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Abstract

In natural language processing (NLP) we
always rely on human judgement as the
golden quality evaluation method. How-
ever, there has been an ongoing debate
on how to better evaluate inter-rater re-
liability (IRR) levels for certain evalua-
tion tasks, such as translation quality eval-
uation (TQE), especially when the data
samples (observations) are very scarce.
In reality, practitioners need to be able
to assess the reliability of human MT
quality evaluation based on one, two, or
maximum three human linguists’ judge-
ments. In this work, we first introduce
the little-known method to estimate the
confidence interval for the measurement
value when only one data (evaluation)
point is available. This leads to our ex-
ample with two human-generated observa-
tional scores, for which we describe “Stu-
dent’s t-Distribution”, and explain how
to use it to measure the IRR score us-
ing only these two data points, and cal-
culate the confidence interval (CI) of the
quality evaluation. We give a quantitative
analysis of how the evaluation confidence
can be greatly improved by introducing
more observations, even if only one extra
observation. We encourage practitioners
and researchers to report their IRR scores
and confidence intervals in all evaluations,
e.g. using Student’s t-Distribution method
whenever possible; thus making the NLP
evaluation more meaningful, transparent,
and trustworthy.

1 Introduction

Human evaluations have been always the gold
standard to judge the quality of natural language

processing (NLP) system’s outputs (Han et al.,
2021; Freitag et al., 2021; Gladkoff and Han,
2022). This applies to many sub-tasks including
machine translation (MT) (Han et al., 2020; Han,
2022a; Charalampidou and Gladkoff, 2022; MI-
LAD, 2022), text summarisation (Bhandari et al.,
2020; Latif et al., 2009), question answering (Al-
rdahi et al., 2020), information extraction (Wu
et al., 2022; Nenadic et al., 2004), and prediction
(Yang et al., 2009), as well as domain applica-
tions such as social media, biomedical and clini-
cal domains knowledge representation (Milošević
et al., 2019; Yang et al., 2021; Krauthammer and
Nenadic, 2004). Nonetheless, human evaluations
have been subject to criticisms and debates about
their reliability, particularly when conducted with-
out strictly defined procedures. (Han, 2022b; Han
and Gladkoff, 2022; Graham et al., 2017). Despite
the inclusion of factors such as quality controls
and clear guidelines, human evaluation results can
vary greatly among different individuals due to
subjective judgements influenced by factors such
as backgrounds, personalities, cultures, and so on.

Naturally, the confidence levels of human eval-
uation become the key point to the validity of such
work. There have been some efforts made on how
to measure the confidence level of human evalua-
tions from a statistical point of view, such as very
recent work using Monte Carlo Sampling Simu-
lations by Gladkoff et al. (2022). However, this
kind of statistical measurement still needs a good
amount of data points, or observations, to be based
upon. When there are a limited amount of observa-
tions obtained from the experiments, how to mea-
sure the confidence level properly is still a chal-
lenging question. One of the solutions to address
this is to calculate the inter-rater agreement level
and inter-rater reliability (IRR) scores. There are
some historical IRR measurement metrics includ-
ing Cohen’s Kappa (Cohen, 1960) and Krippen-
dorff’s Alpha (Krippendorff, 1987, 2011). How-
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ever, as the last issue with statistical sampling,
both Cohen’s Kappa and Krippendorff’s Alpha
need a certain amount of samples data for prob-
ability calculation, which becomes troublesome
when the observations are really scarce, e.g. only
one, two, or a few data points. In addition, there
are existing criticisms regarding the undesired pre-
diction of Cohen’s Kappa, e.g. Delgado and Tibau
(2019) gave examples about how Kappa produced
better scores for worse classifiers.

In this study, we examine scenarios in which ob-
servations from human evaluations are extremely
scarce (e.g., limited to one or two values) and ex-
plore potential solutions. This endeavor is moti-
vated by the realities of the translation and local-
ization industry. Practitioners often need to deter-
mine the reliability of human machine translation
(MT) quality evaluations based on the judgments
of a single linguist, or at most, two to three linguist
evaluations.

We start from one observation and introduce a
confidence estimation method borrowed from Ab-
bott and Rosenblatt (1962); Furnival et al. (1989)
which was applied to forest study by Valentine
et al. (1991). Then we discuss how this one
observation-based confidence estimation is prob-
lematic and not much reliable. Following this,
we bring an example of MT evaluation where two
observations are obtained from the human assess-
ment. In this case study, we introduce how to ap-
ply Student’s t-Distribution to measure IRR with
detailed formula interpretation and guidance. We
also further give instructions on how to measure
confidence intervals (CIs) using this method. We
discuss the much improvement achieved by us-
ing two observational data points and Student’s
t-Distribution regarding narrowed-down CIs. Fi-
nally, we suggest that researchers also apply Stu-
dent’s t-Distribution to other NLP tasks and even
beyond, i.e. outside of NLP tasks.

The rest of the paper is organised as below: Sec-
tion 2 surveys the related work to ours on mea-
suring IRR and confidence intervals from different
fields, Section 3 presents a case study with a sin-
gle observation, Section 4 follows up with two and
more observations where we introduce Student’s
t-Distribution, and Section 5 concludes the paper
with discussion and future work.

2 Related Work

Regarding agreement measurement, Cohen’s
Kappa metric was defined by Cohen (1960) as be-
low:

K =
po − pe
1− pe

(1)

where po is used to represent the ratio (proportion
of units) when the raters agree with each other,
while pe is the agreement expected by chance. In
the expression of frequencies, the Kappa value can
be calculated by:

K =
fo − fe
N − fe

(2)

In other words, the Kappa value reflects the agree-
ment level (or proportion of agreement) after de-
ducting the chance agreement. In the perfect situa-
tion, when the raters all agree with each other, i.e.
the po value equals 1, the Kappa value will be 1
(Cantor, 1996). However, if the raters totally dis-
agree with each other, i.e. the value of po is almost
the same value of agreement by chance pe, the
Kappa value will be close or equal to 0. However,
Kappa’s value can be a negative number, when the
agreement exhibition level is even smaller than by
chance, e.g. using the above equations when the
value of po − pe or fo − fe is negative. As men-
tioned in the earlier section, the Kappa value re-
quires a certain number of observations to prop-
erly estimate the metric scores.

Looking into the IRR measurement in crowd-
sourcing human evaluation domain, Wong et al.
(2021) argued that the traditional Krippendorff’s
alpha or Cohen’s kappa threshold values, e.g.
above 0.6, are not ideal due to the ignorance of
cultural and individual differences from crowd-
source workers. They proposed a cross-replication
reliability method based on Cohen’s kappa and
tested the methods on human judgements of facial
expressions using a large amount of 4 million data
points.

From NLP and MT field, Alekseeva et al.
(2021); Gladkoff et al. (2022) applied Monte Carlo
Simulation Analysis method to generate more
samples for statistically estimating the confidence
intervals of judgements when the samples pre-
sented for the human evaluation are small. Their
experimental outputs demonstrate that not less
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than 100, and ideally 200 segments are necessary
for the test set to produce an unbiased, statistically
significant quality evaluation of the MT system
output.

Outside of NLP fields, there are also some ef-
forts made to address similar issues in measur-
ing reliability and confidence intervals. For in-
stance, Hallgren (2012) gave a tutorial on mea-
suring IRR for the psychology domain when mul-
tiple coders are involved using case studies us-
ing commonly used Cohen’s kappa and intra-class
correlation (ICC). Similarly in the educational and
psychological domain, Walker and Göçer Şahin
(2020) carried out a study on applying differential
item functioning (DIF) analysis to measure IRR,
in comparison to the inter-class correlation coeffi-
cient and Cohen’s kappa statistics.

From animal behaviour studies, Harvey (2021)
raised the issues on inter-rater and intra-rater reli-
ability and made a discussion on Cohen’s Kappa
and Krippendorff’s Alpha values. From the socio-
logical domain, Belur et al. (2021) reported a sys-
tematic survey on reporting IRR values from crime
studies on multiple coders. They made further
discussion on how human factors affect decision-
making and how important it is to report accuracy,
precision and reliability from screening/coding.

There is some existing business software in-
tegrating IRR into their statistical tools such as
SPSS that has been used in different sectors in-
cluding medical training assessment (Beck et al.,
2016). The IBM SPSS uses interclass correla-
tion coefficient (ICC) to measure the IRR values
among different groups of raters 1.

However, to the best of our knowledge, there
is no existing work on applying Student’s t-
Distribution for measuring IRR in NLP applica-
tions, especially in translation quality evaluation
(TQE) field.

3 On Single Judgement

When observational data is very scarce, more than
half a century ago, Abbott and Rosenblatt (1962)
proved the possibility of measuring confidence in-
tervals on a single data point from a mathemati-
cal point of view, and the later work from Furnival
et al. (1989) further elaborated Abbott and Rosen-
blatt’s formula with a more narrowed interval gen-
eration. We name it the ARF Interval by taking

1https://www.ibm.com/uk-en/spss

the initial letters of their names. 2

This method may appear statistically counter-
intuitive, but it is certainly worth mentioning here,
particularly as production decisions are frequently
based on a single quality measurement. An in-
triguing paradox arises: while many statisticians
would argue it’s impossible to determine a con-
fidence interval from one measurement, project
managers often rely on a single TQE (Transla-
tion Quality Evaluation) value to make their de-
cisions. In actuality, conclusions about the re-
liability of a single measurement can be made,
but they require supplemental information, e.g.,
for translation industy, known vendor’s past per-
formance. Within the ARF interval calcula-
tion method, this additional data is also derived
from an experimentally-based prior knowledge or
theoretically-based value that, while external to
the measurement, arises from the project context.
Interestingly, project managers who use a single
measurement’s value to make their decisions ap-
ply a similar intuition. Consequently, it’s fascinat-
ing to explore what mathematical principles can
elucidate within this context.

The width of the confidence intervals reflects
the uncertainty of the experiments, i.e., the wider it
is, the less knowledge is available about the setup.

A relatively narrowed confidence interval indi-
cates the controlled situations, for instance, the
normal distribution in the following formula of
standardised transformation:

Z =
y − µ
σ

(3)

of which, y, µ, and σ are the variables of the vari-
ate, mean value, and standard deviation. The pa-
rameter z represents the standardised variate.

For the situation with one observation, let µ̂ be
the independent and fixed value that is known be-
fore and outside of the measurement, and y be the
experimental measurement value. Furnival et al.
(1989) gives the following calculation intervals:

ARF =
y + µ̂

2
± k|y − µ̂| (4)

2In another study by Rodriguez (1996) on confidence in-
tervals (CIs) from one single observation, Herbert Robbins
non-parametric CI was obtained and another technique was
introduced for obtaining CI for the “scale parameter of finite
length in the logarithmic metric”.

https://www.ibm.com/uk-en/spss
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This ARF interval contains the probability of µ
that is larger than or equal to 1 − α, and α meets
the following equation with k:

k =
1− α+

√
1− 2α

2α
, 0 < α ≤ 0.5 (5)

The pair value of (k, α) was given by Furnival
et al. (1989) as in Table 1.

3.1 Case Study using ARF Intervals
Let’s have a case study on using ARF intervals
for MT evaluation. Assuming that a translation
vendor has been evaluated earlier on certain lines
of projects and the average result was a score of
96.3 (µ̂). The next translation quality measure-
ment produced by another vendor is a lower rating
of 85.2 (y). How reliable is this measurement by
itself purely from the statistical point of view? and
what does it tell us? If we assume the quality mea-
surements are distributed normally, it is logical to
take the average value of the prior history evalu-
ations as the predicted value for future outcomes.
Below we give two practices using ARF intervals.

1) If we construct a 75% confidence interval for
the true quality rating, we need to use k=1.8 from
the instruction by Table 1, and the corresponding
α value is 0.25. Using the ARF interval formula,
it gives:

ARF =
96.3 + 85.2

2
± 1.8× |96.3− 85.2| (6)

which is 90.75±19.98. Therefore, the ARF inter-
val for the true value of quality rating is [70.77,
100]. As we can see from this example, the 75%
confidence interval is almost half of the measured
value itself, i.e. the maximum deviation of 19.98 is
22% of the measurement result (90.75). Although
the mathematical precision of the single quality
measurement is limited to this level, it can be ben-
eficial to define these limits.

2) Similarly, for an 80% CI (α = 0.2) for the
true quality rating, the corresponding k value from
the Table 1 is 2.31 and the above formula gives the
following ARF value:

ARF =
96.3 + 85.2

2
± 2.31× |96.3− 85.2|

(7)

which is 90.75±25.64. In other words, the interval
for the true value of quality rating is [65.1, 100].

From this, we can see that with 80% CI, the max-
imum deviation of 25.64 is 25% of the measure-
ment result (90.75).

From these two case studies, what is probably
more interesting in the context of translation qual-
ity evaluation is that “the middle of the CI lies
halfway between an earlier average result and the
recent lower measurement”. We can spell a good
rule of thumb: if the single measurement deviates
from the average, the true value is likely halfway
between the average and the new measurement.
Knowledge of this would help not to overreact to
unusually low single scores newly generated.

Even though it is possible to measure the con-
fidence levels, this ARF interval is very wide and
the worse thing is that it can not be improved by
the choice of α. As shown in Table 1, 0.5 is the
narrowest option of choice for intervals. However,
this value is considered not high enough to make
a significant impact. To the right side of the table,
the smaller value the α is, the wider the resulting
intervals will be. Therefore, choosing α value be-
tween (0.2, 0.25) is probably the compromise to
make when there is only one observation or judge-
ment available. From this case study, our finding
is that evaluations consisting of only a single mea-
surement are not recommended as there will be a
higher chance of bias as illustrated by our transla-
tion evaluation example. Such measurements have
only rough and indicative values, so the data col-
lection and analysis approaches must be invoked
to improve the quality of measurement itself with
the data science apparatus. This will lead to our
next section when we recommend that a second
quality measurement is very necessary, how to
measure it in the new situation, and how much dif-
ference it will make.

4 On Observations of More Than One

Following the last section, we call on more mea-
surement points for NLP evaluation tasks, es-
pecially in the language service provider sector
where the single observation value is still very
common in practice due to the cost concern. 3

For instance, when a single translation quality
measurement is not satisfactory for one of the par-
ties, second quality measurement can be made to
validate the first measurement. Then, how much
improvement to the confidence interval can be ob-

3e.g. referring to the R&D report from Language Service
Provider https://logrusglobal.com/

https://logrusglobal.com/


423

value (α)
Distribution 0.50 1/3 0.25 0.2 0.1 0.05 0.01
Normal (k) 0.05 1.26 1.8 2.31 4.79 9.66 48.39

Unknown (k) 0.5 1.87 2.91 3.94 8.97 18.99 99

Table 1: The Value Matching of (k, α) for both Normal Distribution and Unknown Ones by Furnival
et al. (1989).

tained by introducing extra observational data? To
answer this, the obvious problem, of course, is that
at least 20-30 data points are required to calculate
the mathematical variance for a normal distribu-
tion. In settings where the sample size is less than
30, and the standard deviation of the entire popu-
lation is unknown, Student’s t-Distribution can be
used to evaluate standard deviation based only on
the number of measurements between one and 30,
e.g. 2, 3, etc.

4.1 On Student’s t-Distribution

When the sample size (aka observations) is very
small in comparison to the entire population, Stu-
dent (1908) designed Student’s t-distribution to
measure the mean errors and the confidence inter-
vals of estimation.

When there is one degree of freedom, the crit-
ical values for Student’s t-Distribution are shown
in Figure 1 including the confidence level, one tail,
and two tail scores. 4 The full list of critical val-
ues with more degrees of freedom is shown in Fig-
ure 2.5 There are many researchers who proposed
different algorithms to calculate these critical val-
ues by hand and using computers, for instance, the
work from Cheng and Fu (1983) and comparison
studies by Blair and Higgins (1980).

The notation of Student’s t-Distribution is de-
fined as below if we use T as the random variable:

• T ∼ tdf where df = n− 1

where df is the degree of freedom and n is the
number of observations. For instance, if we have a
sample size n = 2, we calculate the df = 2− 1 =
1 and write the distribution as T ∼ t1.

For the situation when the standard deviation is
unknown, the error bound for the sample mean is
defined as:

4https://people.richland.edu/james/
lecture/m170/tbl-t.html

5https://www.stat.purdue.edu/
˜lfindsen/stat503/t-Dist.pdf

E = (tα/2)(
s√
n
) (8)

where tα/2 is the critical value of t-score with the
area to the right equal to α/2 (Figure 2), s is the
standard deviation of observations (samples):

s =

√∑
(xi − x)2

n− 1
(9)

where x is the mean value of n samples:

x = (1/n)
∑

xi (10)

The resulting confidence interval (CI) is then
the following span:

CI = (x− E, x + E) (11)

4.2 Deploying t-Distribution to IRR
Looking back to our MT evaluation experiments,
from a practical industry project on language ser-
vice, we have an example to demonstrate how to
deploy Student’s t-Distribution to measure IRR
value. Assume we have used the Multidimen-
sional Quality Metric (MQM) initialised by Lom-
mel et al. (2014) 6 and professional translators
for a translation evaluation project and got two
numbers of overall quality scores: QS1=76.85 and
QS2=81.99 on a scale from 0 to 100.7 We can im-
mediately see that the QS2 81.99 is 6.7% greater
than the QS1 76.85, and oppositely QS1 76.85 is
6.3% less than QS2 81.99. Therefore QS2 agrees
with 93.3% of QS1, and QS1 agrees with 93.7%
of QS2. This is almost 95% agreement, so it looks
good for most cases. However, if the PASS/FAIL
threshold is 80, the difference may be crucial for

6open source project https://themqm.org/
7This is a real example from an industrial project on TQE

called “Whale”.

https://people.richland.edu/james/lecture/m170/tbl-t.html
https://people.richland.edu/james/lecture/m170/tbl-t.html
https://www.stat.purdue.edu/~lfindsen/stat503/t-Dist.pdf
https://www.stat.purdue.edu/~lfindsen/stat503/t-Dist.pdf
https://themqm.org/
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Figure 1: Critical Values for Student’s t-Distribution with One Degree of Freedom (from peo-
ple.richland.edu)

the translator. Then, what is the reliability of this
evaluation result?

The Sample Mean x of QS1 and QS2 is
(QS1 + QS2)/2 = 79.42 for this sample
of two measurements. The Sample Standard
Deviation s for this sample of two values is√
(QS1− x)2 + (QS2− x)2 =

√
6.6049× 2

which is 3.6345.
The Confidence Interval depends on the desired

Confidence Level, which, in turn, depends on the
subject matter area of the content which was trans-
lated. For most fields, the confidence level should
be at least 80%. The critical number tα/2 for that
level (0.1 which is 20% divided by 2 for one tail of
the graph, α = 0.2) and two measurements (one
degree of freedom, df =1) is 3.078, as shown in
Figure 1 and 2.

Therefore, the margin of error for these mea-
surements is:

E =
3.078× 3.6345√

2
= 7.91 (12)

This means that the confidence interval for these
two measurements is 7.91×2=15.8, which indi-
cates that with an 80% degree of confidence, the
true quality score lies on this interval: [79.42 –
7.91, 79.42 + 7.91], or [71.51, 87.33].

As we can see from this result, given the sec-
ond measurement, we can significantly improve
the confidence interval as compared to the single
measurement. The two different judgements (ob-
servations) that we obtained reduce variance from
25% of a single judgement (Section 3) to 9.96%
(7.91/79.42), i.e. more than two times narrower
with an 80% confidence setting.

However, as in the previous example, this con-
fidence interval is still relatively large. Can we tell
anything about the translator passing or failing the
89% PASS/FAIL threshold? The answer is that
since the sample mean is below 80% and equals
79.42, the evaluation result is borderline FAIL.

Ideally, we need a third measurement or even
more observations to further improve this inter-
val, but in a production setting, the additional data
points are rarely obtained by repeated evaluations,
due to the cost and time constraints required for
such a process.

The good news is that we already have reli-
able information for translation quality evaluation
(TQE) purposes: this is a borderline FAIL, beca-
sue the Sample Mean is lower than the threshold,
and therefore more than half of possible values are
below the PASS threshold. This is not bad for
the measurement of such a subtle, almost intan-
gible object as the human perception of quality.
But you can only obtain a history of performance
based on multiple evaluations for different content
pieces and apply data science approaches.

5 Conclusion and Future Work

When it comes to evaluating translation quality,
the ability to measure alone is not sufficient; we
also need to know how reliable the measurement
is. Automatic evaluation of quality quickly pro-
duces the same scores if repeated a number of
times, which creates an illusion of precision. Un-
fortunately, the results of automatic quality mea-
surement not only depend on the language pair,
the Machine Learning system, the decoder, and
the content type, but also vary from dataset to
dataset, depending on the way the data have been
cleaned and formatted. Given these factors, au-
tomatic measurement can be very fast and “reli-
able”, but it may be (and often is) invalid, as well
as inconsistent. Human translation quality eval-
uation (TQE) is currently the only way to obtain
valid measurements of human perception of qual-
ity, and considered to be the golden standard of
TQE. However, human measurement’s inter-rater
reliability (IRR) should be assessed, even if evalu-
ation has been carried out correctly. Even if evalu-
ators are experienced linguists, trained to do evalu-
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ation according to proper system, and client spec-
ifications are clearly defined, the evaluators would
still produce close but not the same evaluation re-
sults due to the very nature of human perception of
quality, which is by definition the function of per-
sonal perception. This problem is exacerbated by
the fact that in real life production setting there is
no time or budget to validate the translation quality
measurement even with the second reviewer, and
even if there is a second reviewer, the low IRR of
such measurement makes it difficult to confirm the
first measurement.

In this paper, we first studied the typical produc-
tion setting of gold standard human quality mea-
surement, where TQE is performed by only one
experienced, trained linguist, according to clearly
defined customer specifications, producing a sin-
gle measurement, and make conclusions about the
reliability of such measurement. We then illus-
trated the results with the case of Student’s t-
Distribution analysis of two measurements made
by two different reviewers.

From the first and second experiments, we can
conclude that a single measurement has very low
reliability and only has an indicative value. The
confidence interval for one measurement is (as
shown in Section 3) as wide as 25%, and therefore
one evaluation cannot be taken as a basis for pro-
cess decisions, more measurements are required.
For instance, the second measurement can narrow
down this interval and render it two times smaller,
to around 10% (Section 4).

Yet we can say that the middle of the confidence
interval lies halfway between the earlier average
result and the lower recent measurement. A good
rule of thumb is born: if the single measurement
deviates from the average, the true value sits,
in all probability, halfway between the average
and the new measurement. Consequently, the
recommendation is: please do not over-react on
an unusually low new single score, take a mid-
dle ground between the older average and the new
score, and think about it as the most probable re-
sult.

The second measurement may improve the con-
fidence interval significantly but is rarely done
unless during the arbitration. Therefore, it is
more practical to obtain additional data points
from other evaluations of different samples, in the
course of the translation process.

Subsequent evaluations effectively are placed

into two categories: (a) mostly PASS with only
rare occasional FAIL, (b) all other cases (mostly
FAIL, or many FAILs). This strategy is caused by
the desire to ensure that a system is reliably well
above the PASS/FAIL threshold and thus ensures
quality results. Multiple evaluations also confirm
the validity of quality measurements and allow the
application of well-known maths of statistics of
normal distribution.

However, it is worth noting that proper meth-
ods of data analysis are required to analyse quality
evaluation data-sets, such as:

• Removal of outliers, which are caused by ir-
relevant causes.

• Evaluations made on very small or very large
samples.

• Evaluations that are incorrect due to the im-
proper application of metrics such as count-
ing repeated errors, for example.

• Evaluations made by reviewers who were not
trained, subjective, or had in mind different
customer requirements.

It should be remembered, that data science only
allows obtaining good results if you clean the
data properly. Incorrect, biased, not properly cal-
ibrated, or imprecise conclusions and inferences
may result from using uncleaned data.

Limitations

In this work, we discussed how to calculate con-
fidence intervals and evaluation reliability when
there are only one or two assessment scores from
annotators, such as translation quality assessors.
For the first case when there is only one new
observation score, we assume there is a pre-
estimated/expected score ready to use, i.e. for
ARF interval. However, this might not be the case
in some situations, or it might cost some time and
money to get this value, for instance, for a newly
established task without much prior knowledge.
In the second case considered, we introduced Stu-
dent’s t-distribution method and gave two human
judgement scores for estimation. This is expected
to be helpful for the small number of observa-
tions; however, it does require some mathemati-
cal calculations using guided formulas and param-
eter tables, which might be not instantly conve-
nient to translators or project managers who do
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not have much statistical knowledge, and requires
manual calculations from educated AI researchers
anyway. For real world applications preliminary
setup and additional clear and crisp guidance for
practitioners may be required.
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There are no ethical concerns in this work since
it is only about introducing alternative methodolo-
gies for calculating the confidence and reliability
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and Goran Nenadić. 2019. From web crawled text
to project descriptions: automatic summarizing of
social innovation projects. In International Confer-
ence on Applications of Natural Language to Infor-
mation Systems, pages 157–169. Springer.

Goran Nenadic, Sophia Ananiadou, and John Mc-
Naught. 2004. Enhancing automatic term recogni-
tion through recognition of variation. In COLING
2004: Proceedings of the 20th International Confer-
ence on Computational Linguistics, pages 604–610.

CC Rodriguez. 1996. Confidence intervals from one
observation. In Maximum Entropy and Bayesian
Methods: Cambridge, England, 1994 Proceedings
of the Fourteenth International Workshop on Max-
imum Entropy and Bayesian Methods, pages 175–
182. Springer.

Student. 1908. The probable error of a mean.
Biometrika, 6(1):1–25.

Harry T Valentine, George M Furnival, and Timo-
thy G Gregoire. 1991. Confidence intervals from
single observations in forest research. Forest sci-
ence, 37(1):370–373.

Cindy M Walker and Sakine Göçer Şahin. 2020. Using
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Appendix

A detailed Critical Value from the Student’s t-
Distribution is displayed in Figure 2 from Purdue
University Statistics.
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Critical Values for Student’s t-Distribution.
Upper Tail Probability: Pr(T > t)

df 0.2 0.1 0.05 0.04 0.03 0.025 0.02 0.01 0.005 0.0005

1 1.376 3.078 6.314 7.916 10.579 12.706 15.895 31.821 63.657 636.619
2 1.061 1.886 2.920 3.320 3.896 4.303 4.849 6.965 9.925 31.599
3 0.978 1.638 2.353 2.605 2.951 3.182 3.482 4.541 5.841 12.924
4 0.941 1.533 2.132 2.333 2.601 2.776 2.999 3.747 4.604 8.610
5 0.920 1.476 2.015 2.191 2.422 2.571 2.757 3.365 4.032 6.869
6 0.906 1.440 1.943 2.104 2.313 2.447 2.612 3.143 3.707 5.959
7 0.896 1.415 1.895 2.046 2.241 2.365 2.517 2.998 3.499 5.408
8 0.889 1.397 1.860 2.004 2.189 2.306 2.449 2.896 3.355 5.041
9 0.883 1.383 1.833 1.973 2.150 2.262 2.398 2.821 3.250 4.781

10 0.879 1.372 1.812 1.948 2.120 2.228 2.359 2.764 3.169 4.587

11 0.876 1.363 1.796 1.928 2.096 2.201 2.328 2.718 3.106 4.437
12 0.873 1.356 1.782 1.912 2.076 2.179 2.303 2.681 3.055 4.318
13 0.870 1.350 1.771 1.899 2.060 2.160 2.282 2.650 3.012 4.221
14 0.868 1.345 1.761 1.887 2.046 2.145 2.264 2.624 2.977 4.140
15 0.866 1.341 1.753 1.878 2.034 2.131 2.249 2.602 2.947 4.073
16 0.865 1.337 1.746 1.869 2.024 2.120 2.235 2.583 2.921 4.015
17 0.863 1.333 1.740 1.862 2.015 2.110 2.224 2.567 2.898 3.965
18 0.862 1.330 1.734 1.855 2.007 2.101 2.214 2.552 2.878 3.922
19 0.861 1.328 1.729 1.850 2.000 2.093 2.205 2.539 2.861 3.883
20 0.860 1.325 1.725 1.844 1.994 2.086 2.197 2.528 2.845 3.850

21 0.859 1.323 1.721 1.840 1.988 2.080 2.189 2.518 2.831 3.819
22 0.858 1.321 1.717 1.835 1.983 2.074 2.183 2.508 2.819 3.792
23 0.858 1.319 1.714 1.832 1.978 2.069 2.177 2.500 2.807 3.768
24 0.857 1.318 1.711 1.828 1.974 2.064 2.172 2.492 2.797 3.745
25 0.856 1.316 1.708 1.825 1.970 2.060 2.167 2.485 2.787 3.725
26 0.856 1.315 1.706 1.822 1.967 2.056 2.162 2.479 2.779 3.707
27 0.855 1.314 1.703 1.819 1.963 2.052 2.158 2.473 2.771 3.690
28 0.855 1.313 1.701 1.817 1.960 2.048 2.154 2.467 2.763 3.674
29 0.854 1.311 1.699 1.814 1.957 2.045 2.150 2.462 2.756 3.659
30 0.854 1.310 1.697 1.812 1.955 2.042 2.147 2.457 2.750 3.646

31 0.853 1.309 1.696 1.810 1.952 2.040 2.144 2.453 2.744 3.633
32 0.853 1.309 1.694 1.808 1.950 2.037 2.141 2.449 2.738 3.622
33 0.853 1.308 1.692 1.806 1.948 2.035 2.138 2.445 2.733 3.611
34 0.852 1.307 1.691 1.805 1.946 2.032 2.136 2.441 2.728 3.601
35 0.852 1.306 1.690 1.803 1.944 2.030 2.133 2.438 2.724 3.591
36 0.852 1.306 1.688 1.802 1.942 2.028 2.131 2.434 2.719 3.582
37 0.851 1.305 1.687 1.800 1.940 2.026 2.129 2.431 2.715 3.574
38 0.851 1.304 1.686 1.799 1.939 2.024 2.127 2.429 2.712 3.566
39 0.851 1.304 1.685 1.798 1.937 2.023 2.125 2.426 2.708 3.558
40 0.851 1.303 1.684 1.796 1.936 2.021 2.123 2.423 2.704 3.551

41 0.850 1.303 1.683 1.795 1.934 2.020 2.121 2.421 2.701 3.544
42 0.850 1.302 1.682 1.794 1.933 2.018 2.120 2.418 2.698 3.538
43 0.850 1.302 1.681 1.793 1.932 2.017 2.118 2.416 2.695 3.532
44 0.850 1.301 1.680 1.792 1.931 2.015 2.116 2.414 2.692 3.526
45 0.850 1.301 1.679 1.791 1.929 2.014 2.115 2.412 2.690 3.520
46 0.850 1.300 1.679 1.790 1.928 2.013 2.114 2.410 2.687 3.515
47 0.849 1.300 1.678 1.789 1.927 2.012 2.112 2.408 2.685 3.510
48 0.849 1.299 1.677 1.789 1.926 2.011 2.111 2.407 2.682 3.505
49 0.849 1.299 1.677 1.788 1.925 2.010 2.110 2.405 2.680 3.500
50 0.849 1.299 1.676 1.787 1.924 2.009 2.109 2.403 2.678 3.496

60 0.848 1.296 1.671 1.781 1.917 2.000 2.099 2.390 2.660 3.460
70 0.847 1.294 1.667 1.776 1.912 1.994 2.093 2.381 2.648 3.435
80 0.846 1.292 1.664 1.773 1.908 1.990 2.088 2.374 2.639 3.416
90 0.846 1.291 1.662 1.771 1.905 1.987 2.084 2.368 2.632 3.402

100 0.845 1.290 1.660 1.769 1.902 1.984 2.081 2.364 2.626 3.390

120 0.845 1.289 1.658 1.766 1.899 1.980 2.076 2.358 2.617 3.373
140 0.844 1.288 1.656 1.763 1.896 1.977 2.073 2.353 2.611 3.361
180 0.844 1.286 1.653 1.761 1.893 1.973 2.069 2.347 2.603 3.345
200 0.843 1.286 1.653 1.760 1.892 1.972 2.067 2.345 2.601 3.340
500 0.842 1.283 1.648 1.754 1.885 1.965 2.059 2.334 2.586 3.310

1000 0.842 1.282 1.646 1.752 1.883 1.962 2.056 2.330 2.581 3.300
∞ 0.842 1.282 1.645 1.751 1.881 1.960 2.054 2.326 2.576 3.291

60% 80% 90% 92% 94% 95% 96% 98% 99% 99.9%

Confidence Level

Note: t(∞)α/2 = Zα/2 in our notation.

Figure 2: Critical Values List for Student’s t-Distribution (from stat.purdue.edu)


