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Abstract

This paper proposes an open-ended task for
Visual Question Answering (VQA) that lever-
ages the InceptionV3 Object Detection model
and an attention-based Long Short-Term Mem-
ory (LSTM) network for question answering.
Our proposed model provides accurate natural
language answers to questions about an im-
age, including those that require understanding
contextual information and background details.
Our findings demonstrate that the proposed ap-
proach can achieve high accuracy, even with
complex and varied visual information. The
proposed method can contribute to developing
more advanced vision systems that can process
and interpret visual information like humans.

1 Introduction

As Computer Vision research moves beyond “buck-
eted” identification and toward resolving multi-
modal problems, language and visual problems like
picture captioning and Visual Question Answering
(VQA) have become prominent (Fang et al., 2015).
Issues in the nexus of vision and language are com-
plex due to the complicated compositional structure
of language (Fukui et al., 2016) (Kafle and Kanan,
2017). However, recent research has shown that
language can also provide a strong prior that can
lead to good performance on the surface even when
the underlying models do not fully comprehend the
visual information.

Our approach to solving the VQA problem in-
volves the development of three distinct models,
each with its strengths and limitations: The first
model is a simple baseline model that utilizes a
pre-trained Convolutional Neural Network (CNN)
and Recurrent Neural Network (RNN) architec-
tures to extract visual and textual features from the
input image and question, respectively. These fea-
tures are then concatenated and fed into a simple
feed-forward neural network that outputs the final

answer. The second is an attention-based model
that builds upon the baseline model by incorporat-
ing attention mechanisms to selectively focus on
relevant parts of the image and question during the
feature extraction process. This allows the model to
attend to different regions of the image and words
in the question, depending on their relevance to
the answer. The third model is a more complex,
multi-modal transformer-based model that uses a
pre-trained transformer architecture to extract vi-
sual and textual features from the input image and
question. The transformer model incorporates self-
attention mechanisms that allow it to learn the re-
lationships between different input parts and se-
lectively attend to the most relevant information.
This model also incorporates a Visual-Linguistic
Transformer (ViLT) module that learns joint repre-
sentations of both the image and question, allowing
for a more seamless integration of visual and tex-
tual information. The experimental results show
that our models employ different approaches to fea-
ture extraction and utilize various neural network
architectures to tackle the VQA problem.

2 Related Work

Wang et al. (2021) proposed a new framework for
unbiased visual recognition called Causal Atten-
tion. The framework improves visual recognition
accuracy by explicitly modeling the causal rela-
tionship between image regions, which helps avoid
introducing biases in the data. Incorporating this
framework into VQA models helps address biases
in visual recognition tasks and improves the accu-
racy of the models. However, our proposed work
has a more flexible architecture that allows the im-
age to be appended or prepended to the question
sentence or placed in the middle of the question
tensor through co-attention. This flexibility enables
our models to capture better nuances and complex-



180

ities of various VQA datasets and questions.
In another work, Dai et al. (2022) proposed a

method to enable Contrastive Language-Image Pre-
training (CLIP), a Computer Vision model, to gen-
erate multimodal outputs from a single prompt us-
ing distillation techniques that transfer knowledge
from a separate multimodal generator model. Their
proposed method achieves state-of-the-art perfor-
mance on various multimodal tasks, including im-
age captioning, text-to-image synthesis, and image
synthesis from textual prompts. However, our pro-
posed method differs from CLIP in several ways;
The attentional Long Short Term Memory (LSTM)
selectively attends to specific parts of the input
sequence, while Inception V3 effectively extracts
visual features from the input image. Combining
these models leverages both strengths and provides
better representations for multimodal understand-
ing. Additionally, the multimodal system is trained
on smaller and more targeted datasets, making it
more effective in scenarios where the training data
is limited or biased.

Huang et al. (2023) introduced a framework
called “Kosmos-1” for VQA task that aligns per-
ception with language models. Their approach in-
volves a two-stage training process where a pre-
trained image encoder is fine-tuned on a small set
of VQA tasks before being integrated into a multi-
modal transformer architecture. Additionally, the
authors showed that their approach improved the in-
terpretability of VQA models, allowing for a better
understanding of model decision-making processes.
Our proposed method introduces three different ar-
chitectures. The approach allows for a more direct
and intuitive way to associate image information
with the textual inputs and exploit the interactions
between visual and textual inputs in a more fine-
grained manner. Kosmos-1 uses a single-stream
architecture that processes textual and visual infor-
mation in separate streams, leading to information
loss and incomplete modeling of the interactions
between the two modalities.

3 Dataset Description

The Microsoft Common Objects in Context
(MSCOCO) VQA V2 dataset is a large-scale VQA
task dataset (Lin et al., 2014). It is a subset of
the MSCOCO dataset, comprising over 330,000
images and 2.5 million object instances. The
MSCOCO VQA V2 dataset contains 265,016
images, and each image is accompanied by at

least three open-ended questions and ten human-
generated answers for each question.

This dataset evaluates various visual reasoning
and language understanding capabilities, including
object recognition, spatial reasoning, counting, and
reasoning about actions and events. The questions
in the dataset cover a wide range of topics, from
ordinary objects and scenes to more complex and
abstract concepts.

Using the MSCOCO VQA V2 dataset for VQA
tasks enables researchers to develop and evaluate
new visual reasoning and language understanding
techniques essential in fields such as autonomous
vehicles, robotics, and human-computer interac-
tion.

3.1 Data Split and Statistics

The dataset is split into train, validation, and test
sets. The training set contains 443,757 questions,
while the validation and test sets have 214,354 and
135,024 questions, respectively (Lin et al., 2014).

There are no predefined answer options for the
open-ended questions in the dataset. Ten human-
generated solutions are provided for each question,
offering a variety of potential accurate responses.

Each image in the MSCOCO VQA V2 collection
also has metadata, such as item labels, character-
istics, and spatial data. Through the addition of
additional visual and contextual information, this
metadata can be used to enhance model perfor-
mance on the VQA task.

3.2 Question Types and Difficulty

The questions in the MSCOCO VQA V2 dataset
cover various topics and require different levels
of visual reasoning and language understanding
(Tapaswi et al., 2016). Some examples of question
types in the dataset include:

• Object recognition: “What is the color of the
shirt?”

• Spatial reasoning: “What is the cat sitting
on?”

• Counting: “How many cupcakes are on the
table?”

• Reasoning about actions and events: “What is
the man doing?”

• Abstract concepts: “What is the woman’s emo-
tion in the painting?”
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The questions in the dataset are designed to be
challenging and require a combination of visual and
linguistic reasoning (Vinyals et al., 2015). Some
questions are more complicated than others, requir-
ing more complex reasoning or a deeper under-
standing of language and context.

3.3 Balancing the Dataset
The model’s accuracy depends critically on the
dataset quality, according to our VQA research.
A class imbalance is a problem that frequently oc-
curs in VQA datasets when some answer categories
have an excessively high number of samples. This
may result in models that are biased and underper-
form in some categories.

To address this issue, we employ techniques to
balance the dataset and ensure an equal number
of examples for each answer category (Wu et al.,
2016). By increasing or decreasing the number of
examples in each class, we can change the relative
frequencies of each class using both oversampling
and undersampling. We also employ more sophisti-
cated approaches like data augmentation and Trans-
fer Learning to enhance the dataset’s quality.

Data augmentation involves creating new exam-
ples by applying transformations to existing data,
such as rotating or flipping images (Hodosh and
Hockenmaier, 2016). Transfer Learning involves
using a pre-trained model on a different but related
task to extract features that can be used to improve
the accuracy of the VQA model.

Especially for large datasets with numerous
classes, balancing the dataset might be difficult
(Yang et al., 2016). As a result, we assess the
performance of several approaches on our partic-
ular dataset. The accuracy of VQA models can
be significantly increased by using a mix of over-
sampling, undersampling, data augmentation, and
Transfer Learning, especially for datasets with class
imbalance problems, according to our research.

Figure 1: Types of questions and images in the dataset.

3.4 Preprocessing the Dataset

The first step in pre-processing the MSCOCO VQA
V2 dataset is data cleaning (Lei et al., 2018). This
involves removing any incomplete or erroneous
data from the dataset. Preliminary data may include
images without associated questions or answers or
questions without related answers. Inaccurate data
may consist of images or questions with incorrect
or misleading information. In addition to removing
incomplete or erroneous data, data cleaning also in-
volves standardizing the data format. For example,
all questions and answers were converted to low-
ercase, or punctuation may be removed to ensure
consistency.

The second step of pre-processing is data aug-
mentation. It creates new training data by applying
transformations to the existing data. In the case
of the MSCOCO VQA V2 dataset, data augmen-
tation may involve image transformations such as
rotation, cropping, or scaling to the images in the
dataset (Hodosh and Hockenmaier, 2016). This
helps increase the diversity of the data and im-
prove the performance of Machine Learning (ML)
models. It also involves generating new questions
and answers based on existing data. For example,
further questions can be generated by replacing a
word in an existing question with a synonym or by
rephrasing the question differently.

The final step in pre-processing the dataset is
data formatting (Zhou et al., 2016). This involves
converting the data into a format that machine learn-
ing algorithms can easily use. For example, the
images in the dataset were resized and normalized
to a fixed size. The questions and answers may be
converted into numerical representations such as
one-hot encoding or word embeddings.

3.5 Inception v3

Using pre-trained models in deep learning has be-
come a standard practice in many computer vision
applications, including the MSCOCO VQA V2
dataset. In this paper, we use the Inception v3
model (Zhou et al., 2015) as a pre-trained model to
extract features from the images in the dataset. By
leveraging the pre-trained model’s capabilities, we
can more accurately predict answers to the ques-
tions posed about the images. The Inception v3
model has been demonstrated to achieve high ac-
curacy on the ImageNet dataset, making it a suit-
able choice for image recognition tasks such as
those presented in the MSCOCO VQA V2 dataset.
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Through transfer learning and feature extraction,
we can improve the performance of the VQA model
in answering questions about images (Hodosh and
Hockenmaier, 2016). Overall, our results demon-
strate the effectiveness of using pre-trained models
in deep learning and their ability to improve the
accuracy of computer vision tasks.

Figure 2: Inception-v3 complete architecture. It is based
on CNN and used for image classification. It uses Label
Smoothing, Factorized 7x7 convolutions, and an auxil-
iary classifier

3.6 Vocabulary Building

In this paper, we utilize the NLTK word tokenizer
to break down the text data into smaller pieces
called tokens, which are then used to build the
vocabulary.

To create the vocabulary, we use the response
vector generated by the Label encoder as a basis
for developing a dictionary of words (Saito et al.,
2017). The Label encoder is a tool that assigns
a unique numerical value to each word in the re-
sponse vector, which is then used to create a vocab-
ulary of words. The vocabulary is built by counting
the frequency of each word in the response vec-
tor and assigning it a numerical value based on its
frequency. Words that occur more frequently are
assigned lower numerical values, while words that
occur less frequently are assigned higher numerical
values.

To ensure that the vocabulary is robust and com-
prehensive, we fit the output of the NLTK word
tokenizer to the training questions and replies. This
allows us to capture a wide range of words and
phrases used in the dataset and create a complete
vocabulary. Additionally, we convert the output
of the NLTK word tokenizer to a data frame for
enhanced text interpretation, which enables us to
visualize better and analyze the text data. By cre-
ating a comprehensive dictionary of words used
in the corpus, we can more accurately interpret
and analyze the text data and improve the overall
performance of the VQA model (Selvaraju et al.,

2017). Our results demonstrate the effectiveness
of this approach and highlight the importance of
vocabulary building in NLP.

Figure 3: It describes the scene vocabulary for the given
question. Vocabulary helps pre-process corpus text
which acts as a classification and storage location for
the processed corpus text.

3.7 One-hot Encoding

One-hot encoding is popular in various machine
learning tasks, including classification, Natural
Language Processing (NLP), and Computer Vision.
In this paper, we use our dataset to investigate the
application of one-hot encoding (Saito et al., 2017)
in the context of the VQA task.

We proposed using one-hot encoding to repre-
sent each answer as a vector of binary values. Each
element corresponds to a unique answer option in
Shih et al. (2016). By converting the answer vec-
tors into one-hot encoded vectors, the model can
better capture the complex relationships between
the visual input, question, and answer options, lead-
ing to improved performance.

Our experimental results show that one-hot en-
coding outperforms the methods in Saito et al.
(2017), achieving higher accuracy and F1-score
on the VQA task using the MSCOCO VQA v2
dataset.

Figure 4: In this scenario, the integer representation can
be encoded with a one-hot encoding. The VQA problem
was treated as a classification problem, and all answer
vectors were turned into one hot-encoded vector.

4 Models and Experiments

We propose three VQA models, utilizing Recurrent
Neural Networks (RNNs) and image embeddings
to answer questions based on visual content. The
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models differ in adding the image to the input ques-
tion tensor.

We provide an overview of our approach before
describing each step in detail in the following sub-
sections. The first model, Appending Image as
Word Model, appends the image features to the end
of the question features, creating a concatenated
vector fed into an LSTM layer for prediction. The
second model is Prepending Image as Word Model,
which prepends the image features to the beginning
of the question features, creating a concatenated
vector fed into an LSTM layer for prediction. The
third model is the Co-Attention Model, which uti-
lizes a co-attention mechanism, where the image
and question features are combined at every time
step using attention weights. This model then feeds
the integrated features into an LSTM layer for pre-
diction.

All three models are evaluated on the MSCOCO
VQA v2 dataset and compared to the state-of-the-
art approaches (Shin et al., 2016). An ablation
study is conducted to investigate the impact of dif-
ferent hyperparameters and variations of the mod-
els on the VQA task’s performance. The experi-
ments show that adding image features to the in-
put question tensor can significantly improve the
model’s performance and highlight the importance
of the RNN’s architecture and the number of image
features utilized.

4.1 Model 1 - Adding Image after Word

In the first approach, we provide a novel model for
the VQA task that utilizes an embedding layer and
an RNN-like GRU to generate answers to questions
based on visual content. The model first obtains
word-level embeddings using the embedding layer
offered by TensorFlow 1. The input picture is then
processed as a word and attached to the terms cor-
responding to the appropriate question, resulting in
a complete input question tensor.

The complete input question tensor is fed into the
GRU RNN, which processes the tensor and gener-
ates a sequence of output vectors (Saito et al., 2017).
The RNN’s output is further processed through a
softmax-activated final dense layer to improve the
model’s performance. This layer’s output is the
final answer to the inquiry.

The proposed model is evaluated on the
MSCOCO VQA v2 dataset and compared with
state-of-the-art approaches. The results show that

1https://github.com/tensorflow

the model achieves competitive performance on the
dataset, outperforming several previous models.

Moreover, an ablation study is conducted to in-
vestigate the impact of different hyperparameters
and variations of the model on its performance.
Our work shows that the model’s performance is
sensitive to the size of the word embeddings, the
number of layers in the RNN, and the size of the
final dense layer.

The proposed model demonstrates the effective-
ness of using an embedding layer and an RNN for
the VQA task and provides insights into the impact
of different hyperparameters on the model’s per-
formance. The findings can be utilized to develop
more accurate and efficient VQA models in the
future.

4.2 Model 2 - Adding Image before Word

In our second approach, we provide an alternative
model for the VQA task, where the image is added
to the input question tensor before the words. This
model is comparable to the Adding Image after
Word Model but significantly differs in how the
image is integrated into the model. In this model,
the image is prepended to the question tensor, and
the resulting tensor is then fed into an LSTM for
further processing.

The LSTM processes the concatenated ten-
sor and generates a sequence of output vectors
(Agrawal et al., 2016). The output vectors are then
passed through a final dense layer with softmax
activation. Similar to the Adding Image after Word
Model, the output of the LSTM is further processed
through a softmax-activated final dense layer to im-
prove the model’s performance. This layer’s output
is the final answer to the inquiry.

We conduct experiments on the MSCOCO VQA
v2 dataset to evaluate the proposed model and
compare its performance with state-of-the-art ap-
proaches (Donahue et al., 2015). The results show
that the model achieves competitive performance
on the dataset and outperforms several previous
models.

Furthermore, we conduct an ablation study to
investigate the impact of different hyperparameters
and variations of the model on its performance.
The study reveals that the model’s performance is
sensitive to the size of the word embeddings, the
number of layers in the LSTM, and the size of the
final dense layer.
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4.3 Model 3 - Attention-based Model
In our third approach, we propose an attention-
based model, an advanced technique that seeks
to address the limitations of the previous models.
This model utilizes a co-attention mechanism that
simultaneously attends to visual and textual inputs
to generate more accurate results. In this model,
we propose an alternating co-attention architecture
focusing on the image’s issue at both the sentence
and word levels.

In contrast to the previous models, the attention-
based model dynamically attends to the most rel-
evant parts of the input data, allowing the model
to focus selectively on the most critical informa-
tion important for answering the question (Huang
et al., 2023). This approach enhances the model’s
understanding of the complex relationship between
the image and text and generates more accurate
predictions.

The co-attention mechanism is implemented by
alternately attending to the question and the im-
age features using a series of attention layers. The
model then aggregates the attended features and
passes them through a final dense layer with soft-
max activation to generate the answer.

This co-attention-based approach is significantly
more effective than the previous models as it al-
lows the model to capture complex relationships
between the image and the text (Li et al., 2023).
The attention mechanism enhances some parts of
the input data while diminishing others, enabling
the network to focus more on the crucial aspects
of the data that influence the answer to the ques-
tion. This capability to selectively focus on specific
parts of the input data results in better accuracy and
overall performance of the model.

Figure 5: Attention Mechanism in LSTM. It helps to
look at all hidden states from the encoder sequence to
make predictions. The effect enhances some parts of the
input data while diminishing other parts — the thought
being that the network should devote more focus to that,
a small but essential part of the data.

5 Results

We evaluate the three models trained on the train
splits of both the unbalanced and balanced datasets
by testing on the balanced test set as done in
Agrawal et al. (2016).

Training on the balanced dataset works well.
This may be because the models trained on flat
data must learn to extract visual information to an-
swer the question correctly since they can no longer
exploit language biases in the training set. Whereas
models trained on the unbalanced set are blindsided
into learning strong language priors, which are then
not available at the test step.

The results of Model-1, Model-2, and Model-3
are summarized in Table 1, Table 2, and Table 3,
respectively.

Unbalanced Balanced
Yes/No 45.02 47.45
Number 40.24 42.78
Other 39.87 40.89

Table 1: Evaluation of test accuracies of Model-1 on
Balanced and Unbalanced Dataset.

Unbalanced Balanced
Yes/No 45.00 47.19
Number 39.66 40.78
Other 38.87 40.01

Table 2: Evaluation of test accuracies of Model-2 on
Balanced and Unbalanced Dataset.

Unbalanced Balanced
Yes/No 52.02 57.45
Number 50.24 52.78
Other 49.87 50.89

Table 3: Evaluation of test accuracies of Model-3 on
Balanced and Unbalanced Dataset.

6 Conclusions

Our proposed framework addresses the limitations
of existing VQA models by combining the atten-
tional LSTM and Inception v3 models to create
three different models for VQA. By appending or
prepending the image as a word in the question
sentence or using a co-attention model, we can bet-
ter capture the relationship between images and
questions, improving VQA performance.
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