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Abstract

Directly learning from complex examples is
generally problematic for humans and ma-
chines. Indeed, a better strategy is expos-
ing learners to examples in a reasonable,
pedagogically-motivated order. Curriculum
Learning (CL) has been proposed to import
this strategy when training machine learning
models. In this paper, building on Curriculum
Learning, we propose a novel, linguistically
motivated measure to determine example com-
plexity for organizing examples during learn-
ing. Our complexity measure - LRC- is based
on length, rarity, and comprehensibility. Our
resulting learning model is CL-LRC, that is, CL
with LRC. Experiments on downstream tasks
show that CL-LRC outperforms existing CL
and non-CL methods for training BERT and
RoBERTa from scratch. Furthermore, we an-
alyzed different measures, including perplex-
ity, loss, and learning curve of different models
pre-trained from scratch, showing that CL-LRC
performs better than the state-of-the-art.

1 Introduction

Pre-trained Transformers are sweeping away all
other methods of natural language understanding.
These models outperform all previous methods and
sometimes even humans in many NLP tasks (Wang
et al., 2018, 2020; Kalyan et al., 2021; Guo et al.,
2022). Pre-training on unlabeled large-scale cor-
pora seems to be the way that increases perfor-
mance (Ranaldi et al., 2022). For example, BERT
is pre-trained on an English corpus of 3.300 mil-
lion words consisting of books (Zhu et al., 2015)
and Wikipedia. However, training these models
with large corpora is quite expensive in terms of
computation time and memory.

The problem of optimizing the computational
resources that Transformers need is tackled in
three main ways: by re-modeling pre-training tasks
(Yang et al., 2019a; Clark et al., 2020), by studying

techniques to produce lighter architectures (Sanh
et al., 2019; Liu et al., 2019), and by working with
data (Moore and Lewis, 2010; Gururangan et al.,
2020; Chang et al., 2021).

Architecture-level and model-level optimization
techniques have been extensively studied in the
context of pre-training methods for NLP. Data-level
approaches have yet to be explored. To this end,
we adopted a data-level strategy called Curriculum
Learning (CL), which stems from the complexity
of training samples so that the model can achieve
better performances.

Starting from the idea for which humans and
animals acquire first elemental concepts and then,
gradually, more complex ones, Bengio et al. (2009)
proposed CL and demonstrated its benefits in shape
recognition. This approach presents training data
in order of difficulty, starting with easy examples
and increasing the degree in parallel with learning.

The application of CL in Pre-trained Language
Models (PLMs) has limitations. One of the most
critical challenges is to find a criterion for mea-
suring the difficulty of training samples. In super-
vised tasks, sorting training batches by length and
repetitiveness of certain patterns paid off (Kocmi
and Bojar, 2017; Chang et al., 2021). In the semi-
supervised PLMs, word representations are learned
by optimizing loss in the masked language model-
ing tasks using a set of contiguous blocks of fixed-
length text. Nagatsuka et al. (2021) proposed a CL
strategy focused on training the self-attention mech-
anism from shorter blocks to longer ones. This is
because each head of this mechanism seems to be
more attentive to local dependencies than global
ones (Kovaleva et al., 2019; Sukhbaatar et al., 2019;
Podkorytov et al., 2021).

In this paper, building on Curriculum Learning,
we propose a novel, linguistically motivated mea-
sure to determine example complexity. This mea-
sure - LRC- is based on length, rarity, and compre-
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hensibility and sorts text complexity into blocks
that increase in dimensionality gradually during
pre-training of BERT and its variants.

Moreover, by exploiting the organization of the
example, our method avoids the loss of context
common in standard CL methods applied to PLMs
(Nagatsuka et al., 2021). Using a small-scale cor-
pus, experimental results demonstrated that our
approach outperforms the other methods on GLUE
tasks, and it requires fewer examples to achieve
the same results. Finally, we showed that CL-LRC
achieves sustainable performance compared to CL
in terms of perplexity, loss, and learning curves of
the different models pre-trained from scratch.

2 Related Works

The main studies for optimizing computational
resources and increasing the learning capabili-
ties of Pre-trained Language Models (PLMs) are
architecture-based, learning model-based, and, fi-
nally, data-driven. Although previous works have
demonstrated the functionality of architecture-level
and model-level approaches, they still need to im-
prove. Yang et al. (2019b), have introduced permu-
tation language modeling that allows models to cap-
ture bidirectional contexts and has performed well
on long-dependency contexts but requires more
data and computational resources to train and de-
ploy. Clark et al. (2020), have reduced compu-
tational costs by modifying the traditional MLM
with a discriminator that, in turn, could have limita-
tions in tasks that require a deep understanding of
long-term dependencies or complex relationships
between words and concepts. Sanh et al. (2019);
Lan et al. (2020) have used parameter reduction
techniques and have achieved a light version of
BERT that is faster and more lightweight but is
not as effective as BERT in tuning parameters on
specific tasks. Liu et al. (2019) have improved
BERT pre-training by introducing dynamic mask-
ing in the MLM task and eliminating the NSP task.
These structural changes are the key to increasing
the model’s performance in downstream tasks, but
more data are needed to achieve the same results
than in the pre-training of BERT. The performance
achieved by optimization at the architecture and
training levels is a difficult point of resistance to
overcome. While these topics have been exten-
sively studied in the context of PLMs, the data-level
approach still needs to be explored.

Although numerous variants of BERT succeed

in fixing some critical aspects of pre-training, there
open up many gaps at the computational and per-
formance level on downstream tasks. Many stud-
ies have found that the multi-headed self-attention
mechanism requires more computational effort.
Since each head of this mechanism seems to be
more attentive to local dependencies than global
ones (Kovaleva et al., 2019; Sukhbaatar et al.,
2019; Podkorytov et al., 2021), training local self-
attention in shorter blocks seems to be less complex
than training global self-attention in longer blocks.
Therefore, using the size of the input text block is
key to measuring the difficulty level of the train-
ing samples. For these reasons, Nagatsuka et al.
(2021) have proposed a Curriculum Learning (CL)
strategy focused on hands-on training of the self-
attention mechanism. In particular, they applied
the strategy directly to BERT pre-training, exploit-
ing the input text block size in the context of the
self-attention mechanism as a measure of difficulty
for BERT pre-training.

Beyond the world of PLMs, many studies on CL
have used sentence length, external resources, or in-
put sequences to measure difficulty in various NLP
tasks. Spitkovsky et al. (2010) have proposed a CL-
based method for parsing tasks. Kocmi and Bojar
(2017) have proposed a text length-based method
on no transformer-based models for tasks of neural
machine translation. While Xu et al. (2020) also
included the rarity of some terms by applying the
method for the reading comprehension task. Lee
et al. (2022) propose a gradual masking mechanism
of concepts for pre-training the language model that
obtains impressive results but is tied to the knowl-
edge graph. In this paper, we propose text complex-
ity techniques coupled with input text block size in
the context of the self-attention mechanism. The
two approaches are used to measure the difficulty
of BERT pre-training. Our proposal adds a fur-
ther light step where pre-training text complexity is
computed to the incremental CL proposed in (Na-
gatsuka et al., 2021). Our model achieves higher
performance than other methods on downstream
tasks.

3 Methods

Since language has a structure, organizing exam-
ples during pre-training can improve model per-
formance. Curriculum Learning (CL) is a training
method based on the idea that training algorithms
can achieve better results when training data are
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Figure 1: Curriculum Learning method overview.

presented in accordance with the model’s current
skills. We propose CL-LRC that adds to the stan-
dard CL, a measure used to determine example
complexity during the pre-training (see Figure 1).

The CL-LRC method consists of three phases:
(a) sorting the corpus according to our complexity
measure, (b) partitioning the corpus according to
specific block sizes, and (c) gradual pre-training
by increasing block sizes. Firstly, we sorted the
corpus by complexity measure, starting with the
less complex sentences to more complex ones (Sec-
tion 3.2). Secondly, we split the sorted corpus into
a series of input blocks of predefined length (Sec-
tion 3.3.2). Finally, we trained a model by shifting
the training samples from the short block-size to
the long one, depending on the predefined number
of training steps (Section 3.3.3). Pre-training was
done by masking some block tokens randomly, as
precedes the Masked Language Modeling (MLM)
task (Devlin et al., 2019). In this section, we de-
scribe the MLM task and the details of the three
phases of our CL-LRC approach.

3.1 Masked Language Modeling

BERT training consists of two phases: pre-training
and fine-tuning. Two semi-supervised tasks are
performed during pre-training: Masked Language
Modeling (MLM) and Next Sentence Prediction
(NSP). Liu et al. (2019) in RoBERTa eliminated

the NSP task by showing that it did not have a sig-
nificant benefit on the model’s overall performance
in downstream tasks and may even have a negative
impact on performance, as it introduces noise and
bias into the model. For this reason, in this paper,
we focus only on MLM by making a methodology
adaptable for both BERT and RoBERTa.

During MLM, tokens in a block are randomly
masked. About 15% of the tokens are masked (De-
vlin et al., 2019), and the model is asked to predict
the original tokens. It allows processing a bidirec-
tional context without information leaking between
layers. Given the sequence s = w0, w2, ..., wT

of tokens, where T is the block size. Randomly
masking an arbitrary number of tokens, an input
sequence ŝ is obtained. Given the corrupted se-
quence ŝ, MLM predicts the original sequence s.
The training objective is formulated as:

max
θ

log pθ(s|ŝ) ≈
T∑
i=0

mi log pθ (wi|w<i, w>i, )

(1)
where wi is the expected token at the position, and
i and θ are the model parameters. mi is a flag
indicating the presence of a masked token. If wi is
masked mi = 1, otherwise 0.
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Sentence dL(s) dR(s) dC(s) dLRC(s)

= = Major themes = = 45 0.17 10.5 0.33
The Feast of the Goat’s major themes include political corrup-
tion, machismo, memory, and writing and power. Olga Lorenzo,
reviewer for The Melbourne Age, suggests that overall Vargas
Llosa’s aim is to reveal the irrational forces of Latin tradition that
give rise to despotism.

= = Reign = = 46 0.17 10.3 0.41
According to the Augustan History, Odaenathus was declared king
of Palmyra as soon as the news of the Roman defeat at Edessa
reached the city. It is not known if Odaenathus contacted Fulvius
Macrianus and there is no evidence that he took orders from him.

Table 1: Examples of the complexity values produced by the metrics defined in section 3.2.

3.2 Complexity
Our complexity measure - LRC - is the core of
our method. The complexity of a textual exam-
ple is reflected in many ways, e.g., the length of
the context, the use of rare words, or the magni-
tude of the learning goal. Since the Masked Lan-
guage Modeling task should aim to learn language
from context merely as humans do, these heuristics
seem fitting for the Curriculum Learning of PLMs.
Firstly, we used the sentence length heuristic to
compute the length of sentences of the pre-training
corpus (3.2.1). Secondly, we used the rarity heuris-
tic to compute the rarity of words in the corpus
(3.2.2). Finally, we used the comprehensibility
metric or, more commonly, Flesch-Kincaid read-
ability (3.2.3). The aggregation of these three val-
ues forms dLRC , the cornerstone element of our
model (3.3.1).

In the rest of this section, we denote our train-
ing corpus as a collection of D sentences, {si}Di=0,
where each sentence is a sequence of words de-
noted with si = {wi

0, w
i
1, ..., w

i
n}.

3.2.1 Sentence Length
Complexity is built on sentence length, starting
from the intuition that longer sequences are more
difficult to encode and that there may be a likeli-
hood that they will be cut off, thus losing context
(Kocmi and Bojar, 2017). Therefore, longer sen-
tences would be more prone to the loss of context
in MLM. Although Devlin et al. (2019) are not con-
cerned about this problem, the work proposed by
Nagatsuka et al. (2021) uses different truncations
shorter than the value recommended in (Liu et al.,
2019). It is defined as:

dL(si) = length(si) (2)

we calculate this value for each sentence si of
our corpus D, obtaining the dLmax and dLmin ,
which are the maximum and minimum values of
the lengths. Finally, we normalize the values:

d̂L(si) =
dL(si)− dLmin

dLmax − dLmin

,∀i ∈ [0, |D|]. (3)

3.2.2 Rarity
The rarity of words in a sentence, introduced by
Platanios et al. (2019), is defined as the probabil-
ity product of unigrams. This metric implicitly
represents information about the sentence length
since the scores of longer sentences are the sum
of more words and thus are likely to be more sig-
nificant. Given a corpus of sentences, {si}Di=0, the
complexity metric for word rarity is defined as:

dR(si)
∆
= −

Ni∑
k=1

log p
(
wi
k

)
(4)

where we use logarithms of word probabilities to
prevent numerical errors. Note that negation is used
because we define less likely (i.e., rare) sentences
as more complex. The component p(w) is defined
as:

p(w)
∆
=

1

Ntotal

M∑
i=1

Ni∑
k=1

1wi
k=w (5)

for each w unique word in corpus and 1condition

is the indicator function which is equal to 1 if its
condition is satisfied and 0 otherwise. We calculate
this value for each sentence si of our corpus D,
obtaining the dRmax and dRmin , which are the max-
imum and minimum rarities for sentences. Finally,
we normalize the values:

d̂R(si) =
dR(si)− dRmin

dRmax − dRmin

, ∀i ∈ [0, |D|]. (6)
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3.2.3 Readability Metric
Common factors for measuring comprehensibil-
ity or more common readability are Speed of per-
ception, Perceivability in peripheral vision, Reflex
blink technique, Speed Reading, Eye movements,
Reading fatigue, Cognitively motivated features,
Word difficulty, and N-gram analysis. Unfortu-
nately, it is not always possible to capture all these
features.

Accordingly, we used the Flesch-Kincaid metric
(Talburt, 1986). This metric is a tool used to assess
the comprehensibility of a text. It is based on the
length of sentences and words within a text and
provides a score that indicates the text’s difficulty
level. The lower the score, the easier it is to read
and comprehend the text. The formula for calcu-
lating the Flesch-Kincaid Grade Level score is as
follows:

dC(si) = 0.39
avg(dL(si))

100
+

11.8
avg(dL(wi))

100
− 15.59

(7)

where avg(dL(si)) average sentence length is the
number of words in a sentence divided by the num-
ber of sentences, and avg(dL(wi) is the average
word length, i.e. is the number of syllables per
word divided by the number of words. The value
0.39 is used to scale the effect of the average sen-
tence length so that it can be compared to the effect
of the average word length, weighted by the value
11.8. The final score is then adjusted by subtract-
ing the value of 15.59, which is used to adjust the
score scale to match the grading levels used in ed-
ucation more closely. We calculate this value for
each sentence si and obtain the maximum dCmax

and the minimum dCmin scores. Finally, we nor-
malize these values:

d̂C(si) =
dC(si)− dCmin

dCmax − dCmin

,∀i ∈ [0, |D|]. (8)

3.3 Curriculum Learning with LRC
This section describes how we utilize the above
complexity metrics in the Curriculum Learning ap-
proach.

3.3.1 Applying Complexity Heuristics
In the first phase, we estimate the complexity of
each sentence dLRC(si) by adding the normalized
values of length d̂L(si), rarity d̂R(si), and readabil-
ity score d̂C(si), that is:

dLRC(si) = d̂L(si) + d̂R(si) + d̂C(si) (9)

Then, we sort the sentences of the original cor-
pus by order of increasing complexity before the
pre-training phase. Finally, we recompose the
re-ordered corpus ready for pre-training. Table
1 shows the values for three examples from the
WikiText-2 corpus sorted by their respective com-
plexity values. These heuristics are lightweight,
using only 16GB of memory, we can process up to
20k sentences per second for calculating sentence
rarity scores and up to 150k sentences per second
for calculating sentence length scores.

3.3.2 Splitting a Corpus-Based on Block-sizes
In the second phase, following the directions of Na-
gatsuka et al. (2021), we divided the original corpus
into training samples of the specified size. Each
input text for BERT pre-training, called ’block’
(Devlin et al., 2019), should not be linguistically
consistent as a sentence but a fixed interval of con-
tiguous text. Thus, it is not guaranteed either that
the input is a period or that it begins with the first
word of a sentence. Moreover, after extensive ex-
periments, Liu et al. (2019) argue that it is desirable
for the input sequence to be at most 512 tokens. So
we follow this approach to obtain the block of a
given length from the corpus as a training sample.
The difference is the order, which is the reason why
it could be easier for a transformer to learn by order
of complexity. We trained a Byte-Pair Encoding
(BPE) at the byte level (Radford et al., 2019) to split
the raw text into a sequence of tokens. Byte-level
BPE allows the decomposition of words, including
words outside the vocabulary likely to appear dur-
ing testing, especially when using a small training
dataset. In the experiment, we set the vocabulary
size to 20, 000.

3.3.3 Gradual Training
In the third phase, we trained a step-by-step model
with four different block sizes, namely 64, 128,
256, and 512, using the corpus sorted by complex-
ity order. At first, we trained the model with the
shortest block size, 64, for an arbitrary number of
steps. Then, we retrained the model with block
sizes of 128 and 256, respectively, for the same
number of steps. Finally, we retrained the model
with the most extended block size of 512 until it
converges. We masked the 15% of tokens as recom-
mended in (Devlin et al., 2019). When restarting
training, we continuously initialized the learning
rate. We used the maximum batch size available
based on the block size to speed up training, as



942

Natural Language Inference Similarity & Paraphrase Single Sentence
Model WNLI RTE QNLI MNLI QQP MRPC SST-2 CoLA
Baseline (BERT) 57.73 52.16 59.63 55.63 68.41 69.85 80.56 72.40
Baseline (RoBERTa) 56.83 52.26 64.13 58.43 69.81 69.45 79.22 64.50
Total-Curriculum (BERT) 56.71 52.98 75.93 67.36 75.69 74.43 83.35 68.77
Total-Curriculum (RoBERTa) 56.83 53.42 78.71 66.18 76.35 72.79 83.48 65.72
Anti-Curriculum (BERT) 55.46 50.67 53.67 58.12 69.87 64.26 78.94 69.74
Anti-Curriculum (RoBERTa) 56.83 52.34 49.46 60.64 72.88 70.09 80.38 62.86
CurriculumLRC (BERT) 60.88 58.12 79.22 66.49 81.16 76.11 87.16 71.26
CurriculumLRC (RoBERTa) 57.28 56.05 81.13 66.25 78.68 74.26 85.94 65.19
Anti− CurriculumLRC (BERT) 56.44 50.33 54.32 57.95 69.12 65.11 79.21 69.16
Anti− CurriculumLRC (RoBERTa) 57.04 51.95 49.67 61.13 72.45 70.43 80.46 62.23

Table 2: Table of accuracies on GLUE task (Wang et al., 2020).

done in (Nagatsuka et al., 2021).

4 Experimental Results and Discussion

In the experiments, we evaluated our proposed CL-
LRC approach in model performance. Therefore,
we show that performances increase to the pro-
posed state of the art in (Nagatsuka et al., 2021).
In order to reproduce the results proposed in previ-
ous work, we used Wikitext-2 (Merity et al., 2017)
for pre-training BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019). For fine-tuning down-
stream tasks, we used the famous General Lan-
guage Understanding Evaluation (GLUE) dataset
(Wang et al., 2018). This choice was made to have
terms of comparison with state of the art and for
ease of retrieval in the huggingface library (Wolf
et al., 2019). Finally, we performed an ablation
study, perplexity, loss, and learning curves on dif-
ferent subsets of the dataset. All experiments were
performed on two NVIDIA RTX A6000 with 48
GB of memory. The code and model will be re-
leased for further research.

4.1 Data

Pre-training: BERT and RoBERTa are commonly
trained with large corpora, i.e., bookcorpus and
Wikipedia-dump with about 3 billion words (Zhu
et al., 2015). In this work, we used Wikitext-2
(Merity et al., 2017), a small corpus for simulations,
allowing pre-training with a limited computational
resource. Wikitext-2 is a standard language model
corpus with 720 good-quality articles from English
Wikipedia.

Fine-tuning: We fine-tuned the previously intro-
duced models on GLUE benchmarks (Wang et al.,
2018). GLUE consists of eight tasks to measure the
generalization performance of pre-trained language
models. The tasks in question are SST-2, MRPC,
QQP, MNLI, QNLI, RTE, WNLI, and CoLA.

4.2 Experimental setup

We performed three methods: the baseline, the
Total-Curriculum, a CL proposed by Nagat-
suka et al. (2021), and our CL-LRC named
CurriculumLRC . Hence, we conducted the ex-
periments proposed in (Nagatsuka et al., 2021) us-
ing RoBERTa to observe CL on different architec-
tures, and we also reproduced the experiments with
BERT. Close to the baseline and Total-Curriculum
of BERT and RoBERTa, respectively, we devel-
oped our proposed CL-LRC, CurriculumLRC ,
consisting of three steps. First, we sorted the corpus
according to complexity, as introduced in section
3.2. Second, we sorted the corpus according to the
training samples’ difficulty level, using the train-
ing samples’ block-size as a metric, as explained
in section 3.3.2. Finally, we performed the step-
wise pre-training phase by increasing the block size
defined in section 3.3.3.

We used BERT and RoBERTa, which have 12
layers with a hidden size of 768, where each layer
has 12 attention heads. In addition, we used
AdamW with a learning rate of 1e-5 in pre-training
with four different batch sizes based on the block
sizes. In the various proposed training, the mod-
els were trained for 10, 000 steps with each block
dimension, except for the last block dimension,
where training continued until the models con-
verged. For a comparative evaluation, we trained
BERT and RoBERTa without CL, using random
sampling as the base model with the block dimen-
sionality set to 512, as recommended in (Devlin
et al., 2019). Finally, in fine-tuning, we employed
the same optimizer used in pre-training, and we set
a learning rate of 5e-5 and a batch-size of 64 for
all tasks. The total CL time is given by the training
time for each training step corresponding to each
block dimension.
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Figure 2: Curriculum Learning increasing pre-training size.

4.3 Results

The results from linguistically motivated pre-
training from the complexity of our CL-LRC, in
Tab. 2, Tab. 3 and Fig. 4 named CurriculumLRC ,
outperform models based on standard pre-training
and Total-Curriculum proposed in (Nagatsuka et al.,
2021). However, the batch-size increase supports
the performance achieved by Curriculum Learning.
Finally, in Figure 2, learning curves on accuracies
explain the trade-off between pre-training corpus
size and accuracy. These conclusions are derived
from the intrinsic evaluations (perplexity and loss)
and the extrinsic evaluations (downstream classifi-
cation tasks).

4.3.1 Our Methods vs Baseline & Curriculum
Learning

In particular, for 6 of 8 downstream tasks, our
CurriculumLRC outperformed the baselines and
the Total-Curriculum proposed by Nagatsuka et al.
(2021). Although the accuracies of the proposed
models are low compared to those of Liu et al.
(2019) and Devlin et al. (2019) due to small-scale
pre-training, improvements can be observed.

Firstly, the performance on WNLI, RTE, QNLI,
QQP, MRPC, and SST-2 was superior to the base-
line by a wide margin in particular (+17 on QNLI,
+8,8 on QQP, +4,8 in MRPC and +6,7 on SST-2)
for RoBERTa and (+5,9 on RTE, +19,5 on QNLI,
+12,7 on QQP, +6,2 in MRPC and +6,6 on SST-2)

for BERT. At the same time, the accuracy of MNLI
and CoLa was low in both the curriculum and the
baseline.

Secondly, comparing the performance of our
CurriculumLRC with the Total-Curriculum pro-
posed in (Nagatsuka et al., 2021), there were con-
siderable improvements (+3.7 on RTE, +2.4 on
QNLI, +2.3 on QQP and +2.5 on SST-2 ) for
RoBERTa and (+7.4 on RTE, +3,3 on QNLI, +5,5
on QQP and +4.4 on SST-2 ) for BERT.

Different from what was achieved in previous
tasks in MNLI and CoLA, there were no signifi-
cant improvements. In MNLI, although there were
improvements over baselines, CurriculumLRC

does not perform as well as Total-Curriculum
for the BERT model; instead, for RoBERTa, our
CurriculumLRC outperforms Total-Curriculum
and baseline.

In CoLA, although CurriculumLRC outper-
formed Total-Curriculum, the baselines were
higher for the BERT model.

4.3.2 Anti-Curriculum vs Curriculum

In the proposed pre-training, we perform standard-
curriculum training where we increase the block-
size of the training samples from the shortest to the
longest. Similarly, we propose Anti-Curriculum
training where the training samples with the longest
block size are first given to the model as the most
difficult. The difficulty level of the training samples
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is gradually reduced by shortening the block size
in the training process. By comparing standard-
curriculum training with Anti-Curriculum, which
follows the opposite sampling order, we show that
increasing block-size is an effective CL method for
PLMs.

Compared with standard-curriculum models, the
performances of the Anti-Curriculum models in
Table 2) were lower in all downstream tasks; Na-
gatsuka et al. (2021) had already observed this
phenomenon in RoBERTa, and we confirmed it
in BERT as well. Moreover, the effect of the addi-
tional level of complexity, which we have named
Anti−CurriculumLRC , does not contribute, and
the performances do not change dramatically. This
twofold result shows that increasing block com-
plexity is an effective CL method for PLMs.

4.3.3 Increasing pre-training size
Moreover, we show the learning curve by show-
ing the performance growth trend based on the
pre-training corpus size. Hence, we tested the
proposed models on different subsets of the pre-
training dataset. We considered four Wikitext-2
combinations composed of the 25%, 50%, 75%,
and finally, 100% of the original corpus introduced
in Section 4.1. We named the sub-portions, re-
spectively, Wiki1-4 concerning the portions con-
sidered. Our CurriculumLRC performed well
on small portions of the corpus, confirming what
was obtained in Table 2. In particular, in the bold
lines (Figure 2), it can be seen that our models
almost always exceed the baselines. Therefore
there is a trend toward increasing the amount of
data. By using half of the dataset, our strategy
CurriculumLRC reaches the same performance
as other methods that use all the datasets, indicat-
ing that the structure council, although simple, can
empower the model (Zanzotto et al., 2020).

4.3.4 Language Model Pre-training
Finally, we studied training loss and perplexity.
Cross-entropy loss and perplexity, defined as the
exponentiation of cross-entropy loss, where cross-
entropy loss is defined as the negative sum of the
mean log-likelihood of LM, are used to measure
the model’s confidence in the observed sequence.

From the results obtained in Figure 3, we can re-
mark that CurriculumLRC outperforms the base-
lines of both BERT and RoBERTa in terms of
loss during the different training steps. Likewise,
more promising results can be seen with a con-

stant trend than Total-Curriculum. Furthermore,
from the perplexity as the number of tokens in-
creases, our CurriculumLRC performs better than
Baseline and Total-Curriculum for both BERT and
RoBERTa. Table 4 confirms the results analyzed
during the training, where the final loss and per-
plexity on the evaluation set are shown.

4.4 Ablation Study
In this section, we delve into our method by
studying different complexity heuristics. Hence,
close to CurriculumLRC , we tested the previ-
ously proposed model using the three complexity
heuristics in the following way: CurriculumL,
CurriculumR, CurriculumC are composed
respectively of d̂L(si), d̂R(si) and d̂C(si),
CurriculumLR is composed of the sum of
d̂L(si) and d̂R(si), CurriculumRC is composed
of the sum of d̂R(si) and d̂C(si), and finally,
CurriculumLC is composed of the sum of d̂L(si)
and d̂C(si), where i ∈ [0, |D|].

Downstream of these experiments, we can ob-
serve that prevalently aggregation of length, rarity,
and comprehensibility outperform other configu-
rations. In five out of eight tasks (see Table 5)
CurriculumLRC model achieved the best accura-
cies. In the remaining tasks, the best results were
obtained by CurriculumLR for MRPC and QNLI
but only for RoBERTa. In difference, in MNLI, the
best result was obtained by the CurriculumRC

model. While for the non-aggregated models, i.e.,
CurriculumL, CurriculumR, CurriculumC ,
we can observe low downstream performances.

5 Conclusion

In this paper, building on Curriculum Learning, we
propose a novel measure, - LRC -, to determine ex-
ample complexity. This measure is applied during
pre-training to sort the corpus according to com-
plexity. Experiments conducted in a low-resource
environment have shown that the proposed method
leads to better performance in downstream tasks
and may be used to reduce the data needed for rea-
sonable performances. Furthermore, this approach
is straightforward and thus easy to implement.

In further research, we will expand the corpus
and validate the scalability of our approach. In
addition, it is important to continue investigating
different complexity metrics that could be modi-
fied during pre-training and their impact on model
performance.
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Limitation

The limitations of this study are as follows: The
proposed method was evaluated in a low-resource
environment, specifically using the Wikitext-2
dataset (Merity et al., 2017). Further experiments
on more massive datasets are needed to validate the
scalability of the proposed approach. The complex-
ity metric used in this study was based on the length
of the input text block. While this metric was suf-
ficient for the scope of this study, it is essential to
investigate different complexity metrics and their
effects on model performance in future works. This
study focused on BERT and RoBERTa models, but
it would be beneficial to explore the applicability
of the proposed method to other transformer-based
models in future research. In summary, the pro-
posed method has been shown to be effective in im-
proving performance on downstream tasks within
a limited simulation environment. Future research
should focus on further evaluating the scalability of
this approach in larger datasets, investigating dif-
ferent complexity metrics, and testing the method
with other transformer-based models. Addition-
ally, evaluating the effectiveness of the proposed
method in the fine-tuning stage is an interesting
direction to pursue.
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A Appendix

Table 3: Loss and Perplexity during the training phase.

B Appendix B

Model Loss Perplexity
Baseline (BERT) 2.7456 15.2844
Baseline (RoBERTa) 2.5122 14.5547

Total-Curriculum (BERT) 2.5678 14.7566
Total-Curriculum (RoBERTa) 2.4172 13.7893

Anti-Curriculum (BERT) 3.2971 16.4327
Anti-Curriculum (RoBERTa) 2.9226 15.2753

Anti− CurriculumLRC (BERT) 2.4876 13.6791
Anti− CurriculumLRC (RoBERTa) 2.4973 14.5781

CurriculumLRC (BERT) 2.2677 12.3356
CurriculumLRC (RoBERTa) 2.1784 13.6418

Table 4: Loss and Perplexity after Pre-training on Evaluation set.
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C Appendix
Natural Language Inference Similarity & Paraphrase Single Sentence

Model WNLI RTE QNLI MNLI QQP MRPC SST-2 CoLA
CurriculumL (BERT) 57.33 53.16 77.25 65.92 77.54 74.53 82.61 68.92
CurriculumL (RoBERTa) 56.91 53.44 77.23 65.14 77.21 72.95 83.18 63.72
CurriculumR (BERT) 57.28 53.12 77.15 65.82 77.66 74.31 82.66 69.02
CurriculumR (RoBERTa) 56.77 53.61 77.16 65.19 75.11 72.16 83.31 63.69
CurriculumC (BERT) 56.23 52.63 76.25 65.62 76.83 74.41 82.11 68.16
CurriculumC (RoBERTa) 56.22 54.13 76.91 64.12 74.83 71.91 83.19 63.66
CurriculumLR (BERT) 60.32 57.26 79.95 66.22 80.24 76.43 86.81 70.82
CurriculumLR (RoBERTa) 57.11 55.68 80.23 65.94 78.53 74.98 85.15 64.91
CurriculumRC (BERT) 57.94 53.36 77.35 67.88 76.12 74.22 82.93 70.82
CurriculumRC (RoBERTa) 55.82 53.21 77.41 65.91 75.89 73.06 82.78 65.46
CurriculumLC (BERT) 58.22 53.37 78.18 66.72 76.81 74.63 82.96 69.21
CurriculumLC (RoBERTa) 55.43 54.17 77.19 66.87 76.11 73.28 82.88 64.86
CurriculumLRC (BERT) 60.88 58.12 79.22 66.49 81.16 76.11 87.16 71.26
CurriculumLRC (RoBERTa) 57.28 56.05 81.13 66.25 78.68 74.26 85.94 65.19

Table 5: Table of accuracies of our Curriculum Learning method on different complexity measures.


