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Abstract

Online social media is rife with offensive and
hateful comments, prompting the need for their
automatic detection given the sheer amount
of posts created every second. Creating high-
quality human-labelled datasets for this task
is difficult and costly, especially because non-
offensive posts are significantly more frequent
than offensive ones. However, unlabelled
data is abundant, easier, and cheaper to ob-
tain. In this scenario, self-training methods,
using weakly-labelled examples to increase the
amount of training data, can be employed. Re-
cent “noisy” self-training approaches incorpo-
rate data augmentation techniques to ensure
prediction consistency and increase robustness
against noisy data and adversarial attacks. In
this paper, we experiment with default and
noisy self-training using three different textual
data augmentation techniques across five dif-
ferent pre-trained BERT architectures varying
in size. We evaluate our experiments on two
offensive/hate-speech datasets and demonstrate
that (i) self-training consistently improves per-
formance regardless of model size, resulting in
up to +1.5% F1-macro on both datasets, and
(ii) noisy self-training with textual data aug-
mentations, despite being successfully applied
in similar settings, decreases performance on
offensive and hate-speech domains when com-
pared to the default method, even with state-of-
the-art augmentations such as backtranslation.

1 Introduction

Online social media platforms are widely used
by modern society for many productive purposes.
However, they are also known for intensifying of-
fensive and hateful comments, attributed in part
to factors such as user anonymity (Mondal et al.,
2017). Manual identification of hate speech is
impractical at scale due to the massive number
of posts generated every second and the potential

harm to the mental health of moderators. There-
fore, there is a need for automatic approaches to
detect offensive and hateful speech.

In recent years, research on this topic has in-
creased, resulting in new models and datasets pub-
lished in various languages and sources (Fortuna
and Nunes, 2018). A common characteristic among
available datasets is label skewness towards the
negative class (non-offensive/hateful), which is
usually more frequent than the positive class (of-
fensive/hateful). Apart from traditional ways of
dealing with imbalanced classes (e.g. under or
oversampling or applying class weighting), semi-
supervised techniques such as self-training can be
used to extend the training set with unseen exam-
ples that introduce new learning signals without the
costly burden of manual data labeling.

Self-training is a technique that involves itera-
tively training models using both labelled and unla-
belled data. The process begins by training a model
using human-labelled data only, which is then used
to infer labels for a set of unlabelled data, creat-
ing a weakly-labelled dataset. The weakly-labelled
dataset and the human-labelled dataset are then
aggregated and used to retrain the model. This iter-
ative process is repeated for a fixed number of steps
or until no performance improvement is observed.
Self-training can be particularly useful when la-
belled data is scarce or expensive to obtain, and
was successfully applied in a variety of domains
such as computer vision (Schiappa et al., 2022),
audio and speech processing (Liu et al., 2022), and
natural language processing (He et al., 2019).

Several variants of self-training have been pro-
posed over the years (Amini et al., 2022). One
common approach is to use a teacher-student frame-
work, in which the “student” model learns from the
output generated by the “teacher” model (Blum and
Mitchell, 1998; Xie et al., 2020b; Chen et al., 2021;
Karamanolakis et al., 2021). Additionally, a confi-
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dence threshold filter may be applied to remove ex-
amples that are too ambiguous or non-informative.
This process is summarised in Figure 1.
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Figure 1: Teacher-student self-training loop

Recent research on self-training has reported fur-
ther improvements in performance by introducing
perturbations directly into the raw input or to its
latent representation, improving generalisation and
convergence (Rasmus et al., 2015; Laine and Aila,
2017; Miyato et al., 2018; He et al., 2019; Xie
et al., 2020a). These perturbations are often intro-
duced in the form of data augmentations, which
are widely applied in Computer Vision tasks but
are less commonly explored in Natural Language
Processing tasks, especially in the context of self-
training. These “noisy self-training” methods can
be particularly useful in settings where the input
data is noisy or subject to a high degree of variation,
improving prediction consistency and adversarial
robustness (Carmon et al., 2019; Alayrac et al.,
2019; Najafi et al., 2019).

Bayer et al. (2022) argue that data augmenta-
tion depends on the underlying classification task,
thus it cannot be effectively applied in all circum-
stances. Previous work focusing solely on data aug-
mentation methods, not coupled with self-training,
has shown mixed results for the domain of offen-
sive/hate speech classification (Section 2.1). This
indicates that there may not be a best method, while
some may even negatively impact performance.

An open question is whether noisy self-training
with text data augmentations can contribute to text
classification tasks using state-of-the-art transfer-
learning BERT models that have been shown to
be invariant to various data transformations (Long-
pre et al., 2020). The task of offensive/abusive
speech detection poses a difficult challenge for gen-
erating high-quality semantic invariant augmented
examples, since it is a domain that is intrinsically
associated with specific keywords that, if modified,

can completely change the semantics of the text. In
this paper, we innovate by providing an extensive
experimentation setup using three different data
augmentation techniques - backtranslation, random
word swap, and random synonym substitution - in
a self-training framework, with five different pre-
trained BERT architectures varying in size, on two
different datasets.

We demonstrate that self-training, either with
or without data noising, outperforms default fine-
tuning regardless of model size, on both datasets.
However, when comparing self-training without
data noising vs ‘noisy’ self-training, we find that
data augmentations decrease performance, despite
the literature reporting the superiority of noisy self-
training in other domains. We further investigate
how the augmentation methods fail to create label-
invariant examples for the offensive/hate speech
domain. Finally, we discuss future research ideas
to address the limitations found in this work.

2 Related Work

2.1 Data Augmentation

Bayer et al. (2022) present a survey on data aug-
mentation methods for NLP applications, reporting
performance gains on various tasks.

In the domain of offensive/hate speech classifi-
cation, Ibrahim et al. (2018) experiment with three
different text augmentation techniques to expand
and balance their Wikipedia dataset by augment-
ing negative (non-offensive) examples. From a
binary view of the dataset, more than 85% of their
examples are labelled as non-offensive, and from
a multi-label view of the dataset, three of the six
offensive classes are represented by less than 7%
of the dataset. They report F1-score increases of
+1.4% with unique words augmentation, +2.9%
with unique words and random mask, and +3.6%
with unique words, random mask, and synonym
replacement.

Mosolova et al. (2018) use a custom synonym
replacement augmentation method to experiment
with a ‘toxic’ dataset with 6 classes from a Kag-
gle competition1. They experiment with character
and word embeddings with a CNN architecture,
and report a +3.7% and +5.1% ROC-AUC increase
when applying their augmentation method with
character embeddings on the public and private

1https://www.kaggle.com/c/
jigsaw-toxic-comment-classification-challenge

https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
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scores2, respectively. However, when coupled with
word embeddings, they find that their augmenta-
tions result in a decrease of -0.09% and -0.21%
ROC-AUC scores on the public and private scores,
respectively.

Rizos et al. (2019) propose three text-based data
augmentation techniques to address the class imbal-
ance in datasets, and apply them on three English
hate speech datasets named HON (Davidson et al.,
2017), RSN-1 (Waseem and Hovy, 2016) and RSN-
2 (Waseem, 2016). Their augmentation methods
include (i) synonym replacement based on word
embedding, (ii) warping of the token words along
the padded sequence, and (iii) class-conditional
RNN language generation. They compare the three
methods on different architectures combining word
embeddings, CNNs, GRUs, and LSTMs, and they
report an average across four different architecture
configurations of -6.3% F1-Macro using (i), +5%
F1-Macro using (ii), and -4% F1-Macro using (iii).

Marivate and Sefara (2020) experiment with
four different data augmentation techniques: Word-
Net synonym substitution, backtranslation between
German and English, word embedding substitu-
tion according to cosine similarity, and mixup
(Zhang et al., 2018). Authors experiment with three
datasets from different domains: Sentiment 140
(Go et al., 2009), AG News (Zhang et al., 2015)
and a Hate Speech dataset (Davidson et al., 2017).
They observe performance increases on both Senti-
ment 140 and AG News across different augmen-
tation methods, up to +0.4% and +0.5% accuracy
score on AG News and Sentiment 140, respectively.
However, they report performance decreases with
all methods on the Hate Speech dataset, with de-
creases of 0.0% with mixup, -0.3% with embedding
similarity, -0.8% with synonym substitution, and
-2.3% with backtranslation.

2.2 Self-Training
Xie et al. (2020b) present a method called noisy stu-
dent, which achieves state-of-the-art results on the
ImageNet dataset (Deng et al., 2009) by performing
self-training with a teacher-student approach, using
student models that are equal or larger-sized than
the teacher models, and adding noise both to the
input data through random image augmentations
and to the model via dropout.

He et al. (2019) apply a similar idea using textual
2Public scores are computed over a smaller portion of the

test set. At the end of the competition, private scores are
computed with the remainder of the test set.

data augmentation methods such as backtranslation
(Edunov et al., 2018) and token modifications to a
self-training LSTM architecture for the tasks of ma-
chine translation and text summarization. They find
that both model noise, in the form of dropout, and
data noise, in the form of data augmentations, are
crucial to their observed increase in performance
on both tasks.

Xie et al. (2020a) use six text classification and
two image classification benchmark datasets to ex-
periment with different types of noise-inducing
techniques for self-training. They argue that state-
of-the-art augmentations like backtranslation for
text classification and RandAugment (Cubuk et al.,
2020) for image classification, outperform simple
noise inducing techniques, such as additive Gaus-
sian noise.

The use of noisy self-training approaches in the
domain of offensive/hate speech classification is
still limited, but default ‘non-noisy’ self-training
has been successfully applied in some recent works.
Alsafari and Sadaoui (2021) collect unlabelled Ara-
bic tweets and perform semi-supervised classifica-
tion with self-training for the domain of Offensive
and Hate Speech detection using multiple text rep-
resentations such as N-grams, Word2Vec, AraBert
and Distilbert, and multiple model architectures
such as SVM, CNN and BiLSTM. They report
up to 7% performance increase in low resource
settings where only a few labelled examples are
available.

Leonardelli et al. (2020) apply self-training in
their submission to the HaSpeeDe shared task on
Italian hate speech detection (task A). They fine-
tune an AlBERTo model with the human-labelled
dataset provided by the task organisers and extend
it with a weakly-labelled dataset using self-training.
Additionally, they oversample the human-labelled
set in an attempt to make the model more robust
to inconsistencies in the weakly-labelled set. Their
submission achieve an F1-macro score of 75.3%
on tweets, placing 11th out of 29 teams, and 70.2%
on news headlines, placing 5th out of 29 teams.

Pham-Hong and Chokshi (2020) report experi-
ments with the noisy student method from Xie et al.
(2020b) in the OffensEval 2020 shared task, achiev-
ing 2nd place at subtask B (Automatic categoriza-
tion of offense types). In their setup, although
dropout is applied to a BERT-large model, no noise
is injected into the data, which is a crucial com-
ponent of the noisy student method. Because of
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this, we argue that this work is actually applying a
default self-training method instead of a noisy self-
training method. Also, OffensEval 2020’s training
data does not contain human-labelled data3, thus
both their weakly-labelled dataset and ground-truth
dataset consist of inferred examples.

Richardson et al. (2022) detect hate speech on
Twitter in the context of the Covid-19 pandemic.
They employ a simple approach, utilizing a bag-
of-words representation combined with an SVM
classifier. Authors demonstrate that by employing
self-training with only 20% of the training data,
they manage to improve accuracy by +1.55% com-
pared to default training using 80% of the training
data.

To the best of our knowledge, Santos et al.
(2022) is the only previous work in which a noisy
self-training approach was attempted on an offen-
sive/hate speech classification task. They propose
an ensemble of two semi-supervised models to cre-
ate FIGHT, a Portuguese hate speech corpus. Au-
thors combine GANs, a BERT-based model, and
a label propagation model, achieving 66.4% F1-
score. They attempt to increase performance us-
ing backtranslation as data augmentation, but ul-
timately observe no performance gains, thus their
best model is obtained with default self-training,
not with noisy self-training.

3 Materials and Methods

This section presents the description of the datasets,
data augmentation methods and self-training archi-
tectures used throughout our experiments. Our
code is available at GitHub4.

3.1 Data Description

We use two English binary offensive/hate speech
detection datasets in our experiments. Table 1
presents their target class distributions.

Offensive Language Identification Dataset
(OLID) (Zampieri et al., 2019) contains a collec-
tion of annotated tweets following three levels: Of-
fensive Language Detection, Categorization of Of-
fensive Language, and Offensive Language Target
Identification. This work only uses the first level
- Offensive Language Detection. The dataset was

3In OffensEval 2020, the labels in the training data are the
average confidence score and confidence standard deviation
aggregated from an ensemble of models.

4https://github.com/JAugusto97/
Offense-Self-Training

OLID
Train Dev Test

Not-Offensive 8,840 0 620
Offensive 4,400 0 240

ConvAbuse
Train Dev Test

Not-Offensive 2,163 719 725
Offensive 338 112 128

Table 1: Target class distribution for OLID and ConvA-
buse.

normalised by replacing URLs and user mentions
with placeholders. The best model in (Zampieri
et al., 2019) achieves 80% macro-F1 using con-
volutional neural networks, with 70% and 90% of
F1-Score for the positive and negative classes, re-
spectively.

ConvAbuse (Cercas Curry et al., 2021) is a
dataset on abusive language towards three conver-
sational AI systems: an open-domain social bot, a
rule-based chatbot, and a task-based system. Au-
thors find that the distribution of abuse towards con-
versational systems differs from other commonly
used datasets, with more than 50% of the instances
containing sexism or sexual harassment. To nor-
malise the data, web addresses were replaced with
a placeholder. Authors provide standard train, de-
velopment, and test sets and achieve up to 88.92%
macro-F1 using a fine-tuned BERT model. In our
experiments, we concatenate the interactions be-
tween the user and the chatbot into a single text
document divided by new line separators, and we
use majority voting between the annotations to con-
solidate the binary abusive vs. non-abusive label.

Unlabelled data We collected 365,456 tweets in
English with the Twitter API using an unbiased
query rule: random tweets mentioning stop-words
like “in”, “on”, “a”, “is”, “not”, “or” and so on. We
also preprocess the data by removing user mentions,
urls, punctuations, extra whitespace and accents.

3.2 Self-Training Architecture

Our noisy self-training system is similar to that
introduced by Xie et al. (2020b) and Xie et al.
(2020a), and works as follows:

1. A teacher model is trained to minimise the
cross-entropy loss on the human-labelled
training set exclusively.

https://github.com/JAugusto97/Offense-Self-Training
https://github.com/JAugusto97/Offense-Self-Training
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2. The teacher model infers weak labels from the
unlabelled dataset.

• A confidence threshold filter is applied,
and examples that fall below this thresh-
old are removed.

• Apply downsampling on the inferred ex-
amples, ending up with a perfectly bal-
anced weakly-labelled dataset.

3. All the examples selected from the previous
step are augmented once with one of the data
augmentation methods, doubling the amount
of weakly-labelled examples. The labels ob-
tained with the ‘clean/without noise’ text in
step 2 are replicated for the augmented texts.

4. An equal-sized student model minimises
the combined cross-entropy loss on human-
labelled and weakly-labelled datasets:

L =
1

n

n∑
i=1

Llabelled +
1

m

m∑
i=1

Linferred (1)

5. Repeat from step 2 using the current student
model as the teacher model.

In our experiments, we compare this noisy self-
training framework against the default ’non-noisy’
self-training method, which simply skips step 3,
meaning we do not apply any form of data augmen-
tation.

3.3 Data Augmentation Methods
In each noisy self-training experiment we use
nlpaug5 to apply one of the three following data
augmentation methods for textual data:

Random Synonym Substitution Uses WordNet
(Miller, 1995) to randomly replace tokens by one
of its synonyms. For each sentence, 30% of its
tokens will be replaced.

Random Word Swap Randomly swaps adjacent
tokens in a sentence. For each sentence, 30% of its
tokens are swapped.

Backtranslation First translates the original
texts into a second language, then translates them
back from the second language to the original lan-
guage. We use the backtranslation model from
nlpaug, which uses the two different transformer
models from Ng et al. (2019) to translate the data
from English to German, then from German back
to English.

5https://github.com/makcedward/nlpaug

4 Experimental Setup

Firstly, we experiment with each dataset to estimate
the hyperparameters for the base models, which is
the first teacher models in the self-training loop.
We use a batch size of 128, maximum sequence
length of 128, learning rate of 0.00001, 15% of
the training set as warm-up batches, weight de-
cay of 0.001 and 20 training epochs. We apply
a dropout rate of 10% for both the attention and
classification layers. The model with highest val-
idation F1-macro score6 obtained during training
is loaded at the end of the last epoch. For the
hyperparameters associated with the self-training
method, we set the number of teacher-student iter-
ations to 4 (including the first teacher model) and
a confidence threshold filter of 80%, similarly to
Xie et al. (2020a). Also, we experiment with five
different pre-trained BERT models: DistilBERT,
BERT-base-cased, BERT-large-cased, RoBERTa-
base and RoBERTa-large, aiming to investigate the
impact of model size in performance gains associ-
ated with self-training.

From the above-listed configurations, we de-
signed two main classification scenarios. The first
scenario accounts for a regular self-training loop
without data noise injection through augmenta-
tions, while the second scenario uses the noisy
self-training approach, introducing data noise with
one of the three augmentation methods described
in Section 3.3.

Finally, we conduct a deeper analysis of each
augmentation method. We use the first teacher
model, trained exclusively with the human-labelled
data of each dataset, to infer both the ’clean/without
augmentation’ and the ’noisy/augmented’ versions
of the unlabelled dataset and verify the following:
(i) Does the augmentation method create new to-
kens that are not present in the vocabulary of the
’clean/without augmentation’ unlabelled dataset?
and (ii) Are the augmentations semantically invari-
ant, meaning both the ’clean’ and ’noisy’ pairs of
examples are assigned the same label?

5 Results

5.1 Default Fine-Tuning vs. Self-Training

Table 2 displays the mean and standard deviation
F1-macro scores computed over three different ran-
dom seed initializations for each experiment. Note

6Lowest training loss in the case of OLID, since no devel-
opment set is provided.

https://github.com/makcedward/nlpaug
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OLID
Architecture DF ST ST + BT ST + SS ST + WS

DistilBERT 78.4 ± 0.1 79.2 ± 0.2 79.0 ± 0.3 79.0 ± 0.3 79.0 ± 0.3

BERT-base-cased 77.2 ± 0.3 78.7 ± 0.1 78.1 ± 0.1 78.3 ± 0.3 78.3 ± 0.3

BERT-large-cased 79.2 ± 0.2 80.0 ± 0.3 79.4 ± 0.1 79.3 ± 0.3 79.3 ± 0.3

RoBERTa-base 79.4 ± 0.7 80.1 ± 0.3 80.0 ± 0.4 80.0 ± 0.4 80.0 ± 0.4

RoBERTa-large 79.8 ± 0.3 80.4 ± 0.4 80.3 ± 0.4 80.7 ± 0.7 80.7 ± 0.7

ConvAbuse
Architecture DF ST ST + BT ST + SS ST + WS

DistilBERT 85.7 ± 0.5 86.8 ± 0.3 87.1 ± 0.3 87.2 ± 0.3 87.2 ± 0.3
BERT-base-cased 86.8 ± 0.8 87.6 ± 0.1 87.2 ± 0.5 87.2 ± 0.5 87.2 ± 0.5

BERT-large-cased 87.1 ± 0.6 87.9 ± 0.5 87.4 ± 0.2 87.9 ± 0.5 87.9 ± 0.5
RoBERTa-base 84.5 ± 0.3 85.5 ± 0.4 85.3 ± 0.8 85.4 ± 0.5 85.4 ± 0.5

RoBERTa-large 86.0 ± 0.1 86.2 ± 0.3 86.6 ± 0.3 86.9 ± 0.1 86.8 ± 0.1

Table 2: Mean ± 1 std F1-Macro scores obtained over three random seed initializations.
DF=Default Fine-Tuning, ST=Self-Training, BT=Backtranslation, SS=Synonym Substitution, WS=Word Swap

that self-training, regardless of whether coupled
with data augmentation methods or not, improves
over default fine-tuning for every model architec-
ture, increasing the F1-macro score from +0.7%
up to +1.5% on OLID and +0.8% up to +1.5% on
ConvAbuse depending on the pre-trained model
architecture.

Also, we highlight how self-training can make
smaller models, which require fewer resources to
maintain in practical applications, achieving the
same performance as larger and more costly mod-
els that are trained with default fine-tuning. Self-
training on a DistilBERT (66M parameters) out-
performs a BERT-large-cased (340M parameters)
with default fine-tuning on both OLID and ConvA-
buse. On OLID, a RoBERTa-base architecture
(125M parameters) with self-training outperforms
a RoBERTa-large (354M parameters) architecture
with default fine-tuning, although this does not hold
true for ConvAbuse.

Furthermore, we point out that OLID and
ConvAbuse’s data come from different sources, the
first being Twitter, and the second one representing
conversations between humans and chatbots, thus
their structure differs significantly. Since our unla-
belled dataset is composed of Twitter data, it would
be fair to assume that the benefits of self-training
in our experiments would be more prominent for
the OLID dataset, but our results do not show this,
since models trained with ConvAbuse benefited
from self-training with our Twitter-originated unla-
belled dataset just as much as models trained with

OLID.

5.2 Default Self-Training vs. Noisy
Self-Training

After verifying that self-training is beneficial to
both datasets on all model architectures, we com-
pare default self-training with noisy self-training,
and the impacts of adding data noise in the form
of data augmentations. We find that introducing
data augmentations to the self-training pipeline in-
creases performance against default self-training
only for RoBERTa-large on both OLID and ConvA-
buse, with DistilBERT also showing improvements
for ConvAbuse, but not for OLID. On all other ar-
chitectures, for both datasets, default self-training
without data augmentations achieves the highest
scores.

In our results for offensive/hate speech classifi-
cation, backtranslation does not achieve the high-
est score in any setup, while synonym substitution
and word swap tie for highest score in three scenar-
ios: ConvAbuse with DistilBERT, ConvAbuse with
BERT-large-cased, and OLID with RoBERTa-large.
Synonym substitution outperforms all the remain-
ing methods on ConvAbuse with RoBERTa-large.

An important remark is that our results diverge
from He et al. (2019), which finds that state-of-the-
art data augmentation methods such as backtransla-
tion outperform simpler methods on self-training
for machine translation and text summarization.
However, our results align with Marivate and Se-
fara (2020), although their work is not focused on
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self-training, but instead on how different data aug-
mentation techniques impact their models on three
datasets from different domains. They report back-
translation as their worst augmentation method on a
hate speech dataset, decreasing accuracy by -2.3%.
Our findings bridge this gap and reveal that back-
translation has significant limitations in the domain
of offensive/hate speech detection, even when used
in a noisy self-training approach.

5.3 Data Augmentation Analysis
Our first data augmentation analysis is to under-
stand if the augmented text introduces new unseen
tokens to the vocabulary of the ‘clean’ unlabelled
set when both are combined. We find a vocabulary
size increase of 39.5%, 9.0% and 4.7% averag-
ing across all different pre-trained architectures for
backtranslation, synonym substitution and word
swap7 respectively. This indicates that backtransla-
tion is heavily superior in terms of introducing new
unseen tokens, but this is not correlated with perfor-
mance increase, as backtranslation appears as the
worst augmentation method for noisy self-training
in our classification experiments.

Next, in order to verify the performance of the
data augmentation methods in generating semanti-
cally invariant examples, we use the base models
trained exclusively with the human-labelled data
from each dataset, on each pre-trained architec-
ture, and use them to perform inference on both
the ‘clean’ and the noisy/augmented unlabelled
set. We then compare both predictions and anal-
yse how augmentations may shift the underlying
target class. We will refer to positive shift when
a non-offensive example is classified as offensive
after being augmented, and negative shift when
an offensive example is classified as non-offensive
after being augmented.

Table 3 presents the total class shift percentage
for each augmentation method, averaging across
both datasets and all model architectures, of which
we further divide into positive and negative label
shift percentages. Notice that backtranslation is
the method that produces the highest amount of
label shifting at 23.8%, of which 54.7% are nega-
tive shifts, which is a 6.6% increase over synonym
substitution and a 4.8% increase word swap.

It is fair to assume that not all of the class shifting
occurs from the augmentation changing the seman-

7Word swap is unintuitively capable of creating new tokens
depending on how a sentence is split into tokens and then
merged back after swapping the tokens.

Augmentation Total Shift Positive Shift Negative Shift

BT 23.8% 46.7% 54.7%
SS 23.5% 48.7% 51.3%
WS 23.3% 47.8% 52.2%

Table 3: Average target class shift percentage on the
weakly-labelled set. BT=Backtranslation, SS=Synonym
Substitution, WS=Word Swap

tic that defines if an example is either offensive or
not-offensive. In most cases, class shifting may
occur because of small perturbations that are se-
mantically invariant, meaning both the ’clean’ and
the augmented text’s true underlying classes are
still the same, even if the classifier predicted them
as different classes. In these cases, when we set the
label of the augmented text to be the same as the
one obtained when inferring the ’clean’ version of
the text, as presented in section 3.2, we are reinforc-
ing the model to be more robust against these small
perturbations, which is one of the main benefits
of noisy self-training. However, when augmenta-
tion methods create semantically different versions
of the original texts, replicating the inferred label
from the original text to the augmented text results
in the addition of incorrect ground-truth labels to
the train set, which may degrade performance.

Currently, to the best of our knowledge, there is
no dataset annotated for offense/hate speech before
and after applying data augmentation, which would
enable a more accurate estimation of semantic vari-
ations produced by them. In tables 4 and 5 we show
two examples for each augmentation method that
suffered from positive shift (not-offensive to offen-
sive) and negative shift (offensive to not-offensive),
respectively.

An example of a recurrent theme among vari-
ous target shifted examples is the substitution of
the keywords ‘fuck’ with ‘damn’ or ‘hell’, indicat-
ing that despite these keywords being semantically
similar, they are not always interchangeable with
respect to the target class, and the mere replace-
ment of one for another is enough to shift the target
class. This could be expected, as offense detection
is highly impacted by the mere presence or absence
of offensive keywords.

6 Conclusion

In this work, we analysed the impact of self-
training on offensive and hate speech classification
tasks using five different pre-trained BERT models
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Text Augmented Text Method
I HATE ALL OF YOU ALL I HATE OF YOU WS
Maybe I dont respect all women Maybe I respect dont women all WS
Bitches and sports Females and Sport BT
Wooooow what the fuck Wooooow, what the hell? BT
Bitch you better be joking Gripe you good be joking SS
The NYT has been showing its whole ass [...] The NYT has follow showing its whole butt [...] SS

Table 4: Examples of Offensive to Not-Offensive semantic shift created by data augmentation.
BT=Backtranslation, SS=Synonym Substitution, WS=Word Swap

Text Augmented Text Method
Is that Fat Albert That Fat is Albert WS
Man that is terrible That man is terrible WS
damn white people oppressing the blacks fucking white people who oppress the blacks BT
That damn staircase be beating my ass [...] That fucking staircase will bang my ass [...] BT
i will not get over this i will not fuck off ended this SS
Send me the link and Ill love you forever Send pine tree state the link and Ill fuck you forever SS

Table 5: Examples of Not-Offensive to Offensive class shift created by data augmentation.
BT=Backtranslation, SS=Synonym Substitution, WS=Word Swap

of varying sizes and two different datasets. We also
experimented with noisy self-training using three
different data augmentation techniques for textual
data. We found that self-training improves clas-
sification performance for all model architectures
on both datasets, with an increase in F1-Macro of
up to +1.5%. However, our experiments compar-
ing default self-training versus noisy self-training
showed that noisy self-training does not improve
performance, despite its success in other domains.
Finally, we investigated the three data augmenta-
tion methods and showed that the domain of offen-
sive/hate speech classification is highly sensitive
to semantic variances produced by them, and we
discussed future research ideas to mitigate these
problems.

7 Future Work

We understand that some of the semantic varia-
tions discussed in this work could be mitigated by
data augmentation methods that both preserve exist-
ing offensive keywords, and do not introduce new
offensive keywords randomly, as these are often
conditional to the underlying ground-truth class.
For some languages, most of these keywords are
extensively documented8, thus they can be known a
priori by these methods, and be treated differently,
such as only substituting an offensive keyword by

8https://hatebase.org/

another offensive keyword, or not allowing a non-
offensive keyword to be substituted by an offensive
keyword. This custom approach can theoretically
help mitigate semantic variations in this domain,
but offensive/hateful comments can still be made
without making use of a single offensive/hateful
keyword. In these more subtle cases, a system
would have to detect the offensive/hateful context
without relying solely on keywords, and modify the
example while still maintaining this context. We
see potential benefits of using recent instruction-
tuned large language models (Ouyang et al., 2022)
as specialised data augmentation methods that are
task-specific, and can be able to preserve the se-
mantics associated with the task when modifying a
given text. In this scenario, an instruction prompt
can be designed to inform the system of the context
of the task, and make it aware that this semantic
must be preserved when modifying the given text.
In the future, we aim towards extending this work
with the above-mentioned research ideas.
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