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Abstract

Domain-specific pretrained language models
such as SciBERT are effective for various tasks
involving text in specific domains. However,
pretraining BERT requires a large-scale lan-
guage resource, which is not necessarily avail-
able in fine-grained domains, especially in non-
English languages. In this study, we focus on a
setting with no available domain-specific text
for pretraining. To this end, we propose a sim-
ple framework that trains a BERT on text in the
target language automatically translated from
a resource-rich language, e.g., English. In this
paper, we particularly focus on the materials
science domain in Japanese. Our experiments
pertain to the task of entity and relation extrac-
tion for this domain and language. The experi-
ments demonstrate that the various models pre-
trained on translated texts consistently perform
better than the general BERT in terms of F1
scores although the domain-specific BERTs do
not use any human-authored domain-specific
text. These results imply that BERTs for vari-
ous low-resource domains can be successfully
trained on texts automatically translated from
resource-rich languages.

1 Introduction

Domain-specific pretrained language models
(LMs), such as SciBERT (Beltagy et al., 2019),
are known to perform better on many downstream
tasks with texts in the specific domain, such as
named entity recognition in biomedical (Li et al.,
2016) and relation extraction in chemical do-
mains (Kringelum et al., 2016). This trend has mo-
tivated researchers to release many domain-specific
LMs for resource-rich domains and languages,
specifically in medicine (Alsentzer et al., 2019),
biomedicine (Lee et al., 2019), finance (Araci,
2019), and materials science (Gupta et al., 2021).
Many of the domain-specific LMs have been
trained on corpora consisting of academic papers

Figure 1: Framework for pretraining that uses language-
and domain-specific texts obtained through machine
translation.

or articles, which are usually open to the public.
However, such open corpora are often not avail-
able in non-English languages. Meanwhile, there
are a lot of documents that are not open such as
internal corporate documents also in non-English
languages, which still need to be processed with
pretrained LMs.

We focus on a novel setup for pretraining
domain-specific BERTs without the use of human-
authored domain-specific text. As a solution to the
problem, we pretrain LMs on domain-specific text
automatically translated from a resource-rich lan-
guage, i.e., English. As shown in Figure 1, journal
papers are automatically translated from English
to the target language, e.g., Japanese in this pa-
per, then used in BERT pretraining in different
configurations with or without general texts, e.g.,
Japanese Wikipedia, to investigate the viability on
domain-specific Japanese text. Although this is a
very simple approach with wide applicability to
various domains and languages, the following two
questions still need to be answered: 1) is the use
of translated text effective in various strategies for
pretraining BERT? and 2) does the vocabulary in-
duced from the domain-specific corpus improve
performance?

We evaluate our pretrained BERT models on
named entity extraction and relation extraction for
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Figure 2: Setups of data and vocabulary used for pre-
training the BERTs compared in this paper.

the materials science domain in Japanese due to
its high demand. The results empirically show
that all the models trained on the translated text
consistently achieve better performance than the
model trained only on the general text, despite the
fact that noise may exist in translation (Artetxe
et al., 2020). In addition, we found that the domain-
specific vocabularies are effective when BERT is
pretrained on a mixture of the two corpora.

Our contributions are: 1) we propose a new setup
for pretraining domain-specific BERTs without any
human-authored domain-specific text in the target
language, 2) we show the effectiveness of the use
of translated text for various pretraining strategies,
3) we release the Japanese BERT specific to the do-
main of materials science and a web-based applica-
tion of information extractors where even non-NLP
experts can benefit from our BERT1.

2 Related Work

Different types of LLMs have different architec-
tures. For example, BERT (Devlin et al., 2019) has
only an encoder, GPT (Brown et al., 2020) adopts
decoder-only model, and BART (Lewis et al., 2020)
adopts an encoder-decoder architecture. Although
GPT-like models are more actively studied recently,
we focus on BERT because it is still fundamental
to many entity and relation extractors in many do-
mains (Nishida et al., 2023).

Various pretraining methods for BERT have
been proposed. The original BERT uses only
the general text (Devlin et al., 2019). SciBERT
is trained on domain-specific text (Beltagy et al.,
2019). Others adapt an LM, pretrained on the gen-
eral domain, to specific domains by continuing the

1https://material-analyzer.airc.aist.
go.jp

pretraining on domain-specific text (Wang et al.,
2020; Lee et al., 2019; Zhang et al., 2020). Mul-
tilingual BERT (mBERT) (Devlin et al., 2019) is
trained on a mixture of multiple corpora written
in different languages. A domain-specific BERT
can also be trained on a mixture of a general and a
domain-specific corpus.

The methods above use different vocabularies
consisting of only general domain tokens (Lee et al.,
2019; Devlin et al., 2019), only domain-specific
tokens (Beltagy et al., 2019), or tokens extracted
from the union of the two (Wang et al., 2020). We
examine the impact of different combinations of
data usages and vocabularies.

Our approach is partly inspired by data augmen-
tation techniques that benefit from machine transla-
tion (Bahdanau et al., 2014; Vaswani et al., 2017),
whereby labelled data were augmented for reading
comprehension (Yu et al., 2018), fake news detec-
tion (Amjad et al., 2020) and other tasks. Unlike
those approaches, our focus is on augmenting un-
labelled data for pretraining, which has not been
well explored, compared with augmenting labelled
data for finetuning.

3 Methodology

We show details about our collection of translated
domain-specific texts, the data usage and vocabu-
lary for pretraining.

3.1 Collecting Texts for Pretraining

In the materials science domain in Japanese, it is
difficult to obtain a large-scale corpus. On the other
hand, Web of Science2, a database of journals in
English, provides a large-scale corpus of scientific
papers, including many on materials science.

We extract the English abstracts of the articles
tagged with “Materials Science” from journals with
IDs of “DSSHPSH” and “ESCI”. We used Amazon
Translate3 in January of 2020 to translate articles
from English to Japanese. The use of a commer-
cial automatic translation service can be justified
because even non-experts in NLP can make use of
such a service when they want to apply our method-
ology to other domains and languages. Finally,
we obtained 2,501,178 translated abstracts with
21,115,139 sentences.

In addition, we used the dump of Japanese
Wikipedia as of April 1st, 2020, containing

2https://www.webofscience.com
3https://aws.amazon.com/translate/

https://material-analyzer.airc.aist.go.jp
https://material-analyzer.airc.aist.go.jp
https://www.webofscience.com
https://aws.amazon.com/translate/
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1,197,647 articles in the general domain with
21,584,456 sentences.

3.2 Vocabulary and Data Usage

There are at least four possible ways of constructing
a vocabulary, as shown in the upper part of Figure
2. GeneralVocab learns subword segmentation
only from the general text, while TransVocab
learns from the translated text, both using Sen-
tencePiece (Kudo and Richardson, 2018). Devlin
et al. (2019) use the former, and SciBERT (Belt-
agy et al., 2019; Gupta et al., 2021) uses the lat-
ter. MixVocab learns from the mixed corpus of
general and the translated text, which relates to
mBERT (Devlin et al., 2019). ConcatVocab,
which is similar to exBERT (Wang et al., 2020),
learns two vocabularies, one learned from the gen-
eral text and the other learned from the translated
text, and then the union of the two is used as the
final vocabulary.

We categorize approaches for pretraining BERT
in terms of data usage and vocabulary construc-
tion. There are at least four possible combinations
of methods in terms of data usage, as shown at
the bottom part of Figure 2. GeneralTrain
uses only the general texts (Devlin et al., 2019).
TransTrain uses only the translated texts.
MixTrain and PipelineTrain use both the
general and translated texts. MixTrain pretrains
BERT on a mixture of general and translated
texts (Gupta et al., 2021). PipelineTrain first
pretrains BERT on the general text and then contin-
ues to pretrain it on the translated texts.

Ten models with different combinations of vo-
cabulary construction and data usage were trained
and further compared on downstream tasks.

4 Experiments

We explain tasks, models, and datasets used for
evaluating the proposed BERTs.

4.1 Downstream Tasks

The pretrained models were compared on the entity
and relation extraction from texts in the domain
of materials science in Japanese, as shown in Fig-
ure 3. For entity extraction, we extract four types
of entities: 1) material names such as “cellulose”,
2) properties of materials such as “transition tem-
perature”, 3) numerical values, and 4) units. The
relation extraction assigns a label to each seman-
tically related pair of entities. For example, since

Entity labels
B-Material
B-Property
B-Value
B-Unit
I-Material
I-Property
I-Value
I-Unit
O

Table 1: Labels for the entity extraction task.

Relation labels
AttributeOf
Value
Unit
Abbreviation
Synonym
Conjunction
Other

Table 2: Labels for the relation extraction task.

“transition temperature” is an attribute of “cellu-
lose”, we assign the label “AttributeOf” between
the corresponding entities. We show the full list of
entity labels and relation labels in Tables 1 and 2,
respectively.

In our experiments, we use two settings: entity
and relation extractors that target either “glass tran-
sition temperature” or “elasticity”. We focus on
these two targets because these are particularly im-
portant in the material science domain. For the
first setting, we are constrained to extract only en-
tities and relations related to the glass transition
temperature, which is particularly important for re-
searchers in the target domain. For example, for
the Task1 example in Figure 3, we should extract
170◦C but not 240◦C, because the latter relates to
“pyrolysis temperature” not “glass transition tem-
perature”. For the second setting, we constrain the
model to extract entities and relations only related
to the elasticity, which is another important factor
in the domain. These constraints make the tasks
more challenging because the models need to cor-
rectly comprehend the context and find only the
entities that relate to “glass transition temperature”
or “elasticity”.
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Figure 3: Examples of entity and relation extraction tasks on a text in the material science domain. We use two
task settings for evaluating our proposed BERTs: the two sentences are from “glass transition temperature” and
“elasticity” tasks, respectively. The shown annotation is a mock-up on the English translation; the actual input is in
Japanese as shown in the line below.

4.2 Models for Downstream Tasks

We separately train the entity and relation extrac-
tors by the cross entropy losses. We use gold enti-
ties when finetuning relation extractors. The input
sentence is tokenized by a Japanese morphological
analyzer, MeCab (Kudo et al., 2004), and then seg-
mented into subwords by a pretrained vocabulary
described in Section 3.2. We add a special token
[CLS] at the beginning of each sentence.

4.2.1 Entity Extractors

These subwords are encoded by BERT, and we
obtain an embedding for each subword. We use
BIO tagging scheme as shown in Figure 3. In addi-
tion to O (outside an entity), we use B-material,
I-material and similarly for the other three en-
tity types — 9 tags in total. For obtaining a score
distribution over 9 tags, the embedding of the last
subword in a token is passed to a classifier (multi-
layer perceptron (MLP) with one hidden layer) that
assigns one of these tags.

4.2.2 Relation Extractors

The relation extractor predicts a relation label for
each pair of entity spans. The representation of an
entity span is obtained by the method of Trieu et al.
(2020) that combines span representation (Sohrab
et al., 2020) and the entity type representation.
Then we concatenate the following four feature
vectors: 1) representation of a head entity, 2) repre-
sentation of a tail entity, 3) the element-wise prod-
uct of the two entity representations (Luan et al.,
2018; Lee et al., 2017), and 4) the embedding of
the [CLS] token in the sentence. Given the con-
catenated feature vector, a classifier MLP followed
by the softmax function returns probabilities of
relation labels as a 7-dimensional vector.

4.3 Dataset for Finetuning and Evaluation

We use 27,053 sentences in 206 journal papers
published in Transactions of the Society of Poly-
mer Science, Japan for finetuning and evaluation.
Experts manually annotated sentences with enti-
ties and relations. We use 60% of the dataset for
training. The remaining data is equally divided into
development and test data, where the former is used
for selecting the model for evaluation. We conduct
5-fold cross-validation; the above data split is done
five times. This dataset will be publicly available.

4.4 Parameters for Training Models for
Downstream Tasks

When we induce subwords by Sentence-
Piece (Kudo and Richardson, 2018), the
sizes of GeneralVocab, TransVocab,
and MixVocab are set to 32,104. For
ConcatVocab, we use the union of
GeneralVocab and TransVocab, result-
ing in the final vocabulary with 49,858 tokens.
Each BERT was pretrained for 30 epochs by
Adam (Kingma and Ba, 2015) with a learning
rate of 10−4. We finetune each extractor for 160
epochs by RAdam (Liu et al., 2020) with the
learning rate 10−5. We select the model with the
highest macro-F1 score on the validation dataset.
We report the averaged values of the five trials in
5-fold cross-validation.

4.5 Distributed Training of BERTs

We used distributed training for training BERTs
to increase the speed of pretraining. We split the
corpus for pretraining into four groups in terms of
the length of the documents. A split contains the
groups of texts with the lengths up to 128, 256, 384,
or 512. We then calculated the cross entropy of
each mini-batch in each split. We used one GPU for
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each split, so we used four GPUs in total. Once we
calculated cross entropy losses for every split, we
averaged them and used them for backpropagation.
We iteratively calculated losses and updated the
parameters by using the averaged loss.

5 Results

Tables 3 and 4 show the respective scores for the
two different settings: “glass transition temper-
ature” and “elasticity”. The span-based macro-
Precision, Recall and F-score, which are com-
monly used, e.g., in Sohrab et al. (2020), are
adopted as evaluation metrics. From top to bot-
tom for both tables, we show the performances
of the baseline (Model I) and nine proposed mod-
els (Model II to X). The proposed models are di-
vided into three categories based on pretraining
methods: 1) TransTrain, 2) MixTrain, and
3) PipelineTrain. For evaluating the relation
extractors, we report performances on two settings;
whether we use gold entities as input (Beltagy et al.,
2019) or not in evaluation.

Do Translated Texts Improve the Performance?

All models trained on translated text (II to X) per-
formed better than the model trained only on the
general texts (I), the only exception being the pre-
cision of Model II on the relation extraction tasks
for “glass transition tempreture”. For Table 3, the
baseline (Model I) trained only on the general text
achieved an F-score of 90.24 for the entity extrac-
tion, while the BERT trained only from the trans-
lated text (Model II) achieved a higher F-score of
91.61, showing an improvement by 1.37 points.
The F1 score on the relation task (gold) improved
insignificantly (+0.04 points), and the score on the
relation task (pred) showed minor improvements
(+0.64), which can be attributed to improvement in
entity extraction. However, the use of both types of
texts does improve the performance, which reaches
78.76 and 72.36 at maximum. Thus, augmenting
the general corpus by the translated corpus is more
effective.

Similarly, in the task extracting “elasticity”
shown in Table 4, the baseline entity extractor
(Model I) achieved 92.64 in terms of F1 score, and
all the models trained on the translated texts (Mod-
els II to X) achieved scores that are better than the
baseline score.

How Do the Domain-specific Vocabularies
Affect the Performance?
In MixTrain, ConcatVocab performs better
than other vocabulary construction methods both
for two settings: “glass transition temperature and
elasticity”. In entity extraction for two settings, we
observed better F1 scores for Model IV with only
the domain-specific vocabulary (91.66 for “glass
transition temperature” and 94.12). Model V and
VI, which construct vocabulary from both the gen-
eral and translated texts, performed even better, i.e.,
91.83 and 92.14 for the setting of “glass transi-
tion tempereture”, respectively. Similar tendency
can also be observed for the “elasticity” setting,
i.e., 94.38 and 94.56 for Models V and VI, which
are better than the F1 score 94.08 of Model III
with only general vocabulary or the score 94.12
obtained by Model IV with only domain-specific
vocabulary. We also observed a similar trend in
relation extraction.

In contrast, for PipelineTrain, domain-
specific vocabulary does not necessarily gain any
performance. Even with the general-domain vo-
cabulary (VII) alone, we obtained competitive or
higher F1 scores (91.65, 78.58, 71.57, respectively
for the three tasks) than most other models using
the domain-specific vocabulary (VIII, IX, X). From
the viewpoint of application, this is a favourable
characteristic; we can expect high extraction perfor-
mance by simply continuing pretraining a publicly
available pretrained model on translated domain-
specific text, instead of pretraining it on a huge
general-domain text.

6 Conclusion

We showed that translated texts are beneficial
for pretraining domain-specific BERTs in a low-
resource language despite occasional transla-
tionese (Artetxe et al., 2020). Our approach can be
applied to other languages and domains in which
large-scale corpora are hard to obtain. In future
work, our approach will be investigated on other
pretrained models, e.g., GPT or BART, as well as
other domains and languages. We leave investi-
gations on the correlation between the translation
qualities and downstream task performance as a
future direction.
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Data for Pretrain Vocab. Entity (glass transition temperature) Relation (gold) Relation (pred)
P R F P R F P R F

Baseline (GeneralTrain)
I General data GeneralVocab 89.42 91.12 90.24 78.16 77.51 77.53 69.93 71.06 70.19

Proposed Framework

1) TransTrain
II Translated data TransVocab 91.04 92.20 91.61 77.38 78.35 77.57 69.62 72.65 70.83

2) MixTrain
III Both data (mixed) GeneralVocab 90.74 92.33 91.50 79.52 77.73 78.31 71.50 72.05 71.53
IV Both data (mixed) TransVocab 90.87 92.51 91.66 78.69 78.51 78.23 70.62 72.84 71.39
V Both data (mixed) MixVocab 90.94 92.78 91.83 79.15 79.03 78.76 70.51 73.67 71.81
VI Both data (mixed) ConcatVocab 91.03 93.30 92.14 79.42 78.65 78.74 71.70 73.52 72.36

3) PipelineTrain
VII Both data (pipeline) GeneralVocab 90.85 92.51 91.65 79.15 78.49 78.58 70.78 72.75 71.57
VIII Both data (pipeline) TransVocab 91.46 92.39 91.91 79.04 78.90 78.69 71.55 73.24 72.17
IX Both data (pipeline) MixVocab 91.17 92.25 91.69 79.06 78.54 78.51 71.84 72.69 72.04
X Both data (pipeline) ConcatVocab 90.66 92.45 91.53 78.37 79.64 78.74 70.76 73.95 72.12

Table 3: Precision (P), Recall (R) and macro F1-score (F) on downstream tasks about glass transition temperature.
The values better than the baselines are underlined. The proposed models, which use the translated texts, achieve
better performances than the baseline.

Data for Pretrain Vocab. Entity (elasticity) Relation (gold) Relation (pred)
P R F P R F P R F

Baseline (GeneralTrain)
I General data GeneralVocab 92.64 93.15 92.87 77.99 78.51 78.36 71.04 71.86 71.00

Proposed Framework

1) TransTrain
II Translated data TransVocab 93.43 94.59 94.00 78.32 79.57 78.96 72.61 72.66 71.65

2) MixTrain
III Both data (mixed) GeneralVocab 93.73 94.48 94.08 79.61 80.47 79.68 72.35 74.39 73.02
IV Both data (mixed) TransVocab 94.45 94.83 94.12 79.69 79.68 80.71 71.81 75.13 73.12
V Both data (mixed) MixVocab 93.78 95.01 94.38 79.02 79.03 79.98 71.91 74.70 72.91
VI Both data (mixed) ConcatVocab 94.11 95.04 94.56 79.58 79.64 80.55 73.05 74.86 73.42

3) PipelineTrain
VII Both data (pipeline) GeneralVocab 93.62 94.69 94.13 79.60 80.43 79.60 72.25 74.54 73.04
VIII Both data (pipeline) TransVocab 94.21 94.22 94.18 79.77 80.75 79.86 73.89 74.49 73.80
IX Both data (pipeline) MixVocab 93.59 94.66 94.11 78.92 79.54 79.33 72.00 73.88 72.58
X Both data (pipeline) ConcatVocab 93.60 95.25 94.40 79.15 80.00 79.86 72.75 74.46 72.74

Table 4: Precision (P), Recall (R) and macro F1-score (F) on downstream tasks about elasticity. The values better
than the baselines are underlined. The proposed models, which use the translated texts, achieve better performances
than the baseline.

ergy and Industrial Technology Development Or-
ganization (NEDO). Computational resource of AI
Bridging Cloud Infrastructure (ABCI) provided by
National Institute of Advanced Industrial Science
and Technology (AIST) was used.

Ethics and Broader Impact

It is argued that existing machine translation sys-
tems are often biased in terms of some aspects
such as gender. This may cause some biases in
our translated dataset and our trained BERT model.
However, our proposed BERT models are domain-
specific and used only by experts not the general
public. We believe the negative impact of such
biases is limited if any.

Our proposed framework can be easily applied
to various languages and domains. Our approach

can have a significant impact on low-resource lan-
guages that have been difficult for researchers to
train large language models due to the lack of large
datasets. Our approach can also be applied to other
architectures, such as decoder-only models, e.g.,
GPT, or encoder-decoder architectures, e.g., BART.
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