@inproceedings{zieve-etal-2023-systematic,
title = "Systematic {T}ext{R}ank Optimization in Extractive Summarization",
author = "Zieve, Morris and
Gregor, Anthony and
Stokbaek, Frederik Juul and
Lewis, Hunter and
Mendoza, Ellis Marie and
Ahmadnia, Benyamin",
editor = "Mitkov, Ruslan and
Angelova, Galia",
booktitle = "Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing",
month = sep,
year = "2023",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd., Shoumen, Bulgaria",
url = "https://aclanthology.org/2023.ranlp-1.135",
pages = "1274--1281",
abstract = "With the ever-growing amount of textual data, extractive summarization has become increasingly crucial for efficiently processing information. The TextRank algorithm, a popular unsupervised method, offers excellent potential for this task. In this paper, we aim to optimize the performance of TextRank by systematically exploring and verifying the best preprocessing and fine-tuning techniques. We extensively evaluate text preprocessing methods, such as tokenization, stemming, and stopword removal, to identify the most effective combination with TextRank. Additionally, we examine fine-tuning strategies, including parameter optimization and incorporation of domain-specific knowledge, to achieve superior summarization quality.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zieve-etal-2023-systematic">
<titleInfo>
<title>Systematic TextRank Optimization in Extractive Summarization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Morris</namePart>
<namePart type="family">Zieve</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anthony</namePart>
<namePart type="family">Gregor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frederik</namePart>
<namePart type="given">Juul</namePart>
<namePart type="family">Stokbaek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hunter</namePart>
<namePart type="family">Lewis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ellis</namePart>
<namePart type="given">Marie</namePart>
<namePart type="family">Mendoza</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benyamin</namePart>
<namePart type="family">Ahmadnia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruslan</namePart>
<namePart type="family">Mitkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Galia</namePart>
<namePart type="family">Angelova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd., Shoumen, Bulgaria</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>With the ever-growing amount of textual data, extractive summarization has become increasingly crucial for efficiently processing information. The TextRank algorithm, a popular unsupervised method, offers excellent potential for this task. In this paper, we aim to optimize the performance of TextRank by systematically exploring and verifying the best preprocessing and fine-tuning techniques. We extensively evaluate text preprocessing methods, such as tokenization, stemming, and stopword removal, to identify the most effective combination with TextRank. Additionally, we examine fine-tuning strategies, including parameter optimization and incorporation of domain-specific knowledge, to achieve superior summarization quality.</abstract>
<identifier type="citekey">zieve-etal-2023-systematic</identifier>
<location>
<url>https://aclanthology.org/2023.ranlp-1.135</url>
</location>
<part>
<date>2023-09</date>
<extent unit="page">
<start>1274</start>
<end>1281</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Systematic TextRank Optimization in Extractive Summarization
%A Zieve, Morris
%A Gregor, Anthony
%A Stokbaek, Frederik Juul
%A Lewis, Hunter
%A Mendoza, Ellis Marie
%A Ahmadnia, Benyamin
%Y Mitkov, Ruslan
%Y Angelova, Galia
%S Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing
%D 2023
%8 September
%I INCOMA Ltd., Shoumen, Bulgaria
%C Varna, Bulgaria
%F zieve-etal-2023-systematic
%X With the ever-growing amount of textual data, extractive summarization has become increasingly crucial for efficiently processing information. The TextRank algorithm, a popular unsupervised method, offers excellent potential for this task. In this paper, we aim to optimize the performance of TextRank by systematically exploring and verifying the best preprocessing and fine-tuning techniques. We extensively evaluate text preprocessing methods, such as tokenization, stemming, and stopword removal, to identify the most effective combination with TextRank. Additionally, we examine fine-tuning strategies, including parameter optimization and incorporation of domain-specific knowledge, to achieve superior summarization quality.
%U https://aclanthology.org/2023.ranlp-1.135
%P 1274-1281
Markdown (Informal)
[Systematic TextRank Optimization in Extractive Summarization](https://aclanthology.org/2023.ranlp-1.135) (Zieve et al., RANLP 2023)
ACL
- Morris Zieve, Anthony Gregor, Frederik Juul Stokbaek, Hunter Lewis, Ellis Marie Mendoza, and Benyamin Ahmadnia. 2023. Systematic TextRank Optimization in Extractive Summarization. In Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing, pages 1274–1281, Varna, Bulgaria. INCOMA Ltd., Shoumen, Bulgaria.