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Abstract
Industry requirements describe the qualities
that a project or a service must provide. Most
requirements are, however, only available
in natural language format and are embed-
ded in textual documents. To be machine-
understandable, a requirement needs to be rep-
resented in a logical format. We consider that
a requirement consists of a scope, which is
the requirement’s subject matter, a condition,
which is any condition that must be fulfilled for
the requirement to be relevant, and a demand,
which is what is required. We introduce a novel
task, the identification of the semantic com-
ponents scope, condition, and demand in a
requirement sentence, and establish baselines
using sequence labelling and few-shot learning.
One major challenge with this task is the im-
plicit nature of the scope, often not stated in
the sentence. By including document context
information, we improved the average perfor-
mance for scope detection. Our study provides
insights into the difficulty of machine under-
standing of industry requirements and suggests
strategies for addressing this challenge.

1 Introduction

Requirements are a critical part of the development
process for products and services. They are docu-
mented descriptions of the physical or functional
qualities that a product or a service must have. In
industry, requirements serve as a means of commu-
nication between contractors and manufacturers,
defining what is expected to be built and the quality
standards to be met. Governments and interna-
tional organizations may also impose requirements
to ensure compliance with rules, regulations and
standards. Requirements are included as part of the
contract between two parties, making adherence to
them a legal obligation. Violating the requirements
can lead to legal implications and financial losses,
underscoring the importance of careful specifica-
tion and adherence to requirements throughout the
development process.

A requirement is typically associated with a spe-
cific piece of equipment that needs to be built which
is referred to as the scope of the requirement. How-
ever, a requirement may only be relevant if certain
conditions are met, which will be referred to as
condition. The demand of the requirement is a
feature or quality the scope must possess. As an
example, consider the requirement equipment with
a weight of more than 1000 kg shall have a weight
certificate. Here, the scope is equipment, while the
condition is with a weight of more than 1000 kg,
and the demand is to have a weight certificate.

Most requirements are expressed as natural lan-
guage text and are embedded in documents. These
documents often have a hierarchical structure with
chapters, sections, and other headings, which pro-
vide important context for understanding the re-
quirements. When the number of requirements
documented in this way increases, managing and
maintaining these documents becomes a significant
challenge. In addition, checking for consistency in
a set of requirements and ensuring compliance of
project descriptions with a set of requirements are
time-consuming tasks that ideally should be auto-
mated. To overcome these challenges, computer
systems could be used to automatically identify rel-
evant requirements, check consistency and ensure
compliance. This could be achieved by creating
all new requirements in a machine-understandable
format. However, the industry is often bound by ex-
isting requirements in their current form. Therefore,
extracting information from existing documents is
essential for enabling automated systems.

We have found that identifying the scope of a re-
quirement can be particularly challenging since this
information is often not explicitly stated in the sen-
tence. Context and additional information is often
required to make accurate predictions. The docu-
ment’s title, section headings and domain knowl-
edge can provide valuable context for identifying
the scope of a requirement.
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Recent studies have shown that adding contex-
tual information can improve the performance of
NLP tasks that typically focus on one sentence at
a time. For instance, in named entity recognition
(NER), Wang et al. (2021) used unstructured text as
context, while Shahzad et al. (2021) incorporated
image-based information. Similarly, context has
been found to be beneficial in relation extraction.
E.g., Bastos et al. (2021) improved performance
using information from knowledge graphs.

Our work makes three key contributions. First, it
introduces a novel task: identifying three semantic
components scope, condition, and demand of a
requirement sentence. Second, it establishes base-
lines for this task. Third, it investigates the extent
to which including context information from the
document can improve the quality of identifying
these semantic components.

2 Related Work

Related work can be grouped into information ex-
traction from requirements or legal text, and using
context information to improve sequence labelling.

2.1 Information Extraction from
Requirements

A substantial amount of work has been done with
natural language processing (NLP) techniques on
requirements. Much of this is in the area of soft-
ware requirements where most studies have focused
on analysing and improving requirements. For an
overview of approaches and techniques used on
software requirements, see (Zhao et al., 2022). Rel-
atively little work, however, has been done on in-
formation extraction from software requirements.
One work, by Schlutter and Vogelsang (2020), uses
semantic role labelling to model software require-
ments as RDF graphs for semantic search. The
CiRA tool classifies a requirement into causal and
not causal and identifies causal clauses (Fischbach
et al., 2021). One of the major challenges in dealing
with requirements is that they are typically copy-
righted and cannot be shared. Thus, comparing the
performance of tools is a challenge. The PURE
dataset, a collection of software requirement docu-
ments, was proposed by Ferrari et al. (2017). The
dataset has been labelled for and used to distinguish
requirement sentences from other types of text in
requirement documents using a BERT-based clas-
sifier (Ivanov et al., 2022). Another dataset was
proposed by Fischbach et al. (2020).

Some work has also been done on industry re-
quirements. Fantoni et al. (2021) suggested that
syntactic and morphological rules together with on-
tologies can be used to classify parts of a project
description into subprojects in the railway indus-
try. An NLP pipeline was used to extract con-
cepts from the technical requirements about IBM
Thinkpad Laptops and to link concepts to a knowl-
edge base (Vierlboeck et al., 2022). A similar ap-
proach was proposed, but using lexical and syn-
tactical rules for the extraction of semantic roles
of 300 sentences, in (Fritz et al., 2021). Weak su-
pervision and a BERT-based model were used to
identify which requirement sentences mention the
requirements’ subject matter (scope) and which do
not mention it (Holter and Ell, 2021).

2.2 Information Extraction from Legal Text
Legal text has many similarities with requirements.
The language is domain-specific and the documents
may have some structure (i.e., headers, subheaders).
In addition, some tasks that one wants to solve on
legal text are often similar to what we would like
to solve for requirements. On legal text, it has been
demonstrated that pretraining the BERT model on
a corpus of domain-specific texts can improve the
performance on several downstream tasks (Lim-
sopatham, 2021; Elwany et al., 2019). They also
demonstrate that RoBERTa performs better than
BERT and that the performance is relatively good
on the tasks even if it is trained on a general corpus
only. A combination of deep semantic parsing and
manual rules was used to identify normative clauses
(obligations, permissions, prohibitions) from legal
text by Dragoni et al. (2016). Ferraro et al. (2019)
identify challenges when working with legal text
and outlines a possible strategy for the automatic
extraction of normative rules. In (Michel et al.,
2022), the authors use FastText and a convolutional
network to identify decision rules.

2.3 Using Context Information
It has been demonstrated that context information
helps to improve the performance of some NLP sys-
tems. Often, a knowledge base is used, but context
information can come from various sources. Liu
et al. (2020) show that the BERT model improves
performance on multiple tasks when including in-
formation from knowledge bases. For relation ex-
traction, using context information from knowledge
bases was found to improve performance (Bastos
et al., 2021; Nadgeri et al., 2021). Wang et al.
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(2021) noted that unstructured text retrieved from
a search engine improves performance on NER.
Incorporating images was shown to improve per-
formance when doing named entity recognition on
social media posts in (Shahzad et al., 2021).

3 Preliminaries

3.1 Semantic Modelling of Requirements

In previous work by Klüwer and DNV GL (2019)
and in ISO 15926-14 (Walther et al., 2020), a re-
quirement R is defined as a logical axiom which
stipulates that if x belongs to a class S and satisfies
a condition C (may be empty), then R is satisfied
only when the demand D is also true. This relation-
ship can be expressed in first-order logic as:

∀x((S(x) ∧ C(x)) → D(x))

To formalize a requirement R expressed in nat-
ural language, such as Equipment made of metal
exposed to seawater shall have an anti-corrosive
coating, we can express that for any object x be-
longing to the class Equipment and satisfying a con-
dition exposedToSeawater, and if x is made of the
material y belonging to the class Metal, there shall
exist a feature u such that x has that feature and u
belongs to the class AntiCorrosiveCoating.

∀x∀y∀z∃u(Equipment(x)
∧ madeOf(x,y) ∧ Metal(y)
∧ exposedToSeawater(x)

→ hasFeature(x,u) ∧ AntiCorrosiveCoating(u))

3.2 Problem Description

In the context of this work, a sentence is a sequence
of words where the first word starts with a capital
letter and the sequence ends with a period. A re-
quirement sentence is a type of sentence that ex-
presses a demand or a feature that a piece of equip-
ment must have to conform to the specifications
outlined in the document, and possibly a condition.
Let R be a set of requirement sentences and r be
a requirement sentence. We define three sets S, C,
and D to represent the textual representations of
scope, condition, and demand, respectively.

The task that we introduce in this paper is to
realize a function f : R → P(S)×P(C)×P(D)
that predicts a triple on the form (S′, C ′, D′) where
S′ ⊆ S, C ′ ⊆ C, D′ ⊆ D. Thus, given a require-
ment r, the function returns a set S′ of scopes, a
set C ′ of conditions, and a set D′ of demands, i.e.,
f(r) = (S′, C ′, D′).

3.3 Identification of the scope

The scope refers to the requirement’s subject mat-
ter, such as specific components or systems. Identi-
fying the scope of a requirement can be challeng-
ing, as it may not be explicitly stated, but implied
from the document context. For example, in the re-
quirement RU-HSLC-Pt5-Ch6 Section 3 SAFETY
REQUIREMENT [3.9.5] (Sent. 1) The system need
not be designed with redundancy in pumps or back-
up pressure tank, the context reveals that it is about
Accommodation sprinkler system, even though the
sentence uses a general term (i.e., system).

3.4 Identification of the condition

The condition refers to a condition that must be
fulfilled for the requirement on the scope to be rel-
evant. It may be a direct property of the equipment,
as in Equipment with weight more than 500 kg, or it
may be related to some process associated with the
scope. As opposed to the scope, the condition
is typically explicit in the sentence.

3.5 Identification of the demand

The demand is the essential requirement expressed
in the sentence. It defines what is needed for the
scope (under the specified condition) to conform
to the specifications outlined in the agreement. Typ-
ically, a requirement sentence will contain the de-
mand explicitly, and it often constitutes a substan-
tial part of the sentence. For instance, consider the
requirement Equipment made of metal exposed to
seawater shall have an anti-corrosive coating. The
demand would be have an anti-corrosive coating.

4 Method

4.1 Dataset Creation

We utilized 23 PDF documents from Det Norske
Veritas (DNV),1 an international company special-
izing in classification and risk management. All
documents are written in English and were obtained
from DNV’s website.2 We extracted the text using
Apache PDF box (v2.0.1) and used regular expres-
sions to identify the document structure such as
headers, sub-headers, and figures. We then cre-
ated a semi-structured XML version of the PDFs.
Sentence tokenization was achieved using spaCy.3

1All documents are copyrighted ©DNV. DNV does not
take responsibility for any consequences arising from the use
of this content.

2From https://rules.dnv.com/ 2022.9.21
3spaCy v3.4.1 with en_core_web_sm v3.4.0

https://rules.dnv.com/
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To identify requirement sentences, we extracted
only those sentences containing the word “shall.”
According to DNV documents, “shall” is a ver-
bal form denoting “requirements strictly to be fol-
lowed” (Det Norske Veritas, Ed. July 2022). While
there are some sentences containing “shall” that are
not requirements (e.g., definitions), we did not ob-
serve any requirements without “shall.” From each
of the semi-structured XML documents, we ran-
domly extracted 100 such requirement sentences,
resulting in a set of 2225 requirement sentences.

We use two types of context information. First,
we followed the document tree of the XML file
from the document title down to a single sentence,
concatenating the headers to the sentence, sepa-
rated with a dot. Second, we concatenated the noun
chunks of all sentences with the same requirement
number, after the headers, also separated by a dot.

Finally, we manually annotated the resulting
strings using prodigy4 for the spans of the scope,
the condition and the demand. For an overview
of the data-creation process, see Figure 1.

We developed an annotation guideline to ensure
a consistent annotation process. The first author
followed the guideline and annotated the data to
create the gold standard. That author consulted
original documents to see a requirement within its
original context whenever necessary. A subset of
the annotations was validated by the second author.

During the annotation process, we discarded 78
(about 3 %) of the extracted sentences because they
were improperly extracted from the documents, re-
sulting in incomplete or fragmentary sentences.

We utilized a token-level annotation scheme
where a token may be assigned one of three possi-
ble labels: scope, condition, demand. If a scope
occurred within a condition or a demand, we la-
belled it as scope instead of both as scope and
condition or demand, to maintain consistency and
enable the use of a labelling scheme that does not
support multiple labels per token.

4.2 Dataset Overview

The final dataset contained a total of 2147 require-
ment sentences. We created two datasets from the
original dataset: one with contextual information,
including titles, header information, and surround-
ing noun chunks, as described above (Trainc), and
one without this context (Train). Table 1 show the
number of spans for each label in the two datasets

4Prodigy v1.11.8

and the number of sentences containing at least one
label of each type. Notably, only about half of the
sentences in Train have a scope label.

Label Trainc STrainc Train STrain

scope 4862 2074 1333 1017
condition 733 620 713 609
demand 3895 2147 3836 2135

Table 1: Distribution of labels for the Trainc and Train.
STrainc and STrain count how many sentences have at
least one label of the type.

4.3 Sequence Labelling
As a sequence labelling model, we used
RoBERTa.5 To train and evaluate the model,
and estimate the effect of data split, we per-
formed 5-fold cross-validation on both Trainc

and the Train datasets. Thus, we trained five
models for each dataset with slightly different
data. We utilized a RoBERTa model (Liu et al.,
2019) with a classification layer. We fine-
tuned the roberta_for_token_classification
model from the HuggingFace library (Wolf et al.,
2019). The hyperparameters6 were adapted from
fine-tuning experiments in the RoBERTa paper (Liu
et al., 2019) and we did no parameter tuning.

To obtain a textual representation of the spans
labelled with scope, we retrieved the sequences of
contiguous tokens with this label generated by the
model. We then post-processed these spans to re-
move duplicates such as Equipment and equipment.
Post-processing included removing the definite ar-
ticle, case normalization of all tokens in the chunk,
removal of extra spaces and punctuations and re-
moving unmatched parentheses. We used spaCy7

for tokenization and regular expressions for the
post-processing. Note that a single sentence can
contain multiple scope spans, which we collect in
a set to merge exact duplicates.

Similarly, we extracted the condition and
demand spans, but did not remove the definite ar-
ticles because for condition and demand, we ex-
pected to extract sub-sentences and not concepts.

4.4 Few-shot
Alternatively, the problem can be approached as a
language generation task. In this case, we adopt a

5RoBERTa large 355M parameters
6lr=1e-5, optimizer=adamW, epochs=4, dropout=0.5
7spaCy v3.4.3 with en_core_web_sm v3.4.1
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Figure 1: Overview of the data creation and labelling process. Example from OS-E402 Chapter 3 SATURATION
DIVING SYSTEM Section 7 1.5.

few-shot learning approach by designing a simple
prompt. We incorporate 10 examples from either
the Train or Trainc annotated dataset and create
input-output pairs. To ensure relevant examples,
we employ the all-roberta-large-v1 from the
sentence-transformers library (Reimers and
Gurevych, 2019) to select the 10 most semanti-
cally similar instances for each target sentence and
incorporate these into the prompt.

In this approach, the desired output is a JSON
document that includes the elements: scope,
condition, and demand. We prompt GPT-38 and
retrieve the scope, condition, and demand as pro-
vided by the model to obtain the textual representa-
tion of the semantic components.

By comparing the sequence labelling and the
few-shot learning approach, we obtain a better un-
derstanding of their respective strengths and lim-
itations, providing insights into which approach
might be more suitable for this particular task.

5 Evaluation

To assess the generalization capabilities of our ap-
proaches across different domains and evaluate
their performance on unseen documents, we ex-
tracted and labelled an additional 400 sentences
extracted from four other documents. Two docu-
ments were selected from the same domain (High
speed and light craft), while the other two were
from different domains: Floating fish farming units
and installation and Drilling facilities.

Consistent with our previous datasets, we la-
belled the sentences and created two versions of
each dataset: one with context (OS-E101c, RU-
HSLC-Pt5c, RU-HSLC-Pt6c, OU-0503c), and one
without context (OS-E101, RU-HSLC-Pt5, RU-
HSLC-Pt6, OU-0503). This differentiation is nec-
essary because the model trained with context ex-
pects an input format where the sentence has head-
ers and noun chunks appended, while the model
trained without context expects the sentence only.

8OpenAI’s text-davinci-003 175 billion parameters

To evaluate the performance of the models on
scope, condition, and demand detection, we an-
notated each sentence in the corpus with the textual
representation of scope, condition, and demand.
We used the original documents as a guide to ensure
accurate annotations. The gold scope comprises
a set of normalized noun chunks, which we com-
bined into a set as described in Section 4. Note
that the gold scope, condition, and demand are
the same both for the dataset with context and the
dataset without context.

We evaluate the performance using three differ-
ent metrics used in the text generation literature:
ROUGE-L (Lin, 2004), BLEU Unigrams (Pap-
ineni et al., 2002), and a language-model-based
measure (LBM). To use similarity measures from
text generation literature, we created a single string
from the sets of extracted scope, condition, and
demand spans by joining items with the word
“and.” Some of the metrics do not handle empty
strings, therefore, if the predicted string or the gold
string is empty, we replace it with a dummy string
“EMPTY.” We then compare the predicted and gold
strings using the respective similarity scores.

For the LBM metric, we utilized sentence embed-
dings generated by the all-roberta-large-v1
model from the sentence-transformers li-
brary (Reimers and Gurevych, 2019). The embed-
ding captures the semantic meaning of sentences
and enables us to estimate the semantic similar-
ity between predicted and gold strings. The LBM
score is the cosine similarity between the predicted
and gold strings.

5.1 Establishing a Lower Bound

To establish a lower bound for comparison, we
evaluated a “model” that is expected to perform
poorly on the task. While this approach is delib-
erately simplistic, it is not maximally naive and
incorporates some level of reasonableness. The
predictions of this baseline model are as follows: i)
The predicted scope is the generic term component,
which is a term that appears among the scopes in
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the dataset. The choice is motivated by the fact
that many equipment items mentioned in the re-
quirements are components of a larger system. ii)
The predicted condition is an empty set, as the
majority of the requirements have no conditions.
iii) The predicted demand is the entire sentence
itself, as the demand is often a significant portion
of the sentence. We applied the evaluation metrics
of the output of this model and report the results in
Table 2. This provides a point of comparison for
assessing the performance of other models on the
task using the same metrics.

Note that the purpose of this baseline approach
is to establish a reference point for evaluating the
relative performance of more advanced models.

Document ROUGE BLEU-1 LBM

scope 0.03 0.01 0.22
condition 0.69 0.69 0.72
demand 0.47 0.25 0.66

Table 2: Evaluation of the performance of the model
that uses component as scope, an empty condition
and the whole sentence as demand on the test split.

5.2 Without Context
We conducted 5-fold cross-validation on the train-
ing data without context (Train) following the
methodology outlined in Section 4. Then, we mea-
sure the performance of each model on each fold’s
test data and the four other documents. We then
compared the extracted spans with the gold spans
and report the results in Table 3.

Regarding scope detection as sequence labelling
task, the RoBERTa model achieved an average
ROUGE-L F1 score of 0.45. However, in the
few-shot learning approach using GPT-3, we
observed superior performance with an average
ROUGE-L F1 score of 0.57. For condition de-
tection, the RoBERTa model achieved the high-
est average ROUGE-L F1 score of 0.88; outper-
forming GPT-3. In terms of demand detection, the
RoBERTa yielded an average ROUGE-L F1 score
of 0.78, outperformed by the GPT-3 with a score
of 0.85. However, the sequence labelling approach
obtained a higher LBM score than GPT-3.

5.3 With Context
Similarly, we conducted 5-fold cross-validation
on the training data with context (Trainc). Sub-
sequently, we utilized the five models to predict

the spans of scope, condition, and demand on
the Testc data and the four additional documents.
The predicted spans were compared against the
gold spans, and the results are presented in Table 4.
In terms of scope and condition extraction, the
RoBERTa sequence labeller outperformed the few-
shot approach. However, when it comes to demand
extraction, the RoBERTa model and the few-shot
approach demonstrated similar performance.

6 Discussion

The sequence labelling model achieves a
ROUGE-L F1 score of 0.45 on scope detection
without access to context information. Considering
that only half of the sentences in the Train dataset
have scope labels, the performance is promising.
GPT-3, being much larger, is able to leverage
information learned during pre-training and
generate scopes that are not explicitly mentioned in
the text, allowing improved performance compared
to the sequence labelling model.

The sequence labelling approach demonstrates
strong performance in the detection of the
condition and demand. The results suggest that
with a larger training corpus, the accuracy is likely
to be suitable for practical applications.

The challenge with scope detection lies in the
need to infer implicit scopes by “reading between
the lines.” To address this challenge, our study pro-
poses the explicit inclusion of context information
to enhance performance. By incorporating docu-
ment context, for most sentences, we have scope
labels. Either, the labels come from the sentence
itself or from the context, as seen in Table 1.

On scope detection with context, we observe a
general improvement over the results without con-
text. Despite the increased number of sentences
with scope labels in the training data, the improve-
ment achieved by the models does not align propor-
tionally. In particular, GPT-3 does not effectively
leverage context information. It is possible that
presenting the examples differently or refining the
prompt could lead to improved results.

The observed improvement with context infor-
mation is most prominent on the test data and on
OU-0503. Performance improvements on test data
may in part be explained by the model learning
relevant terms used in headers in the documents
used for training. However, the improvement on
OU-0503 demonstrates that the model is still able
to generalize, and not only memorise scope labels.
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Document scope condition demand
ROUGE BLEU-1 LBM ROUGE BLEU-1 LBM ROUGE BLEU-1 LBM

RoBERTa large
Test 0.38±0.02 0.36±0.02 0.48±0.02 0.88±0.03 0.87±0.04 0.89±0.02 0.78±0.04 0.80±0.07 0.90±0.01
OS-E101 0.52±0.05 0.50±0.06 0.61±0.05 0.89±0.02 0.87±0.03 0.91±0.02 0.78±0.03 0.79±0.08 0.91±0.01
RU-HSLC-Pt5 0.50±0.03 0.46±0.06 0.59±0.04 0.87±0.02 0.86±0.03 0.89±0.02 0.82±0.07 0.82±0.09 0.92±0.02
RU-HSLC-Pt6 0.45±0.05 0.45±0.05 0.55±0.04 0.90±0.04 0.88±0.05 0.91±0.03 0.78±0.07 0.79±0.11 0.90±0.03
OU-0503 0.40±0.05 0.38±0.07 0.50±0.05 0.87±0.03 0.86±0.04 0.88±0.03 0.74±0.07 0.78±0.09 0.91±0.02
Average 0.45 0.43 0.55 0.88 0.87 0.90 0.78 0.80 0.91

GPT-3 10-shot
Test (100 unseen) 0.66 0.65 0.74 0.83 0.81 0.84 0.84 0.85 0.90
OS-E101 0.51 0.47 0.64 0.75 0.73 0.77 0.85 0.83 0.89
RU-HSLC-Pt5 0.63 0.57 0.70 0.81 0.80 0.83 0.89 0.88 0.93
RU-HSLC-Pt6 0.58 0.57 0.71 0.76 0.75 0.79 0.82 0.81 0.88
OU-0503 0.47 0.42 0.60 0.79 0.77 0.79 0.85 0.83 0.89
Average 0.57 0.54 0.68 0.79 0.77 0.81 0.85 0.84 0.90

Table 3: Results of detecting scope, condition, and demand without context. Measured using ROUGE-L F1,
BLEU-1, and LBM cosine similarity. Values are averages, with confidence intervals (from 5-fold experiments).

Document scope condition demand
ROUGE BLEU-1 LBM ROUGE BLEU-1 LBM ROUGE BLEU-1 LBM

RoBERTa large
Testc 0.72±0.04 0.68±0.04 0.82±0.04 0.88±0.02 0.87±0.02 0.89±0.01 0.81±0.02 0.82±0.10 0.90±0.02
OS-E101c 0.67±0.04 0.60±0.03 0.74±0.02 0.90±0.01 0.89±0.01 0.92±0.01 0.81±0.05 0.82±0.09 0.91±0.04
RU-HSLC-Pt5c 0.67±0.00 0.59±0.02 0.77±0.01 0.87±0.04 0.86±0.05 0.89±0.03 0.86±0.03 0.86±0.11 0.92±0.03
RU-HSLC-Pt6c 0.69±0.05 0.65±0.05 0.76±0.04 0.91±0.02 0.90±0.02 0.92±0.02 0.82±0.04 0.84±0.09 0.90±0.03
OU-0503c 0.72±0.05 0.56±0.05 0.76±0.04 0.88±0.04 0.88±0.04 0.90±0.03 0.77±0.06 0.79±0.10 0.89±0.03
Average 0.70 0.62 0.77 0.89 0.88 0.90 0.81 0.83 0.90

GPT-3 10-shot
Testc (100 unseen) 0.71 0.71 0.79 0.80 0.79 0.82 0.84 0.85 0.90
OS-E101c 0.60 0.56 0.70 0.73 0.72 0.76 0.82 0.79 0.88
RU-HSLC-Pt5c 0.63 0.58 0.70 0.75 0.73 0.77 0.89 0.83 0.92
RU-HSLC-Pt6c 0.66 0.64 0.75 0.80 0.79 0.82 0.84 0.83 0.89
OU-0503c 0.72 0.57 0.77 0.78 0.77 0.81 0.86 0.84 0.90
Average 0.66 0.61 0.74 0.77 0.76 0.80 0.85 0.83 0.90

Table 4: Results of detecting scope, condition, and demand with context. Measured using ROUGE-L F1,
BLEU-1, and LBM cosine similarity. Values are averages, with confidence intervals (from 5-fold experiments).

Including context from the document did not
result in improvements for condition and demand
detection. The difference between the experiments
with and without context is consistently small.

7 Conclusion and Future Work

We have introduced the novel task of identifying
the semantic components scope, condition, and
demand in a requirement sentence. We have estab-
lished baselines by casting the task as a sequence
labelling problem and a few-shot learning problem.
We have also highlighted the particular challenge of
identifying the scope which is often not explicitly
given and proposed including context information
explicitly to improve scope detection.

Including context information in the text is help-
ful for identifying the scope of a requirement sen-
tence in all the requirements documents in this

experiment. In addition, this work establishes that
the detection of scope is very different from the
detection of a condition and the demand, and that
different approaches work differently for scope de-
tection than for condition and demand detection.
It may thus be useful to consider them as different
tasks, requiring different tools and strategies.

In future work one could i) investigate when
adding context helps, ii) investigate what kind of
context helps, or iii) investigate other types of con-
text information and how to present the context
information to a language model. Furthermore, iv)
matching the scopes to concepts in a knowledge
graph would be interesting as thereby it could be
possible to resolve similar textual representations
of the same ontological concept. Finally, v) more
research is needed to see if our results also apply
to requirements from other sources.
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Ethics Statement

While we do not think this study poses any risks, a
system that performs automatic compliance check-
ing of requirements must be sound and complete,
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design can lead to financial losses for the company
whose design was rejected, and falsely accepting
an invalid design can cause dangers. More effective
requirement management would give a company a
competitive advantage. However, this can lead to
other skills being required of employees.
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