
Proceedings of Recent Advances in Natural Language Processing, pages 132–142
Varna, Sep 4–6, 2023

https://doi.org/10.26615/978-954-452-092-2_015

132

Was That a Question?
Automatic Classification of Discourse Meaning in Spanish

Santiago Arróniz
Indiana University

sarroniz@indiana.edu

Sandra Kübler
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Abstract

This paper examines the effectiveness of differ-
ent feature representations of audio data in ac-
curately classifying discourse meaning in Span-
ish. The task involves determining whether an
utterance is a declarative sentence, an interrog-
ative, an imperative, etc. We explore how pitch
contour can be represented for a discourse-
meaning classification task, employing three
different audio features: MFCCs, Mel-scale
spectrograms, and chromagrams. We also de-
termine if utilizing means is more effective in
representing the speech signal, given the large
number of coefficients produced during the fea-
ture extraction process. Finally, we evaluate
whether these feature representation techniques
are sensitive to speaker information. Our re-
sults show that a recurrent neural network ar-
chitecture in conjunction with all three feature
sets yields the best results for the task.

1 Introduction

The aim of this study is to investigate the efficacy
of feature representations of audio data in accu-
rately classifying discourse meaning in Spanish.
The task involves determining whether an utter-
ance is a declarative sentence, an interrogative, an
imperative, etc. Since there does not seem to be
an agreed upon name for this task, we will refer to
it as discourse meaning (rather than referring to a
broader sense of this term).

In human perception, this process involves
the comprehension of the relationship of words,
phrases, and clauses used in a sentence, as well as
their overall contribution to the intended meaning
of the sentence. We focus on the prosodic features
of different discourse meanings in Spanish. Pitch,
or the perceived highness or lowness of a sound,
can play a role in distinguishing between differ-
ent discourse meanings. For example, declarative
sentences typically present a falling pitch contour,

indicating that the statement is complete, while in-
terrogatives usually have a rising contour, signaling
that a question is being asked.

In contrast to tonal languages such as Mandarin
Chinese, Thai, or Punjabi, which mark the phono-
logical contrast of pitch at the lexical level (word
level), intonational languages such as Spanish or
English mark the phonological contrast of pitch
at the utterance level. For Spanish, pitch move-
ments are mainly used to signal discourse meaning
or to mark focus. The properties that govern pro-
duction in intonation are structurally analogous to
those that govern lexical tones and morphological
paradigms (Ladd, 2008). This means that a declar-
ative statement like Marı́a viene ’Marı́a is coming’
and its interrogative counterpart ¿Marı́a viene? ’Is
Maria coming?’ differ only in the intonational con-
tour with which they are produced, since both are
syntactically and lexically identical.

1.1 Research Questions
Our study focuses on three main research ques-
tions:

RQ1: How do we represent intonation as features in
discourse-meaning classification for Spanish?

RQ2: Do different feature representations convey
distinct types of information?

RQ3: Are these feature representation methods sen-
sitive to speaker information, or do they ab-
stract away from this information?

RQ1 addresses the question of how pitch con-
tour information can be represented for a discourse-
meaning classification task using speech data of
Spanish. We focus on three different audio features
widely used in speech recognition and classifica-
tion tasks such as emotion recognition (Badr et al.,
2021; Issa et al., 2020; Zhou et al., 2019): Mel Fre-
quency Cepstral Coefficients (MFCCs), Mel-scale
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spectrograms, and chromagrams. We also evalu-
ate the effectiveness of using mean values of each
band as opposed to all frequency measures. Uti-
lizing means may be efficient when representing
the speech signal for a discourse-meaning classifi-
cation task, given the large number of coefficients
produced during the feature extraction process.

RQ2 is concerned with the differences between
the three audio feature representations. If they con-
vey different types of information, we expect to
see improvements in classification by using com-
binations of representations. MFCCs, generally
considered one of the most effective type of feature
in audio classification tasks (Dave, 2013; Xie and
Liu, 2006), discard a significant amount of infor-
mation by a low-rank linear projection of the Mel
spectrum. Thus, Mel spectrograms and chroma-
grams may provide information that is no longer
present in MFCCs.

RQ3 examines potential speaker effects in our
data. Specifically, we investigate if there are indi-
vidual differences in how people produce the into-
nation curves for distinct discourse meanings, and
whether the feature representations are sensitive to
those differences; i.e., whether these audio repre-
sentations can generalize across different discourse
meanings, or if there is any overlap that could lead
to bias in the classification process.

The remainder of the paper is organized as fol-
lows: Section 2 outlines previous research on Span-
ish intonation and modeling intonation in other
languages. Section 3 details the methodology uti-
lized in this study, including information about
the corpus, the algorithms, the feature extraction
processes, and hyperparameter optimization. Sec-
tions 4 – 6 present the results for the three research
questions. Finally, Section 7 outlines our conclu-
sions and future work.

2 Related Work

2.1 Spanish Intonation

Spanish sociophonetic research (Face, 2001, 2005,
2008, 2004; Estebas-Vilaplana and Prieto, 2010;
Quilis, 1993) describes the pitch contours used by
speakers in different dialectal areas. The major-
ity of intonation studies conducted in Spain are
descriptive, with a focus on describing the intona-
tional contours of certain regions. Many of these
studies have relied on elicited speech to analyze
these productions (e.g., Estebas-Vilaplana and Pri-
eto, 2010), while others have adopted a corpus

approach (e.g., Torreira and Floyd, 2012). How-
ever, it remains to be explored how generalizable
these contours are, and whether machine learning
techniques can be applied to extract information
about intonation and automatically classify dis-
course meaning.

2.2 Speech Classification

The automatic detection and classification of dis-
course meaning has been the focus of many re-
cent studies in speech classification. Prosody mod-
eling has been particularly important in English
and other languages, with research focused on de-
tecting prominence and phrase boundaries (Levow,
2005). Researchers have explored incorporating
context into feature-level recognition of prosodic
events (Mishra et al., 2012), as well as normaliz-
ing features by immediate context when detecting
and classifying prosodic events (Rosenberg, 2009,
2010, 2012). Sequential models have also been
used to examine prosodic modeling, with some
studies attempting to predict prominence and phras-
ing at the syllable and word level using models
based on normalized segment duration and pauses
(Wightman and Ostendorf, 1994; Ananthakrishnan
and Narayanan, 2005).

Additionally, modeling F0 contours has been
explored; some of them attempted to model F0
contours directly (Bailly and Holm, 2005; Fujisaki,
1983; Hirst and Espesser, 1993; Kochanski and
Shih, 2003; Ni et al., 2006; Pierrehumbert, 1981;
Taylor, 2000; Van Santen and Möbius, 2000), while
others simulated the underlying mechanisms of F0
production (Chodroff and Cole, 2019; Cole et al.,
2022). Most recent studies have used deep learn-
ing models such as LSTM neural networks (Zeyer
et al., 2017; Sundermeyer et al., 2012), and mul-
timodal deep learning approaches that combine
audio and text inputs to achieve high performance
on speech intention classification tasks (Gu et al.,
2017; Agüero and Bonafonte, 2004). However,
more research is needed to explore how different
machine learning approaches can be used to model
intonation in languages such as Spanish.

3 Methodology

3.1 Corpus

For our experiments, we collected a scripted speech
corpus1 that was designed for the analysis of Span-

1https://github.com/sarroniz/speech_
corpus

https://github.com/sarroniz/speech_corpus
https://github.com/sarroniz/speech_corpus
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ish intonation under laboratory conditions, to ex-
clude factors such as the length of utterances, dif-
ferences in lexical content, noise in the signal, etc.
The reading task included six different types of
discourse meaning, each having a total of twenty
examples. The elicited discourse meanings (Hualde
and Prieto, 2015) are described below, the corre-
sponding schematic representation of the contours
are shown in Figure 1.

Broad Focus Declarative Statements are the
most common type of discourse meaning. They
are used to bring every element in the sentence into
focus, so there is no emphatic element in the ut-
terance (e.g., Juan compra pan ’Juan buys bread’).
The syntactic structure in Spanish is usually subject
(S), verb (V), and complements (C).

Narrow Focus Statements selectively focus on
one part of the sentence (e.g.: Juan compra pan
’Juan buys bread’ as the answer to the question
¿Quién compra pan? ’Who buys bread?’, where
Juan is focused information). The syntactic struc-
ture is usually SVC.

Absolute Interrogatives are used to request a
yes/no answer from the interlocutor. Spanish
yes/no questions have the same syntax as broad
focus statements, and require intonation to convey
interrogativity in the absence of contextual cues.
Unmarked questions may omit the inversion of the
subject, but it is often omitted (e.g., Compran pan
’They buy bread’ vs. ¿Compran pan? ’Do they buy
bread?’).

Partial Interrogatives are interrogative sen-
tences that convey interrogativity directly through
the presence of a question word, without the need
for intonational signaling (e.g.: ¿Quién viene a la
fiesta? ’Who is coming to the party?’). Unmarked
partial interrogatives in Spanish can share the same
intonation pattern as broad focus statements.

Exclamatives are utterances with an exclamative
nuance and show an initial peak in the nuclear ac-
cent that aligns within the accented syllable (e.g.;
¡Qué mañana tan bonita! ‘What a lovely morn-
ing!’).

Imperatives in Spanish are often highly exclam-
atory, resulting in an expanded pitch range, greater
intensity, and longer duration. Their intonation
patterns can vary and are not necessarily linked to
specific geographic regions. Imperatives are often
represented by final pitch accents.

Figure 1: Schematic representations of the contours in
Spanish for the six types of discourse meaning (Estebas-
Vilaplana and Prieto, 2010).

We collected samples from nine different speak-
ers (seven from southern Spain, and two from the
Madrid area). In total, 1 080 different speech pro-
ductions (9 speakers * 6 types of discourse mean-
ings * 20 examples) were used for our experiments,
with an average duration of 1.159 seconds2. For
all of the audios, the corpus includes information
about demographic information of the speakers
(such as age, gender, level of education, time spent
out of their place of birth, etc.), plus the type of
discourse meaning.

3.2 Classifiers

We experiment with different classifiers using the
scikit-learn library (Pedregosa et al., 2011): sup-
port vector machines (SVC), Random Forest, k-
nearest-neighbors (kNN), decision trees, and a mul-
tilayer Perceptron (MLP). We use grid search cross-
validation to optimize hyperparameters.

Additionally, we experiment with Long Short-
Term Memory (LSTM) recurrent neural networks,
both unidirectional and bidirectional, using Keras
in TensorFlow3. The model takes input in the form
of a 1-dimensional sequence, where the length of
the sequence is determined by the number of fea-
tures in the input data. Three convolutional layers
are stacked; each layer consists of a convolutional
operation followed by batch normalization, acti-
vation (using the ELU activation function), max
pooling, and dropout. The LSTM layer was added
with 64 units. We set the model to return sequences
rather than just the last output. We also use a soft-
max activation function in a fully connected dense
layer. We follow the hyperparameter optimization
by Zeyer et al. (2017) for acoustic modeling in

2Only sonorant segments were included (no occlusives),
resulting in a continuous, uninterrupted pitch signal.

3tensorflow.org

tensorflow.org
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Figure 2: STFT Spectrogram examples for a declarative
sentence (top) vs. an absolute yes/no interrogative sen-
tence (bottom).

speech recognition.
For the optimal hyperparameters used in the ex-

periments, see the Tables in appendix A.

3.3 Feature Extraction

We use three different audio feature representations:
Mel-Frequency Cepstral Coefficients (MFCCs),
Mel spectrograms, and chromagrams. MFCCs
are commonly used in speech recognition systems
(Dave, 2013) and represent the spectral envelope
of speech, while Mel spectrograms are a spectral
representation of audio signals where the frequency
scale is warped to better match human auditory per-
ception. Chromagrams, in contrast, are a type of
harmonic feature that capture the pitch content of
an audio signal by projecting the frequency content
onto a set of pitch classes.

All three feature sets are extracted using librosa
(McFee et al., 2015), a Python library for audio
analysis and feature extraction. We start by ex-
tracting the Short-Time Fourier Transform (STFT)
of each audio sample. By computing the Fourier
transform on each segment, multiple power spec-
trograms are produced for each audio file. The
frame size and hop size are set to default in li-
brosa (’n fft=2048’ and ’hop length=512’). Figure
2 shows two examples of the STFT power spectro-
grams.

Mel-Frequency Cepstral Coefficients We use
triangular, overlapping window functions (Hanning
function) on the STFT power spectra and compute
the energy within each window. Then we map the

Figure 3: MFCC representations for a broad focus
declarative sentence (top), and an absolute yes/no inter-
rogative sentence (bottom).

frequencies to the Mel scale. After testing a range
of coefficients for MFCCs (10, 20, 40, and 60), we
choose 40 since it proved optimal during optimiza-
tion. Figure 3 shows two examples of the MFC
coefficients representations. Positive MFCCs cor-
respond to low-frequency regions of the cepstrum,
and negative MFCCs represent high-frequency re-
gions.

Mel Spectrogram Mel spectrograms convert the
frequency axis of a spectrogram to a non-linear
Mel scale, which is based on the human auditory
system’s response to frequency4. Mel frequencies
are logarithmically spaced, and equal distances on
the Mel scale correspond to equal perceptual dif-
ferences in pitch. We generate Mel spectrograms
using a filterbank of triangular overlapping filters
that sum to 1 over the frequency axis of the spec-
trogram. The resulting coefficients represent the
energy in a particular Mel frequency bin at a spe-
cific time. Figure 4 shows two examples of Mel
spectrograms.

Chromagrams provide a mapping of the au-
dio signal to pitch classes over time, i.e.; CDEF-
GAB plus five semitones (Birajdar and Patil, 2020).
Chromagrams are computed by grouping the STFT
coefficients into 12 frequency bands, resulting in a
12-dimensional feature vector for each time frame.
Figure 5 shows two examples of chromagrams.

4Mel spectrograms are similar to MFCCs, the difference
stems from the use of a nonlinear Mel-scale frequency axis
instead of the linear frequency axis of traditional spectrograms.
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Figure 4: MEL frequency spectrograms, for a broad
focus declarative sentence (top) and an absolute yes/no
interrogative sentence (bottom).

3.4 Data Normalization and Scaling
After creating matrices of the three feature sets un-
der consideration, we scale the resulting features,
standardizing the different coefficients so that they
have zero mean and unit variance (using Standard-
Scaler in scikit-learn).

4 RQ 1: Exploring Audio Feature
Representations

The first research question (RQ1) investigates the
effectiveness of the three representations of the au-
dio signal: MFCCs, Mel-scale spectrograms, and
chromagrams. Our goal is twofold: 1) to investi-
gate whether the three audio features are effective
in capturing the necessary information to classify
pitch based on discourse meaning, and 2) to assess
whether the use of mean values, as opposed to all
values, is a more efficient method for capturing this
information.

Since the number of frames produced by STFT
varies based on the length of each audio file, the
exact number of all the coefficients for each feature
set varied accordingly. Therefore, to ensure unifor-
mity, we padded with zero values such that each file
had the same number of coefficients as the longest
file. Specifically, we set the number of coefficients
to MFCCs=7,840; Mel spectrograms=23,936; chro-
magrams=3,812 (see Table 1). In the case of means,
we generated a matrix back from each extraction
process, and computed the mean of those matri-
ces to obtain a single feature array for each speech
sample. We obtained a total of 180 features for

Figure 5: Chromagram examples for a broad focus
declarative sentence (top) and for an absolute yes/no
interrogative sentence (bottom).

Features All values (N) Means (N)
MFCC 7 840 40
Mel Spectrogram 23 936 128
Chromagram 3 812 12

Table 1: Distribution of the number of coefficients for
each feature set for each audio sample when using a) all
the values provided by STFT, and b) the means of those
values for all the frames along the time axis.

each array, distributed as follows (see Table 1):
MFCCs=40; Mel Spectrograms=128 (number of
Mel frequency bands); chromagrams=12 (one per
pitch class).

We performed a stratified, randomized 9-fold
cross-validation for each of the experiments in or-
der to compare these results with those for RQ3
below (we had 9 speakers in our corpus).

4.1 Results and Discussion

The results for RQ1 are shown in Table 2. Over-
all, we see that the performance of the algorithms
varies significantly depending on the feature type
used. Among the algorithms tested, the LSTM
models perform the best when using the feature
types Mel spectrograms and chromagrams while
the MLP outperforms both LSTM models when
using MFCC, reaching the highest accuracy of
82.64% (using means).

In terms of feature types, MFCCs and Mel spec-
trograms outperform chromagram features across
all classifiers. MFCCs yield the highest accu-
racy for every algorithm (ranging from 35.08% to
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Classifier MFCC Mel Chrom
means all means all means all

Random Forest 58.91 36.65 56.95 27.50 42.29 39.06
KNN 69.79 37.75 63.54 22.13 47.01 44.53
SVC (linear) 68.55 38.53 54.49 21.86 39.65 41.80
SVC (RBF kernel) 53.34 37.31 50.35 21.91 43.14 40.36
Decision Tree 53.32 35.08 51.89 23.40 41.15 37.47
MLP 82.64 40.10 59.13 34.90 42.25 57.92
LSTM 79.16 54.17 63.14 37.50 50.64 29.17
BiLSTM 80.55 45.83 68.33 45.83 54.72 41.67

Table 2: Results for the different combination of audio representations for each model.

82.64%), followed by Mel spectrograms (ranging
from 21.86% to 68.33%), whereas chromagram
features yield the lowest accuracy (ranging from
29.17% to 54.72%). When considering all the fea-
tures, the LSTM model with MFCCs using means
achieved the highest accuracy (82.84%), while
the LSTM model with chromagram features using
means result in the lowest accuracy (29.17%).

In general, the use of means provides better re-
sults than using the individual values extracted
from STFT frames, with around 20-30% of im-
provement in most cases. The only exceptions are
the linear SVC and MLP used with chromagrams,
which see a slight decrease in their accuracy when
using means instead of all the coefficients (e.g.,
from 41.80 to 39.65 for the linear SVC).

Using the means of the values in MFCCs can
be beneficial because it reduces the dimensionality
of the feature set, making it less prone to overfit-
ting and noise. Using mean values captures essen-
tial information in the audio signal while avoiding
noise and irrelevant variations in individual frames.
Mean values also provide more global information
about the signal. For chromagrams, this approach
may be more effective due to their high dimen-
sionality and the need to capture harmonic and
inharmonic relationships between musical notes,
while also mitigating overfitting and computational
complexity issues.

The findings of this experiment indicate that em-
ploying means of MFCC features in combination
with an MLP yields the most effective classifier for
the precise categorization of discourse meaning in
Spanish. However, further investigation is required
to understand the specific information conveyed by
each feature, and whether combining them will lead
to an improvement in classification performance.

5 RQ2: Comparing Information Content
of Audio Features

RQ2 investigates whether the three audio feature
representations convey different types of informa-
tion. While MFCCs have been shown to be the
most effective for the audio classification tasks for
RQ1, their reliance on a low-rank linear projec-
tion of the Mel spectrum may lead to information
loss. Thus, we explore the possibility of enhanc-
ing the discriminatory power of MFCCs by incor-
porating additional representations, such as Mel
spectrograms or chromagrams, which may convey
complementary information. If the combinations
of audio features provides a full set of information,
we expect increased classification results.

We focus on means for each feature type since
their use resulted in higher accuracy for RQ1. We
replicate the methodology of the previous experi-
ment using the same data split as above.

5.1 Results

Table 3 shows the results from this experiment
(for ease of comparison, we repeat the ’means’
results from Table 2). Overall, the results show
that the combination of features has a significant
impact on classification accuracy, either positive or
negative: When combining MFCCs and Mel spec-
trograms, all classifiers profit from the addition
of Mel spectrograms in comparison to using only
MFCCs. In this setting, MLP reaches the highest
accuracy of 83.80%. In contrast, adding chroma-
grams to MFCCs results in a decrease in accuracy
for all models, except for the LSTMs, which show
an increase in accuracy from 80.55% (MFCC) to
81.94% for the combined-features model (for the
biLSTM). However, this is still minimally lower
than the MLP’s results using this combination of
features.
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Classifier MFCC Mel Chrom MFCC+Mel MFCC+Chrom Mel+Chrom All
Random Forest 58.91 56.95 42.29 60.99 58.57 58.80 60.34
KNN 69.79 63.54 47.01 70.70 66.67 66.93 71.70
SVC (linear) 68.55 54.49 39.65 70.77 65.88 58.72 70.90
SVC (RBF) 53.34 50.35 43.14 54.95 51.51 53.30 55.03
Decision Tree 53.32 51.89 41.15 55.05 52.31 53.35 53.97
MLP 82.64 59.13 42.25 83.80 82.18 65.05 84.61
LSTM 79.16 63.14 50.64 82.86 79.62 66.20 83.14
BiLSTM 80.55 68.33 54.72 81.75 81.94 68.89 83.05

Table 3: Results for the different combination of audio features per classifier.

When we combine Mel spectrograms with chro-
magrams, we observe a slight increase in accuracy
of around 3-5% for most classifiers over the perfor-
mance of the individual models. However, even the
best model (using the biLSTM, reaching 68.89%)
is about 11.5% lower than when combining the
biLSTM with MFCCs (80.55%).

The performance of the combination of all three
feature types is generally very close to that of the
MFCC+Mel combination, thus showing that chro-
magrams do not add much additional information
to the mix. Most classifiers profit minimally from
the addition of chromagrams. The only exceptions
are the random forest, and the decision tree. The
biLSTM reaches the highest performance overall
with an accuracy of 84.68%.

The results from this experiment indicate that
combining MFCCs and/or Mel spectrograms with
chromagram features can enhance the accuracy of
our classification tasks. Chromagrams capture dis-
tinct information from MFCC and Mel spectro-
grams, and while they do not have enough discrim-
inative power on their own, they introduce some
new information to the other features. However,
not all classifiers can profit from the addition of
information, we see an intricate interaction of clas-
sifier type, feature type, and performance.

6 RQ3: Analyzing Speaker Effects

RQ3 investigates the impact of speaker effects on
the classification of discourse meaning. Our objec-
tive is to examine whether there exist individual
variations in how people generate intonation curves
for different types of sentences and whether these
differences are captured by the three feature repre-
sentations.

We replicate the previous experiments while em-
ploying a leave-one-out cross-validation approach
where each fold corresponds to one speaker. Since

the model has not seen any data from the test
speaker, a deterioration in this setting will indi-
cate that the features types include speaker specific
information.

6.1 Results and Discussion

Results for the experiment with individual features
are shown in Table 4, while Table 5 shows the
results for the combination of features. Columns
labeled ‘Random’ show the results from RQ1 and
RQ2 for reference, and columns labeled ‘Speaker’
show the results when we split by speaker.

The results in Table 4 show the expected pattern,
the results when leaving out a speaker are generally
lower than the corresponding random settings. The
only exception is for the MLP using Mel spectro-
grams, for which the results improve marginally
(from 59.13% to 59.26%). The smallest decreases
occur when using the MFCC and non-neural meth-
ods. The results of the LSTMs decrease by more
than 10% absolute with all feature types, even when
using MFCCs. For the Mel spectrograms and chro-
magrams, these losses are more similar to those
of the non-neural classifiers, which also suffer sig-
nificant losses. The highest results are once again
obtained when using the MLP with MFCCs, reach-
ing 81.13%, which is only slightly lower than the
82.64% in the corresponding random setting.

The results for the combination of features in
Table 5 show the same trend: Splitting the data by
speaker causes slight to significant losses across the
different classifiers and feature combinations. The
same combinations that work well for the random
data split also work well for the speaker setting.
We obtain the best results using the MLP with all
features (84.49%).

Overall, these results show that, as expected,
there is speaker dependent information present in
the features. If we do not have access to an example
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MFCC Mel Spectrogram Chromagram
Classifier Random Speaker Random Speaker Random Speaker
Random Forest 58.91 57.59 56.95 49.17 42.29 36.94
KNN 69.79 65.28 63.54 54.86 47.01 39.81
SVC 68.55 64.29 54.49 44.56 39.65 34.49
SVC (RBF kernel) 53.34 52.16 50.35 39.20 43.14 37.73
Decision Tree 53.32 52.14 51.89 42.82 41.15 36.15
MLP 82.64 81.13 59.13 59.26 42.25 41.78
LSTM 79.16 67.59 63.14 53.98 50.64 24.62
BiLSTM 80.55 68.14 68.33 52.12 54.72 42.96

Table 4: Results comparing random data splitting to leaving out an individual speaker.

MFCC+Mel MFCC+Chrom Mel+Chrom all
Classifier Random Speaker Random Speaker Random Speaker Random Speaker
Random Forest 60.99 58.22 58.57 56.87 58.80 50.12 60.34 57.11
KNN 70.70 65.51 66.67 65.28 66.93 57.52 71.70 65.51
SVC (linear) 70.77 64.58 65.88 64.41 58.72 48.78 70.90 64.53
SVC (RBF) 54.95 52.47 51.51 52.24 53.30 42.01 55.03 52.43
Decision Tree 55.05 52.69 52.31 51.62 53.35 43.72 53.97 51.27
MLP 83.80 81.83 82.18 82.87 65.05 66.55 84.61 84.49
LSTM 82.86 66.01 79.62 67.77 66.20 55.18 83.14 64.62
BiLSTM 81.75 67.78 81.94 65.64 68.89 54.53 83.05 65.40

Table 5: Results for the different combination of features comparing random data splitting to leaving out an
individual speaker.

from a speaker, the task is more difficult. However,
it is less obvious why this affects the MLP and the
non-neural method (using MFCCs) only mildly but
the LSTMs and the other features to a much higher
degree. This will require a more in-depth analysis.

7 Conclusion and Future Work

In this paper, we investigated the efficacy of vari-
ous audio input representations for accurately clas-
sifying discourse meaning in Spanish. We ex-
plored pitch contour representation using three au-
dio features and compared the efficiency of uti-
lizing means with different algorithms. We also
evaluated if these features convey different informa-
tion and their generalizability across speakers. Our
findings suggest that using a combination of the
three features with a recurrent neural network archi-
tecture provides the best results for our discourse-
meaning classification task.

We also found that there is speaker specific in-
formation represented in the features, and that that
combination of MLP and MFCCs is much more
robust in a setting where we test on an unknown
speaker than the other combinations. We will need
to have a closer look to understand better why this

is the case.
We are also planning on extending the corpus

to include more speakers, and to balance it for
dialects.

8 Limitations

It is important to explain the limitations of the cur-
rent study. The corpus used for the experiment
is limited in size and scope, which may have im-
pacted the generalizability of the results. Further
experiments with larger corpora that encompass a
broader range of discourse meanings and linguistic
features are necessary to validate and extend the
findings of this research. Nevertheless, the present
study provides valuable insights into the interac-
tion between classifier and feature types, which
will need to be considered in future experiments.
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A Parameters

Model Parameter Optimal setting
Random Forest Estimators 500

Criterion entropy
Warm Start True
Max Features sqrt
OOB Score True
Random State 69

KNN Neighbors 5
Weights distance
Algorithm brute
Leaf Size 30
Jobs 30

SVC C 10
Gamma auto
Kernel linear, rbf
Random State 69

decision tree Max depth None
Min sample leaf 2
Min sample split 5

MLP Activation ReLU
Alpha 0.0001
Beta 1 0.9
Beta 2 0.999
Batch size 256
Epsilon 1e-08
Hidden Layer Sizes (300,)
Learning Rate adaptive
Solver adam

(bi)LSTM Layers 64
Units 6
Activation softmax
Learning Rate 0.01
Optimization adam
Loss Sparse Categorical Cross-entropy
Batch Size 32
Epochs 150

Table 6: Optimal parameter values for the models used in our experiments.


