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Abstract

We present an approach for medical text coding
with SNOMED CT. Our approach uses publicly
available linked open data from terminologies
and ontologies as training data for the algo-
rithms. We claim that even small training cor-
pora made of short text snippets can be used
to train models for the given task. We pro-
pose a method based on transformers enhanced
with clustering and filtering of the candidates.
Further, we adopt a classical machine learning
approach - support vector classification (SVC)
using the transformer embeddings. The result-
ing approach proves to be more accurate than
the predictions given by Large Language Mod-
els. We evaluate on a dataset generated from
linked open data for SNOMED codes related to
morphology and topography for four use cases.
Our transformers-based approach achieves an
F1-score of 0.82 for morphology and 0.99 for
topography codes. Further, we validate the ap-
plicability of our approach in a clinical context
using labelled real clinical data that are not used
for model training.

1 Introduction

Despite being widely applicable in healthcare, med-
ical insurance and medical research, medical cod-
ing remains an under-automated process. This is
mainly due to the huge amount of codes in medical
ontologies on one hand and the very limited access
to medical texts for training natural language pro-
cessing systems on the other. We are presenting
research on the clinical text classification task using
SNOMED CT1 codes as target values. Although
the recent advances in Artificial intelligence (AI)
show significant improvement in transformer-based
models’ performance on various Natural Language
Processing (NLP) tasks, medical coding remains
challenging due to the large number of classes in

1https://www.snomed.org/

SNOMED (about 350K). Moreover, such systems
need to be precise and reliable, hence they are usu-
ally integrated in Hospital information systems or
used in Health insurance companies. Thus we pro-
pose ML-based approach that is developed on pub-
licly available data. In addition, we compare our
system to domain-specific Large Language Models
(LLMs).

2 Related Work

As manual annotation in the biomedical domain is
insufficient, there’s a rise in the adoption of ML ap-
proaches that leverage clinical text data for task au-
tomation, predictive modelling, and knowledge dis-
covery (Khattak et al., 2019; Mujtaba et al., 2019).
However, as free-text clinical notes are unstruc-
tured, and contain spelling errors, abbreviations,
and domain-specific terminology (Leaman et al.,
2015), the problem of correct information extrac-
tion from clinical free-text remains a bottleneck to
be properly addressed.

The limited scope of available data leads to a lim-
ited range of models that can be employed and, con-
sequently, to poorer results. This problem can be
partially alleviated by using an English-centric mul-
tilingual approach that can leverage larger sets of
data available in English for applications intended
for other languages (Yarowsky and Ngai, 2001).

The other way of coping with the lack of anno-
tated training data is leveraging Large Language
Models (LLMs). As those models are trained on
vast amounts of data, they can perform quite well
on simple classification tasks in zero-shot setting
(Törnberg, 2023).

Despite the fact that LLMs are quite powerful
for common-domain NLP tasks, their efficiency in
medicine is yet to be explored. Singhal et al. (2022)
present impressive results for LLM application in
clinical domain, evaluating performance over sev-

https://www.snomed.org/
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eral benchmark datasets for question answering
and named entity recognition. However, Au Yeung
et al. (2023) argue that such models are not ready
for application in real clinical practice.

Due to its widespread adoption The System-
atized Nomenclature of Medicine Clinical Terms
(SNOMED CT) has been employed in clinical text
processing for a range of tasks. Gaudet-Blavignac
et al. (2021), however, concluded that the majority
of the applied approaches are rule-based.

We present a method for semi-automated an-
notation through the classification of machine-
translated histopathology reports to SNOMED CT
codes corresponding to relevant morphology or to-
pography terms. We examine the performance of
our model on four data sets composed of diagnostic
and/or synoptic reports for Cervical cancer, colon
cancer, lung cancer and celiac disease use cases.
We address additional problems such as small sam-
ple sizes and class distribution imbalance and com-
pare our approach with domain-specific LLMs.

3 Data

Our data collection and preparation approach is:

• curate a large set of medical terminology for
pre-training of BERT models

• identify a subset of SNOMED CT codes re-
lated to a particular use-case (e.g. lung cancer)

• map to well-known medical ontologies and
classifications to obtain additional descrip-
tions (samples) for each code in the subset

• map of other (legacy, proprietary, etc) ontolo-
gies / classifications found in the validation
data to SNOMED CT codes

• machine translation of validation data (de-
scriptions in histopathology reports) from
source languages to English

3.1 Data Sources
Pre-Training Data Our base model, previously
described in Hristov et al. (2021), was trained on
600 thousand linked biomedical concepts. The cor-
pus is based on MONDO2, links to concepts from
other common medical ontologies (ICD-9, ICD-10,
ICD-O-3, MESH, ORDO, UMLS), and is further
enriched with relevant input from Wikidata3.

2https://mondo.monarchinitiative.org/
3https://www.wikidata.org/

Broad Fine-Tuning Data We first fine-tune our
transformer models using the SapBert scheme for
self-alignment, described in Liu et al. (2021), for 1
epoch using a subset of the English UMLS 2022AA
dataset. In contrast to Liu et al. (2021), who use
up to 50 positive pairs for each UMLS Concept
Unique Identifier (CUI), we employed subsets with
up to 5, 10 and 50 names for each CUI. A positive
pair is composed of two names (labels) correspond-
ing to the particular CUI. More details on the data
statistics could be found in Appendix.

We found no extra improvement in performance
with the larger UMLS subsets, hence we used the
smallest subset (up to 5 names for each CUI).

Narrow Fine-Tuning Data The task in the
present study is to identify morphology and ter-
minology concepts that are relevant to or found
in a particular clinical text (e.g. a histopathology
report). As such, we further fine-tune our model
with additional data, more specifically pertaining to
morphology and topography SNOMED CT codes
of various anatomical structures for which valida-
tion data is available to us and are related to the
four use-cases: cervical cancer, colon cancer, lung
cancer and celiac disease.

Following the approach described in Hristov
et al. (2021), for each SNOMED CT code in our
subset we add alternative names (textual descrip-
tions) in English from other medical ontologies,
terminologies and vocabularies, among them the
International Classification of Diseases, 10th re-
vision (ICD-10)4, the International Classification
of Diseases, 9th revision (ICD-9)5, the System-
atized Nomenclature of Medicine, International
Version (SNMI)6, the National Cancer Institute
Thesaurus (NCIT)7, the Mondo Disease Ontology
(MONDO)8, and the Unified Medical Language
System (UMLS)9.

This set, composed of SNOMED CT codes and
multiple names for each code, is the input to a
BERT model that generates the embeddings corre-
sponding to each name.

4https://icd.who.int/browse10/2019/en
5https://apps.who.int/iris/handle/

10665/39473
6https://bioportal.bioontology.org/

ontologies/SNMI
7https://ncithesaurus.nci.nih.gov/
8https://mondo.monarchinitiative.org/
9https://www.nlm.nih.gov/research/

umls/index.html

https://mondo.monarchinitiative.org/
https://www.wikidata.org/
https://icd.who.int/browse10/2019/en
https://apps.who.int/iris/handle/10665/39473
https://apps.who.int/iris/handle/10665/39473
https://bioportal.bioontology.org/ontologies/SNMI
https://bioportal.bioontology.org/ontologies/SNMI
https://ncithesaurus.nci.nih.gov/
https://mondo.monarchinitiative.org/
https://www.nlm.nih.gov/research/umls/index.html
https://www.nlm.nih.gov/research/umls/index.html
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Morphology Topography
Use case Classes Samples Classes Samples
cervical cancer 59 413 6 46
lung cancer 36 244 6 47
celiac disease 8 43 1 7
colon cancer 99 687 46 337
total 121 808 56 404

Table 1: Number of classes and samples of morphology
and topography codes for each fine-tuning dataset. Note
that some classes (and their respective samples) pertain
to more than one use-case.

3.2 Data Integration

As described in 3.1 we limit the scope of SNOMED
CT codes considered, to those related to Cervical
cancer, colon cancer, lung cancer and celiac disease
morphological or topographical features.

Our initial approach was to split the task in two
and predict the relevant morphology codes sepa-
rately from the topography codes. The histopathol-
ogy reports in our validation data each contain 121
morphology and 57 topography codes, so our aim
was to ensure that both types of codes are effec-
tively predicted by our model. We observed that
the resulting performance was not consistent along
the two tasks (morphology and topography) and
the four validation sets.

Our second approach was to fine-tune our mod-
els on the whole subset of selected SNOMED CT
codes (morphology and topography codes). This
approach has the benefit of using one common fine-
tuning dataset, requiring fine-tuning of the model
only once before applying it to any of the four vali-
dation sets.

The simplicity, however, comes at a cost - more
obscure codes (classes) are less likely to be pre-
dicted, due to two main factors, the first being the
imbalance in the number of samples for different
codes, while the second is the difference in variabil-
ity across the names for different codes. Intuitively,
a greater variability in the samples for a given class
is likely to result in a larger area of the embedding
space being spanned by the samples for that class,
while less variability would result in smaller area,
but with higher probability for assigning that class
within that area.

Our third and last approach, was to separate our
fine-tuning data into 8 subsets corresponding to the
two types of codes (morphology and topography)
for each of the four use-cases. The resulting subsets
are described in Table 1.

3.3 Data Augmentation
A common issue with training models on imbal-
anced datasets is poor modeling of the decision
boundary for minority classes due to the limited
number of samples. A solution comes in the form
of oversampling the minority classes.

Rather than simple duplication of samples from
minority classes, we employ synthetic generation
of such samples using the popular Synthetic Mi-
nority Oversampling Technique (SMOTE), first de-
scribed in Chawla et al. (2002). While the authors
suggest combining the approach with a priori un-
dersampling of the majority class(es), our dataset
did not contain classes with a sufficient number of
samples to benefit from such an approach.

SMOTE on its own works by selecting two sam-
ples from the minority class which are relatively
close to each other (one is among the 5 nearest
neighbours of the other) and generating a new sam-
ple along the direct line between those two samples
in the feature space.

We apply SMOTE to the embeddings generated
by our BERT model corresponding to samples from
the minority classes. These synthetic data points
are then added to the rest of the fine-tuning data and
used to train a multiclass Support Vector Classifier
(SVC) (see Subsection 4.4).

4 Method

Following the data preparation is the model train-
ing and application. Our proposed approach is
composed of the following steps:

• start with BERT or other transformer model,
ideally one that has been pre-trained on
(bio)medical data

• fine-tune the selected model on a broad set of
medical concepts (e.g. UMLS terminology)
(depending on the selected model, this step
might be optional)

• further fine-tune the model on a dataset made
of samples more specific to the task (e.g. rele-
vant SNOMED CT codes and corresponding
names)

(optional: perform data augmentation to im-
prove the quality of the dataset (e.g. oversam-
pling of minority classes))

• use BERT, a multiclass SVC or another clas-
sifier for predicting the SNOMED CT codes
corresponding to each validation sample
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We illustrate the proposed approach in Figure 1

4.1 Pre-Training BERT Model on Biomedical
Data

We employ a BioBERT model Lee et al. (2020)
trained on a biomedical corpus of 600 thousand
linked concepts that we have previously described
in Hristov et al. (2021).

Hereafter, we will refer to the resulting model as
our pre-trained BERT.

4.2 Self-Alignment Pre-Training for BERT

Next, we take our pre-trained BERT and employ
the sapBERT pre-training scheme that self-aligns
the representation space of biomedical entities (Liu
et al., 2021). We apply this pre-training scheme us-
ing a subset of UMLS 2022AA dataset (see broad
fine-tuning data in Subsection 3.1). We use the
[CLS] token rather than first-token, mean-pooling
or NOSPEC (see Vulić et al. (2020)) as the repre-
sentation of the input. The model was trained on a
single NVIDIA RTX A1000 Laptop GPU.

Hereafter, we will refer to the resulting model as
our self-aligned BERT.

4.3 Transfer Learning

Transfer learning is the process of repurposing a
model trained on some task or dataset to another
task or dataset. One reason for adopting such an ap-
proach is that already learnt generic features can be
re-used for another task that is less rich in available
training data (Bengio, 2012; Marini et al., 2021).

As mentioned in 4.2 we use our pre-trained
BERT as a base model for our self-alignment pre-
training. Our pre-trained BERT itself is based on
bioBERT and is further trained on a large corpus
of linked data based primarily on MONDO.

After just one epoch of self-alignment pre-
training with a smaller subset of the UMLS dataset
(as discussed in 3.1 we only use 5 names per UMLS
CUI as opposed to 50), our self-aligned BERT
model performs as good or better (see Section
5) than the base sapBert model (called SapBERT-
PubMedBERT10) published along with Liu et al.
(2021).

4.4 Multiclass Classification

As described in 3.1 the task for our model is
to assign relevant morphology and topography

10https://huggingface.co/cambridgeltl/
SapBERT-from-PubMedBERT-fulltext

SNOMED CT classes to (bio)medical texts per-
taining to 4 use-cases (see Table 1). For all but one
case (small intestine topography) we have multiple
classes (up to 99 as in colon morphology and 121
for all use-cases morphology).

Furthermore, the number of samples per class
varies widely between classes. Some classes have
as little as 2 samples, while others have up to 21.
To ensure that each class is represented in our test
set and the data distribution is preserved, we select
25% of the datapoints to the test set and at least
one object for the minor classes.

In addition, as self-aligned training requires at
least 2 train samples per class, employing the
SMOTE approach to add samples to minority
classes ensures that even for the classes with least
representation we have at least 3 samples (2 for
training and 1 for testing).

Our final solution is comprised of two types of
approaches to multiclass classification. Both of
them use as input the embeddings of the samples
generated by our self-aligned BERT model (de-
scribed in 4.2).

Multiclass Classification using Self-Aligned
BERT We fine-tune separate models for mor-
phology and topography use cases with different
hyperparameters (see Appendix).

We compared the performance of BERT models
with multiclass SVCs trained with a variety of ker-
nels and on subsets of the whole trained data, as
described below.

Multiclass Classification using Support Vector
Classifier We employ a one-vs-rest approach to
multiclass classification using Support Vector Clas-
sifier (SVC). We choose this over a one-vs-one
approach due to the high number of classes and
low number of samples for many of the classes.

As mentioned above, the input used to train and
evaluate the SVC was embeddings of the samples,
rather than the raw, unprocessed samples.

We trained the SVC with linear, polynomial and
RBF kernels separately for each task (morphology
and topography), as well as for each combination
of use-case (cervical cancer, colon cancer, lung
cancer and celiac disease) and task.

4.5 Large Language Models Fine-Tuning and
Prompting

Large Language Models achieve state-of-the-art
results on many of the current NLP tasks, therefore

https://huggingface.co/cambridgeltl/SapBERT-from-PubMedBERT-fulltext
https://huggingface.co/cambridgeltl/SapBERT-from-PubMedBERT-fulltext
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Figure 1: Steps and corresponding datasets towards building our model.

we decided to compare our methods against those.
We focused on the two most widely used LLM
architectures, namely GPT (Radford et al., 2019)
and T5 (Raffel et al., 2020).

We focused on fine-tuning open-source BioGPT
model (Luo et al., 2022) 11 and two versions of T5
adapted to biomedical domain 12.

We have performed BioGPT fine-tuning in the
format of prefix-tuning by introducing additional
token [SNOMED], which should prompt the model
to generate SNOMED codes after the input text.

Example of input data for BioGPT fine-tuning:
Transverse colon [SNOMED] 42400003

The selected T5-based models were fine-tuned
in a manner similar to BioGPT. However, both
of them failed to generate comprehensive codes
afterwards, therefore we do not report the results
for these models.

As an additional experiment we tried zero-shot
prompting for ChatGPT and MedAlpaca 13. Chat-

11https://huggingface.co/microsoft/
biogpt

12https://huggingface.co/flexudy/
t5-base-multi-sentence-doctor,
https://huggingface.co/ozcangundes/
T5-base-for-BioQA

13https://huggingface.co/medalpaca/

Morphology Topography
Model P R F1 P R F1
BioGPT 0.21 0.23 0.20 0.20 0.23 0.19
SVC 0.75 0.74 0.72 0.97 0.94 0.94
BERT 0.84 0.83 0.82 0.99 0.99 0.99

Table 2: Precision (P), Recall (R) and F1-score (F1) of
LLMs and our approaches (SVC and BERT) on labels
corresponding to SNOMED CT codes.

GPT refused to generate codes, stating that this
question should be addressed by a healthcare pro-
fessional. MedAlpaca managed to predict items
similar to SNOMED CT codes, but guessed none
of them. In some cases, the codes were followed by
further text descriptions. For some of the examples,
UMLS-like codes were predicted.

Overall, LLMs are not yet ready to solve medical
coding tasks with a limited amount of data.

5 Experiments and Results

As described in Section 4.4 we split our dataset into
train and test sets. As shown in Table 1 there’s a sig-
nificant imbalance between the number of classes
and samples for the various use-cases. We did pre-

medalpaca-7b

https://huggingface.co/microsoft/biogpt
https://huggingface.co/microsoft/biogpt
https://huggingface.co/flexudy/t5-base-multi-sentence-doctor
https://huggingface.co/flexudy/t5-base-multi-sentence-doctor
https://huggingface.co/ozcangundes/T5-base-for-BioQA
https://huggingface.co/ozcangundes/T5-base-for-BioQA
https://huggingface.co/medalpaca/medalpaca-7b
https://huggingface.co/medalpaca/medalpaca-7b
https://huggingface.co/medalpaca/medalpaca-7b
https://huggingface.co/medalpaca/medalpaca-7b
https://huggingface.co/medalpaca/medalpaca-7b
https://huggingface.co/medalpaca/medalpaca-7b
https://huggingface.co/medalpaca/medalpaca-7b
https://huggingface.co/medalpaca/medalpaca-7b
https://huggingface.co/medalpaca/medalpaca-7b
https://huggingface.co/medalpaca/medalpaca-7b
https://huggingface.co/medalpaca/medalpaca-7b
https://huggingface.co/medalpaca/medalpaca-7b
https://huggingface.co/medalpaca/medalpaca-7b
https://huggingface.co/medalpaca/medalpaca-7b
https://huggingface.co/medalpaca/medalpaca-7b
https://huggingface.co/medalpaca/medalpaca-7b
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Morphology Topography
Hospital Use-case BioGPT Our approach BioGPT Our approach
Hospital 1 cervical cancer 0.01 0.10 (BERT) 0.00 0.29 (BERT)

lung cancer 0.02 0.48 (SVC) 0.00 0.46 (BERT)
celiac disease 0.00 1.00 (SVC) 0.00 1.00 (BERT)
colon cancer 0.01 0.61 (BERT) 0.03 0.09 (BERT)

Hospital 2 colon cancer 0.09 0.10 (BERT) 0.00 0.34 (BERT)

Table 3: F1 score of LLM and our approach (results for best model shown) on clinical data

liminary tests by training our models using codes
and samples for all use-cases and tasks which re-
sulted in poor performance on all models for the
use-cases with few classes (cervical cancer topog-
raphy, lung cancer topography, celiac disease mor-
phology and topography).

Consequently, we split our dataset in two - one
part containing morphology codes only and the
other topography codes only. For the BERT model,
1 epoch fine-tuning was enough to achieve near
perfect results, while RBF kernel was the best per-
forming choice for SVC. The results of our models
are compared to BioGPT in Table 2.

5.1 Validation on Real Clinical Data

The models were validated on real clinical data.
We were granted access to proprietary data pertain-
ing to our use-cases by two hospitals. Hospital 1
provided us with histopathology reports in Italian
that were labeled with morphology and topography
codes for all four use-cases. Hospital 2 provided us
with histopathology reports in Dutch labeled with
morphology and topography codes for the colon
use-case. We used UMLS thesaurus in combina-
tion with additional mapping resources to map the
hospital labels to SNOMED CT labels and used
Machine Translation to obtain an English version
of the original reports (as our models are trained
with samples in English).

Unlike our earlier dataset, the clinical data con-
sisted of longer text spans, usually 1-5 (or more)
sentences heavily containing medical jargon and
abbreviations. Nonetheless, the performance of our
approach remained high on this type of data for the
majority of use-cases.

The models were compared based on F1 score
(Table 3). In all 10 cases our approach outperforms
BioGPT. Self-aligned BERT models are consis-
tently better than SVC on all topography use-cases,
while SVC is better at classification of lung cancer
and celiac disease morphology. Notably, our ap-

proach achieved perfect scores on the 2 use-cases
with the least number of training samples - celiac
disease morphology and topography.

6 Conclusion

We have demonstrated an approach for extracting
SNOMED CT concepts from clinical texts in mul-
tiple languages. Employing a combination of Ma-
chine Translation, Linked Open Data (both general
resources, as Wikidata, and narrower, as specific
medical ontologies), Transformers and more, we
are able to leverage the rich resources available in
English for classification of texts in languages with
limited corpora available.

While we apply our approach to the clinical
field, more specifically histopathology texts, we be-
lieve the same approach can be tailored to another
task or another discipline with similar success, as
long as both pre-trained domain-specific models
(or, alternatively, enough data and computational
resources for pre-training) and linked open domain-
specific ontologies and terminologies are available
(or could be rather easily developed).

Our model is pre-trained and fine-tuned on open
data only. As such, it can be further tailored to-
wards a specific task where richer proprietary data
is also available to fine-tune the model.

One drawback of our approach is employing Ma-
chine Translation tools that are not domain-specific
and cannot be fine-tuned. While not included in the
present study, we expect that using relevant parallel
corpora in the narrow fine-tuning step (or following
it) could allow for sufficient transfer of embedded
knowledge from the context-rich English corpora
to the context-poor other language and allow for
classification directly on the untranslated text. Ob-
taining such parallel corpora, however, is likely to
be an even bigger obstacle. Comparison of the two
approaches, where such corpora is available, would
be an interesting direction for future study.
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Appendix

Hyperparameters
1. SapBert Broad Fine-Tuning

We found no extra improvement from addi-
tional training after 3 and 5 epochs, hence we
used the model trained for just 1 epoch on the
smallest subset of UMLS.

2. BERT-Based Multiclass Classification

We fine-tune our self-aligned BERT model
with the train samples for all morphology or
all topography codes for 1, 5 and 10 epochs.
This gives us a total of 6 fine-tuned models
for classification - 3 for morphology and 3 for
topography codes classification. In addition to
those six models, we trained a separate model
for 1, 5 and 10 epochs for the colon topog-
raphy task only using the samples for the 46
classes corresponding to this task.

3. BioGPT-Based Multiclass Classification

As the input data was limited, we tried fine-
tuning the model on a small number of epochs
(1, 3, 5) and we report the result for 3 epochs
as it appeared to be the best. The learning
rate was set to 1e-5. No other special pa-
rameters was set as we used this method for
basic evaluation against the main proposed
approach. The model was trained on single
NVIDIA RTX A5000 GPU. As the predic-
tions of generative models largely depend on
inference settings and candidate generation,
we report the parameters related to inference
too. The fine-tuned model was set to return
top-5 best predictions with top-5 beam search
candidates, and generation temperature set to
0.7.

UMLS Subsets
The following table presents the UMLS subsets
characteristics.

UMLS Subset Size (GB) Positive Pairs
5 names per CUI 0.497 5,309,569

10 names per CUI 0.676 7,317,660
50 names per CUI 1.025 11,570,155

Table 4: Subsets of UMLS 2022AA (number of names
per UMLS CUI) with the corresponding dataset size
and total number of resulting positive pairs.


