL())))

Query Remove colon before every line
Original INSERT(STRING(colon),

Position(BEFORE(LINETOKEN()),ALL()),
IterationScope(LINESCOPE(),
BConditionOccurrence(ALWAYS(),ALL())))

Colead

REMOVE(
SelectString(STRING(colon),
BConditionOccurrence(
BEFORECOND(LINETOKEN(),IMM()),ALL())),
IterationScope(LINESCOPE(),
BConditionOccurrence(ALWAYS(),ALL())))

Table 6: Comparison between the original HISyn and
Colead generated code. In the example of the table, the
original is wrong and Colead is correct. The original
HISyn make a wrong decision for the query because it
could not map near-synonyms.

MOVE API correctly but the wrong INSERT API.
The reason is that the description in the API doc-
umentation does not explicitly include "Remove".
The fuzzy match retriever is able to correctly match
the corresponding API and therefore get the correct
code.

From Table 5, we find that the performance trend
of HISyn is similar to that of CodeT5. Although
occasionally decreasing at the same time, they con-
sistently improve with the cycle, which proves that
they are co-evolving.

5 Discussion

We try ChatGPT (Ouyang et al., 2022a) to ac-
complish our task and compare it to our approach.
To ensure that ChatGPT has the same data situation
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Query Insert colon before every 1st word
Ours INSERT(STRING(colon),

Position(BEFORE(WORDTOKEN()),
IntegerSet(INTEGER(1))),
IterationScope(LINESCOPE(),
BConditionOccurrence(ALWAYS(), ALL())))

0-shot
ChatGPT

insert ":", start all

5-shot
ChatGPT

INSERT STRING(colon)
Position(BEFORE(1st()), ALL())
IterationScope(LINESCOPE(),
BConditionOccurrence(ALWAYS(), ALL()))

Table 7: Comparison between ChatGPT and Colead
generated code. In the example of the table, 0-shot
ChatGPT is completely wrong and Colead is correct.
But 5-shot ChatGPT performs well.

as our approach, we feed the entire grammar and
documentation into ChatGPT. We use the prompt
"Based on the above grammar and documentation,
write DSL code to accomplish my query" to in-
struct ChatGPT and prepend 5 query-code pairs in
the 5-shot setting.

In Table 7, we observed a difference in per-
formance between ChatGPT and Colead. While
Colead can output exactly the right answer, the per-
formance of 0-shot ChatGPT and 5-shot ChatGPT
is very different.

ChatGPT does not require any additional train-
ing. It utilizes contextual information to provide
inferences, which demonstrates its versatility and
adaptability to various tasks. However, if no sam-
ple is provided, ChatGPT would not perform well.
0-shot ChatGPT partially understands the request
and outputs plausible code. 5-shot ChatGPT gen-
erates an almost correct answer, but the grammar
is not standardized enough. While correcting it
once could easily solve the problem, this step alone
incurs significant labor costs, whereas Colead is
generated strictly according to grammatical rules,
and thus has a much smaller probability of gram-
matical errors.

6 Conclusion and Future Work

Domain growth and data scarcity are two chal-
lenges that hinder the application of code gen-
eration to DSLs. We have shown that our pro-
posed Colead framework can effectively mitigate
these problems. Our framework combines NLU-
driven and data-driven synthesizers, where the
NLU-driven synthesizer alleviates the data-hungry
issue of the data-driven one and the data-driven syn-
thesizer provides better semantic mapping for the

NLU-driven synthesizer to improve code quality.
Future work should consider code generation by

leveraging grammar rules to regularize language
models. Components in the NLU-driven synthe-
sizer can be further improved, e.g., semantic map-
ping, NLP engines, etc. More powerful language
models, such as GPT3 (Brown et al., 2020; Ouyang
et al., 2022b), can be leveraged to improve the data-
driven synthesizer.

Limitations

Number of datasets. Due to the limited num-
ber of publicly available DSL datasets, the authors
evaluate their method on two DSL datasets. In
order to fully validate the capability of the pro-
posed method, it would be desirable to collect more
real-world datasets. One potential approach is to
manually collect DSL data for a domain, however,
this would be costly. Another approach is to apply
active learning methods (Ren et al., 2021) to auto-
matically identify relevant datasets as alternative
DSL datasets.

Ethics Statement

The authors declare that they adhere to general
ethical principles, professional responsibility, prin-
ciples of professional leadership, and ethical guide-
lines. In studies involving human participants, all
procedures were in accordance with ACL’s ethics
policy.
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Abstract

Answering open-domain questions through un-
supervised methods poses challenges for both
machine-reading (MR) and language model
(LM) -based approaches. The MR-based ap-
proach suffers from sparsity issues in extracted
knowledge graphs (KGs), while the perfor-
mance of the LM-based approach significantly
depends on the quality of the retrieved con-
text for questions. In this paper, we compare
these approaches and propose a novel method-
ology that leverages directional predicate entail-
ment (inference) to address these limitations.
We use entailment graphs (EGs), with natural
language predicates as nodes and entailment
as edges, to enhance parsed KGs by inferring
unseen assertions, effectively mitigating the
sparsity problem in the MR-based approach.
We also show EGs improve context retrieval
for the LM-based approach. Additionally, we
present a Boolean QA task, demonstrating that
EGs exhibit comparable directional inference
capabilities to large language models (LLMs).
Our results highlight the importance of infer-
ence in open-domain QA and the improvements
brought by leveraging EGs.

1 Introduction

Unsupervised open-domain question answering
(QA), the task of learning knowledge from a large
collection of documents of diversified topics to an-
swer questions, has been a long-standing challenge
in NLP, information retrieval and related fields
(Moldovan et al., 2000; Brill et al., 2002; Ferrucci
et al., 2010).

The traditional machine-reading (MR) approach
first extracts a knowledge graph (KG) from an open-
domain corpus and then uses the KG for QA (Har-
rington and Clark, 2007; Reddy et al., 2014; Khot
et al., 2017; Meng et al., 2017). This approach
offers explainability, since the information in KGs
is directly supported by the text. However, the rel-
evant assertions need to be exactly stored in the

extracted KG, which is often not the case because
assertions can be stated in many different ways,
while usually only a small subset of them are avail-
able in the KG.

On the other hand, language models have been
claimed to be capable of performing a wide range
of NLP tasks when used in zero-shot or few-
shot prompting mode, including open-domain QA,
where they have been argued to act as a latent KG
over the pretraining data for querying (Petroni et al.,
2019; Adolphs et al., 2021; Ali et al., 2021; Onoe
et al., 2022; Wang et al., 2020; Radford et al., 2019;
Raffel et al., 2019). Advocates of LMs argue that
traditional MR approaches relying on KGs built by
open relation extraction are prone to errors arising
from components like open information extraction
and entity linking. In addition to querying LMs
directly, it is shown that when relevant context is
available and added to the query, the LMs’ perfor-
mance increases significantly (Petroni et al., 2020;
Kassner and Schütze, 2020; Chen et al., 2022a).
However, while LMs have performed impressively
in answering questions on the basis of manually se-
lected contextual documents, their practical usage
is limited since automatic retrieval methods do not
always return relevant contextual documents to the
query.

In this paper, we show that we can leverage direc-
tional predicate entailment effectively to alleviate
the limitations of both unsupervised approaches to
QA. The contributions of this paper are as follows:

(1) We present a comparative analysis of the
MR-based and LM-based approaches in multiple
QA scenarios. For the MR-based approach, we
extract knowledge to construct KGs by parsing
a corpus (English Wikipedia in our experiments).
For LM-based approach, we follow the previous
work in querying the pre-trained LMs. We perform
experiments with multiple LMs including BERT
(Devlin et al., 2019) and GPT-3.5 (Brown et al.,
2020).
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(2) We alleviate the sparsity issues of the MR-
based approach by leveraging directional predicate
entailments to infer novel assertions for augment-
ing the parsed KGs.

(3) For LM-based approaches, we propose an un-
supervised method to use predicate entailments for
more accurate context-document retrieval, showing
significant improvements in cloze-style QA tasks.

(4) We propose a novel Boolean QA task to com-
pare the directional inference capabilities of LMs
and EGs, presenting evidence that smaller LMs
(BERT and RoBERTa) are far behind in inferential
capabilities compared to EGs, while larger LMs
(GPT-3.5) have similar but complementary capa-
bilities with EGs. Our analysis suggests a role for
both EGs and LMs in open-domain QA.

2 Related Work

Open-domain QA with Machine Reading. MR-
based approaches aim to extract knowledge from
corpora to answer open-domain questions. It is
common to express knowledge as a collection of
“facts” in the form of triples (subject, relation, ob-
ject), where subject and object are entities con-
nected by the relations. The extracted KGs store
the collection with entities as nodes and relations
as edges, which can be used to answer questions.

Semantic parsing is an efficient open-domain
information extraction approach for large corpora
(Etzioni et al., 2011; Reddy et al., 2014). Harring-
ton and Clark (2007) propose an effective pipeline
that extracts facts by utilizing a localized update
algorithm, which transfers sentences into syntax
structures and generates KGs incrementally. These
MR-based approaches are explainable for QA be-
cause every answer is supported by source sen-
tences in the text. However, KGs built in this way
are limited to exact match between the question
form and the triples in the graph. For example, if
a triple (Amon Bazira, be assassinated in, Kenya)
is extracted from the sentence “Amon Bazira was
assassinated in Kenya”, the KG would not provide
an answer to the question “Where did Amon Bazira
die?” because the training corpus lacks any sen-
tence constituting an exact match, such as “Amon
Bazira died in Kenya”. As a result, the parsed KG
exhibits high precision but low recall on the task.

Using pre-trained LMs as Latent KG. Petroni
et al. (2019) claim that pre-trained LMs encode
the knowledge presented in large amounts of texts.
They query LMs using “fill-in-the-blank” cloze

statements, such as “Amon Bazira was assassi-
nated in [MASK]”. They report results on Masked
Language Models (MLMs) such as BERT, which
are optimized to predict the next word in a sequence
or fill in masked words. They show promising
performance on cloze-style QA tasks. Ali et al.
(2021) propose a method for fact extraction based
on BERT, using the BERT sentence-encoding al-
gorithm on a corpus already annotated for named
entities. Additionally, Petroni et al. (2020) demon-
strate the value of retrieved documents in enhanc-
ing BERT’s performance. Lin et al. (2021); He et al.
(2021); Perez et al. (2021) show improved perfor-
mance for LMs under few-shot settings. More-
over, Alivanistos et al. (2022); Fichtel et al. (2021)
propose approaches to train prompt-learning mod-
els with supervised datasets, using the generated
prompts to enhance LM performance on open-
domain QA. Larger LM models, as shown in the
works of Brown et al. (2020), demonstrate better
performance.

These results suggest that LMs could work as
latent KGs by memorizing vast corpora. However,
LLMs are expensive to train, and impractical to up-
date for tasks like questions involving recent news
events. Smaller neural LMs are faster to retrain, but
fail when natural language inference from limited
context is required (Petroni et al., 2020). Attempts
to fine-tune these LMs with supervision from Nat-
ural language inference (NLI) datasets tend to pick
up artifacts and show little evidence of learning
directional common-sense inferences, such as that,

“be assassinated in” entails “die in” but not the re-
verse (Li et al., 2022a). In this paper, we query
LMs for factual knowledge in a zero-shot setting,
but show how the LM-based approach could ben-
efit from the MR-based approach and predicate
entailment.

Relational Entailment Graphs. Where a KG
has entities as nodes and relations as edges, an En-
tailment Graph (EG) has relations as nodes and
directed edges corresponding to the entailment re-
lation. EGs are usually built by first detecting Dis-
tributional Inclusion (Dagan et al., 1999; Geffet
and Dagan, 2005) among the set of entity tuples
involved in pairs of predicates, and then apply-
ing global graph learning algorithms (Berant et al.,
2010, 2011; Hosseini et al., 2018, 2021). In this
paper, we propose methods that utilize EGs to en-
hance the performance of MR-based and LM-based
methods in knowledge completion, leading to sig-
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nificant improvements in open-domain QA.

3 Method

In §3.1, we propose an unsupervised MR-based
method that consists of three key steps: A) con-
structing a KG by semantic parsing (§3.1.1), B)
constructing EGs from text (§3.1.2), and C) aug-
menting the KG with EGs in an unsupervised way
to infer latent knowledge (§3.1.3). We then further
augment the KG with LM backoff (§3.1.4). In §3.2,
we discuss the LM-based approach and propose a
method to enhance the performance by extracting
highly-relevant contexts using EGs (§3.2.1).

3.1 Machine-Reading Approach
3.1.1 Constructing KG from Corpus
We propose a pipeline to extract KG from corpora
with semantic parsing. First, we preprocess the
Wikipedia corpus in order to improve the perfor-
mance of semantic analysis tools by reducing the
ambiguity of the raw text. We employ a coref-
erence resolution tool (Lee et al., 2018) to han-
dle coreferences of texts, and then follow Hos-
seini et al. (2018) and use GraphParser (Reddy
et al., 2014) to extract triples from the processed
text. GraphParser1 utilizes a combinatory cate-
gorial grammar (CCG) parser (Steedman, 2000)
to convert sentences into semantic graphs, which
are subsequently transformed into triples. Previ-
ous works (Hosseini et al., 2018) show the parser
based on CCG performs better than Stanford Open
IE (Etzioni et al., 2011; Angeli et al., 2015) in
open-domain relation extraction. These extracted
triples consist of predicates associated with two
arguments. We then assign types to entities by link-
ing them to their corresponding FreeBase IDs using
a Named Entity Linking tool, Aidalight (Nguyen
et al., 2014). Figure 1 illustrates an example of
extracted triples from a raw sentence. After the
process, the extracted knowledge is represented in
the form of binary predicates and associated enti-
ties2.

3.1.2 Constructing Entailment Graphs
We utilize the EGs extracted from news corpora
by Hosseini et al. (2018) as a source of predicate
entailments, which is based on the Distributional
Inclusion Hypothesis (Dagan et al., 1999; Geffet

1The code of GraphParser is available at
https://github.com/sivareddyg/graph-parser

2The works of KG construction are available at
https://github.com/LeonChengg/entGraphQA.git

Figure 1: The workflow of extracting knowledge from
text.

and Dagan, 2005). The EGs construction algorithm
consists of two key steps: local learning and global
learning.

In the local learning step, we use GraphParser
to extract binary relations between a predicate and
its arguments from sentences. Subsequently, we
compute local distributional similarity scores to
learn entailments between predicates with typed
arguments. We compute the co-occurrence of pred-
icates associated with the same entities of the same
types. Such predicates with matching entities of the
same types are assumed to concern the same event
or episode. In the global learning step, the EGs
learn globally consistent similarity scores based on
soft constraints that consider both the structures
across typed entailment graphs and inside each
graph. In our EGs construction process, we com-
pute the BInc score (Szpektor and Dagan, 2008) as
the directional entailment score between predicates
and use it as the input to the global graph learning
step.3

3.1.3 Augmenting KG with EG
To augment the KG, we infer latent facts using the
EGs. For every triple (ei, p, ej) in the KG, we
add triples (ei, q, ej) for all q in the EG where p
entails q. The additional triples result in a larger
augmented KG with reduced sparsity. Figure 2 il-
lustrates an example of adding latent links to a KG.
In this example, the EG indicates that the predicate

“be assassinated in” entails “die in” for arguments
of types (person, location). Given the fact (Amon
Bazira, be assassinated in, Kenya) stored in our
KG, we add the latent fact (Amon Bazira, die in,
Kenya). A query such as “Where did Amon Bazira
die?” now returns the correct answer. It is crucial
to note that the inference is directional. In this in-

3We also experimented with two other EGs (Hosseini et al.,
2021; Chen et al., 2022b) which resulted in consistent results
(Appendix B).
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stance, we can not infer “be assassinated in” from
“die in”.

Figure 2: An example of adding latent knowledge. (a)
The missing relation “die in” is added by using the
entailment “be assassinated in” entails “die in”. (b)
Part of the EG for arguments of types (person, location).

If we augment the entire KG extracted from
Wikipedia with the EG in an offline manner, the
memory requirements for storing the KG becomes
prohibitively large. To address this issue, we pro-
pose an online approach for KG augmentation for
open-domain QA, reducing the storage require-
ments of the KG without compromising precision.
For each query, we simultaneously use both the
KG and EGs. If a query (entity, q, [target entity])
does not yield any results in the KG, it returns “not
found” even if the target entity could be inferred.
To resolve that, we query the EG to get candidate
predicates p that entail q. The predicates are sorted
based on their entailment scores into a list P = [p1,
p2, ... , pn], where each pi (1 ≤ i ≤ n) entails q. We
start from the beginning of the list and iteratively
query the KG with (entity, pi, [target entity]). We
return the first matched target entity, or “not found”
if there is no match.

For instance, if a query such as (Amon Bazira,
die in, [MASK]) does not yield any matching facts
in our KG, we search the EG. In the EG, “suicide
in” and “be assassinated in” entail “die in”. We
sort “suicide in” and “be assassinated in” based
on their entailment scores. First, we replace “die
in” with “suicide in”, generating a modified query
(Amon Bazira, suicide in, [MASK]). If this query
still does not return any facts, we query the KG with
(Amon Bazira, be assassinated in, [MASK]), which

returns an answer “Kenya”. This method utilizes
the EG as a plug-in without explicitly adding large
numbers of triples to the KG.

3.1.4 Backoff augmented KGs with LMs
While the symbolic KGs suffer from sparsity, even
when augmented with EGs, LMs return the pre-
diction of a masked token for every question in
open-domain QA. To further analyze how we can
alleviate the sparsity issues, we evaluate the per-
formance of completing the augmented KG using
LMs in QA. For each query, if the augmented KG
fails to provide predictions, we utilize the predic-
tions generated by pre-trained LMs to answer it.
Both the augmentation method with EGs and the
backoff approach with LMs are set up in an unsu-
pervised way to ensure a fair comparison.

3.2 LM-based Approach

In open-domain QA, we utilize pre-trained LMs
as latent KGs to provide answers. We explore two
conditions when analyzing the prompts of LMs:
non-contextual and contextual settings.

Non-Contextual Settings. In this setting, we
utilize the original questions as inputs without any
additional information. In generative LMs, we di-
rectly query the question and consider the returned
tokens as the answer. For MLMs, the questions are
transformed into “fill-in-blank” statements, where
the target tokens are masked and regarded as the
answer to be predicted.

Contextual Settings. To analyze the impacts of
contexts, we use unsupervised methods to retrieve
documents from open-domain corpora. These doc-
uments are considered relevant to the questions.
For each query, we extract the first paragraph of
the most relevant document as the context and con-
catenate it with the query to generate a new input
for LMs.

3.2.1 Retrieving Context with EGs
To measure the enhancements introduced by EGs,
we adopt the DrQA (Chen et al., 2017) retriever to
extract context from open-domain corpora. This
approach enables us to replicate the experimen-
tal setup of Petroni et al. (2020), guaranteeing a
fair and comparable evaluation. This widely-used
and efficient unsupervised retriever relies on term
frequency-inverse document frequency (TF-IDF)
calculations. However, the limitation of DrQA re-
triever is lacking inferential capabilities, which re-
sults in the omission of relevant documents. For
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example, when faced with a question like “Who
played against Arsenal?”, the retriever, lacking
inferential reasoning, may ignore a relevant docu-
ment stating “Manchester City beat Arsenal 3-0 to
book a place in the Premier League final.”.

To enhance the inferential capabilities of the re-
triever, we add EGs into the retrieval process. For
each question, we extract new predicates from EGs
to generate new questions involving the same en-
tity arguments. According to Distributional Inclu-
sion Hypothesis, if the generated question entails
the original question, the answers to the generated
question can be used to answer the original ques-
tion. For example, if the original question is “Who
played against Arsenal?”, we can generate a new
question “Who beat Arsenal?” when the predi-
cate “beat” entails “play against”. The retrieved
document “Manchester City beat Arsenal 3-0 to
book a place in the Premier League final.” contains
information that can answer the original question.

To rank the retrieved documents, we define a new
scoring function that combines entailment scores:

Score(di) = (1− α) ∗ f(qori, di)

+ α ∗
k∑

j=1

f(qj , di) ∗ E(qj , qori)

Where qori represents the original question, and
qj denotes the jth generated question, ordered by
entailment scores. The function f(qj , di) calcu-
lates the retriever’s score, evaluating the relevance
between qj and the ith document. E(qj , qori) es-
timates the probability of qj entailing qori using
the entailment score from the EG. In our experi-
ments, we set α = 0.5 and generate three questions
(k = 3). By leveraging this scoring function, we
concatenate the first paragraph of the most relevant
document with the original question as input.

4 Experiment 1: Cloze-style QA

Cloze-style QA aims at answering queries struc-
tured as “fill-in-the-blank” cloze statements, which
is easy to be evaluated on different LMs without
requirements of fine-tuning, especially for MLMs,
like BERT-based models. This task has been widely
used to measure the capabilities of LMs in memo-
rizing knowledge from the pretraining corpus for
open-domain QA. To add both pre-trained Masked
LMs and Generative Pre-trained LMs into our anal-
ysis of LM-based approaches, we choose this QA
task to compare the MR-based and LM-based ap-

Corpus Relation Statistics
Facts Rel

Google-RE

Place-of-Birth 2937 1
Date-of-Birth 1852 1

Place-of-Death 796 1
Total 5527 3

T-REx Total 31051 41

Table 1: Statistics for the test data

proaches, and their variants, described in Section
3.

4.1 Dataset

4.1.1 Training and Development Data

We use the English Wikipedia and NewsSpike
(Zhang and Weld, 2013) corpora as the training
dataset to generate the KG and EGs, respectively.
We use YAGO3-10 (Rebele et al., 2016) in our
experiments as the development set.

Wikipedia: To include all Wikipedia entities in
the training set, we use the whole Wikipedia corpus
to extract the KG. The Wikipedia corpus contains
5.4M documents4. We extract about 158M binary
relations using the semantic parser of (Reddy et al.,
2014), GraphParser.

NewsSpike: We use the multiple-source
NewsSpike corpus to train the EGs. NewsSpike
was deliberately built to include different articles
from different sources describing identical news
events. The corpus scraped RSS news feeds from
January–February 2013 and linked them to full sto-
ries collected through a Web search of the RSS
titles. It contains 550K articles (20M sentences).
We extracted 29M binary relations using the same
semantic parser, GraphParser5 . We train the EG
on the NewsSpike corpus independently and use it
as a plug-in to augment open-domain KGs for QA.

YAGO3-10: YAGO3-10 is a large semantic
knowledge base, derived from Wikipedia, Word-
Net, WikiData, GeoNames, and other data sources.
There are 123K entities and 37 relations in the
YAGO3-10. We choose YAGO3-10 as the develop-
ment set because it is derived from multi-sources,
containing low overlaps between our test sets.

4The dataset utilized in our research is based on a
Wikipedia dump from the year 2021.

5The constructed EGs contain all relations of the test set.
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4.1.2 Test Set

The LAMA probe (Petroni et al., 2019) dataset
requires the models to answer cloze-style ques-
tions about relational facts. Our evaluation focuses
on the Google-RE and T-REx subsets of LAMA,
which is aimed at measuring factual knowledge.
For each relation, the LAMA probe provides a man-
ual prompt for querying as well as the Wikipedia
snippet evidence aligned with questions.

Google-RE: The Google-RE corpus is manually
extracted from Wikipedia and contains 5.5K facts.
It covers five relations, where three of them are
used in the LAMA probe. The query prompts are
pre-defined manually, e.g. “Steve Jobs was born
in [Y]” for relation “Place-of-Birth”. Each fact in
Google-RE dataset is associated with a manually
selected snippet of text from Wikipedia that sup-
ports it. These associated snippets are regarded as
the golden context in our contextual experiments.

T-REx: The T-REx (Elsahar et al., 2018) knowl-
edge source is a subset of Wikidata triples. The
T-REx in LAMA probe has 41 relations with man-
ual prompts for querying and it subsamples at most
1000 facts per relation. In contrast to the Google-
RE knowledge source, which is defined manually,
the facts in T-REx were associated with an auto-
matically extracted, and hence possibly irrelevant,
Wikipedia snippet. Elsahar et al. (2018) report an
accuracy of 97.8% for the alignment.

4.2 Baselines

To compare with the results in LAMA probe, we
consider the following baselines.

IE: For the relation-based knowledge sources,
we consider the pre-trained Information Extraction
(IE) model of Sorokin and Gurevych (2017). This
model was trained on a subcorpus of Wikipedia
annotated with Wikidata relations. It extracts rela-
tion triples from a given sentence using an LSTM-
based encoder and an attention mechanism. We add
this approach to the baselines because it explicitly
stores triples, unlike the LMs.

BERT: Petroni et al. (2019) proved the efficacy
of pre-trained MLMs in cloze-style QA. The aim
of MLMs is learning to fill the word at the masked
position. We add BERT-large (Devlin et al., 2019)
in our baselines, which employs a Transformer
architecture and trains it on the BookCorpus (Zhu
et al., 2015) as well as a crawl of English Wikipedia.
The training corpus contains the Wikipedia articles
employed in LAMA probe.

Models Precision@1 Recall

Single Model
KG 58.8 8.5
BERT 10.5 10.5
GPT-3.5 19.0 19.0

Augmented Models

KG+EG 41.7 17.0
KG+BERT 20.2 20.2
KG+GPT 24.3 24.3
KG+EG+BERT 23.5 23.5
KG+EG+GPT 26.0 26.0

Table 2: We show the Precision@1 and Recall of parsed-
KG, BERT-large, GPT-3.5, EG-augmented KG and the
EG-augmented KG with LM backoff in non-contextual
settings7.

GPT-3.5: Large Language Models (LLMs), like
GPT series models, have shown impressive capabil-
ities in QA. To analyze the performance on LLMs,
we take text-davinci-003 (GPT-3.5) as the baseline
of evaluation, as it is the largest and best-aligned
version6. Unlike BERT, the GPT-3.5 is generative.
We manually transfer the LAMA probe cloze-style
prompts to natural questions for GPT-3.5, like us-
ing “where was Steve Jobs born?” instead of “Steve
Jobs was born in [MASK]”. All prompts for GPT-
3.5 are shown in Appendix H.

4.3 Results: Cloze-style QA

The performance of parsed-KGs (MR-based ap-
proaches) and LM-based approaches in cloze-style
QA is evaluated under two settings: non-contextual
and contextual.

Table 2 demonstrates the precision@1 and re-
call of different models under non-contextual set-
tings. The parsed KG exhibits impressive precision
performance due to its high proportion of exact
matches but is limited in recall by its sparsity. Af-
ter being augmented with EGs, the recall improves
significantly and the precision is much higher than
other combinations (e.g. see KG+EG vs KG+GPT,
and KG+EG vs KG+BERT). It demonstrates that
EGs perform stronger capabilities of inferring la-
tent knowledge to alleviate the sparsity of parsed
KGs. This experiment shows that the MR-based
approaches exhibit significantly higher precision
compared to LM-based approaches. Additionally,
the augmentation of KGs with EGs effectively ad-
dresses the recall limitation, still outperforming
LMs and their combinations in precision.

6In our experiment, we evaluate GPT-3.5 model via the
OpenAI API (https://platform.openai.com/), with the tempera-
ture setting fixed as 0.

7In LAMA probe, there are no negatives so the recall is
same as Precision@1 when LMs return prediction for every
query.
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Dataset Single Model EG-Augmented KG EG-Augmented KG with LM backoff
Rel IE KG BERT GPT-3.5 KG+EG KG+EG+BERT KG+EG+GPT
PoB 13.8 19.9 16.1 30.3 27.7 30.7 37.0

Google-RE DoB 1.9 7.7 1.0 2.0 8.5 9.9 11.3
PoD 7.2 14.6 14.0 24.7 26.0 29.6 29.7

Average 7.6 14.0 10.5 19.0 20.7 23.5 26.0
TREx Average 33.8 29.2 31.5 59.1 35.1 64.7 79.3

Table 3: Main results on cloze-style QA without context. This table shows the F-score on BERT-large, GPT3,
parsed-KG and its augmented versions across the set of evaluation corpora.

Dataset BERT-large GPT-3.5 KG+EG

contextNULL
Google-RE 10.5 19.0 20.7

TREx 31.5 59.1 35.1

contextDrQA
Google-RE 40.8 72.1 20.7

TREx 43.1 81.7 35.4

contextDrQA+EG
Google-RE 59.9 84.0 20.7

TREx 54.2 80.6 35.4

contextGolden
Google-RE 78.0 98.4 29.6

TREx 62.6 95.1 38.0

Table 4: The F-score of different models in cloze-style
QA when context documents are provided, with sub-
scripts “Golden”, “DrQA”, and “DrQA+EG”, indicating
the context extraction methods from original snippets,
the DrQA retriever, and the version with EGs, respec-
tively.

To further analyze the impact of introducing EGs
to various models on F-scores, we present the non-
contextual results of cloze-style QA across a range
of corpora in Table 3. Among the single mod-
els without EGs, GPT-3.5 outperforms other meth-
ods, and the parsed KG exhibits better performance
compared to BERT. Furthermore, KG+EG presents
that augmenting the KGs with EGs leads to an
improvement in F-scores. Moreover, the incorpora-
tion of LM backoff yields additional improvements
in EG-augmented KGs, as shown in the comparison
between KG+EG+GPT and KG+EG. The combi-
nation of EG-augmented KGs with the GPT-3.5
model backoff (KG+EG+GPT) demonstrates the
highest level of performance in terms of F-scores
among all combinations. This combination uti-
lizes the high precision benefits provided by EG-
augmented KGs while effectively addressing the
low recall limitations through the use of LLMs.

Table 4 presents the performance of LMs and
KG when provided with contexts. LM-based meth-
ods show significant improvement with context, but
the impact of context on the KG is limited. This
finding indicates that contexts have a more sig-
nificant impact on LMs compared to parsed KGs.
Furthermore, the experiments show that the con-
texts retrieved by DrQA+EGs outperform those
retrieved by the DrQA retriever alone, highlighting

Google-RE
Models infrequent frequent

MR-based
KG 15.1 14.7

KG+EG 18.7 19.2

LM-based
BERT 6.7 11.2

GPT-3.5 16.2 20.6

Table 5: The table shows F-scores for subsets of the
Google-RE dataset categorized based on frequency.

the importance and complemantary roles of entail-
ment in retrieving highly relevant contexts for QA.
EGs introduce entailment between questions and
documents in the retrieval process, contributing to
this improved performance.

In order to compare the performance of different
EGs trained on different corpora and score func-
tions, we report the results of different EGs in Ap-
pendix B. and report the error analysis in Appendix
A.

We also analyze the impact of query frequency
on LM-based approaches. We run experiments on
two subsets of Google-RE queries: the 5% least fre-
quent (infrequent) queries by calculating the men-
tioned entities occurrence in the NewsCrawl corpus
(Barrault et al., 2019), and the 5% most frequent
queries (frequent). As shown in Table 5, LM-based
approaches achieve higher F-scores for frequent
queries compared to infrequent queries. However,
the question frequency appears to have less impact
on parsed KG. The results show that LM is limited
in effectively answering queries involving infre-
quent entities, indicating the challenges faced by
LM in handling long-tail scenarios.

In conclusion, MR-based approaches reach
higher precision but suffer from sparsity, causing
low recall in QA. On the other hand, the qual-
ity of retrieved contexts is the main limitation of
LMs. The contexts extracted by various unsuper-
vised approaches exhibit significant improvements
in the LM-based methods, but these approaches
show different capabilities in contextual extraction.
EGs can enhance both approaches by utilizing tex-
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Figure 3: Constructing Boolean QA data by Google-RE and T-REx. (a) The left part shows we extract positives
from LAMA probe. (b) We generate the negatives by using the hyponyms to replace the predicate.

tual entailment between common-sense in ques-
tions and open-domain corpora. EGs augment the
parsed KG by inferring latent knowledge through
the entailment between common-sense, enhanc-
ing the performance of MR-based methods. For
LM-based methods, EGs provide ways to retrieve
highly-relevant contexts for questions, by inferring
common sense from original questions to latent
related documents.

5 Experiment 2: Boolean QA

The LAMA probe is basically an intrinsic evalua-
tion dataset for measuring the capabilities of LMs
in extracting knowledge for QA, but it has limita-
tions for evaluating inferential capability (Rogers
et al., 2020). One such limitation is that the LAMA
probe is derived from the Wikipedia corpus, which
is likely to have been included in LMs training data.
The LMs tend to choose as answer those triples in
the evidence that are similar to those seen in the
training data, minimizing dependency on inference,
and leading to overestimation of the capabilities
of LMs in cloze-style QA. As a consequence, the
LAMA probe task fails to evaluate the sensitivity of
LMs to directionality of entailment from evidence
to the answer to the question.

We propose a Boolean QA task, which adds neg-
ative test items to the positive items in the original
Google-RE and T-REx datasets (in §4.1.2). We
follow McKenna et al. (2021) in automatically gen-
erating questions whose answer is not entailed by
the original evidence by replacing the relation in
the original question by a WordNet hyponyms (
Miller, 1998—see figure 3). Such questions are
likely to appear to the LMs to be similar to propo-
sitions in the evidence, despite not being entailed.
The Boolean QA task thereby measures the models’
sensitivity to the direction of entailment, as well
as the extent to which the EG improves cloze-style
QA.

5.1 Boolean QA Data

5.1.1 Extracting Positives
Each instance in Google-RE and T-REx is formed
as a triple, like the one shown in Figure 3(a). We
transform the fact (Amon Bazira, die in, Kenya)
into a natural boolean question, such as “Did Amon
Bazira die in Kenya?”. Then we use the associated
Wikipedia snippets from the LAMA probe as the
evidence. Since these snippets are provided in the
Google-RE and T-REx data, we know that these
questions are answerable by the snippets.

5.1.2 Generating Negatives
Negative questions are generated from the positive
questions by identifying a hyponym of the relevant
predicate using WordNet. Hyponyms usually entail
that predicate but are not entailed by it. Therefore
it is unlikely that the Google-RE evidence snippet
supports the hyponym relation8. Such negative
questions are difficult for LMs to reject because
they are similar to the positive and hence to the text
in the evidential snippet.

Figure 3(b) demonstrates an example of neg-
atives generation. In this example, we identify
“starve” as the hyponym of “die” using Word-
Net. Then a negative “Did Amon Bazira starve
in Kenya?” will be generated from the positive
question “Did Amon Bazira die in Kenya?”. The
performance in Boolean QA presents the capabili-
ties of directional common-sense inferences, which
is crucial for inferring latent knowledge from texts.

5.2 Evaluation on Boolean QA

BERT, RoBERTa (Liu et al., 2019), and GPT-3.5
are the baselines for this task. We evaluate the
BERT and RoBERTa by computing cosine similar-
ity between the predicate vector in the question and

8We manually checked 100 random samples of generated
negatives, and found only 4 cases where a positive answer
would be appropriate.
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Models Dataset
Google-RE T-REx

BERT 64.0 47.2
RoBERTa 61.9 49.5
GPT-3.5 87.6 68.1

EG 85.3 67.7
EG+BERT 85.3 71.2

EG+GPT-3.5 88.5 75.0

Table 6: The F-score in Boolean QA task

the predicate vector in the answer, following the
evaluation of McKenna et al. (2021).

For GPT-3.5, we convert the token probability
from its outputs using the following mapping:

score = 0.5 + 0.5 ∗ I[(output = True)] ∗ Soutput

−0.5 ∗ I[(output = False)] ∗ Soutput

In the equation, I represents the indicator function.
score estimates the probability of positive classifi-
cation based on the textual model output probabil-
ity Soutput, using a linear transformation, which pre-
serves the ordering of model confidences. Note that
we add an offset 0.5 to ensure that 0 ≤ Soutput ≤ 1.

We evaluate EGs by looking for entailment
scores between predicates, which are defined on a
scale of 0 to 1. For fairness, our EGs are trained on
the NewsSpike corpus, which is independent of the
evaluation datasets, Google-RE and T-REx. If the
predicate in answers is absent from EGs, the model
returns the answer as false.

5.3 Results: Boolean QA
To compare the capabilities of directional inference,
we report the F-score of Boolean QA in Table 6.
The results demonstrate that the EGs and GPT-3.5
perform at a similar level, and they significantly
outperform BERT and RoBERTa. We combine
the score of EG and LMs with a linear function
and show improvement in Boolean QA. The experi-
ments suggest that EGs exhibit stronger capabilities
of directional common-sense inference than BERT
and achieve a similar level to LLMs, like GPT-3.5,
with less training resources and more efficient com-
putation (shown in Appendix E).

Furthermore, the results also prove EGs can iden-
tify the directional inference between questions and
documents, presenting evidence to explain why
EGs can augment the pre-parsed KG and retrieve
high-quality contexts for LMs. The successful aug-
mentation explains the efficient enhancement of

the parsed KG using EGs in cloze-style QA. The
limitation of LMs in directional inference indicates
that LMs tend to exhibit a propensity for memo-
rization of factual knowledge rather than a reliance
on inferential reasoning in QA scenarios, poten-
tially constraining the practical utility of LMs in
QA applications.

6 Conclusion

In this paper, we have conducted a comprehensive
analysis of the limitations of Machine-Reading and
LM-based approaches in QA. We propose a novel
method that utilizes entailment graphs to infer di-
rectional relations, addressing the sparsity issue
and low relevance of retrieved contexts. Addition-
ally, we have introduced an open-domain Boolean
QA task to evaluate the capabilities of directional
inference. In Boolean QA, the entailment graphs
present stronger capabilities in directional infer-
ence than BERT and RoBERTa, achieving compara-
ble performance to GPT-3.5. These results demon-
strate the effectiveness of the entailment graphs in
enhancing performance under both unsupervised
approaches, by making common-sense inference
available to open-domain QA.

7 Limitations

We analyze the performance of MR-based and LM-
based approaches in QA, and we propose to utilize
the directional inference capabilities of EGs to en-
hance both approaches, showing improvement in
QA. A limitation in this work is that it focuses on
open-domain cloze-style QA only in English. We
have not evaluated our methods on multi-lingual
QA tasks, although Li et al. (2022b) have built a
large entailment graph for Chinese, which could
be applied. The parser, entity typing method used
in the entailment graphs, the Boolean QA dataset
which is constructed using WordNet, and the LMs,
are only language-dependent components. In addi-
tion, the parsed KG is extracted from the whole En-
glish Wikipedia corpus. Although we can construct
the KG incrementally, the program still requires
large amounts of memory to run on large corpora.
We were not able to construct KGs on more amount
of text with our computational resources.
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A Error Analysis of MR-based
Approaches

We manually analyze 150 samples for the Machine-
Reading approach. About 23% of them are caused
by GraphParser and are cases where it returns
wrong relations from text. Most of them are caused
by non-standard sentences in Wikipedia documents.
For example, “Norman MacLeod (c. 1731 – 1796)
was a British army officer, merchant, and official of
the British Indian Department.”, the parser cannot
extract the fact (Norman MacLeod, bear in, 1731)
from the sentence because it cannot analyze “(c.
1731 – 1796)”. It also leads to bad performance in
the relation “Date-of-Birth”.

20% of the errors in the KG are due to entity
linking returning wrong entities or types, caused
by ambiguity in Google-RE and T-REx. For exam-
ple, a sentence in Googe-RE is “Jason then contin-
ued to Sparta, where he died and was buried” and
the fact in Google-RE is (Jason, Place-of-Death,
Sparta). But in evaluation, “Jason” is linked to

“Jason Hu”, who is a modern politician.

About 44% are caused by the mismatch between
training and test corpora. For example, the relation

“is connected to” describes the connections between
airports, but we cannot get the knowledge from the
training corpus, Wikipedia.

The rest of the errors (13%) are because of
other reasons including entailment graphs errors,
that are mainly caused by the ambiguity of some
high-frequency predicates. For example, predicate

“bear in” entails predicate “be from”. These predi-
cates, like “be from”, are common in sentences. If
the relation of the query contains these predicates,
the KG will return wrong answers easily. When we
use the predicate “be from” for querying the KG,
it will return false results because the predicate has
too many meanings. e.g., in the sentence “Shane
Doan is from Arizona” may mean “Shane comes
from Arizona”, not the Place-of-Birth. In our ex-
periment, some entailment graphs errors are caused
by spurious correlations. For example, there are
many documents in Wikipedia like “Steve Jobs was
born on February 24, 1955, in California, ..., Jobs
died at his Palo Alto, California home around 3
p.m.”. From these sentences, we may extract facts
like (Steve Jobs, bear in, California) and (Steve
Jobs, die in, California). These predicates link the
same entities. It is likely to incorrectly give the
entailment relationship between the two predicates.

B Different Entailment Graphs on
cloze-style QA

EGs play a crucial role in capturing the relation-
ships between typed predicates, utilizing a score
function to measure the probability of one pred-
icate entailing another. Some works introduced
various models for generating EGs with improved
quality in NLI datasets. Hosseini et al. (2021) pro-
posed the Contextualized and Non-Contextualized
Embeddings (CNCE) model, which leverages con-
textual link prediction to calculate a novel relation
entailment score. Similarly, Chen et al. (2022b)
introduced the Entailment Graph with Textual En-
tailment and Transitivity (EGT2) method, demon-
strating promising performance on Recognizing
Textual Entailment (RTE) tasks.

To evaluate the performance of state-of-the-
art (SOTA) entailment graphs in cloze-style QA,
we compare their performance in augmenting
parsed KGs. We specifically investigate the im-
pact of different training sets by training the entail-
ment graphs on three distinct corpora: Wikipedia,
NewsSpike, and NewsCrawl (Barrault et al., 2019).
We present the summarized results of the different
entailment graphs in Table 7.

P@1 R F
BERT-large 10.5 - 10.5
RoBERTa 4.8 - 4.8

Transformer-XL 1.6 - 1.6
GPT-3.5 19.0 - 19.0

KG 58.8 8.5 14.0
KG+EGwiki_binc 43.8 12.3 17.4
KG+EGns_binc 41.7 15.0 20.7
KG+EGns_cnce 40.7 16.2 21.0
KG+EGns_egt2 56.6 9.6 18.7
KG+EGnc_binc 42.6 14.6 19.6
KG+EGnc_cnce 44.9 15.1 20.7

Table 7: Results of different entailment graphs on
Google-RE in cloze-style QA. This table presents the
mean average precision at one (P@1), recall, and F-
score of Google-RE. The result shows the average per
number of relations in Google-RE. In this table, the
subscripts wiki, ns and nc means the entailment graphs
are trained on Wikipedia, NewsSpike and NewsCrawl
(Barrault et al., 2019). Subscripts binc means EGs con-
structed using the approach of Hosseini et al. (2018).
Subscripts cnce and egt2 means the entailment graphs
are trained on CNCE and EGT2.

We notice that the entailment graphs trained on
NewsSpike (EGns_binc) outperform the entailment
graphs trained on Wikipedia (EGns_wiki). Dif-

87



KG KG + EGwiki_binc KG + EGns_binc KG + EGnc_binc

local global local global local global
P@1 58.8 43.2 43.8 42.0 41.7 41.7 42.6

R 8.5 12.3 12.3 13.7 15.0 14.3 14.6
F 14.0 16.9 17.4 18.0 20.7 19.1 19.6

Table 8: Knowledge graph combined with different
entailment graphs. global means the entailment graph is
based on global BInc score, local means the entaiment
graph with local BInc score.

Corpus BERT-large GPT-3.5 KGcorpus KGdocument KGcorpus+EG KGdocument+EG
Google-RE 10.5 19.0 14.0 12.9 20.7 20.3

T-REx 31.5 59.1 29.2 27.8 35.1 33.9

Table 9: The F-scores of different KGs. KGcorpus and
KGdocument means the KG is constructed using the
whole Wikipedia corpus or retrieved documents.

ferent from the Wikipedia corpus, the articles in
NewsSpike mainly describe the same news events
by multiple authors. Hence, the predicates in
NewsSpike have stronger relevance, which reduces
sparsity issues. We analyze the performance of
EGs trained by different approaches, EGns_binc,
EGns_cnce and EGns_egt2. We notice the edges
in EGns_egt2 are fewer than the EGns_cnce and
EGns_binc. Although the EGns_egt2 shows impres-
sive performance on RTE tasks, it is limited in
sparsity, resulting in bad performance on the QA
task. The experiments suggest that the main limi-
tation of augmented KG is the sparsity of EGs in
QA.

In order to analyze the effects of global learning,
we show the entailment graphs on local and global
scores in cloze-style QA in Table 8. The entailment
graph based on global scores performs better than
entailment graphs just trained on local scores.

C Different Approaches of Open-domain
KG Construction

We propose two approaches to construct the open-
domain KG in the MR-based method: using the
whole Wikipedia corpus (corpus-based) or using
retrieved documents (document-based) to extract
knowledge. We analyze the performance of dif-
ferent KG and show the results in Table 9. The
document-based KGs require less memory with
sacrificing a little performance.

D Analyzing the Impact of Prompts

Petroni et al. (2019) propose the MLM could work
as a latent knowledge base for zero-shot cloze-
style QA with manual prompts during querying.

Relation PromptsLAMA Promptre−written

Google-RE 10.5 5.4
T-REx 32.3 16.3

Table 10: Precision of BERT-large querying by different
prompts.

We notice some prompts in the LAMA probe are
the high-frequency sentences chosen from the test
set, Wikipedia. For example, the relation “Date-
of-Birth” are labeled with the prompt “[S] (born
[O])” for querying. This expression is common in
Wikipedia but is not a natural sentence.

To analyze the effects of prompts on MLMs, we
evaluate BERT-large on the cloze-style QA with
automatic re-written prompts, like replacing the
LAMA probe’s prompt “[S] (born [O])” with a nat-
ural sentence “[S] was born on [O]”. The precision
of BERT-large is shown on Tabel 10. From the
table, if we change the pre-defined manual prompts
in the LAMA probe, the precision will decrease
significantly. It indicates the LMs attempt to mem-
orize the expression of training data for answering
questions, instead of inferring knowledge. High-
frequency pre-defined query prompts will improve
the performance of LMs but will be limited for
practical applications.

E Computational Costs

The KG construction process (MR-based approach)
involves two steps: text preprocessing and knowl-
edge extraction. In offline construction, the entire
Wikipedia corpus is processed, which requires ap-
proximately 6 days when utilizing 20 CPU threads
(Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30GHz).
However, by leveraging GPUs (GeForce RTX 2080
Ti) for coreference resolution during the prepro-
cessing step, the processing time can be reduced to
36 hours with the use of 4 GPUs. The knowledge
extraction step takes approximately 24 hours. Com-
pared to the computational resources required for
training GPT-3.5 or BERT-large, the MR-based ap-
proach necessitates fewer resources. Furthermore,
the parsed KG can be constructed incrementally
by adding more documents, and it does not need
to load the whole model in KG construction. In
online construction, we can dynamically parse the
KG based on the retrieved documents.

In our experiments, the training of EGs on the
NewsSpike corpus uses 220G of CPU resources
over a period of 6 days. Notably, this resource re-
quirement is significantly lower compared to the
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training of LLMs such as GPT3.5. When it comes
to inference, GPT-3.5 necessitates online execution,
whereas the augmented KG can be utilized on a
local machine. We also experimented with other
LLMs like LLaMA-65B (Touvron et al., 2023),
which exhibited a response generation time of ap-
proximately 1.5 minutes using 4 x A100 (80G)
GPUs. This extended response time renders it im-
practical for use in real-world QA system scenar-
ios.

F Samples of Predicates in Entailment
Graph

When querying with the relations from Google-
RE, “Place-of-Birth”, “Date-of-Birth”, “Place-
of-Death”, we show the samples ranked by the
entailment score in EG. The top five predicates in
the entailment graphs are shown in Table 11.

Predicate Types Top 5 predicates in EG

bear.in person-location

grow.up.in
be.in

native.of
live.in
carry

bear.in person-time

name.in
address.in

have.in
be.in

live.in

die.in person-location

die.at.home.in
die.at

dead.found.in
suicide.in

kill.in

Table 11: Top 5 predicates in entailment graphs

G Additional Implementation Details

In KG construction, we do not perform any hyper-
parameter tuning when generating KG. We fol-
lowed the configs of Hosseini et al. (2018) in train-
ing entailment graphs, which sets the minimum
number of predicates (for each argument-pair), and
the minimum number of argument-pairs (for each
predicate) to 3. In the evaluation of Boolean QA,
we utilize a linear function to combine EG with
BERT and GPT-3.5. For the EG+BERT combina-
tion, we assign a weight of 0.94 to the EG and 0.06
to BERT. In the EG+GPT-3.5 combinations, the
weight assigned to the EG is 0.42.

H Cloze-style Prompts to Natural
Question

Questions in LAMA probe are manually formu-
latd as “fill-in-the-blank” cloze statements. The
prompts in LAMA probe are designed for MLM,
like BERT. We manually change the cloze-style
prompts to natural questions for the generative
model such as GPT-3.5, as shwon in Table 12. We
conducted a series of experiments involving the
utilization of AutoPrompt (Shin et al., 2020) for
the automatic generation of prompts for GPT-3.5.
However, the performance of prompts generated
through this automated process was found to be
inferior to those manually curated and labeled. In
order to perform a comprehensive analysis of the
LMs and make a valid comparison against MR-
based approaches, we present the results based on
the utilization of manually generated prompts.

I Generating Prompts for Query
Automatically

Unlike queries in Google-RE and T-REx using
manual-labeld cloze-style prompts, we automat-
ically generate a query for each triple in YAGO3-
10 by concatenating the relation names and enti-
ties. For example, when querying the triple (Kobe
Bryant, playsFor, Los Angeles Lakers), it will be
generated as the sentence “Kobe Bryant plays for
[MASK]” for LMs.
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Dataset Relation Names Cloze-Style Prompts from LAMA probe Generated Natural Questions

Google-RE
place of birth [X] was born in [Y] . Where was [X] born?
place of death [X] died in [Y] . Where did [X] die?
date of birth [X] (born [Y]). When was [X] born?

T-REx

place of birth [X] was born in [Y] . Where was [X] born?
place of death [X] died in [Y] . Where did [X] die?

subclass of [X] is a subclass of [Y] . [X] is a subclass of what?
official language The official language of [X] is [Y] . What is the official language of [X]?

position played on team / speciality [X] plays in [Y] position . What position does [X] play?
original network [X] was originally aired on [Y] . Where was [X] originally aired?

shares border with [X] shares border with [Y] . [X] shares border with whom?
named after [X] is named after [Y] . What is [X] named after?

original language of film or TV show The original language of [X] is [Y] . What is the original language of [X]?
member of [X] is a member of [Y] . [X] is a member of what?

field of work [X] works in the field of [Y] . What field does [X] work in?
occupation [X] is a [Y] by profession . [X] is a what by profession?

has part [X] consists of [Y] . What does [X] consist of?
diplomatic relation [X] maintains diplomatic relations with [Y] . Which conutry does [X] maintain diplomatic relations with?

manufacturer [X] is produced by [Y] . Who produced [X]?
country of citizenship [X] is [Y] citizen . What is the country of [X]?

language of work or name [X] was written in [Y] . Which language was [X] written in?
continent [X] is located in [Y] . Where is [X] located in?
developer [X] is developed by [Y] . Who developed [X]?
capital of [X] is the capital of [Y] . [X] is the capital of what?

located in the administrative territorial entity [X] is located in [Y] . Where is [X] located in?
languages spoken, written or signed [X] used to communicate in [Y] . Which language did [X] use to communicate in?

employer [X] works for [Y] . Who does [X] work for?
genre [X] plays [Y] music . What music does [X] play?

country [X] is located in [Y] . Where is [X] located in?
position held [X] has the position of [Y] . What position does [X] have?
record label [X] is represented by music label [Y] . [X] is represented by what music label?

location [X] is located in [Y] . Where is [X] located in?
work location [X] used to work in [Y] . Where did [X] work?

religion [X] is affiliated with the [Y] religion . [X] is affiliated with the what religion?
instrument [X] plays [Y] . What does [X] play?
owned by [X] is owned by [Y] . Who owns [X]?

native language The native language of [X] is [Y] . What is the the native language of [X]?
twinned administrative body [X] and [Y] are twin cities . Which city and [X] are twin cities?

applies to jurisdiction [X] is a legal term in [Y] . [X] is a legal term in what?
instance of [X] is a [Y] . [X] is a what ?

country of origin [X] was created in [Y] . Where was [X] was created?
headquarters location The headquarter of [X] is in [Y] . Where is the headquarter of [X]?

capital The capital of [X] is [Y] . Where is the capital of [X]?
location of formation [X] was founded in [Y] . Where was [X] founded?

part of [X] is part of [Y] . [X] is part of what?

Table 12: For generative LMs, we generate the natural questions from the cloze-style prompts in LAMA probe. The
table shows the mapping between manual prompts and generated questions.
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Rels in YAGO Generated prompts
Examples

Query Answer
isLocatedIn [X] is loctaed in [Y] The Safety of Objects is located in [MASK] United Kingdom

diedIn [X] died in [Y] Jean Genet died in [MASK] Paris
wasBornIn [X] was born in [Y] Peter Creamer was born in [MASK] Hartlepool
hasGender [X] has gender [Y] Robert Bly has gender [MASK] male
playsFor [X] plays for [Y] Edgardo Abdala plays for [MASK] Huachipato
actedIn [X] acted in [Y] Charles Durning acted in [MASK] Tootsie

happenedIn [X] happened in [Y] Operation Anaconda happened in [MASK] Afghanistan
isAffiliatedTo [X] is affiliated to [Y] Toni Kuivasto is affiliated to [MASK] Helsingin Jalkapalloklubi

directed [X] directed [Y] Charles Walters directed [MASK] Lili
isPoliticianOf [X] is politician of [Y] Mario Monti is politician of [MASK] Italy
isCitizenOf [X] is citizen of [Y] Nusrat Bhutto is citizen of [MASK] Iran
dealsWith [X] deals with [Y] Togo deals with [MASK] France

hasOfficialLanguage [X] has official language [Y] Guntur has official language [MASK] Urdu
edited [X] edited [Y] V. T. Vijayan edited [MASK] Saamy

hasCapital [X] has capital[Y] Jharkhand has capital [MASK] Ranchi
hasNeighbor [X] has neighbor [Y] Poland has neighbor [MASK] Lithuania

created [X] created [Y] Ilaiyaraaja created [MASK] Manassinakkare
livesIn [X] lives in [Y] Bradley Walsh lives in [MASK] Essex

wroteMusicFor [X] wrote music for [Y] Johnson (composer) wrote music for [MASK] Thazhvaram
isMarriedTo [X] is married to [Y] Livia is married to [MASK] Augustus

isConnectedTo [X] is connected to [Y] Manas International Airport is connected to [MASK] Kyrgyzstan
participatedIn [X] participated in [Y] United States Army participated in [MASK] Marinduque

hasChild [X] has child [Y] William Hague has child [MASK] Ron Davies
isInterestedIn [X] is interested in [Y] Muhammad Taqi Usmani is interested in [MASK] Tafsir
hasWebsite [X] has website [Y] Rural Municipality of Frontier No. 19 has website [MASK] www.mds.gov.sk.ca/app
isLeaderOf [X] is leader of [Y] Xi Jinping is leader of [MASK] China

hasWonPrize [X] has won prize [Y] Philip Hall has won prize [MASK] De Morgan Medal
influences [X] influences [Y] James M. Buchanan influences [MASK] Elinor Ostrom

isKnownFor [X] is known for [Y] Friedrich Engels is known for [MASK] Marxism
owns [X] owns [Y] The Walt Disney Company owns [MASK] Walt Disney World

worksAt [X] works at [Y] Nicholas Kemmer works at [MASK] University of Edinburgh
graduatedFrom [X] graduated from [Y] Ann Richards graduated from [MASK] Baylor University

exports [X] exports [Y] Paraguay exports [MASK] electricity
hasCurrency [X] has currency [Y] Portugal has currency [MASK] Euro sign

hasMusicalRole [X] has musical role [Y] Danny Goffey has musical role [MASK] piano
hasAcademicAdvisor [X] has academic advisor [Y] Robert Lee Moore has academic advisor [MASK] Oswald Veblen

imports [X] imports [Y] Puerto Rico imports [MASK] fish

Table 13: The queries generated from YAGO3-10
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Abstract

Modern dialog systems rely on Deep Learn-
ing to train transformer-based model archi-
tectures. These notoriously rely on large
amounts of training data. However, the collec-
tion of conversational data is often a tedious
and costly process. This is especially true
for Task-Oriented Dialogs, where the system
ought to help the user achieve specific tasks,
such as making reservations. We investigate a
controlled strategy for dialog synthesis. Our
method generates utterances based on dialog
annotations in a sequence-to-sequence man-
ner. Besides exploring the viability of the ap-
proach itself, we also explore the effect of con-
strained beam search on the generation capabil-
ities. Moreover, we analyze the effectiveness of
the proposed method as a data augmentation by
studying the impact the synthetic dialogs have
on training dialog systems. We perform the ex-
periments in multiple settings, simulating var-
ious amounts of ground-truth data. Our work
shows that a controlled generation approach is
a viable method to synthesize Task-Oriented
Dialogs, that can in turn be used to train dialog
systems. We were able to improve this process
by utilizing constrained beam search.

1 Introduction

The current success of Large Language Models
(LLMs) is the result of multiple factors. One of
them is the availability of high-quality data in large
amounts. Specifically, the prospering adoption of
these LLMs as chatbots, as pioneered by Chat-
GPT (OpenAI, 2022), was made possible due to
the usage of human feedback during training in the
RLHF framework (Christiano et al., 2017).

The category of Task-Oriented Dialog (TOD)
systems describes a specific kind of chatbot that
aims to help users achieve tasks, such as booking
hotels or making reservations, using external ser-
vices. It can therefore be seen as a language-based
interface to these services.

0. gold standard data 1.2 preprocess to
input/output format

2. train + evaluate
generator

3. synthesize dialogs with
generator using

constrained beam search

4. train dialog system
on augmented data

1.1 train dialog
system to compare

5. evaluate and
compare

Figure 1: The general setup of the study. We use n gold
standard dialogs to train a generator, which synthesizes
dialogs that are in turn used to train a dialog system
(steps 1.2 to 4.). To evaluate the improvement (step 5),
we compare the performance of the dialog system to the
baseline, where we only use the n dialogs for training
(step 1.1).

In the recent past, different model architectures
have been proposed to solve this problem. To eval-
uate them, the original MultiWOZ (Budzianowski
et al., 2018) dataset and its successors are widely
used as benchmarks. It contains more than ten
thousand dialogs spanning multiple domains (e.g.,
attraction, hotel and restaurant), paving the way for
the adoption of large end-to-end models.

While this benchmark allows for useful compar-
isons of different architectures and approaches, we
deem this scenario of having multiple thousand di-
alogs to be infeasible for most real-life TOD use
cases, where usually not nearly as many dialogs are
available. This is due to the fact that the types of
dialog needed to train a TOD system are different
from those used to train, e.g., a social chatbot, since
the TOD conversations need to include the usage
of the external systems. Therefore, it is typically
not only necessary to have two users (while using
the Wizard-of-Oz technique; Kelley, 1984), but to
have at least one of them interact with the exter-
nal service to provide the necessary information to
achieve the task.
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We therefore investigate the synthesis of suitable
utterances from given annotations to train TOD sys-
tems. We call this method "Controlled Generation
for Training" (CG4T). For this, we simulate lower
resource scenarios based on the MultiWOZ dataset,
allowing us to both evaluate the models on this
common benchmark and also to test the method in
different, more realistic settings.

With the objective of ensuring that the gener-
ated utterances contain the entities defined in the
annotation, we additionally investigate the effect
of constrained beam search during the generation
phase. To sum up, in our work, we aim to answer
four research questions (RQ):

• RQ 1: Can a pretrained sequence-to-sequence
model be fine-tuned to generate synthetic di-
alogs based on annotations?

• RQ 2: Can constraining the beam search im-
prove the decoding in comparison to a normal
beam search?

• RQ 3: Can the synthetic data be used to train
and improve the performance of a TOD sys-
tem?

• RQ 4: What is the relation between the
amount of real data and the usefulness of syn-
thetic data generated this way?

2 Background and Related Work

Controlled Generation. The main goal of the ap-
proach presented in this paper is to generate text
that fulfills certain requirements, i.e., fitting the
annotations it is based on. The general problem
of steering generation has been addressed in the
young research field of Controllable Text Genera-
tion (CTG). The root motivation behind this is to
have a Natural Language Generation (NLG) sys-
tem be controllable by human-defined parameters,
which becomes especially important due to their
black-box character (Zhang et al., 2022). Some of
the applications of CTG include NLG that adheres
to a specific topic, emotion, formulating text from
structured data (e.g., tables), and data augmenta-
tion (Zhang et al., 2022). For example, Keskar et al.
(2019) train a model with control codes that allow
to influence the generation by prepending them to
the prompt.

In similar spirit is the research in so called model
alignment. The alignment of a model describes its

fine-tuning with the goal of increasing the proba-
bility of desired outputs, i.e., those aligning with
the intended use and human preferences, and de-
creasing the chance of undesired outputs. This has
recently been achieved both with the RLHF frame-
work (Ouyang et al., 2022) and standard supervised
training (Zhou et al., 2023).

TOD Systems and the MultiWOZ Dataset.
Since the publication of the original MultiWOZ
(Budzianowski et al., 2018) dataset, there have been
multiple updated versions, mostly to fix label noise
(Eric et al., 2020; Zhang et al., 2022; Ye et al.,
2022). The setting introduced by the dataset allows
for two types of evaluation: Dialog State Tracking
(DST) and Response Evaluation. Since recent pub-
lications manage to get near-perfect results for the
Response Evaluation as measured by the inform
and success metric (Cheng et al., 2022), we decide
to focus on the DST task.

There has been varied research (e.g., Bang et al.,
2023; Zhao et al., 2022; He et al., 2022) on specific
model architectures, using distinct approaches to
solve the DST task. Kim et al. (2020) propose
SOM-DST, which uses an explicit state memory
and predicts the operation to perform for each slot
at every turn, e.g., carryover or update. On the
other hand, STAR (Ye et al., 2021) tries to leverage
the correlations between the slots with a slot self-
attention mechanism.

Constrained Beam Search. When generating
outputs with an NLG model, the goal of exhaus-
tively finding the sequence with the highest prob-
ability is infeasible in most cases. Since for a se-
quence of length m over a vocabulary with length
v, the computational cost would be O(vm). Ac-
cordingly, beam search is commonly adopted as an
approximation and used to create output sequences
with a trained LLM. Performing a beam search
with a beam size of b consists of keeping b can-
didates, for which a greedy search is continued,
and finally the candidate sequence with the highest
probability is picked as the prediction. The con-
strained beam search (CBS; Kim, 2022) is a variant
of this method, which tries to enforce the existence
of specific words, so-called constraints, in the out-
put. Since for the DST task it is important to have
utterances containing the entities exactly as given
in the annotation, we hope that adopting the CBS
scheme in our method will increase the amount of
annotations appearing in the generated utterances.

Synthetic Data Generation. The proposed ap-
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name: Broughton house gallery address: 98 king street postcode: cb11ln

broughton house gallery

The

I

The house

The 98 king street

The dog

The broughton house gallery

I am

I broughton house gallery

I was

...

...

...

...

...

...

Figure 2: Simplified example step of the constrained beam search principle with three beams. Constraints marked
with gray background, all constraints indicated on upper part.

proach is related to that of bootstrapping, which
predates the Deep Learning era and is based on the
triad of annotation a small amount of seed data,
training a model and finally applying the model to
unlabeled data, thereby generating silver-standard
data (Tang and Surdeanu, 2023). Bootstrapping
has recently been researched in Machine Learning
applications, e.g., Tang and Surdeanu (2023); Eyal
et al. (2021). The research into the generation of
synthetic data in the form of dialogs has recently
gained some interest, amplified by the advances
in pretrained LLMs. Kim et al. (2022) distill a
dataset containing 1.5 million social dialogs from
a LLM. They use the LLM to first derive a short
narrative and then again prompt the LLM to infer
a dialog based on it. A similar approach has been
studied by Miyazaki (2023), who address dialog
generation based on story plots. To this end, they
also investigate the prompting of LLMs. The syn-
thesis of social dialogs via prompting LLMs was
furthermore studied by Chen et al. (2023). They
also extend this from dyadic conversations to multi-
party dialogs, that contain more than two speakers.

3 Proposed Method and Materials

We use the MultiWOZ 2.4 (Ye et al., 2022) dataset
as the basis for all of our experiments. This dataset
is the result of multiple corrective iterations of
the original MultiWOZ data (Budzianowski et al.,
2018). It contains roughly ten thousand dialogs, of
which two thousand in total are reserved as valida-
tion and test data. We make use of the official split
between training, validation and test data. The di-
alogs were created with the Wizard-of-Oz (WOZ)

technique (Kelley, 1984), where the interaction
with a dialog system was imitated. While these can
therefore be regarded as gold-standard data, the
collection process is laborious and costly. To simu-
late a more realistic setting, we therefore randomly
sample n dialogs from the training data and pro-
ceed with them as if they were the only collected
conversations.

The goal of our method is to synthesize a large
amount of dialogs based on a small amount of col-
lected data. Instead of generating the whole di-
alog in one pass, we predict each utterance one
after another based on the turn annotations with a
sequence-to-sequence generator model. This can
be described as using the annotations as a blueprint
for the dialog.

The main steps of the method are given as 1.2, 2,
3, and 4 in Fig. 1. They first include the preprocess-
ing of the data, so they fit a specified input/output
format (x, y) for the sequence-to-sequence model
(1.2). This format is depicted in Fig. 3. With
this, we train a sequence-to-sequence model (2.) as
the generator ŷ = gCBS(x). We write a generator
model that uses the constrained beam search as its
decoding strategy as gCBS(x). Using the trained
gCBS(x) we perform the data augmentation by syn-
thesizing dialogs using CBS (3.), and finally train
the TOD system on this augmented data (4.). These
steps are described in more detail below.

3.1 Input and Output of the Generator

Our generator model ŷ = g(x) maps an input
string xi to an output utterance ŷi. An exam-
ple of the input to and output of the generator is
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Figure 3: An example of the input x and output y
that make up the training data as well as the output
ŷgCBS(x) of the trained generator with n = 2500. The
typo at "levaing" is part of the dataset.

given in Fig. 3. Each x is made up of some meta-
information, which we will call context, and the
previous utterance. Thus, for an utterance yi, the
input is constructed as the concatenation of the con-
text, the previous speaker and their utterance, and
the speaker of yi.

The context is constructed from

• the belief state (e.g., "train-leaveat: dontcare"
in Fig. 3),

• the turns labels (e.g., the second "train-leaveat:
dontcare" in Fig. 3 or "restaurant-name: the
missing sock" as an example from a different
utterance) and

• the turns index within the dialog (i.e., 6 in Fig.
3).

If the current utterance yi is a system utterance,
we also add the system act (e.g., "arrive: ?", if the
system asks the user when he wants to arrive) to
the context.

We introduce special tokens that indicate the
start and end of a certain part of meta-information
within the context. These markers are of the form
<b_META> ... <e_META>, with META ∈ {ctx,
bs, lbl, pos, sysact} for context, belief state, label,
position and system act, respectively.

To simulate the low resource settings, we ran-
domly sample n dialogs from all train data X in the
official MultiWOZ split to create a new training set
Xn. We define X n̄ = X \Xn to be the blueprints
which we will use for the data augmentation.

3.2 Constrained Beam Search
With the aim of improving the inclusion of the an-
notations into the generated dialogs, we evaluate

the effect of constrained beam search, which is im-
plemented in the transformers library (Wolf et al.,
2020). The main idea of CBS is to consider at ev-
ery decoding step not only the highest-probability
tokens, but also those defined as constraints. In
our case, the constraints are the entities or strings
contained in the annotations.

To avoid trivial but nonsensical outputs that sim-
ply concatenate the constraints, beams that do not
(yet) fulfill the constraints are also kept in con-
sideration during the decoding process. The im-
plementation groups all candidates into so-called
banks, depending on how close they are to fulfilling
the constraint. Through a round-robin selection, b
candidates, sourced from all banks, are preserved.
Therefore, both outputs that are already closer to
fulfilling the constraints, and those that are more
sensible while being further from the constraints,
are being considered. An example step of this con-
strained beam search generation is shown in Fig. 2.
In this example, an undesired sequence that could
be generated without the banks would be simply
concatenating the annotation to output "broughton
house gallery 98 king street cb11ln".

3.3 Data Augmentation Process

During the data augmentation process, we gener-
ate synthetic dialogs by creating each utterance
within the dialog one after another. This is visu-
alized in Fig. 4. The input string x, consisting of
context and previous utterance, is created from the
annotations of the current utterance and the previ-
ous utterance. During the training of the generator
g(x) or gCBS(x) (cf. step 2 in Fig. 1), we use the
ground-truth previous utterance, since these come
from available dialogs. The example output in 3
shows that the model correctly interprets the input
x and generates an utterance ŷ that contains the
information that the user does not have to leave by
a specific time. However, the information that the
user has to arrive by a certain time was not given
in the input (since it is missing in the annotation)
and thus is also not represented in ŷ.

During the augmentation of the data, i.e., synthe-
sizing new dialogs with the generator (cf. step 3
in Fig. 1), we use the previously model-generated
utterance to keep the scenario realistic. Therefore,
the evaluation of the models trained on the aug-
mented data, does not rely on any ground-truth
utterances.

In a real-world situation, the annotation for these
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Figure 4: Visualization of the data augmentation process. The generator g(x) creates the utterance predictions ŷ
from the input x, which is constructed based on the annotations a.

unknown dialogs X n̄, that we take from the un-
used MultiWOZ dialogs in the train split, will in
general not be readily available. But the method
needs annotations to be provided to the model as a
blueprint. A solution to this is to have the dialog
annotations created algorithmically. This is much
simpler to do with traditional methods, which can
be pattern-based, than to generate the dialog itself.

3.4 Training the TOD system
Once we have augmented the data by synthesizing
all utterances for the dialogs in X n̄, we can train the
TOD systems on this data. To this end, we keep the
structure and annotations of the MultiWOZ train
dataset but for all dialogs in X n̄, we replace the
ground-truth utterance with the synthetic one, i.e.,
we set yi := gCBS(xi) ∀ xi ∈ x, ∀ x ∈ X n̄.

4 Experiments

Our experiments can be divided into two stages.
The first stage consists of studying the generator
and relates to RQ 1 (feasibility) and RQ 2 (con-
strained beam search). The second focuses on the
dialog system and aims to answer RQ 3 (effective-
ness). To evaluate the proposed method, we look at
four different, simulated low(er) resource settings
to answer RQ 4 (magnitude of data). In each of
those, we assume that a certain amount n of an-
notated dialogs have been collected, which will
be used for the CG4T approach. Concretely, we
use n ∈ {150, 750, 1000, 2500} in an attempt to
understand the effect different magnitudes of data
have.

4.1 Experiments on the Generator
To train our generator models, we randomly split
Xn into a train, validation and test set, using a
70-10-20 split for each n, respectively. We further
filter the training data so that it contains only utter-
ances that have annotations. This has shown to be

beneficial in preliminary experiments. Therefore,
in each setting, the generator itself is trained and
evaluated with a different amount of data. This
is a necessary condition to realistically simulate
the different settings. We chose the BART Base
(Lewis et al., 2020) model as the architecture for
our generator and used the pretrained checkpoint
provided by the transformers library (Wolf et al.,
2020).

We trained each generator model on its respec-
tive training data for 50 epochs using the Cross
Entropy Loss, only saving the model with the low-
est loss on the validation set. This was consistently
achieved around the tenth epoch, after which the
model started overfitting. An example of a com-
pletely synthesized conversation is given in Fig. 5.

User: i am looking for a train that leaves from 
cambridge on wednesday.
Bot: there are 5 trains peterborough on wednesday.
User: i need to leave peterborough after 12:45.
Bot: tr1879 leaves at 13:06 on wednesday.
User: i am also looking for a train.
Bot: i have a train that will get you to peterborough 
by 13:56. it will cost 16.50 pounds per ticket.
User: can you book that for 1 person?
Bot: yes, please. 
User: i am also looking for a museum in the centre 
of town.
Bot: broughton house gallery is located at 98 king 
street, postcode cb11ln.
User: thanks.
Bot: you're welcome, i hope you enjoy your time in 
cambridge!

Figure 5: An example of a dialog synthesized by the
generator. The ground-truth dialog is shown in Fig. 6
in the appendix A. Speaker roles are added in bold to
improve readability.

To evaluate the generators, we investigate their
language generation capabilities as well as their
task completion, which we define as adhering to
the annotation. We use BERTScore (Zhang et al.,
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2019), which is especially suited to measure seman-
tic similarity, to evaluate the text generation. This
metric uses contextual BERT embeddings to calcu-
late the similarity between the generated sentence
and the ground-truth reference.

To measure the task-completion, we define the
mean annotation metric as

Annot =
1

k

k∑

j=1

(
1

l

l∑

i=1

z(ai, yj)), (1)

with ai being one annotation of all l annotations a,
yj is one of all k utterances and

z(ai, yj) =

{
1 ai is in yj ,

0 ai is not in yj .
(2)

In other words, we calculate the mean percentage
of annotations that are part of the generated utter-
ance. We define an annotation ai as consisting of
both the slot name and the slot value, since depend-
ing on the concrete utterance, containing the slot
name can be desirable. However, the annotations
are rather diverse, and the slot values do not only
contain information entities, e.g., restaurant names
or reservation times. So while in most cases we ex-
pect the text to contain exactly the slot value, there
are also annotations where a slot has, for example,
a boolean value. E.g., the slot "parking" for the do-
main hotel might have the value "yes". In this case,
we do not necessarily want the utterance to contain
the slot value but rather the slot name. Therefore,
we check both the slot name and its value for oc-
currence. Still, it is possible that neither the slot
name nor its value are supposed to be part of the
utterance as-is. Take as an example the annotation
"train-leaveat: dontcare". Therefore, to improve
the meaningfulness of the metric, we also report
it in proportion to the Annot of the test dataset
utterances (cf. Tab. 4). We write this as AnnotR.

4.2 Experiments on the Data Augmentation
The second stage of the experiments investigates
if the synthetic dialogs generated in the previous
experiments can improve the performance of TOD
systems by means of data augmentation. Since the
experiments on the constrained beam search have
shown positive results, we adopted this method
during the data augmentation.

That is, with gCBS(x) we synthesize dialogs for
all x ∈ X n̄ . To this end, we train two distinct
recent model architectures, where the publications

include an open-source code base. SOM-DST1

(Kim et al., 2020) is an approach using explicit state
memory and predicting the operation to perform
for each slot at every turn. The second architecture
is called STAR2 (Ye et al., 2021), which introduces
a slot self-attention mechanism to learn the correla-
tions between the slots. This method predicts the
slot-value-combination with the highest likelihood
and can thus be classified as ontology-based, while
SOM-DST can be classified as open-vocabulary,
using only the dialog context (Ye et al., 2022). We
trained both approaches with the hyperparameter
setup provided by their authors.

We utilize the Joint Goal Accuracy (JGA) (Nouri
and Hosseini-Asl, 2018) as a metric for this second
stage of experiments. JGA is commonly used to
evaluate models in the DST task. This metric mea-
sures, for each utterance, if the value for each slot
is exactly and correctly predicted. Hence, the JGA
is a rather strict evaluation metric. The results are
reported in Tab. 5.

4.3 Descriptive Statistics of the Generated
Data

We calculate the mean length and its standard de-
viation of the generated utterances and compare
them to the ground-truth statistics in Tab. 1. These
results show a trend of higher standard deviation
with larger n. This makes sense, as it shows that a
generator that was provided with more training data
is capable of synthesizing utterances with higher
diversity. The data at hand also shows that the
system utterances are longer on average in every
setting, including ground-truth. The average length
of synthesized texts stays roughly the same in all
n-scenarios for user and system utterances, respec-
tively.

However, in all of these settings, they are shorter
than in the ground-truth data. This can be explained
by the absence of, e.g., fill words or additional in-
formation that does not concern the slots since the
utterances are more tailored towards the annotation
and are less likely to contain additional words. An
example of this can be seen in the ground-truth
dialog in Fig. 6 in the appendix A. The user says
"i would like to go to peterborough and leave af-
ter 12:45, i have to attend a meeting beforehand",
while in the generated utterance (cf. Fig. 5), the
user says "i need to leave peterborough after 12:45".

1https://github.com/clovaai/som-dst
2https://github.com/smartyfh/DST-STAR
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n Length User Length System
150 48.37 ± 17.56 55.35 ± 22.90
750 44.03 ± 20.55 56.89 ± 28.88
1000 40.11 ± 22.73 56.83 ± 28.45
2500 44.57 ± 23.90 61.79 ± 34.07
gt 61.99 ± 29.04 89.22 ± 38.68

Table 1: µ±σ of the length of user and system utterances
for different n, where n = gt shows the statistics of the
ground-truth training data X . The length is measured
as the number of characters including punctuation and
white spaces.

Besides the mix-up of departure and destination,
the information about the user having to attend a
meeting is also left out. This is to be expected, as
the annotation does not track this information.

This can be seen as both a positive and a nega-
tive effect. On the one hand, the generator fails to
imitate the length of the utterances. On the other
hand, the synthesized texts are more concise.

We do not report the statistics on the number of
turns since, due to the generation process, where we
generate an utterance for each utterance-annotation
existing in the data, the number of turns in all n-
scenarios is the same as for the ground-truth data.

Furthermore, we evaluate the lexical diversity of
the generated utterances using the root type-token
ratio (RTTR; Guiraud, 1958) and the measure of
textual lexical diversity (MTLD; McCarthy and
Jarvis, 2010) with a threshold of 0.72. Both were
computed with the LexicalRichness library3. The
results, depicted in Tab. 2, are analogous to the
findings regarding the utterance length. A higher n
of available data consistently lead to higher lexical
richness for both user and system utterances, as
measured by both metrics. However, even in the
setting of n = 2500, the utterances do not reach the
lexical diversity of the ground-truth utterances. The
fact that system utterances invariably show higher
diversity can be explained by the usual course the
dialogs have, in that the system provides slot val-
ues, which can be expected to have more lexical
variance than the rest of the utterance since they
contain, e.g., restaurant names or booking refer-
ences.

5 Qualitative Error Analysis

To better understand the weaknesses of the gener-
ator, we performed a qualitative error analysis by

3https://github.com/LSYS/LexicalRichness

RTTR MTLD
n User System User System
150 2.29 3.02 26.18 36.07
750 2.42 4.09 32.08 43.76
1000 2.71 4.57 37.36 46.35
2500 3.33 6.17 46.10 55.67
gt 4.32 10.73 63.56 65.71

Table 2: Lexical richness measured as RTTR and MTLD
of user and system utterances for different n, where
n = gt shows the statistics of the ground-truth training
data X .

comparing generated dialogs to their ground-truth.
In the following, we will reference the errors with
regard to the generated dialog in Fig. 5 and its
ground-truth in Fig. 6 in the appendix A.

First, errors in the annotation will naturally be
replicated in the generated utterance. As an ex-
ample, while in the ground-truth the user requests
the reference number for the ticket and the system
delivers it, the generated dialog does not mention
the reference number at all. However, since the
annotation does not contain the reference number
either, we cannot expect it to be generated. Second,
we can see that sometimes the speaker role seems
to not be completely taken into account, leading
to formulations that are unexpected for the dia-
log system, such as the "yes, please" response the
system gave to the user’s request to book a train
ticket. Lastly, while the concrete text of the slot
values will in general be correct due to the con-
strained beam search, the embedding of them into
context still contains errors, both semantically and
syntactically. An example we can see in the gen-
erated dialog is first that the chatbot produces a
faulty utterance "there are 5 trains peterborough on
wednesday". Thus, at the same time, prematurely
giving the number of trains for the destination but
also not specifying it is the destination. The prema-
ture destination mention is due to it already being
part of the belief state annotation for this turn.

To sum up, while the model in general achieves
decent results, there are still multiple caveats, and
the error analysis emphasizes the importance of the
annotations.

6 Results and Discussion

Our experiments show that the model is able to gen-
erate utterances based on the provided annotations.
These utterances resemble the language defined by
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F1 Precision Recall
n gCBS(x) g(x) gCBS(x) g(x) gCBS(x) g(x)

150 87.84 89.27 89.12 91.05 86.65 87.60
750 89.41 89.75 91.36 91.90 87.76 87.76
1000 89.25 89.60 91.09 91.77 87.54 87.60
2500 89.56 89.90 91.44 91.99 87.81 87.98

Table 3: F1, Precision and Recall of the BERTScore for the different scenarios with and without constrained beam
search as indicated by gCBS(x) and g(x), respectively. Better marked in bold for each metric and n, respectively.

the training data, as is shown by the BERTScore (cf.
Tab. 3). The improvements with increased n are
negligible for this metric. This can be attributed to
the fact that, due to fine-tuning a pretrained LLM,
the model already had good general language gen-
eration capabilities to begin with. However, with
regard to the average utterance length (cf. Tab. 1)
and lexical richness (cf. Tab. 2), the generated text
does not perfectly align with the training data. Nev-
ertheless, we consider the model to have a good,
but not perfect, language generation capability for
this specific task. Besides language generation, RQ
1 also tends to the task-completion, which in this
case is adhering to the annotations.

We report the results for the AnnotR metric in
Tab. 4. These show that the model is also capable of
generating utterances that adhere to the annotations.
The performances for the different n-scenarios are
comparable. It is an important insight that the
AnnotR metric is more expressive. This makes
up for a weakness of the metric, which stems from
the different kind of annotations that exist.

The dialog in Fig. 5 shows that when few anno-
tations are provided for an utterance, the genera-
tion can lead to an unfitting utterance. For exam-
ple, when the user asks to book the train ticket for
one person, the system answers with "yes, please".
From the usual dialog flow the MultiWOZ conver-
sations have, it is clear that this utterance usually
belongs to a user and not the system. The generator
mistakenly used this as a confirmation, even though
it is unfitting for this speaker in this scenario.

Since both the language generation and the task-
completion capabilities are sufficient, we answer
RQ 1 positively: We successfully used a pretrained
sequence-to-sequence model to generate synthetic
dialogs based on annotations.

The effect of the constrained beam search is also
shown in tables Tab. 3 and Tab. 4. As is to be
expected from the method, constraining the genera-
tion led to slightly worse results in the BERTScore

metrics. This is consistent over all n. However,
regarding the Annot metric, the constrained beam
search improved the outcome substantially. With
it, the AnnotR relative to the test data was near-
perfect over all n. A special case is n = 150, where
AnnotR > 1. This means that on average, the
utterances predicted by the generator model con-
tained more annotations than the actual test data.
This effect can be explained by the small sample
size, as well as the fact that the ground-truth Annot
of the test data over all n is roughly 0.73. The large
increase in Annot score with a small decline in
BERTScore metrics suggests that CBS is useful
for annotation-based generation, which leads us to
answer RQ 2 positively.

As a result, we utilized constrained beam search
for the second stage of experiments. Tab. 5 shows
the results for the selected TOD system architec-
tures for the n-scenarios. We report both the results
of using only these n dialogs, and additionally us-
ing the synthetic dialogs, i.e., with CG4T.

The first finding is that for all n and both ar-
chitectures, CG4T did improve the JGA, therefore
showing that the synthetic dialogs generated from
annotations can indeed increase the performance
of both open-vocabulary and ontology-based TOD
systems. Consequently, we answer RQ 3 positively
as well. Still, the results show that with larger n,
the benefit gained through the usage of CG4T de-
creases. This is to be expected given the nature of
the method, which led us to pose RQ 4. Finally,
Tab. 5 demonstrates the significant differences in
JGA between the two approaches.

Regarding RQ 4 we evaluate the combined re-
sults from experiments in stages one and two. Stage
one showed that only a few gold standard dialogs
are needed to get good language generation ca-
pability. Moreover, thanks to CBS, we can also
attain satisfying results for task-completion. The
second stage showed that the more dialogs avail-
able, the lesser the improvement. From this we
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conclude that a) the less data one has, the more
sense it makes to use this method and b) for this
concrete scenario, the method is nonessential past
a magnitude of 2500 dialogs.

Annot AnnotR
n gCBS(x) g(x) gCBS(x) g(x)

150 0.76 0.69 1.04 0.94
750 0.72 0.63 0.99 0.87
1000 0.71 0.62 0.98 0.85
2500 0.72 0.61 0.99 0.84

Table 4: Annot and AnnotR in relation to the test data
for the different scenarios with and without constrained
beam search as indicated by gCBS(x) and g(x), respec-
tively. Better marked in bold for each metric and n,
respectively.

STAR SOM-DST
n as is CG4T as is CG4T
150 3.50 42.40 1.49 23.83
750 38.86 57.92 21.65 31.79
1000 45.71 63.45 25.73 32.82
2500 63.55 64.97 35.18 36.02
8420 74.46 - 41.69 -

Table 5: JGA for different scenarios of available train-
ing data for the two reference models. The columns
marked "CG4T" report the results after applying the
proposed method to extend the number of training di-
alogs to achieve n = 8420 with synthetic data. The
columns marked "as is" report results without data aug-
mentation. The last row shows the result when using the
full training data. Thus, CG4T is not applicable. Better
marked in bold for each setting and n, respectively.

7 Conclusion

In this work, we studied whether it is practicable
to synthesize dialogs based on annotations to aug-
ment the collected ground-truth data for training
a TOD system. To this end, we focused on four
research questions regarding the feasibility (RQ 1),
the effect of CBS during decoding (RQ 2), the per-
formance improvement when using the synthetic
dialogues to train a dialog system (RQ 3), and the
relation between available data and the effect of the
method (RQ 4).

We saw that even with small amounts of dialog,
we can train a generator that creates utterances from
annotations using a sequence-to-sequence strategy.

While the constrained beam search had slightly
adverse effects on the language generation capabil-

ities, it provided significant improvements to the
task-completion, i.e., adhering to the annotation.

Augmenting the training data with the synthetic
dialogues relevantly increased the performance of
the dialog system as measured by the JGA metric.

The smaller the number of available conversa-
tions, the greater the effect of the CG4T approach.
Past a scale of roughly 2500 collected ground-truth
dialogs, we would discourage augmenting the train-
ing data in this way since the improvements are
too small for the increased effort. Our research
showed at multiple stages the importance of having
annotations of the highest quality when using the
proposed approach.

Limitations

While offering multiple advantages discussed
above, our method also has some limitations and
drawbacks.

First, since CG4T relies on training a genera-
tor model, it inevitably requires additional effort
and computing time. One could also argue that
this requires more specific knowledge (e.g., pro-
gramming) than simply prompting a LLM such as
ChatGPT to generate dialogs via an API.

Second, as demonstrated by our experiments, the
proposed approach is only sensible up to a certain
scale of existing data, and it does take at least some
data to train the generator.

Third, the approach is heavily dependent on the
annotation. As shown on multiple occasions in
this work, if the annotation is lacking information,
the synthetic utterance will naturally not contain
it either. Therefore, to synthesize the dialogs that
will be used for training, one has to have access to
high-quality annotations.

Additionally, the approach needs to have the
blueprints to the dialog in the form of annotations.
If they do not exist in a real-world scenario, they
have to be generated in advance. We argue that
this is also feasible with traditional algorithms and
heuristics.

Lastly, our experiments are limited to the
MultiWOZ dataset. While it is reasonable to as-
sume that the general behavior will be similar for
conversations from other distributions, we did not
perform experiments on this.
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A Example ground-truth Dialog

User: i need to take a train out of 
cambridge , i will be leaving town on 
wednesday .
Bot: there are 5 trains out of cambridge 
on wednesday . do you have a departure 
time in mind ?
User: i would like to go to peterborough 
and leave after 12:45 , i have to attend a 
meeting beforehand .
Bot: tr1879 leaves at 13:06 on 
wednesday . will that work for you ?
User: what is the price of the fair and 
could you tell me what is the arrival time 
into peterborough ?
Bot: the price is 16.50 pounds and the 
train will arrive in peterborough by 
13:56 wednesday . would you like me to 
book a ticket for you ?
User: yes , 1 ticket please , can i also get 
the reference number ?.
Bot: i booked you 1 seat on tr1879 
departing cambridge for peterborough on 
wednesday at 13:06 , reference: 
xu1qlhvw . can i help further today ? 
User: i am also looking for a museum in 
centre . could you give me the address , 
postcode and phone number of 1 ?
Bot: the broughton house gallery is 
located at 98 king street , postcode 
cb11ln . their phone number is 
01223314960 . is there anything else you 
need ?
User: that s all i need right now . 
thanks , you have been very helpful !

Figure 6: The ground-truth to the synthesized dialog
in Fig. 5. Speaker roles are added in bold to improve
readability.
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Abstract

Relation extraction (RE) is one of the tasks
behind many relevant natural language process-
ing (NLP) applications. Exploiting the infor-
mation hidden in millions of scholarly articles
by leveraging NLP, specifically RE, systems
could benefit studies in specialized domains,
e.g. biomedicine and biodiversity. Although
deep learning (DL)-based methods have shown
state-of-the-art performance in many NLP tasks
including RE, DL for domain-specific RE sys-
tems has been hindered by the lack of expert-
labeled datasets which are typically required to
train such methods. In this paper, we take ad-
vantage of the zero-shot (i.e., not requiring any
labeled data) capability of pattern-based meth-
ods for RE using a rule-based approach, com-
bined with templates for natural language infer-
ence (NLI) transformer models. We present our
hybrid method for RE that exploits the advan-
tages of both methods, i.e., interpretability of
rules and transferability of transformers. Evalu-
ated on a corpus of biodiversity literature with
annotated relations, our hybrid method demon-
strated an improvement of up to 15 percent-
age points in recall and best performance over
solely rule-based and transformer-based meth-
ods with F1-scores ranging from 89.61% to
96.75% for reproductive condition - temporal
expression relations, and ranging from 85.39%
to 89.90% for habitat - geographic location re-
lations.

1 Introduction

Relation extraction (RE) is a Natural Language
Processing (NLP) task that is concerned with the
identification of binary semantic relationships be-
tween entities or concepts in text. RE predicts

whether a relationship holds between two entities
(or concepts), based on the context of the sentence.
Many approaches to RE take as input a sentence
together with pre-extracted named entities (within
the sentence), and identify relations between those
entities using heuristics or machine learning-based
approaches (Detroja et al., 2023). For example, in
the sentence “Semangkok Forest Reserve is a des-
ignated hill dipterocarp forest conservation area
located in Selangor state about 60 km north of
Kuala Lumpur, while Pasoh Forest Reserve, is a
designated lowland dipterocarp forest conservation
area in Negeri Sembilan about 60 km east - south-
east of Kuala Lumpur, Peninsular Malaysia”,1 an
RE system should be able to identify the relation-
ship of the geographic location entity “Semangkok
Forest Reserve” with the habitat entity “hill diptero-
carp forest”, but no relation between “Semangkok
Forest Reserve” and “lowland dipterocarp forest”.
This type of information is helpful in associating in-
formation on habitats with geographic distribution
of species.

Extracting information from text is better guided
by domain knowledge of the targeted use case
(Chiticariu et al., 2013; Waltl et al., 2018; Wu et al.,
2022). For example, in the biodiversity domain,
methods for extracting a plant species’ geographic
location with related habitat information, and re-
productive condition (i.e., reproductive status) with
related temporal expression that exist in biodiver-

1Source: Tani, N., et al. (2016). Selective logging sim-
ulations and male fecundity variation support customisation
of management regimes for specific groups of dipterocarp
species in Peninsular Malaysia. Journal of Tropical Forest
Science, p370.
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sity texts, are better crafted with the involvement
of domain experts. Rule-based methods lend them-
selves well to domain-specific RE tasks (Aljamel
et al., 2015; Peng et al., 2016; Wang et al., 2022).
Aside from being highly interpretable, such meth-
ods define a set of rules manually created by do-
main experts and capture syntactic patterns that
are associated with different types of relations ob-
served in a corpus (Ravikumar et al., 2017; Korger
and Baumeister, 2021; Xu et al., 2022). Advance-
ments in machine learning (ML) and, more recently,
deep learning (DL), have led to state-of-the-art per-
formance in RE. ML and DL-based models learn
features from data giving them strong generaliza-
tion ability, adaptability, and scalability. However,
the performance of ML- and DL-based methods
relies on the availability of domain-specific anno-
tated datasets; this assumption is not always viable
for many specialised domains such as biodiversity,
law or finance (Thomas and Sivanesan, 2022).

In this paper, we integrate the advantages of both
rule-based and DL-based RE methods by develop-
ing a zero-shot hybrid RE approach. Our main
contribution is a novel hybrid RE method that is
underpinned by a two-step approach. In the first
step, we hand-crafted rules that capture syntactic
patterns, which were implemented based on regu-
lar expressions (regexes). The second step lever-
ages a state-of-the-art transformer model, Text-
to-Text Transfer Transformer or T5 (Raffel et al.,
2020), for natural language inference (NLI). We
created premise-hypothesis templates as input for
the T5-based NLI model, to determine if a relation
holds between a given pair of entities. Our method
presents the following advantages over other RE
methods: (1) improved performance over solely
rule-based or DL-based methods; (2) reduced com-
putational bottleneck since a substantial proportion
of the relations are extracted using the more com-
putationally efficient rule-based method; and (3)
reduced labeling cost associated with dataset or
corpus annotation.

We applied our method on documents drawn
from the body of literature on biodiversity – a rela-
tively under-resourced domain – focusing on two
types of relations: (1) plant species’ reproductive
conditions and their related temporal expressions,
and (2) habitats and their related geographic loca-
tions. Harvesting these details from biodiversity
literature will enable data-driven discovery of plant
species’ reproductive patterns and habitats. This,

in turn, will aid in more informed plans for refor-
estation and restoration of land.

In the remainder of this paper, we first provide
a review of prior work related to our study (Sec-
tion 2). This is followed by our problem formula-
tion (Section 3) and a description of the dataset we
developed and used in our experiments (Section 4).
Then, we present details of the zero-shot hybrid RE
approach that we developed (Section 5), and the
results of evaluating the hybrid model (Section 6).
We then analyze our results (Section 7) before pro-
viding a summary of our findings and directions
for future work in Section 8.

2 Related Work

Existing RE methods can be categorized into two
broad types: traditional and DL-based methods.
Traditional methods use either rules or machine
learning techniques (e.g., those based on statistical
classifiers trained on hand-crafted features) to ex-
tract a set of predefined relations from a corpus (De-
troja et al., 2023). Rule-based methods define rules,
which are a set of hand-crafted extraction patterns
typically created by domain experts (Agichtein and
Gravano, 2000; Fundel et al., 2007; Zhang et al.,
2009; Nguyen et al., 2015). These rules are based
on manually identified syntactic patterns that are
associated with different types of relations, as ob-
served in a corpus. Rules have the advantage of
being highly interpretable: they can be easily un-
derstood by humans, which makes them a good
choice for tasks where it is important to explain
the reasoning behind the system’s output. How-
ever, rule-based methods have two main limitations:
they can be time-consuming to create and they are
domain-dependent (e.g., a rule-based system that is
designed to identify relations in medical text may
not necessarily be able to identify relations in fi-
nancial text). Meanwhile, ML techniques for RE
are based on the supervised training of a classifi-
cation model on a dataset whereby relations have
been manually annotated. There are feature-based
methods (Miller et al., 2000; Kambhatla, 2004)
that use selected syntactic and semantic features
as the bases of similarity in training a classifica-
tion model. There are also kernel-based methods
(Zelenko et al., 2002; Culotta and Sorensen, 2004)
that use kernel functions to determine similarity
between two relation instance representations, to-
gether with a support vector machine (SVM) model
as a classifier. Although ML-based RE methods
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gained superiority in the past in terms of perfor-
mance, their performance is greatly dependent on
the set of selected features or the choice of kernel
functions. As they are trained in a supervised man-
ner, ML models also require labeled data which
can be costly.

DL methods that have emerged more recently
have been shown to outperform traditional meth-
ods for RE. These DL models learn higher-order,
abstract feature representations from sentences that
make them more generalizable, adaptable to new
domains, and scalable. With the emergence of
DL, models that employ neural architectures such
as convolutional neural networks (CNNs) (Liu
et al., 2013; dos Santos et al., 2015), recurrent
neural networks (RNN) (Vu et al., 2016; Zhang
and Wang, 2015), graph convolutional networks
(GCN) (Zhu et al., 2019), attention-based neural
networks (Wang et al., 2016; Xiao and Liu, 2016),
and transformer-based language models (Vaswani
et al., 2017; Le Guillarme and Thuiller, 2022) have
been utilized for RE tasks. However, similar to
traditional ML models, training or fine-tuning DL
models for downstream applications such as RE
also requires labeled data (Zhao et al., 2023).

In recent years, zero-shot transformer-based ap-
proaches to information extraction requiring no
labeled data have become popular (Liu et al., 2020;
Du and Cardie, 2021; Cheng et al., 2021; Li et al.,
2022). For instance, Levy et al. (2017) reduced
RE to the problem of answering simple reading
comprehension questions. They mapped each re-
lation type R(x, y) to at least one parameterized
natural-language question qx whose answer is y.
For example, the relation educated_at(x, y) can
be mapped to “Where did x study?” and “Which
university did x graduate from?”. The success
of these types of RE methods is primarily due
to the significant developments in and availabil-
ity of transformer-based pre-trained language mod-
els (PLMs) (Devlin et al., 2019; Liu et al., 2019;
Raffel et al., 2020). PLMs were pre-trained on
large-scale corpora using unsupervised learning ob-
jectives such as masked language modeling, and
were then fine-tuned for downstream tasks, such as
question answering (QA) and natural language in-
ference (NLI), using relatively smaller amounts of
task- or domain-specific labeled data (Devlin et al.,
2019). Zero-shot transformer-based approaches to
RE are based on the careful, systematic construc-
tion of inputs for PLMs, which then elicit a model

prediction (i.e., a label) that can be mapped to a
decision on whether a certain type of relation holds.
Zero-shot methods significantly reduce the label-
ing cost associated with RE because only a small
amount of labeled data is required, i.e., test samples
for evaluating the model.

In this work, we developed a zero-shot approach
to RE that is the first of its kind to be applied in
the biodiversity domain. Our zero-shot methods
for RE are based on rules and transformer mod-
els that – when combined – demonstrate superior
performance, in comparison to the use of rules or
transformers alone.

3 Problem Formulation

Given an input sentence I that is a sequence of to-
kens [t0, t1, ..., tn], a source entity ES = [ti, ..., tj ]
and a target entity ET = [tu, ...., tv], we treat the
RE task as a binary classification task, whereby
the input is the triple (I, ES , ET ), and the out-
put is y ∈ {0, 1} where 1 indicates that a rela-
tionship from the source entity to the target entity
(ES → ET ) exists, otherwise 0. In this work, we
focus on the two relation types described below.

The has_time relation: This holds between a
reproductive condition mention and a temporal ex-
pression, i.e., “reproductive condition has_time
temporal expression”, whereby the reproductive
condition mention is considered to be the source
and the temporal expression serves as the target.

The has_location relation: This holds be-
tween a habitat mention and a geographic location,
i.e., “habitat has_location geographic location”,
whereby the habitat mention is considered to be the
source and the geographic location is the target.

4 Dataset

To support the development of approaches to the
above-mentioned problem, we utilized a corpus
that is a subset2 of the gold standard corpus for
named entity recognition (NER) that was presented
in the work of Gabud et al. (2019) and was de-
signed in accordance to the annotation scheme used
in the COPIOUS project (Nguyen et al., 2019).
It contains information relevant to the occurrence
and reproductive patterns of a tropical tree family,
Dipterocarpaceae (dipterocarps). The corpus is

2Due to resource constraints, we made the decision at
the beginning of the study to have only a limited number of
documents manually annotated.
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comprised of 151 manually selected one- to two-
paragraph documents from online environmental
science and ecology journal repositories, e.g., Jour-
nal of Tropical Ecology, Journal of Ecology, etc.
For this RE work, we are particularly interested in
the annotations of the following named entity (NE)
types: habitat, geographic location, temporal ex-
pression, and reproductive condition. The descrip-
tions and examples of these NE types are shown
in Table 1. We selected sentences that contain at
least one occurrence of an entity pair, i.e., either a
pair of habitat and geographic location mentions,
or a pair of reproductive condition and temporal
expression mentions. We then produced relation an-
notations by creating data instances, each of which
is in the form (I, ES , ET , y), where I is the input
sentence, ES is the source entity, ET is the target
entity, and y is the relation label which is set to 1
if a binary relation between the source and target
entities hold, otherwise y is set to 0. As mentioned
in the previous section, we decided to focus on two
types of relations: has_time (which holds between
a reproductive condition mention and a temporal
expression), and has_location (which holds be-
tween a habitat mention and a geographic location).
Table 2 shows the two data instances belonging to
the has_location relation type, that were created
from the following example sentence that contains
one habitat and two geographic location entities:

“The main observation site was conserved forest at
Dongmakhai (18deg 20’ 03”N, 102deg 30’ 5”E,
190m a.s.l.).”

Concept Description and Example
Habitat Environments in which organ-

isms live. e.g., lowland mixed
dipterocarp forests

Geographic
Location

Any identifiable point or area
in the planet, ranging from con-
tinents, major bodies of water,
named landforms, countries, etc.
e.g., Sabah

Reproductive
Condition

Indicators of the specimens’ re-
productive behaviour. e.g., mast
fruiting

Temporal
Expression

Spans of text pertaining to points
in time. e.g., mid-August

Table 1: Descriptions and examples of our biodiversity
entity types of interest.

Two annotators manually provided the label y
for each data instance (I, ES , ET , y). Our more
senior annotator, a Biology degree holder, labeled
all the instances in the entire dataset, while a junior
annotator, a Computer Science student, provided
labels for 30% of the dataset only. They carried out
the annotation task independently. We calculated
the agreement between our two annotators in terms
of F1-score, and obtained an overall agreement of
95.87%. The agreement for the has_time relation
type is 94.36%, while that for the has_location
type is 97.37%. We resolved the disagreements by
involving a third annotator who is a co-author of
this work. The instances with disagreements were
re-evaluated and re-labeled by the third annotator.
We randomly split our dataset into 70% training
set, 10% development set, and 20% test set. Table
3 shows the number of instances for each relation
type.

Habitat Geo. Location
conserved forest Dongmakhai
conserved forest 18deg 20’ 03”N , 102deg

30’ 5”E

Table 2: Example data instances of the has_location
relation type based on the sentence, “The main obser-
vation site was conserved forest at Dongmakhai (18deg
20’ 03”N, 102deg 30’ 5”E, 190m a.s.l.).”

Relation Type train dev test
has_time 843 173 388
has_location 252 34 127

Table 3: Frequency of instances for each relation type
in our training (train), development (dev) and test sets.

5 Methods

In this section, we present our methods for extract-
ing (1) related reproductive condition and temporal
expressions (has_time), and (2) related habitat and
geographic location mentions (has_location).

5.1 Regular Expression-based Rules
We created rules based on syntactic patterns (i.e.,
word order) that were observed in sentences, and
implemented pattern-matching using regular ex-
pressions (regexes) to extract related biodiversity
entities. Given an input sentence, I , that is a se-
quence of tokens [t0, t1, ..., tn], we firstly catego-
rized every token ti according to the following
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Token
type

Symbol Description Entity type

source S a token that belongs to a named entity type identified
as a source category

reproductive condition
or habitat

target T a token that belongs to a named entity type identified
as a target category

temporal expression or
geographic location

delimiter d a token that is a separator in an enumeration comma or semicolon
other o any token that is neither a part of a named entity nor

a delimiter

Table 4: Types of tokens we designed for the regular expression-based rules.

types: source, target, delimiter, and other as shown
in Table 4. We define source as a token that belongs
to a named entity identified as a source entity type,
i.e., either reproductive condition (for has_time re-
lations) or habitat (for has_location relations).
Meanwhile, target is a token that belongs to a
named entity considered to be a target entity type,
i.e., temporal expression (for has_time relations)
or geographic location (for has_location rela-
tions). Delimiter is a token that acts as a separator
in an enumeration, i.e., a comma or semicolon.
Any token that is neither a part of a named entity
nor a delimiter is categorized as other. We con-
vert each token ti into a character representation
of the token’s type. Hence, we convert a sentence
into a string of characters, wherein each charac-
ter is either S (source), T (target), d (delimeter),
or o (other). We use this sequence of token types
as input to our regex method implemented using
Python’s regular expression module, re. To extract
relations, we created the following regex rules:

1. [S]+(o)?(To|Td|T)+ – source token that
may or may not be followed by one other
token, then followed by one or more target
tokens that may or may not be delimited by
any token, and

2. (?<!S)(To|Td|T)*T(o)?[S]+ – one or more
target tokens that may or may not be delimited
by any token that is not immediately preceded
by a source token, and followed by a source
token that may or may not be preceded by one
other token.

The entity spans (i.e., source and target tokens)
that match the patterns above are perceived to be
related, and are given the value 1 for y. Figure
1 shows a sample sentence with a text span that
matches regex rule 1 above.

5.2 Transformer-based Models

We cast our RE problem as a natural language in-
ference (NLI) problem that we address using a
transformer-based model. NLI is the task of deter-
mining whether a hypothesis is true (entailment),
false (contradiction), or unverifiable (neutral)
given a premise which corresponds to some known
knowledge about the subject. We selected the
Text-to-Text Transfer Transformer (T5) (Raffel
et al., 2020) as our model. Underpinned by a
transformer encoder-decoder architecture (Vaswani
et al., 2017), T5 casts various NLP tasks (e.g., ma-
chine translation, text classification, question an-
swering) as a sequence-to-sequence learning prob-
lem, therefore producing outputs via text genera-
tion. NLI is one of the downstream NLP tasks that
T5 was already fine-tuned on. We used the T5-large
model3 specifically, with 770 million parameters.
Given an input sentence I and two entities ES and
ET for which we wish to determine whether a rela-
tion holds,4 we systematically generate a premise-
hypothesis pair which serves as input to the NLI
model. Specifically, the input sentence I is taken as
the premise, while the hypothesis is created by pop-
ulating either of the following sentence templates
with E1 and E2:

• The <habitat> was in <geographic loca-
tion>.

• The <reproductive condition> event hap-
pened on <temporal expression>.

3Available at https://huggingface.co/t5-large
4The two entities are considered only if one of them is a re-

productive condition mention (ES) and the other is a temporal
expression (ET ), or if one of them is a habitat mention (ES)
and the other is a geographic location (ET ). This, respec-
tively, means that we are aiming to determine if a has_time
or has_location relation possibly holds between them.
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Figure 1: Example sentence with entity pairs that matched the rule [S]+(o)?(To|Td|T)+, where S corresponds to
reproductive condition (in bold) which is the source entity, T corresponds to temporal expression (underlined) which
is the target entity and o refers to other tokens. Source of example sentence: Medway, L. (1972). Phenology of a
tropical rain forest in Malaya. Biological Journal of the Linnean Society, 4(2), p128.

Table 5 provides some example inputs for the T5-
based NLI model, and its expected outputs. Due to
variations in noun forms or verb tenses, the auto-
matically generated hypothesis may not necessarily
be grammatically correct; for instance, the example
for the has_time relation in Table 5 would be more
correct if it reads “The fruiting event happened on
August 1963”. Nevertheless, we did not carry out
any engineering on our templates to handle such
variations, as we expected the transformers-based
NLI model to be robust to such grammatical errors.

For our purposes, we say that a relationship be-
tween two entities exists if the model’s predicted
class is entailment, otherwise the entities are con-
sidered to be unrelated.

5.3 Hybrid Approach: Rules and
Transformers

In order to improve performance and reduce re-
quired computational resources, we designed a
two-step solution to our RE problem. Here, we
combined our rule-based syntactic pattern match-
ing and transformer-based approaches. The first
step is to extract relations using our regex rules.
These are the regular expressions we designed to
extract consecutive entities in a sentence. The in-
stances that were not identified as not pertaining to
any relations using the first step, are fed into the
second step. In this step, our transformer-based
model is applied on the remaining instances. This
step produces a set of related entities using less
computational resources compared to running the
transformer-based model on the entire dataset.

We investigated the incorporation of an enhance-
ment to our hybrid approach: the use of compound
entities in filling in the hypothesis templates instead
of using single entity mentions, where applicable.
We designed rules to identify multiple, consecutive
entities in a given sentence that belong to the same

entity type and thus comprise a compound entity
Ecompound. The regular expression that was de-
signed to extract Ecompound is (Et|E){2,}, where
E is a named entity of a specific type, and t is any
token. Ecompound consists of consecutive entities
belonging to the same entity type E, which may or
may not be delimited by a token (t). For example,
given the sentence “It flowered in July - August
1963 and May - June 1968, setting fruit only on
1968.”, the reproductive condition is expressed by
the mention “flowered” and the compound tem-
poral expression is “July - August 1963 and May
- June 1968”. Instead of populating a hypothesis
template for every temporal expression, we formu-
lated only one hypothesis: “The flowered event
happened on July - August 1963 and May - June
1968.”

6 Evaluation and Results

In this paper, we designed rules based on our train-
ing set. We tested and refined these rules on a
held-out development (dev) set, and evaluated their
performance using the test set. Table 6 presents the
performance of our rule-based, transformer-based,
and hybrid RE methods in terms of precision, recall
and F1-score.

We applied the regular expression rules we cre-
ated to extract related entities in a given sentence.
This approach resulted in 100% precision for both
relation types. This means that our regex-based
rules can reliably identify positive samples, i.e.,
correct relations. However, this approach obtains
poor recall, i.e., 33.91% and 36.96% for has_time
and has_location relations, respectively, imply-
ing that our rules fail to identify many correct rela-
tions. This results in the lowest F1-scores (50.64%
and 53.97%, respectively) among the methods we
investigated. Even using a simple co-occurrence
approach obtains much higher F1-scores: 94.57%
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Relation
Type

Hypothesis
Template

Examples

Premise Hypothesis NLI Output

has_location The <habitat> was
in <geographic
location>.

Bukit Sai and Lesong
belong to the lowland
dipterocarp forest types
with D. aromatica being
the predominant species.

The
lowland
dipterocarp
forest was
in Bukit
Sai.

entailment

has_time The <reproductive
condition> event
happened on
<temporal
expression>.

It flowered in July -
August 1963 and May -
June 1968 , setting fruit
only in 1968.

The fruit
event
happened
on August
1963.

contradiction

Table 5: Examples of populated hypothesis templates for generating inputs (premise-hypothesis pairs) for the NLI
model, together with the corresponding expected outputs by the NLI model. A relation holds between two given
entities (in bold) only if the NLI model predicts entailment as the output label. Source of the first input sentence
(premise): Lee, S. L. (2000). Mating system parameters of Dryobalanops aromatica Gaertn. f.(Dipterocarpaceae)
in three different forest types and a seed orchard. Heredity, 85(4), p339, and Medway, L. (1972). Phenology of a
tropical rain forest in Malaya. Biological Journal of the Linnean Society, 4(2), p128.

for has_time and 84.02% for has_location rela-
tions.

To evaluate our transformer-based approach, we
applied our chosen T5 model on the NLI task, build-
ing upon the Huggingface library5. Our evaluation
on the test set yielded F1-scores higher than our
rule-based method. For the has_location relation
type, our transformer method produced an F1-score
of 84.75%, which is slightly higher than that of the
co-occurrence-based method (84.02%). However,
the transformer-based method was outperformed
by the co-occurrence-based one by 7.59 percentage
points (86.98% vs 94.57% in terms of F1-score).

It is noticeable that combining our rule-based ap-
proach with the transformer model to form a hybrid
approach improved the F1-score for the has_time
relation type from 86.98% to 89.61%, and from
84.75% to 85.39% for the has_location relation
type. Apart from improved performance, our hy-
brid approach is also more efficient, in that it re-
quires the application of the more computationally
expensive transformer models only on instances
that were not classified by the rule-based approach
as pertaining to relations.

We further improved our hybrid approach by us-
ing compound entities identified using regex rules

5Available at https://github.com/huggingface/
transformers

in generating premise-hypothesis pairs for the trans-
former model, instead of separate single entities.
We evaluated this method (referred to as ‘hybrid +
compound entities’ in Table 6) on our test set and
we observed that it obtained the highest F1-scores
among all our investigated methods. Specifically,
it led to an F1-score of 96.75% for has_time rela-
tions, and 89.90% for has_location relations.

7 Discussion

Our rule-based method is the most precise among
all the methods we developed in this study. How-
ever, it is also the method that yielded the lowest
recall, missing to identify more than half of true
relations in the test set. The rule-based approach is
suitable for applications that cannot compromise
on precision, e.g., systems that support clinical de-
cisions or automatic curation of databases. Its main
drawback, however, is its reliance on syntactic sim-
ilarity only, i.e., solely on patterns found within
sentences. Thus, it is not robust to noisy data; any
deviation from the expected sentence structure that
is captured by the rules, would affect the perfor-
mance of the method.

Among the methods presented in this paper, our
transformer-based method is the most straightfor-
ward to implement. It is based on the population of
natural-language hypothesis templates with named
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RE Approach
has_time has_location

P R F1 P R F1
Co-occurrence 89.69% 100.00% 94.57% 72.44% 100.00% 84.02%
Regex-based rules 100.00% 33.91% 50.64% 100.00% 36.96% 53.97%
Transformer (T5) 97.16% 78.74% 86.98% 88.24% 81.52% 84.75%
Hybrid 97.31% 83.05% 89.61% 88.37% 82.61% 85.39%
Hybrid + compound
entities

95.26% 98.28% 96.75% 83.96% 96.74% 89.90%

Table 6: Precision (P), Recall (R), and F1-score (F1) of our RE Methods on the test set for has_time and
has_location relations.

entities, which are then fed to the NLI model (to-
gether with their corresponding premise). The
transformer model paired with our hypothesis tem-
plates for RE provided us with F1-scores higher
than those obtained by our rule-based method.

Our hybrid approach combines the strengths of
the rule-based method (i.e., high precision) and the
transformer-based model (i.e., high recall). This
approach increased the recall for has_time rela-
tions by 4.28 percentage points and the recall for
has_location relations by 1.09 percentage points,
respectively. Error analysis of a small sample of in-
stances from the development dataset showed that
the hybrid method failed to identify relations that
involve entities in an enumeration. For example,
in the sentence “Ashton et al (1988) record the ex-
tent of mass flowerings in peninsular Malaysia and
Borneo for the period 1950 - 1983 based on state
forest department records (table 5)”,6 the hybrid
approach failed to determine that there is a rela-
tionship between “mass flowerings” and “1983”.
Thus, as an enhancement to the hybrid method, we
created regex rules to identify compound entities in
sentences, as described in Section 5.3. Where they
exist, these compound entities were used in populat-
ing the hypothesis templates, instead of individual
named entities. With the incorporation of this step,
the recall of the hybrid model was improved by
14-15 percentage points (i.e., 98.28% vs 83.05%
for the has_time and 96.74% vs 82.61% for the
has_location relations). This improved version
of the hybrid approach (‘hybrid + compound enti-
ties’) provided us with the best F1-scores for both
relation types (96.75% for has_time and 89.90%
for has_location), among all the approaches we

6Source: Appanah, S. (1993). Mass flowering of diptero-
carp forests in the aseasonal tropics. Journal of Biosciences,
18, p463.

developed. These results demonstrate the role that
rule-based methods can still play in complementing
state-of-the-art DL approaches, i.e., transformers,
enabling us to obtain optimal performance in RE.

8 Conclusions and Future Work

In this paper, we present our unsupervised rela-
tion extraction methods to extract relationships per-
taining to habitats and reproductive conditions of
plant species as described in text. These meth-
ods include: (1) regular expression-based rules; (2)
transformer-based models for NLI; (3) a hybrid ap-
proach combining our rules and transformer model;
and (4) an improved hybrid approach that captures
compound entities. Our rule-based method unde-
pinned by regexes obtained the highest precision
but lowest recall. Meanwhile, our transformer-
based method, which is based on the systematic
generation of premise-hypothesis pairs as input for
a T5-based NLI model, resulted in F1-score values
higher than those produced by the regex rules. The
strengths of the rule- and transformer-based meth-
ods are combined in our hybrid approach. With the
incorporation of compound entities in the genera-
tion of NLI inputs, our hybrid approach produced
the best performance, with F1-scores of 96.75%
for the has_time relation type, and 89.90% for the
has_location relation type. Our work shows that
even without a large labeled training dataset, it is
viable to extract – with satisfactory performance
– relations between entities from biodiversity lit-
erature. This also shows that the combination of
rules or pattern-based methods with state-of-the-art
transformer models can lead to an improvement in
the performance of RE, compared with a method
that is solely based on transformers.

For our future work, we plan to compare our
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hybrid approach with state-of-the-art zero-shot re-
lation extraction methods, e.g., those proposed by
Tran et al. (2022) and Najafi and Fyshe (2023), eval-
uating it on other datasets such as FewRel (Han
et al., 2018) and WikiZSL (Chen and Li, 2021)
which were drawn from the general domain. Fur-
thermore, we will explore using other transformer-
based models and formulating RE in terms of
other downstream tasks, e.g., question answering.
We also intend to integrate our hybrid approach
into an application, i.e., an information extraction
pipeline that can automate the curation of infor-
mation from literature to populate a biodiversity-
focused database.

Limitations

For this work, we focused on the requirements of
a biodiversity-focused project, which is concerned
with extracting information about the distribution
and reproductive patterns of species in the Dipte-
rocarpaceae (dipterocarps) family. We have evalu-
ated the performance of our RE methods only on
the dataset described above, and not on a wider
range of datasets. The main reason for this is the
lack of other datasets (drawn from the biodiversity
domain) that are concerned with similar relation
types. It is also worth noting that our RE methods
are able to extract intra-sentential relations only,
i.e., relations between entities within the same sen-
tence.
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