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Abstract

Microsyntactic units have been defined as
language-specific transitional entities between
lexicon and grammar, whose idiomatic prop-
erties are closely tied to syntax. These units
are typically described based on individual
constructions, making it difficult to under-
stand them comprehensively as a class. This
study proposes a novel approach to detect mi-
crosyntactic units using Word Embedding Mod-
els (WEMs) trained on six Slavic languages,
namely Belarusian, Bulgarian, Czech, Polish,
Russian, and Ukrainian, and evaluates how well
these models capture the nuances of syntactic
non-compositionality.

To evaluate the models, we develop a cross-
lingual inventory of microsyntactic units using
the lists of microsyntantic units available at the
Russian National Corpus. Our results demon-
strate the effectiveness of WEMs in capturing
microsyntactic units across all six Slavic lan-
guages under analysis. Additionally, we find
that WEMs tailored for syntax-based tasks con-
sistently outperform other WEMs at the task.
Our findings contribute to the theory of mi-
crosyntax by providing insights into the de-
tection of microsyntactic units and their cross-
linguistic properties.

1 Introduction

Microsyntactic units, which include syntactic id-
ioms and non-standard syntactic constructions,
have been defined as language-specific transitional
entities between the lexicon and the grammar, id-
iomatic properties of which are closely tied to syn-
tax (Iomdin, 2017). These units include all the
syntactic units that have very specific and even syn-
tactic properties and do not fit into the standard
syntax (Iomdin, 2015). Recent research efforts
have resulted in the development of several linguis-
tic resources for microsyntactic analysis, such as a

microsyntactic dictionary of Russian, a microsyn-
tactically annotated corpus of Russian texts, and a
typology of relevant phenomena (Marakasova and
Iomdin, 2016; Iomdin, 2016, 2017; Avgustinova
and Iomdin, 2019).

Given the vast number and diverse nature of mi-
crosyntactic phenomena, it is not surprising that
they are often described on the basis of individual
constructions or small classes of syntactic phrases.
In order to gain a more comprehensive and sys-
tematic understanding of these phenomena, it is
crucial to attempt an analysis of microsyntactic
phenomena at scale, rather than in isolation. In this
study, we add to the line of research on microsyntax
by adapting quantitative and computational meth-
ods used in idiom recognition for identification
of microsyntactic units in large corpora of texts
and across different languages. We apply different
types of Word Embedding Models (WEMs) to the
task of microsyntactic unit detection, and test their
performance on five functional categories of mi-
crosyntactic unit (prepositions, adverbials and pred-
icatives, parenthetical expressions, conjunctions,
and particles) in six Slavic languages (Belarusian,
Bulgarian, Czech, Polish, Russian, Ukrainian).

Concretely, the contributions of this paper are as
follows:

1. We demonstrate that the methods used for id-
iom recognition can be applied for microsyn-
tactic unit recognition.

2. We find that embedding models adapted for
syntactic tasks outperform other WEMs at the
task of microsyntactic unit detection.

3. We show that the behavior of embedding mod-
els across different types of microsyntactic
units has similarities across all six Slavic lan-
guages under analysis and is readily general-
izable.
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Our study not only contributes to the theory of
microsyntax but also has practical applications in
Natural Language Processing, Machine Transla-
tion, and other areas of Computational Linguistics
where effective handling of non-standard syntactic
structures is required.

After presenting the relevant background
in Section 2, we introduce the used methods,
data and models in Section 3. The obtained
results are discussed in Section 4, and finally,
the conclusions are drawn in Section 5. The
code used for our experiments is available at
github.com/IuliiaZaitova/Microsyntactic-Unit-
Detection-using-Word-Embedding-Models-
Slavic-Languages.

2 Background

2.1 Cross-lingual Comparison of
Microsyntactic Units

The cross-linguistic comparability of microsyntac-
tic phenomena has been demonstrated for both
closely related and distant languages.

Apresjan (2014) conducts a corpus study to as-
sess the translatability of Russian syntactic idioms,
which are a sub-type of microsyntactic units, into
English. The study concludes that syntactic idioms
are language-specific, but acknowledges the bor-
derline situations in which a syntactic idiom in a
first language and its correlate in a second language
have partially different properties, implying that it
is still possible to compare microsyntactic phenom-
ena cross-linguistically, albeit indirectly.

The study by Avgustinova and Iomdin (2019)
provides further evidence for the cross-linguistic
comparability of microsyntactic units. The authors
investigate the typology of microsyntactic units in
four Slavic languages – Bulgarian, Czech, Polish,
and Russian – and find that many of the peculiari-
ties of microsyntactic units in one language can be
partially reproduced in cognate languages. They
propose an approach that uses an existing database
of microsyntactic units in Russian available at the
Russian Natonal Corpus (rus, 2003–2023) as the
pivot source and present a method for parallel ex-
amination of microsyntactic units, which could be
utilized to create multilingual resources for dealing
with non-standard syntactic phenomena.

Even though direct cross-linguistic comparison
of microsyntactic units may not always be possi-
ble, the use of partial correlates for comparative
analysis can provide valuable insights into the na-

ture of microsyntactic phenomena across different
languages.

2.2 Word Embedding Models

While current research lacks a specific focus on
computational at-scale analysis of microsyntac-
tic units, previous studies suggest that the non-
compositionality of idioms and microsyntactic
units are closely intertwined. As such, Apresjan
(2014) claims that possibly all or the majority of id-
ioms also possess certain compositional properties
either on a syntax level or a semantic level or both.
We assume that research on semantic composition-
ality, and in particular, the computational methods
and techniques utilized in idiomatic unit recogni-
tion, could provide valuable insights for addressing
the problem of syntactic idiomaticity.

Despite recent advancements in transformer-
based architectures, WEMs remain a popular
choice in tackling non-compositionality detection
tasks (Salehi et al., 2015; Cordeiro and Candito,
2019; Nandakumar et al., 2019; Hashempour and
Villavicencio, 2020). WEMs use context informa-
tion and represent the meaning of lexical units as
vectors based on the idea that words occurring in
similar contexts tend to have a similar meaning.
At present, research does not agree on a defini-
tive metric to measure the modeling capabilities of
WEMs as applied to the non-compositionality de-
tection task. Consequently, different studies have
also produced different results when comparing the
performance of different WEMs.

Among the WEMs available, research on id-
iom detection highlights the effectiveness of the
Word2Vec CBOW model (Mikolov et al., 2013).
As such, in their large-scale evaluation of 816
WEMs Cordeiro et al. (2016) show that Word2Vec
CBOW-based architectures produce the best results
in detection of semantic non-compositionality in
nominal compounds. Additionally, Nandakumar
et al. (2019), in their study on how well seven differ-
ent embedding methods capture the nuances of non-
compositional data, also find that the Word2Vec
model (the default configuration of Word2Vec is
CBOW) performs the best. Moreover, they show
that recently-proposed contextualized word embed-
dings (CWEs) such as BERT (Devlin et al., 2019)
and ELMo (Peters et al., 2018) are not adept at
handling non-compositionality.

In defense of CWEs, Hashempour and Villav-
icencio (2020) find that the Context2Vec model
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prep – prepositions, adv & pred – adverbial and predicative, parenth – parenthetical, conj – conjunctions, part – particles.
Type BE UK BG CS PL RU
Prep ў канцы у кiнцi в края на na konec w końcu в конце
Eng. trans. at the end of at the end of at the end of at the end of at the end of at the end of
Adv & Pred не раз не раз не веднъж ne jednou niejednokrotnie не раз
Eng. trans. not once not once not once not once not once not once
Parenth такiм чынам таким чином по такъв начин t́ımto zp̊usobem w taki oto sposób таким образом
Eng. trans. in this way in this way in this way in this way in this way in this way
Conj хiба толькi хiба що освен да snad jen chyba że разве что
Eng. trans. except (only) that except (only) that except (only) that except (only) that except (only) that except (only) that
Part усе ж все же все пак asi sṕı̌s więc jednak все же
Eng. trans. nonetheless nonetheless nonetheless nonetheless nonetheless nonetheless

We use ISO 639-1 codes for the languages: Belarusian – be, Ukrainian – uk, Bulgarian – bg, Czech – cs, Polish – pl, Russian – ru.

Table 1: Microsyntactic units in six Slavic languages.

(Melamud et al., 2016) outperforms the Word2Vec
and BERT models due to its ability to place poten-
tially idiomatic expressions into distinct regions of
the embedding space (idiomatic/literal) depending
on the particular sense of the expression in context.

3 Methodology

3.1 Slavic Languages

We focus on six Slavic languages that belong to
the three main sub-groups of the Slavic language
family: Belarusian, Ukrainian, and Russian (East
Slavic); Bulgarian (South Slavic); and Polish and
Czech (West Slavic). This language selection was
made to ensure the inclusion of diverse typologi-
cal variations across the Slavic languages. Each of
the chosen languages has publicly-available large-
scale corpora, as well as parallel multilingual data,
providing a rich resource for our analysis. By in-
cluding languages from different sub-groups, we
aim to capture a broad range of syntactic and se-
mantic phenomena within the Slavic language fam-
ily. This allows us to conduct a comprehensive
analysis of microsyntactic units from a typological
perspective.

3.2 Inventory of Microsyntactic Units

To develop a cross-lingual inventory of microsyn-
tactic units, we adopted the methods proposed by
Avgustinova and Iomdin (2019) and utilized the
Russian National Corpus (RNC) and its parallel
sub-corpora (rus, 2003–2023) as the primary lin-
guistic resource. The microsyntactic dictionary1

provided by the RNC, which includes prepositions,
adverbials and predicatives, parenthetical expres-
sions, conjunctions, and particles, served as our
pivot database for the development of a multilin-
gual comparative resource of microsyntactic phe-

1https://ruscorpora.ru/page/obgrams/

nomena. Although on the website the dictionary
is called ’corpus dictionary of multi-word lexical
units’, for the purpose of this work we use the name
’microsyntactic dictionary’ to emphasize the syn-
tactic idiomaticity of given expressions. For each
Russian expression, the database also provides its
frequency score in the RNC sub-corpora and the
syntactic function that the expression has.

We sorted the available expressions by their fre-
quency scores and selected the 50 most frequent
microsyntactic units from each syntactic category
except for particles, for which only 27 distinct ex-
pressions are available. This yielded a total of 227
microsyntactic units in Russian for further analysis.
For each expression, we used the search function of
the RNC to extract translational correlates together
with two parallel bilingual context sentences from
the parallel sub-corpora. We acknowledge that
direct correlates of microsyntactic units in differ-
ent languages are not always available. Thus, we
opt for using partial correspondence whenever re-
quired, which we believe, despite its limitations,
allows us to compare microsyntactic units at scale.
In a similar way, we used the search function of the
Czech National Corpus (Machálek, 2020). We ob-
tained six parallel sets of 227 microsyntactic units
with parallel bilingual context sentences for each
unit in all of the six Slavic languages under analy-
sis. The bilingual sentences can be used for future
research on microsyntactic units in context. It is
important to mention that in contrast to Avgusti-
nova and Iomdin (2019), we had to choose only one
equivalent for each of the microsyntactic units in
Russian to enable quantitative and computational
analysis. Each of the translated expressions and
sentences was proofread and, when required, cor-
rected by professional linguists who are also native
speakers of the target language.

Our multilingual database of microsyntactic phe-
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nomena enables us to compare these phenomena
across different languages and can be later used
for further research on microsyntactic units and
syntactic idiomaticity. To the best of our knowl-
edge, this is the first database of its kind that al-
lows for quantitative and computational analysis
of microsyntactic units across different languages.
Further examples of the obtained data for each
type of microsyntactic unit are provided in Table 1,
which showcases the microsyntactic units in Rus-
sian along with their corresponding translations to
other languages under analysis. Our custom dataset
is fully open-sourced and is available at hugging-
face.co/datasets/izaitova/slavic fixed expressions.

3.3 Inventory of Syntactically Compositional
Counterparts

For each target microsyntactic unit, we have drawn
compositional (non-idiomatic) constructions from
the training data as counterparts using random
sampling. For the purpose of normalization,
we ensured that they have the same number of
constituent tokens and share at least one word
with the counterpart microsyntactic unit. For in-
stance, for the microsyntactic unit ne jednou in
Czech, the compositional counterpart should be
two words in length and contain either the word
ne or jednou. To refine the selection of the non-
microsyntactic counterparts, we manually removed
any non-compositional units from the initially sam-
pled list and conducted further random sampling
until we obtained the full set of compositional coun-
terparts.

3.4 Training Data

The training data for our experiments is sourced
from the Leipzig Corpora Collection (LCC) (Gold-
hahn et al., 2012), which is a publicly available
corpus containing text data generated from news-
papers and web resources in 293 languages. For
each language under analysis, we utilized 500,000
sentences sourced from language-specific news cor-
pora of LCC.

3.5 Word2Vec CBOW

We chose to use the CBOW architecture of the
Word2Vec model due to its demonstrated effective-
ness in semantic non-compositionality detection,
as highlighted in previous research (Section 2.2).
Word2Vec CBOW predicts the center word given a
representation of the surrounding words, whereas

its counterpart Word2Vec Skip-gram predicts con-
textual words given the representation of the center
word2. To train the Word2Vec CBOW model, we
use Gensim’s implementation of the CBOW algo-
rithm (Řehůřek and Sojka, 2010). We ignore all
words that occur less than five times in the training
corpus, and use a window size of five.

3.6 Context2Vec

Following Hashempour and Villavicencio (2020),
we decided to use Context2Vec (Melamud et al.,
2016) due to its ability to capture variable-length
sentential contexts using a bidirectional LSTM re-
current neural network. We use an optimized imple-
mentation of Context2Vec by Aoki (2018) with the
original parameters of the model. It is important
to note that Hashempour and Villavicencio (2020)
show a superior performance of this model when
applied to different senses of a token. Although
in our experiments we use a single embedding for
each token for better comparison with other models,
we anticipate that Context2Vec’s improved repre-
sentation of context will contribute to the detection
of syntactic compositionality.

3.7 Structured Skip-gram Word2Vec and
Word2Vec CWindow

To enhance the quality of word embeddings for
syntax-based tasks, we included Structured Skip-
gram Word2Vec3 and Word2Vec CWindow mod-
els (Ling et al., 2015) in our methodology. These
modified versions of the Word2Vec Skip-gram
and Word2Vec CWindow algorithms take into ac-
count the relative positions of context words and
have been shown to improve parsing accuracy for
part-of-speech tagging and dependency parsing
tasks. We anticipate these models will offer valu-
able insights into the detection of syntactic non-
compositionality due to their enhanced understand-
ing of token relationships. For both models, we
ignore all words that occur less than five times in
the training corpus, and use a window size of five.

3.8 Graph-based Syntactic Word Embeddings
with Node2Vec

Incorporating a graph-based approach, we utilize
the Node2Vec algorithm (Grover and Leskovec,

2Due to existing evidence for better performance of CBOW
as compared to Skip-gram in compositionality detection, we
use only the CBOW configuration

3The Structured Skip-gram model is different from
Word2Vec Skip-gram

https://huggingface.co/datasets/izaitova/slavic_fixed_expressions
https://huggingface.co/datasets/izaitova/slavic_fixed_expressions
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2016) which learns syntactic embeddings based
on information derived from dependency parse
trees. Previous research by Al-Ghezi and Kurimo
(2020) has demonstrated competitive performance
of Node2Vec embeddings in part-of-speech tag-
ging tasks compared to other WEMs. By em-
ploying dependency parse trees generated by Di-
aParser (Zhang and Attardi, 2020), we aim to ex-
plore the dependencies between tokens in a sen-
tence and leverage Node2Vec’s ability to preserve
network neighborhoods of nodes for syntactic non-
compositionality detection. To train the Node2Vec
models, we use PecanPy (Liu and Krishnan, 2021),
an accelerated implementation of the Node2Vec
algorithm, with default parameters.

3.9 Experimental Setup

For each of the six Slavic languages under anal-
ysis, we construct word embeddings using five
models: Word2Vec CBOW, Context2Vec, Struc-
tured Skip-gram Word2Vec, Word2Vec CWindow,
and Node2Vec. Additionally, we generate these
word embeddings for two different dataset sizes,
one consisting of 100,000 sentences and another of
500,000 sentences.

To pre-process the datasets, we 1) lower-
cased the texts; 2) removed punctuation and non-
alphanumerical tokens; 3) randomly selected from
5 to 100 sentences containing occurrences of each
of the target expressions, including both microsyn-
tactic and compositional phrases; 4) supplemented
the data with additional sentences from the corpus
up to either 100,000 or 500,000 sentences, depend-
ing on the type of experiment being conducted; 5)
following Cordeiro et al. (2016), retokenized all tar-
get expressions as a single token with a separator
(underscore) between the phrase constituents (e.g.
so far → so far) to represent target expressions as
one unit both in training and testing.

3.10 Non-compositionality Prediction

To predict the non-compositionality of an expres-
sion, we use cosine similarity between the expres-
sion vector representation v(w1w2) and the sum of
the vector representations of the component words
v(w1 + w2). This method has been extensively
used in previous research on non-compositionality
prediction (Mitchell and Lapata, 2010; Salehi et al.,
2015; Cordeiro et al., 2016; Loukachevitch and
Gerasimova, 2017; Nandakumar et al., 2018, 2019),

formally:

cos(v(w1w2), v(w1 + w2))

where for v(w1 + w2) we use the normalized
sum

v(w1 + w2) =
v(w1)

||v(w1)||
+

v(w2)

||v(w2)||

Intuitively, an expression appearing in different
contexts from its components is likely to be non-
compositional. In this framework, a phrase is com-
positional if its representation is close to the sum
of its component representations (cosine similarity
is close to 1), and it is idiomatic otherwise.

In order to compare the results and analyze the
variations in performance, all expressions are ar-
ranged in ascending order based on their similarity
scores. The aim is to examine whether the composi-
tional phrases would have higher similarity values
compared to non-compositional phrases. To evalu-
ate the ordering quality, the measure of mean aver-
age precision (MAP) is employed – this way, MAP
= 1 would correspond to all microsyntactic units
ordered lower than compositional expressions, and
MAP = 0 would mean that all microsyntactic units
are ordered higher than compositional ones.

4 Results and Discussion

The experimental findings for the five models
trained on 100,000 and 500,000 sentences are sum-
marized in Tables 2 and 3, respectively. Table 2
shows the MAP scores on 100,000 sentences and
Table 3 shows the MAP scores on 500,000 sen-
tences. The best scores per language are presented
in bold.

On the datasets of 100,000 sentences (Table 2),
Node2Vec achieves the highest score for four out
of six languages, while Word2Vec CWindow per-
forms best on Belarusian and Russian for a dataset
size of 100,000 sentences. On a larger dataset size
of 500,000 sentences (Table 3), the models’ perfor-
mance generally improves, but with less uniform
results, which suggests that some of the studied
models might require more data to make mean-
ingful generalizations. Overall, the results show
that syntax-adapted models (except for Word2Vec
Structured Skip-gram) tend to perform better in
identifying microsyntactic units, which aligns with
our expectations related to the nature of these
units. Surprisingly, Node2Vec, which is based on
dependency-parsed graphs, does not consistently
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Word2Vec CBOW Word2Vec CWindow Word2Vec Structured Skip-gram Context2Vec Node2Vec
Czech 0.608*** (0.607–0.61) 0.643*** (0.645–0.648) 0.524 (0.52–0.523) 0.559*** (0.556–0.559) 0.678*** (0.685–0.688)
Polish 0.594*** (0.596–0.599) 0.595*** (0.596–0.599) 0.604* (0.609–0.612) 0.507*** (0.504–0.507) 0.626*** (0.627–0.63)
Bulgarian 0.652*** (0.652–0.655) 0.674*** (0.675–0.677) 0.559** (0.557–0.56) 0.542** (0.543–0.546) 0.709*** (0.707–0.71)
Ukrainian 0.564*** (0.572–0.575) 0.617*** (0.616–0.619) 0.537* (0.53–0.533) 0.573*** (0.566–0.575) 0.718*** (0.716–0.718)
Belarusian 0.568*** (0.565–0.568) 0.674*** (0.672–0.675) 0.546* (0.54–0.543) 0.533** (0.532–0.54) 0.639*** (0.636–0.639)
Russian 0.656*** (0.654–0.657) 0.705*** (0.707–0.709) 0.643*** (0.64–0.643) 0.564*** (0.561–0.564) 0.551** (0.552–0.555)
95% Bootstrapping Confidence Intervals in parentheses; *p<0.1; **p<0.05; ***p<0.01

Table 2: MAP results on 100,000 sentences.

Word2Vec CBOW Word2Vec CWindow Word2Vec Structured Skip-gram Context2Vec Node2Vec
Czech 0.63*** (0.628–0.631) 0.652*** (0.65–0.653) 0.617*** (0.614–0.619) 0.546** (0.542–0.548) 0.678*** (0.676–0.679)
Polish 0.665*** (0.668–0.671) 0.634*** (0.637–0.64) 0.577*** (0.581, 0.584) 0.612*** (0.596–0.599) 0.683*** (0.675–0.686)
Bulgarian 0.67*** (0.664–0.667) 0.718*** (0.715–0.718) 0.674*** (0.677–0.68) 0.537* (0.535–0.538) 0.66*** (0.655–0.658)
Ukrainian 0.665*** (0.658–0.666) 0.705*** (0.706–0.708) 0.652*** (0.651–0.654) 0.595*** (0.592–0.595) 0.66*** (0.665–0.668)
Belarusian 0.621*** (0.619–0.622) 0.7*** (0.696–0.702) 0.639*** (0.64–0.643) 0.537* (0.531–0.538) 0.533 (0.524–0.538)
Russian 0.67*** (0.671–0.674) 0.718*** (0.717–0.72) 0.744*** (0.743–0.746) 0.586*** (0.583–0.586) 0.66*** (0.657–0.66)
95% Bootstrapping Confidence Intervals in parentheses; *p<0.1; **p<0.05; ***p<0.01

Table 3: MAP results on 500,000 sentences.

outperform other syntax-based WEMs that only
account for word order. For most languages, it also
produces similar or worse results when trained on
larger sets of sentences. The Context2Vec model
performs poorly on all languages even compared
with Word2Vec CBOW, indicating that variable-
length sentential context generated by a bidirec-
tional LSTM recurrent neural network is not bene-
ficial for syntactic non-compositionality detection.
As for Word2Vec Structured Skip-gram, we know
that similarly to the Word2Vec Skip-gram archi-
tecture (Section 3.5), it predicts the context tokens
given the center token. In the case of syntactic com-
positionality prediction, where the relationships be-
tween words within a phrase are crucial, it could
be more advantageous to predict the center token
and capture information from its sentential con-
text, which helps in understanding the sentence’s
structure.

To better interpret why Word2Vec Structured
Skip-gram, despite its generally low performance,
significantly outperforms other models in the case
of the Russian language (500,000 sentences), it is
helpful to compare the results by category of mi-
crosyntactic units. Figures 1 and 2 depict violin
plots of cosine similarity scores by category for the
two best performing models trained on the 500,000
sentence dataset in Russian. A clear difference is
observable between the distributions of microsyn-
tactic units and compositional units on both plots.
Moreover, we can see that the distribution of cosine
similarity scores for microsyntactic units is wider
for the Structured Skip-gram model, while there is
an opposite tendency in the CWindow plots, where
compositional units seem to have a wider range of

scores. The wider distribution of cosine similarity
scores, which influences the quality of ordering,
could be one of the factors that contributed to the
observed outlier in the MAP score.

From the violin plots, we can also see that some
unit types show a higher difference from composi-
tional units. One explanation for that is that some
types, such as adverbial and predicative construc-
tions, additionally possess a lower degree of seman-
tic non-compositionality, to which our models are
sensitive.

Figure 3 represents the average MAP scores
for models trained on 500,000 sentences, grouped
by category and averaged across languages. This
figure further supports the observation of vary-
ing model performance across different linguis-
tic categories. Certain categories (adverbial and
predicative, particles) consistently exhibit higher
scores across all models, indicating that their non-
compositionality is easier for the models to predict.
Similarly, prepositions consistently yield lower
scores.

4.1 Cross-Lingual Comparison

Cross-lingual comparison of microsyntactic unit
recognition is essential for assessing the behav-
ior and scalability of the non-compositionality de-
tection techniques. To get a better representation
of the results on microsyntactic unit recognition
across languages, we generated heatmaps of MAP
scores by category produced by Word2Vec CWin-
dow and Node2Vec models trained on 500,000
sentences (Figure 4). The heatmaps show the
performance of each unit type for each language,
with darker colors indicating better performance.
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preposition parenthetical adverbial and predicative particle conjunction
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Figure 1: Cosine similarity by type of unit – Word2Vec CWindow trained on 500,000 sentences in Russian.

preposition parenthetical adverbial and predicative particle conjunction
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Microsyntactic Units
Compositional Units

Figure 2: Cosine similarity by type of unit – Word2Vec Structured Skip-gram trained on 500,000 sentences in
Russian.
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Figure 3: MAP by category for 500,000 sentences.

Across the heatmaps, we observe similarities in per-
formance scores among different languages. For in-
stance, adverbial and predicative constructions, as
well as particles, exhibit higher MAP scores com-
pared to other categories. These patterns suggest
the presence of shared structural and/or semantic
features in types of microsyntactic constructions
across different languages.

5 Conclusion and Future Work

In this paper, we presented a novel approach for
using WEMs for microsyntactic unit recognition in
six Slavic languages. We have built a multilingual

comparative database of microsyntactic units in
six Slavic languages, each with six sets of parallel
bilingual context sentences. Our comparative eval-
uation of Word2Vec CBOW, Word2Vec CWindow,
Word2Vec Structured Skip-gram, Context2Vec and
Node2Vec models suggests that WEMs can be ef-
fective for non-compositionality prediction, and
that WEMs adapted to syntax-based tasks outper-
form other types of WEMs. The analysis of results
shows that there are some differences in the per-
formance of microsyntactic unit recognition across
types of these units. In this vein, we have observed
that different languages tend to produce similar re-
sults across different types of microsyntactic units.

In our future work, we are interested in improv-
ing the results for microsyntactic unit recognition.
This includes investigating the use of additional
features or data sources to improve model perfor-
mance, as well as exploring different modeling
architectures, such as large language models. Ad-
ditionally, the inconsistent results of microsyntac-
tic unit recognition when split by category also
highlight the importance of evaluating models on
different types of syntactic non-compositionality.
Finally, we plan to explore the use of our database
in practical applications, such as improving ma-
chine translation systems and using our models as
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Adv & Pred Conj Parenth Part Prep
Unit Type

Czech

Polish

Bulgarian

Belarusian

Ukrainian

Russian

0.76 0.60 0.72 0.67 0.68

0.70 0.64 0.58 0.70 0.62

0.70 0.60 0.66 0.67 0.66

0.52 0.50 0.46 0.59 0.52

0.62 0.72 0.68 0.74 0.60

0.62 0.64 0.70 0.70 0.64

Word2Vec CWindow

Adv & Pred Conj Parenth Part Prep
Unit Type

Czech

Polish

Bulgarian

Belarusian

Ukrainian

Russian

0.70 0.60 0.68 0.59 0.66

0.72 0.60 0.64 0.67 0.62

0.70 0.68 0.78 0.67 0.76

0.78 0.68 0.78 0.74 0.58

0.68 0.72 0.74 0.85 0.62

0.78 0.76 0.70 0.74 0.72

Node2Vec

prep – prepositions, adv & pred – adverbials and predicatives, parenth – parentheticals, conj – conjunctions, part – particles.

Figure 4: Heatmaps of MAP scores by language for Word2Vec models trained on 500,000 sentences.

predictors for intercomprehension experiments.
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Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. Pro-
ceedings of the LREC 2010 Workshop on New Chal-
lenges for NLP Frameworks.

Bahar Salehi, Paul Cook, and Timothy Baldwin. 2015.
A word embedding approach to predicting the compo-
sitionality of multiword expressions. In Proceedings
of the 2015 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 977–983,
Denver, Colorado. Association for Computational
Linguistics.

Yu Zhang and Giuseppe Attardi. 2020. Direct Atten-
tive Dependency Parser. https://github.com/
Unipisa/diaparser.

https://doi.org/10.1515/jazcas-2017-0027
https://doi.org/10.1515/jazcas-2017-0027
https://doi.org/10.1515/jazcas-2017-0027
https://doi.org/10.3115/v1/N15-1142
https://doi.org/10.3115/v1/N15-1142
https://doi.org/10.1093/bioinformatics/btab202
https://doi.org/10.1093/bioinformatics/btab202
https://doi.org/10.1093/bioinformatics/btab202
https://doi.org/10.26615/978-954-452-049-6_061
https://doi.org/10.26615/978-954-452-049-6_061
https://aclanthology.org/2020.lrec-1.865
https://aclanthology.org/2020.lrec-1.865
https://doi.org/10.18653/v1/K16-1006
https://doi.org/10.18653/v1/K16-1006
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://doi.org/https://doi.org/10.1111/j.1551-6709.2010.01106.x
https://doi.org/https://doi.org/10.1111/j.1551-6709.2010.01106.x
https://doi.org/10.18653/v1/W19-2004
https://doi.org/10.18653/v1/W19-2004
https://doi.org/10.18653/v1/W19-2004
https://www.aclweb.org/anthology/U18-1009
https://www.aclweb.org/anthology/U18-1009
https://www.aclweb.org/anthology/U18-1009
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.13140/2.1.2393.1847
https://doi.org/10.13140/2.1.2393.1847
https://doi.org/10.3115/v1/N15-1099
https://doi.org/10.3115/v1/N15-1099
https://github.com/Unipisa/diaparser
https://github.com/Unipisa/diaparser

