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Abstract

One solution to limited annotation budgets is
active learning (AL), a collaborative process
of human and machine to strategically select a
small but informative set of examples. While
current measures optimize AL from a pure ma-
chine learning perspective, we argue that for
a successful transfer into practice, additional
criteria must target the second pillar of AL,
the human annotator. In text classification,
e.g., where practitioners regularly encounter
datasets with an increased number of imbal-
anced classes, measures like F1 fall short when
finding all classes or identifying rare cases is
required. We therefore introduce four measures
that reflect class-related demands that users
place on data acquisition. In a comprehen-
sive comparison of uncertainty-based, diversity-
based, and hybrid query strategies on six dif-
ferent datasets, we find that strong F1 perfor-
mance is not necessarily associated with full
class coverage. Uncertainty sampling outper-
forms diversity sampling in selecting minority
classes and covering classes more efficiently,
while diversity sampling excels in selecting less
monotonous batches. Our empirical findings
emphasize that a holistic view is essential when
evaluating AL approaches to ensure their use-
fulness in practice – the actual, but often over-
looked, goal of development. To this end, stan-
dard measures for assessing the performance of
text classification need to be complemented by
such that more appropriately reflect user needs.

1 Introduction

A well-known problem in supervised machine
learning (ML) is scenarios where there are limited
resources (e.g., budget or time) to annotate data.
One approach to solving this problem is active
learning (AL; Cohn et al. 1996), a collaborative
process between human and machine. Through tar-
geted query strategies, AL aims to find a minimal

subset of examples whose labels provide the most
information for fitting a model.

In text classification, many applications have
been found to benefit from AL, such as sentiment
analysis, intent or topic detection (e.g., Li et al.,
2012; Zhang and Zhang, 2019; Tong and Koller,
2001). In addition to these task-specific studies,
increased efforts have been made to systematically
evaluate the performance of AL strategies across
different use cases (e.g., Settles, 2011; Siddhant
and Lipton, 2018; Ein-Dor et al., 2020).

Yet many academic studies ignore crucial real-
world factors, leading to flawed assessments of
practical utility. Literature has pointed out sev-
eral limitations, including: the difficulty of mak-
ing a-priori forecasts about the practical value of
strategies (Lowell et al., 2019); the fact that ac-
tively acquired datasets are often only effective
coupled with the respective model (Lowell et al.,
2019; Tomanek and Morik, 2011); the need for
out-of-distribution generalization (Longpre et al.,
2022); taking into account class imbalance that is
regularly encountered in real-world text classifica-
tion (Ein-Dor et al., 2020); and the consideration of
extreme multi-label scenarios (Wertz et al., 2022).

While these works seek to optimize AL from a
ML perspective, it has been largely neglected that
users themselves can present significant challenges
that may impact the success of AL. For instance,
it has been found that the effectiveness of AL de-
pends on the expertise of the annotators (Baldridge
and Palmer, 2009). Furthermore, examples selected
by acquisition functions tend to be more ambiguous
in terms of class assignment, leading to an increase
in annotation uncertainty (Settles, 2011) and anno-
tation time (Hachey et al., 2005). Such details can
affect and even challenge the entire AL process.

We therefore argue that a successful transition
from research to practice requires a more holis-
tic evaluation that targets both pillars of AL, the
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machine learner and the human annotator. In this
work, we focus primarily on the requirements that
the human annotator places on a successful AL pro-
cess. More precisely, we introduce evaluation mea-
sures that already take this perspective into account
during the development phase of AL approaches,
further referred to as “user-centric”1.

Considering the frequent scenario of multi-class
text classification with imbalanced classes (Ein-
Dor et al., 2020; Wertz et al., 2022), we contribute
through four novel measures that capture class-
related demands in AL. We compare different query
strategies coupled with BERT across six datasets
and analyze the results from both a standard ML
and a more user-centric perspective. Our findings
indicate that the proposed measures can provide
important insights into strengths and weaknesses
of AL that complement existing approaches.

2 Related Work

In evaluating the performance of AL, predictive
accuracy has generally been the main focus (Kot-
tke et al., 2017). Prior work has relied on task-
specific measures, such as accuracy and F1. Less
commonly, AL-specific measures like deficiency
(Yanık and Sezgin, 2015) were used. In addition,
several measures have addressed desirable charac-
teristics of query strategies, such as uncertainty of
the acquired examples (Yuan et al., 2020; Wang
et al., 2022), diversity of the acquired examples
(Zhdanov, 2019; Yuan et al., 2020), and representa-
tiveness w.r.t the full dataset (Zhu et al., 2008; Ein-
Dor et al., 2020). The majority of these measures
focus on the input or feature space, but representa-
tiveness has also been measured in the output label
space (Prabhu et al., 2019; Chaudhary et al., 2021).
Another focus besides predictive accuracy has been
on the computational effort (Schröder et al., 2022).

With a strong emphasis on ML performance,
the current measures tend to overlook the human
component in the real-world application of AL.
Although user studies have proven helpful in un-
covering user-centric pitfalls that can get in the
way of practicality (Settles, 2011; Peshterliev et al.,
2019), they are expensive and time-consuming,
which is why they are often avoided in research.
To overcome this hurdle, Calma and Sick (2017)

1In the following, we will use the terms human annotator
and user interchangeably. This terminology is adopted because
in certain application scenarios, the human role goes beyond
simply annotating data, as AL can simultaneously serve as an
analytical tool, e.g., for computational social science.

suggested to simulate user factors from real-world
applications when evaluating AL in an experimen-
tal setup (i.e., benchmarking on an already labeled
dataset). They addressed error-proneness in AL
and presented a theoretical framework for simulat-
ing annotation uncertainty of the user.

Our work follows this lead by incorporating user
factors into the laboratory evaluation of AL to
provide a simple alternative to costly user stud-
ies. However, we focus on the requirements that
users place on AL applications in order for them to
be considered beneficial in practice. In particular,
we address the need for achieving high or full class
coverage in a timely manner and covering minority
classes. Furthermore, as a solution approach to the
annotation uncertainty problem modeled by Calma
and Sick (2017), we hypothesize how examples
should be acquired to reduce annotation errors and
introduce a corresponding measure.

3 Methodology

In this section, we first give a more formal intro-
duction to AL. Then, we motivate and define the
four user-centric measures that are central to this
work.

3.1 Active Learning

We make use of the pool-based AL scenario (Lewis
and Gale, 1994), which assumes that there is a large
pool of unlabeled data U and a small set of labeled
data L at the beginning. We decided to acquire
examples in mini-batches, as a practical method.

AL proceeds according to the following scheme:
Using some query strategy, a batch B of examples
is selected (and consequently removed) from U .
These examples are then labeled by an oracle (e.g.,
a human annotator) and added to L. Finally, a
model is fit to L. This process is repeated until a
predefined stop criterion (e.g., a given annotation
budget) is met. In the initial run, a default set of
labeled examples is used to start the AL process.

3.2 Measures from User-Centric Perspective

In the following, we introduce four measures that
reflect demands users may place on AL in practice.
The definitions refer to single-label classification.

We draw motivation for the measures from two
sources. On the one hand, we refer to the scientific
literature, as specified below. On the other hand,
we relate directly to the needs of practical users
that have been communicated to us in our transdis-



998

ciplinary work over several years (among others
documented in Romberg and Escher, 2020).

Minority-aware Batch Distribution When
“dealing with imbalanced datasets in practice, the
rare classes are often the ones that are particularly
interesting.” as Wertz et al. (2022) state. This is
especially true for real-world use cases where AL
is used not only for effective dataset creation, but
also for efficient dataset analysis (Bonikowski
et al., 2022; Yang et al., 2022). In the topic
classification of citizens’ contributions, e.g.,
human evaluators are often aware of the common
issues in advance (Romberg and Escher, 2022).
Thus, from the user’s point of view, preference
should be given to unexpected classes, which
usually corresponds to minority classes. We
measure this demand by

M(B) = 1

nB

∑
c∈C

(1− nUc

nU
) · nBc (1)

where nB is the batch size, nU is the number of
examples in U , nUc is the number of examples
in U that belong to class c, and nBc denotes the
number of examples in B that belong to class c. To
give more emphasis to rare classes, we weight all
classes by their counter probability of occurring in
the initial pool of unlabeled data. M(B) ∈ [0, 1],
and a higher value indicates more awareness.

Class Coverage It is also of interest to consider
how many classes AL can find (Schröder et al.,
2021; Wertz et al., 2022). Achieving a high or even
full class coverage is desirable for several reasons.

Knowing how query strategies handle the set of
classes can be critical to building trust in human-
machine collaboration. Indeed, a concern of our
practice partners was missing some classes. If there
was any potential for incomplete class coverage,
this could even be a reason to completely avoid
using machine text classification in their use case.

Such needs can relate to task requirements to
which the human analyst is also subject. Thus, in
these situations, it is not enough to, e.g., simply ed-
ucate users about the strengths and weaknesses of
ML algorithms; ML must meet these requirements.

What is more, with respect to the previously de-
scribed utilization of AL for data analysis, a timely
overview of the collection is an often desired fea-
ture, which is given by a fast class coverage.

And overall, having as complete a representation
as possible of the classes relevant to the task at hand

is generally an important prerequisite for creating
reliable datasets.

We measure the class coverage of the examples
in L as

K(L) = |CL|
|C| (2)

where CL is the set of classes included in L, and
C is the total set of classes in the collection.

As a further indicator, we define the full class
coverage IK of an AL experiment as the number
of iterations it takes to cover all classes in C.

Variation-aware Batch Distribution The per-
formance of human annotators can be affected by
various factors, including declining concentration
or fatigue (Calma et al., 2016). One reason for the
(more rapid) onset of these factors can be batches
that offer little alternation in terms of the classes to
be annotated. To reduce error-proneness in anno-
tation caused by monotonous batches, we propose
batches to fulfill two conditions: they should repre-
sent the available classes (measured by the ratio of
acquired to the total number of classes available),
and the acquired examples should be uniformly dis-
tributed among classes to offer variety (measured
via entropy):

V (B) = |CB|
|CB ∪ CU |

·
∑
c∈CB

−
( nBc

nB
· log2(

nBc

nB
)

log2(|CB|)

)
(3)

where CB is the set of classes included in the batch
and CU is the set of classes in the unlabeled pool.
V (B) ∈ [0, 1], with larger values indicating a more
varied set of examples with reference to the classes.

4 Evaluation Design

We provide an overview of the study design next
by going into detail about the dataset selection, the
chosen classification model, the selection of query
strategies, and the experimental setup.

4.1 Datasets

We aim at a broad comparison across different
datasets to empirically demonstrate the strengths
and weaknesses of different query strategies with
respect to the introduced user-centric measures. In
doing so, we consider six datasets for different
multi-class tasks and from diverse domains. An
overview is given in Table 1.

DBPedia (Zhang et al., 2015) is a large-scale
ontology dataset of Wikipedia articles (title and
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Dataset Task Domain |C| Train Val Test
DBPedia T Wikipedia 14 15, 000 2, 000 4, 000
20NG T News 20 2, 507 354 721
ATIS I Flight reservations 17 3, 802 537 1, 093
TREC-50 Q Diverse 46 4, 163 589 1, 196
BILLS T Congressional bills 20 15, 000 2, 000 4, 000
CDB T Public participation 29 1, 372 194 395

Table 1: Details of the six datasets. The task types are
topic (T), intent (I), and question (Q) classification. |C|
denotes the number of classes.

abstract) and their topics. 20 Newsgroups2 (20NG)
contains messages collected from diverse news-
groups. Airline Travel Information Systems (ATIS;
Siddhant and Lipton, 2018) is a dataset of tran-
scribed audio recordings for classifying the intent
of costumer utterances. TREC (Li and Roth, 2002)
provides answer types for a collection of English-
language questions.

These four English-language datasets regularly
serve for benchmarking AL. While previous work
has mostly relied on TREC-6, which organizes the
questions into six main categories, we use the finer
answer types of TREC-50 to give more weight to
the multi-class setting that motivates this work.

The remaining two datasets come from real-
world applications of topic classification in the
computational social sciences. The Congressional
Bills Corpus (BILLS; Purpura et al., 2008) pro-
vides information on bills introduced in the U.S.
Congress between 1947 and 2008. One of its pur-
poses is to examine what attention the congress has
paid to various issues by thematically analyzing the
bill’s titles. The Cycling Dialogues Bonn (CDB;
Romberg and Escher, 2022) is a German dataset
of citizen contributions to a public participation
process on cycling infrastructure.

While ATIS, TREC-50, BILLS, and CDB reflect
the common class imbalance of real-world data,
DBPedia and 20NG have been artificially counter-
balanced at creation. To simulate a plausible sce-
nario, we adjust the distribution of the two datasets
through sub-sampling. Since we lack knowledge
about the original data sources’ actual distributions,
we assume a distribution according to Zipf’s law:
the most frequent class should occur about twice as
often as the second most frequent class, three times
as often as the third most frequent class, and so on.

We follow Ein-Dor et al. (2020) by limiting the
size of large datasets to 21K (DBPedia and BILLS)
and apply a 70%/10%/20% split for training, val-

2http://qwone.com/ jason/20Newsgroups/

idation and testing. There were predefined splits
available for some of the datasets (train/test splits
for TREC-50 and 20NG; a train/val/test split for
DBPedia), which we rejected for the following rea-
sons: For TREC these are neither consistent in
their distribution (Lowell et al., 2019), nor does the
test split for TREC-50 contain all of the original
47 classes. For 20NG and DBPedia, we modified
the structure of the datasets to a greater extent by
adapting them to Zipf’s distribution. We therefore
decided to define new splits selected according to
a stratified random sample. Classes with less than
5 examples were removed.

Detailed insights into the resulting dataset splits
and the code for the experiments are available at
https://github.com/juliaromberg/ranlp-2023.

4.2 Classification Model

Several studies have shown the potential of AL
coupled with pre-trained language models (PTMs)
(e.g., Ein-Dor et al. 2020; Yuan et al. 2020; Long-
pre et al. 2022; Zhang et al. 2022). We adhere to
these findings and apply the BERT base model (De-
vlin et al., 2019), as has been done in much of the
related work. For English datasets, we use uncased
BERT3 (pre-trained on English data), and for the
German dataset, we rely on cased GBERT4.

4.3 Query Strategies

We compare a variety of strategies that have stood
out in previous work for their strong results and
cost-effectiveness when used with PTMs in im-
balanced settings. As a baseline, we use Random
Sampling (Random).

Traditional uncertainty-based acquisition func-
tions select examples according to the confidence
of model prediction. They are efficient and have
proven to keep up with more advanced AL strate-
gies when used with PTMs (Zhang and Zhang,
2019; Margatina et al., 2021, 2022). We con-
sider Least Confidence (LC; Lewis and Gale, 1994),
which has proven effective for imbalanced datasets
(Ein-Dor et al., 2020; Schröder et al., 2022), and
Breaking Ties (BT; Luo et al., 2005), which was
recommended as a baseline for uncertainty sam-
pling with transformers by Schröder et al. (2022).
LC selects those examples for annotation where the
model’s probability output is lowest for the most
likely class, i.e., cases in which the model is least

3https://huggingface.co/bert-base-uncased
4https://huggingface.co/deepset/gbert-base

http://qwone.com/~jason/20Newsgroups/
https://github.com/juliaromberg/ranlp-2023
https://huggingface.co/bert-base-uncased
https://huggingface.co/deepset/gbert-base
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confident. BT aims to improve classification confi-
dence by selecting examples where the difference
in probability outputs between the two most likely
classes is the smallest.

Diversity-based query strategies aim to select
examples that best represent the full dataset. We in-
clude Core-Sets (Sener and Savarese, 2018), which
have been found to select batches of high diversity
and representativeness in addition to a promising
boost of model performance in imbalanced settings
(Ein-Dor et al., 2020). Core-sets are subsets of
examples that represent the dataset in a learned
feature space (for PTMs: CLS) in the sense that
a model trained on a Core-set is competitive to a
model trained on the entire dataset. We rely on
the lightweight and fast algorithm for building the
Core-sets by Bachem et al. (2018).

As a proxy for functions with a hybrid objec-
tive, we choose Contrastive Active Learning (CAL;
Margatina et al., 2021) which has the potential to
outperform alternatives such as BADGE (Ash et al.,
2020) and ALPS (Yuan et al., 2020) in terms of
computational efficiency and accuracy (Margatina
et al., 2021). CAL combines the characteristics
of uncertainty- and diversity-based strategies by
seeking so-called contrastive examples. These are
examples that, despite high similarity in the feature
space (i.e., among the k nearest neighbors), ex-
hibit maximum mean Kullback-Leibler divergence
between their predictive likelihoods.

4.4 Experimental Setup

In each AL iteration, training runs for 30 epochs
on a batch size of 12 and the best model, in terms
of validation loss, is retained. To avoid overfit-
ting to the data from previous iterations, BERT is
fine-tuned from scratch at each iteration (Hu et al.,
2019). We use the AdamW optimizer (Loshchilov
and Hutter, 2019) with a learning rate of 2e − 5,
beta coefficients of 0.9 and 0.999, and an epsilon
of 1e − 8, and set the maximum sequence length
to 100 for all datasets.

For each of the six datasets, the unlabeled pool
U is formed by the respective training splits and 50
examples are randomly sampled from the pool to
build the set of initially labeled data L. Then, 20
iterations of AL are performed, in each of which
a new batch of 50 unlabeled examples is selected
from U according to the respective query strategy.
The model performance is evaluated at the end of
each iteration using a hold-out test set.

We run the AL simulation five times with differ-
ent sets of initially labeled data for each combina-
tion (datasets × query strategies). To allow for a
fair comparison, these seeds remain the same for
each dataset across the different query strategies.

In accordance with our experimental setup,
3, 156 experiments (6 datasets × (5 query strate-
gies × 5 initial seeds × (1 initial model + 20 itera-
tions) + 1 full supervision model)) were conducted.
The experiments were run on a single Nvidia Tesla
P100-PCIE-16GB GPU and with 2.2 GHz Intel
Xeon CPU processor.

We refer the reader to Appendix A for further
details on hyperparameter selection, reproducibility
of the experiments and computational costs.

5 Results

In this section, we report the experimental results.
We start by shedding light on the performance of
the different query strategies as is common in the
literature via a standard measure for classification
tasks, in our case the F1 score. Using the newly
introduced user-centric measures, we then shift our
focus to analyzing additional indicators that can
help select an appropriate query strategy for practi-
cal use.

5.1 F1 Performance

Figure 1 illustrates how the F1 score evolves over
the iterations of AL in the experiments. It can
be seen that full supervision performance can be
achieved on all datasets within the chosen annota-
tion budget of 20 iterations, except for BILLS.

Our analysis across all datasets shows a clear
pattern of superior performance for uncertainty-
based sampling compared to the other strategies. In
particular, BT performs consistently strong. While
hybrid CAL is in the middle of the rankings, it
is evident that the diversity-based strategy mostly
underperforms.

Based on these findings, from a ML-perspective
that is commonly shared among many studies in
the field, it seems an obvious conclusion to recom-
mend BT as the strategy for practical application in
imbalanced multi-class settings. In the following,
we will examine whether this assumption can be
supported from a user-centric perspective.

5.2 User-Centric Measures

Table 2 lists the results of the four user-centric mea-
sures for the datasets and query strategies, averaged
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Figure 1: F1 scores, averaged over the five seeds and with the shaded area illustrating the standard deviation. As a
reference for the maximum achievable F1 score for each dataset, the performance of the BERT models trained on
the complete training data is indicated (full supervision).

over the iterations of AL for a better overview.

Which strategies favor minority classes? First,
we evaluate whether, among the strategies consid-
ered, there are such that promote a higher represen-
tation of rare classes in the batches. We apply the
minority-aware batch distribution measure M(B)
for this purpose.

All advanced strategies are found to consider
rare classes more than random sampling. In partic-
ular, uncertainty-based strategies promote a higher
minority representation on average. A detailed look
shows that this trend is consistent among datasets,
but there are major differences in how pivotal the
choice of query strategy is. For BILLS and CDB,
this makes a negligible difference. In contrast, the
effect is much more dramatic on ATIS, where the
scores range from 0.44 to 0.84.

Which strategies favor class coverage? Next,
we examine whether there are any query strategies
that prioritize quick and extensive class coverage
by applying the class coverage measure K(L).

The results show that uncertainty-based and hy-
brid query strategies stand out positively. BT

achieves the highest average class coverage and
turns out to be a good choice for a rapid growth in
the coverage curve (as a detailed look at progress
between iterations confirms).

Are the strategies capable of finding all classes?
As argued in Section 3.2, a realistic requirement of
the practice may be that all classes that a dataset
comprises are found in the AL process. We mea-
sure the full coverage with IK .

Contrary to our expectation, three strategies
failed to find all classes within the budget of 20
annotation cycles on the datasets ATIS and TREC-
50. In addition to random sampling and Core-Sets,
in TREC-50 this surprisingly also affects the previ-
ously excelling strategy BT. The failure is system-
atic in each case, as we can observe it for several
random seeds.

To gain better insight into the extent of the fail-
ure, we ran additional experiments beyond the AL
budget of 20 iterations until full class coverage
was achieved for the affected cases. On TREC-50,
Core-Sets and BT both required up to 28 iterations
on average. However, the deviations between the
different seeds are much more extreme with BT: In
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Random LC BT CAL Core-Set
M(B)

DBPedia 0.852± 0.003 0.918± 0.001 0.916± 0.002 0.916± 0.005 0.870± 0.002
20NG 0.874± 0.002 0.930± 0.001 0.928± 0.003 0.924± 0.001 0.888± 0.001
ATIS 0.440± 0.006 0.840± 0.012 0.840± 0.007 0.735± 0.009 0.586± 0.010
TREC-50 0.925± 0.002 0.947± 0.001 0.945± 0.001 0.947± 0.001 0.928± 0.001
BILLS 0.918± 0.001 0.931± 0.001 0.931± 0.001 0.928± 0.000 0.924± 0.001
CDB 0.933± 0.001 0.937± 0.001 0.936± 0.001 0.934± 0.000 0.933± 0.001

AVG 0.824± 0.003 0.917± 0.003 0.916± 0.002 0.897± 0.003 0.855± 0.003

K(L)
DBPedia 0.995± 0.023 0.995± 0.024 0.995± 0.023 0.995± 0.026 0.996± 0.022
20NG 0.971± 0.076 0.979± 0.071 0.982± 0.067 0.977± 0.072 0.977± 0.072
ATIS 0.864± 0.143 0.915± 0.162 0.926± 0.149 0.924± 0.157 0.867± 0.137
TREC-50 0.847± 0.138 0.869± 0.159 0.889± 0.151 0.881± 0.161 0.822± 0.136
BILLS 0.979± 0.051 0.981± 0.051 0.984± 0.048 0.978± 0.056 0.983± 0.049
CDB 0.958± 0.085 0.968± 0.077 0.962± 0.080 0.964± 0.082 0.962± 0.083

AVG 0.936± 0.086 0.951± 0.091 0.956± 0.086 0.953± 0.092 0.934± 0.083

IK
DBPedia 1.0± 1.2 1.2± 1.3 1.0± 1.2 1.0± 1.0 0.8± 0.8
20NG 4.2± 0.8 2.6± 0.9 2.0± 1.2 2.6± 0.9 2.8± 1.3
ATIS 26.6± 16.4∗ 8.0± 2.4 8.8± 2.1 7.6± 1.3 22.8± 6.8∗

TREC-50 35.2± 8.1∗ 16.2± 2.9 28.0± 23.8∗ 15.8± 2.7 27.8± 5.9∗

BILLS 4.4± 0.9 3.2± 0.5 3.0± 1.2 3.8± 1.1 3.4± 2.5
CDB 7.6± 2.4 5.8± 1.6 6.6± 1.1 5.0± 0.0 7.0± 2.6

AVG 13.2± 5.0 6.2± 1.6 8.2± 5.1 6.0± 1.2 10.8± 3.3

V (B)
DBPedia 0.736± 0.017 0.516± 0.037 0.600± 0.018 0.474± 0.060 0.785± 0.007
20NG 0.636± 0.018 0.761± 0.008 0.791± 0.009 0.737± 0.030 0.688± 0.014
ATIS 0.216± 0.009 0.381± 0.020 0.391± 0.026 0.458± 0.007 0.376± 0.010
TREC-50 0.388± 0.011 0.393± 0.013 0.426± 0.012 0.388± 0.014 0.400± 0.007
BILLS 0.696± 0.009 0.676± 0.009 0.738± 0.019 0.637± 0.015 0.742± 0.016
CDB 0.606± 0.009 0.605± 0.016 0.617± 0.013 0.581± 0.009 0.607± 0.006

AVG 0.493± 0.012 0.478± 0.020 0.512± 0.016 0.477± 0.021 0.539± 0.008

Table 2: Detailed results for M(B), K(L), IK , and V (B) on the six datasets of evaluation. The scores are averaged
over the seeds and iterations of AL, and standard deviation is stated. The best scores are marked in bold. Cases in
which a strategy failed to reach full coverage within the given budget are marked with an asterix.

the worst case, BT asked for manual labeling of
over three quarters of the pool U , which sums up
to 60 iterations of AL.

We further discovered that in case of incomplete
class coverage, it was the minority classes that were
not found. This is why we repeated the experiments
for TREC-50 and ATIS with an increased required
minimum class support of 20 to spot check how
performance changes. As for Random and Core-
Sets, this modification allowed all experiments to
achieve full class coverage within the given annota-
tion budget. However, for BT, the undesired effects
persisted on TREC-50. Moreover, failure even ex-
tended to the other two strategies associated with
uncertainty, namely LC and CAL.

Overall, in the average comparison between all
strategies, the hybrid CAL stands out, requiring on
average only 6 iterations to successfully detect all
classes.

How variant are the batches in terms of classes?
Last, we apply V (B) in order to account for
variance in batches with the goal of reducing
monotonous patterns.

Here, it is the diversity-based query strategy
Core-Sets that on average produces batches that
best fulfill the condition. Individually, though, the
results are very mixed for the different acquisition
functions and datasets. For example, BT performs
best on three of the datasets, rendering this query
strategy a strong contender.

6 Discussion

We considered several measures that take into ac-
count aspects that may determine the practicality of
active learning strategies with respect to specific ap-
plication scenarios. For the datasets under consider-
ation, it can be seen that the F1 score, the rapidity of
class coverage, and the minority-awareness in the
batches advocate for the use of uncertainty-based
acquisition functions, in particular BT, in practi-
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cal scenarios with multiple and imbalanced classes.
However, Core-Sets offer the opportunity to add
more variety to the monotonous task of annotation
by filling batches with rather different classes and
in a more balanced way. This may potentially help
prevent annotation fatigue and thus human annota-
tion errors that negatively impact AL. In addition,
such variation could be a plus in terms of usability.

What is more, we found weaknesses in reaching
full class coverage for all strategies. For random
sampling and Core-Sets, we hypothesize that this
is caused by extremely rare classes. However, for
uncertainty sampling, the problem became even
more apparent when excluding those classes. This
is of particular interest since full supervision F1

can be well achieved within the annotation budget
(see Figure 1).

Although the F1 score and some user-centric
measures recommend BT as a favorite, the lack of
reliability in achieving full class coverage, which
we have empirically determined, may become a
decisive criterion for practical applicability. Not
only can it have a significant impact on human
trust in AL. This finding affects AL in general, as
the reliability of models strongly depends on the
quality of the datasets.

7 Conclusion

With our results, we were able to illustrate that dif-
ferent query strategies stand out in different aspects
that might be desirable or even necessary from the
user’s perspective in the practical application of AL.
So what implications can be drawn for AL research
beyond this study? The main reason why research
on AL exists is its development and improvement
for real-world use. In this, AL is a collaberative
interaction between human and machine. However,
this particular feature of AL seems to have gradu-
ally faded from the community’s awareness, with
the main focus being on optimizing the established
performance measure for the particular machine
learning task, e.g. classification. It is true that these
established measures have important informational
value about the methods. But there are additional
requirements that arise specifically from the human
factor inherent in the nature of AL, which likewise
impact the practical value of AL. These should
therefore be taken into account.

Therefore, we argue that future studies on AL
should report a wider range of measures in their
experimental evaluation. With this broader foun-

dation, practitioners will be able to make a more
informed decision when selecting an AL strategy
based on academic findings in order to comply with
their specific needs for a given application. For ex-
ample, in applications where the annotation step is
simultaneously used to analyze the dataset at hand,
features such as a quick overview of all classes or,
in particular, minority classes can be desired, as
we have discussed in more detail in Section 3.2.
Surely, the measures we have suggested are by no
means exhaustive. Therefore, this work should also
serve as a motivation to cover other aspects of the
human component of AL in future research.

Ultimately, selecting an appropriate AL strategy
for some practical use case is a matter of balancing
different needs. The suggested measures make an
important contribution to this, as they enable more
reflective decisions, especially in combination with
common performance measures like the F1 score.

To sum up, AL has the potential to support ML
in scenarios where the annotation budget is limited.
We have argued that in order to assist the transfer
of such methods from research to practice, both the
machine learner and the human annotator must be
taken into account. Considering the frequent use
case of multi-class text classification with imbal-
anced classes, we introduced four measures that
evaluate the acquired examples w.r.t. class-related
requirements from the user’s point of view. These
measures are based on scientific literature and prac-
tical experience. Our results show that as complete
a picture as possible should be considered to avoid
failures in practical application.

The next step will be to conduct a user study
to validate the usefulness of the metrics presented
here. In future work, we will also investigate in
more detail which influencing factors prevent a fast
finding of all classes. This necessitates a study that
investigates, among other aspects, the effect of data
distribution on the class coverage of the different
strategies in order to draw general conclusions.
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Appendix

A Implementation Details

Hyperparameters The choice of batch size,
number of training epochs, and maximum sequence
length is a tradeoff between model performance,
runtime, and GPU restrictions. We empirically de-
termined that setting the batch size to 12 yielded
good results. As for the number of 30 training
epochs, we found that model prediction benefits
from this increased number especially when there
are only a few labeled examples, but also as the
AL process progresses. Future work may consider
whether the number of epochs can be curtailed as
L grows larger. In consideration with the runtime
due to the chosen number of epochs and the total
number of experiments, as well as with regard to
GPU constraints, we decided on an overall maxi-
mum sequence length of 100. For TREC-50 and
ATIS, the longest encountered sequence comprises
only 41 respectively 52 tokens, so we set the max-
imum sequence length correspondingly lower in
these cases.

Reproducibility Experiments were performed
with the same five random seeds, randomly se-
lected from the range [1, 9999], to make them re-
producible.

Computational Costs Table 3 provides the aver-
age duration of each AL experiment. The decisive
factor for the runtime is model fine-tuning.

Full Supervision Models These (c.f. Figure 1 in
the main body) were fit on the full training data of
the respective dataset with AdamW, lr = 2e − 5,
β1 = 0.9, β2 = 0.999, and ϵ = 1e− 8. We trained
for five epochs in case of large datasets (DBPedia,
BILLS) and for 30 epochs in case of small datasets
(20NG, ATIS, TREC-50, CDB), and selected the
best model by validation loss. To obtain reliable

Random LC BT CAL Core-Set
DBPEDIA 613 672 670 682 675
20NG 466 474 475 475 473
ATIS 422 442 435 447 436
TREC-50 387 422 405 412 411
BILLS 611 712 710 678 665
CDB 545 561 536 560 547

Table 3: Average runtime (seconds) including model
training, inference, batch acquisition, and hold-out test
set prediction.

results, we repeated each experiment five times
with different random seeds.
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