
Proceedings of Recent Advances in Natural Language Processing, pages 80–89
Varna, Sep 4–6, 2023

https://doi.org/10.26615/978-954-452-092-2_009

80

Are you not moved?
Incorporating Sensorimotor Knowledge to Improve Metaphor Detection

Ghadi Alnafesah
University of Birmingham

Qassim University
gxa713@bham.ac.uk

gm.alnafesah@qu.edu.sa

Phillip Smith
University of Birmingham

p.smith.7@bham.ac.uk

Mark Lee
University of Birmingham
m.g.lee@bham.ac.uk

Abstract

Metaphors use words from one domain of
knowledge to describe another, which can make
the meaning less clear and require human in-
terpretation to understand. This makes it diffi-
cult for automated models to detect metaphor-
ical usage. The objective of the experiments
in the paper is to enhance the ability of deep
learning models to detect metaphors automati-
cally. This is achieved by using two elements
of semantic richness, sensory experience, and
body-object interaction, as the main lexical fea-
tures, combined with the contextual informa-
tion present in the metaphorical sentences. The
tests were conducted using classification and se-
quence labeling models for metaphor detection
on the three metaphorical corpora VUAMC,
MOH-X, and TroFi. The sensory experience
led to significant improvements in the classifi-
cation and sequence labelling models across all
datasets. The highest gains were seen on the
VUAMC dataset: recall increased by 20.9%,
F1 by 7.5% for the classification model, and
Recall increased by 11.66% and F1 by 3.69%
for the sequence labelling model. Body-object
interaction also showed positive impact on the
three datasets.

1 Introduction

Metaphors are an important and widespread form
of language construction. A metaphorical sen-
tence’s meaning is not a direct, literal translation of
its parts, but rather an overall collection of mean-
ings in a specific context. For example, the phrase
“weigh my options” refers to the situation in which
the advantages and disadvantages of an option are
examined for a decision. It is a CONSIDERA-
TION, not a literal WEIGHING. This form of no-
tation refers to the Conceptual Metaphor Theory
(Lakoff and Johnson, 1980), where the source do-
main WEIGHING provides the words used to de-
scribe the target domain CONSIDERATION. An-

other example that discusses LOVE while address-
ing the concept of HEAT: “I bumped into an old
flame at the library”. Such examples demonstrate
that understanding and interpreting metaphors are
complex tasks for the field of NLP. Many fields,
such as Information Extraction (Do Dinh et al.,
2018; Le et al., 2020) and sentiment analysis (Ren-
toumi et al., 2012; Karanasou et al., 2015; Biddle
et al., 2020) benefit from metaphor detection. Many
experiments are being undertaken to improve the
detection task using machine learning and deep
learning models.

The term “sensorimotor knowledge” describes
knowledge learned through the body’s interactions
with its surroundings. This knowledge could aid
in comprehending metaphors, understanding how
they are constructed, and consequently, enhance the
performance of automated metaphor detection. By
incorporating sensorimotor knowledge as a feature
in neural network models, this improvement could
become feasible. While some research has been
conducted on sensory experience and conceptual
norms for automated metaphor detection, as of the
writing of this paper, no study on the impact of
adding body-object interaction to neural network
models as a feature for metaphor detection has been
published.

The paper makes the following contributions:

1. The study aims to enhance the word/context
representations provided by GloVe and ELMo
vectors by incorporating scores from two
datasets related to sensory experience and
body-object interaction. These additional
scores will serve as lexical features to improve
the models’ understanding of metaphors.

2. The study will conduct metaphor detection ex-
periments using two different deep learning
models. One model is designed for sentence-
level metaphors and is based on the BiLSTM
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classification model proposed by (Gao et al.,
2018). The other model is for word-level
metaphors and relies on the sequence labeling
model (RNN HG) proposed by (Mao et al.,
2019).

3. The performance of the two deep learning
models will be evaluated on three corpora:
VUAMC, TroFi, and MOH-X. These corpora
likely contain diverse and varied examples of
metaphors, which will provide insights into
how well the models generalise across differ-
ent datasets.

The paper is structured as follows: Section 2
provides a preview of the existing literature of re-
lated works. In Section 3, the theories forming the
foundation of this study are introduced. Section
4 introduces the models and datasets used in the
experiments, along with the steps to be followed
in Section 5 for both models. Section 6 presents
the analysis and decisions made during the exper-
iments. Finally, Section 7 provides a conclusion,
summarising the paper’s findings.

2 Related Work

The concept of semantic richness comes from the
theory of semantic representation, stating that in-
formation is stored and retrieved through an in-
terconnected network of concepts. This network
includes features and information contributing to
the meaning of each concept (Pexman et al., 2007;
Findlay and Carrol, 2018). Richer concepts have
more semantic information, leading to faster acti-
vation, improved processing, and better decision-
making in the brain (Kounios et al., 2009). Similar
concepts may not evoke the same semantic infor-
mation, showing varying levels of richness. Seman-
tic richness is assessed based on two categories:
elements related to the network’s strength and el-
ements linked to the perceptual aspect of the net-
work (Findlay and Carrol, 2018). While numerous
studies have examined strength-related elements
in Natural Language Processing (NLP), like the
number of features and neighborhood density (Pex-
man et al., 2002; Mason, 2004; Wilks et al., 2013;
Goldberg, 2017), the elements associated with the
perceptual part of the network have received less
attention.

Based on shared information from the environ-
ment that senses sensory input (such as taste, sight,
sound, etc.), language facilitates a common ground

for communication. This idea holds true for both
literal and figurative languages, as introduced by
Tekiroğlu et al. (2015), who attempted to measure
the impact of these sensorial elements on metaphor
identification using a dependency-parsed corpus of
adjective-noun (AN) pairs. Meanwhile, (Wan et al.,
2020) tested the conceptual norms as a linguis-
tic enhancement method for metaphor detection of
VUAMC verbs. However, as of the date of this pub-
lication, the concept of body-object interaction has
not been researched in association with automated
metaphor detection. For the task of metaphor de-
tection, in the hope of better automated detection,
it is essential to understand this complex form of
language, and these features could facilitate such
understanding.

3 Theories

The mind is capable of forming mental images and
evoking various sensations when reading or hearing
certain words. This ability to trigger sensory and/or
perceptual experiences in the mind is known as a
sensory experience (Juhasz and Yap, 2013). For in-
stance, when the word incense is encountered, the
mind may generate a mental picture, and the word
fragrance may evoke the actual smell associated
with incense. Metaphors are a type of language that
relies on describing a mental image to represent
an abstract concept. They achieve this by using
words from a concrete, sensed domain and apply-
ing them to another domain. As mentioned in the
introduction, Lakoff and Johnson (1980) described
the conceptual metaphor mapping where the con-
cept of CONSIDERATION is depicted as a sensed
WEIGHING experience. This theory is further de-
veloped in Lakoff et al. (1999), which suggests
that bodily interactions with the environment are
projected onto the new conceptual notions of these
metaphors. This developed theory aims to explain
how conceptual metaphors can be understood even
when the direct experiential connection between
the source and target domains is lacking, leading
to some mappings being vague. For instance, the
metaphor “he is hungry for recognition” can be
understood by mapping DESIRE is HUNGER be-
cause “food is desired”. This physical reaction of
hunger is connected to the abstract idea of seeking
recognition.

Based on the discussion above, metaphors cre-
ate an image-scheme knowledge called the sen-
sory interaction system, where abstract concepts
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paint mental images of human bodily interactions.
Words with a high score on the image scale could
be used in metaphors where their score is notice-
ably higher than that of the context, further associ-
ated with some degree of human sensory input.

The body–object interaction rating reflects how
easy it is to interact physically with the word’s ref-
erent (Siakaluk et al., 2008). The high scale score
indicates that the body’s interaction with this con-
cept is easier. For example, key was found to be
more concrete and perceivable and linked to high-
level sensory, haptic and visual experiences, this
is in contrast to the word mountains, which scores
low on the scale of body–object interaction with a
lesser degree of the characteristics previously men-
tioned. One can see mountains but cannot interact
with them with everyday human physical actions,
while one can see, touch, and turn to unlock with
keys. Within the cognitive sciences, researchers
investigate the influence of body-object interaction
measurement on various cognitive activities, includ-
ing word recognition and information acquisition.
The theory of the embodied view of cognition, as
presented by (Siakaluk et al., 2008), posits that
conceptual knowledge is grounded in perceptual
interactions with the environment. This means that
learning and understanding new concepts are built
upon prior knowledge acquired through interac-
tions with the surrounding environment. This ob-
servation could be applied to the idea of metaphors,
as Lakoff et al. (1999)’s theory could be extended
to the concept of body-object interaction. For in-
stance, in the example ‘this movie stinks”, it is
clear that the statement expresses a negative remark
about the movie, based on the known experience
that ‘stink is bad”. In other words, such metaphors
can be easily comprehended because the tactile
and visual experiences associated with them are
akin to what the metaphor is referring to. Conse-
quently, body-object interaction measures may aid
in translating this knowledge into language that
can be used to explain words and concepts. Partic-
ularly, abstract ideas could be better understood by
employing this measure.

4 Metaphor Detection Experiments Setup

This section provides details about the experiments,
which consist of two stages. The first stage is
the preprocessing stage, where the SVM model
trained on SEN and BOI lists assigns prediction
scores to all tokens in the metaphorical corpora.

In the second stage, the effect of these added pre-
dictions on metaphorical tokens is tested using the
BiSTLM and RNN HG models (Gao et al., 2018;
Mao et al., 2019) for both sentence-level and word-
level metaphor detection.

4.1 Metaphor Corpora and Other Datasets

Three metaphor corpora will be used; all will un-
dergo the same steps from the preprocessing to
the detection experiments. These datasets are the
VUAMC, MOH-X and TroFi Gao et al. (2018) and
Mao et al. (2019). The use of multiple datasets is
essential to evaluate the performance of the models
across various contexts and domains, ensuring that
the models do not become overfitted to specific
datasets and can generalise effectively to new data.
Moreover, additional datasets related to sensory ex-
perience and body-object interaction will be used
to train the SVM, which will be used to predict
scores for all words in the mentioned metaphor
corpora.

The VUAMC dataset (Tighe, 2010) is a manu-
ally annotated corpus containing metaphors from
various registers. The MOH-X dataset (Moham-
mad et al., 2016) consists of simpler and shorter
sentences compared to the other datasets, with each
sentence having one labelled verb. Similarly, TroFi
(Birke and Sarkar, 2006) shares similarities with
MOH-X, having simpler sentences. The datasets
utilised in the study contain lists of sentences, and
the classification datasets (VUAMV, MOH-X, and
TroFi) are labeled as 0 for literal and 1 for metaphor,
based on the presence of a metaphorical verb. On
the other hand, the VUAMC sequence dataset la-
bels each word in the sentence for metaphoric-
ity. The sequence model utilises the MOH-X and
TroFi datasets, using 1 for the target verb if it is a
metaphor, and 0 for all other words in the sentence.

Juhasz and Yap (2013) published a 5,000-word
English word list rated for their sensory experience.
The words were rated on a scale of 7, where low
numbers indicated a low image/sensory impact. For
example, the word intent was assigned a sensory
experience rating of 2.40, while balloon received
a rating of 5.45, indicating a richer image/sensory
impact. The scoring scale was later reorganized as
integers, resulting in rating results ranging from 1
to 6. In their study, Pexman et al. (2019) compiled a
word list containing over 9,000 English words rated
for their ease of body interaction on a scale of 1 to
7. A very low score signifies that it is challenging
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Dataset Total Meta. Lit.
VUAMC CL 10,489 2,837 7,652
VUAMV SQ 17,932 4,717 16,064
MOH-X 214 192 195
TroFi 3737 50 50

Table 1: The breakdown of the metaphorical datasets,
number of sentence, tokens, metaphor and literal.

for the body to interact with those words physically.
For instance, the word ceiling has a low score of 2.5
because it is not easy to perform physical actions
like jump and touch with the ceiling. In contrast,
the word chair received a higher rating on the scale,
6.88, indicating that it is easy to interact physically
with it; one can underlinetouch, move and sit on a
chair with ease. The scale was later rearranged as
integers, ranging from 1 to 6.

Table 1 provides an overall statistics about the
metaphorical datasets. The VUAMC CL utilised
in the classification experiments contains a total of
10,489 sentences, out of which 2,837 are metaphor-
ical, and 7,652 are literal. In the sequence exper-
iments, the VUAMC SQ comprises 15,820 sen-
tences with 17,932 tokens. Among these, 4,717
tokens are metaphors, and 16,064 tokens are lit-
eral. The MOH-X dataset includes 647 sentences
with 214 unique target verb tokens, 192 appear
in metaphorical sentences, and 195 in literal sen-
tences. Lastly, the TroFi dataset consists of 3,737
sentences with 50 unique verb tokens. Each of
these verb tokens is found in both metaphorical
and literal sentences. In addition, Table 2 displays
the token count for each dataset and indicates how
many tokens are covered by the sensory and body-
object lists. These lists will be utilised to train the
SVM, enabling the assignment of predicted sen-
sory and body-object scores to each token in the
metaphorical dataset. The original ratings and the
predicted ratings will be evaluated separately dur-
ing the metaphor detection process.

4.2 Embeddings

In the preprocessing step, the SVM utilises BERT
pre-trained as the vector representation for the
words in the datasets. GloVe and ELMo are used
only in the metaphor detection experiments as the
word/context representations for VUAMC, MOH-
X and TroFi.

GloVe is a 300-dimensional word embedding for
word meaning derived from statistical techniques

Dataset Total SEN BOI
SEN 5856
BOI 9349
VUAMC Cl. 17017 3059 3572
VUAMC Seq. 16979 3156 3701
MOH-X 1677 694 811
TroFi 13738 2771 3216

Table 2: The breakdown of total tokens for each
dataset and the number that the sensory experience and
body–object interaction list covers.

used to calculate word–context co-occurrence in
a large corpus (Pennington et al., 2014). Embed-
dings from Language Models (ELMo) (Peters et al.,
2018) are deep 1,024-dimensional contextualised
embeddings that represent each word’s whole sen-
tence input, where the context of a word’s surround-
ings is considered, resulting in a dynamic represen-
tation that can change based on the sentence in
which it appears. Along with GloVe, they make a
1,324-dimensional vector that represents each word
in the sentence for the three metaphor datasets.

The Bidirectional Encoder Representations from
Transformers (BERT) (Devlin et al., 2018) are
formed by deep bidirectional representations that
capture the contextual information from both the
right and left sides of unlabelled text. Each word
in the sensory and body-object dataset word list is
assigned a BERT representation serving as SVM
inputs during training. Similarly, every word in
the VUAMC, MOH-X, and TroFi acquires a BERT
representation and receives predicted scores from
the SVMs. These predicted scores will be tested in
the subsequent metaphor detection stage.

4.3 Models

The baseline1 used to evaluate the sentence-level
metaphor detection was built on the BiLSTM
proposed by Gao et al. (2018). The word-level
metaphors were tested using the RNN HG se-
quence labelling model introduced by Mao et al.
(2019). Both models rely on GloVe and ELMo em-
beddings to capture contextual information. The
experiments on VUAMC use three splits for train-
ing, validation, and testing, whereas the tenfold

1The authors wrote in the README file that running the
provided script is expected to result in some numbers that are
lower than the reported numbers because the reported numbers
in the paper were achieved with early stopping and additional
training with smaller learning rates. These details were not
included in the available scripts and were not provided in the
paper.
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cross-validation technique is applied for MOH-X
and TroFi. Table 3 presents the hyperparameters
used for these baselines.

4.4 Preprocessing Stage

The main objective of this paper is to assess the
impact of enhanced contextual information on the
metaphor detection task by incorporating sensory
and body-object scores. Additionally, the study
aims to gain deeper insights into the relationship
between these elements and metaphors. The testing
of the effect of sensory and body-object scores on
the metaphor detection task involves three steps.
Section 5, describes these three steps in detail for
VUAMC, MOH-X, and TroFi.

1. Test the metaphor detection models when
VUAMC, MOH-X, and TroFi words are
present in the sensory and body-object
datasets. Out-of-list words are assigned a
score of 0. The main aim is to assess the im-
pact of incorporating the current ratings of the
sensory and body-object datasets on metaphor
detection, without relying on pre-trained tools
for prediction.

2. Each word in the sensory and body-object
datasets receives a pre-trained BERT embed-
ding, which is then used as input to train two
SVMs: one for sensory and another for body-
object. Next, each word in VUAMC, MOH-X,
and TroFi datasets is assigned a pre-trained
BERT embedding, allowing the SVMs to
provide single-digit sensory and body-object
scores. These obtained scores are then com-
bined with GloVe and ELMo embeddings, cre-
ating input for the classification and sequence
labelling models used in metaphor detection.

3. Similar to step 2 for training the SVM, how-
ever, the SVM assigns the predicted scores as
probability distributions with six digits. Each
digit represents the probability that the word
falls under a specific score. These digits are
then concatenated with GloVe-ELMo embed-
dings to create input for the metaphor detec-
tion models. The objective of this step is
to evaluate the value of using higher-detail
scores as probabilities, in contrast to single-
digit scores.

5 Implementation and Results

5.1 SVMs
In steps 2 and 3 of the preprocessing, the SVM is
employed to assign sensory and body-object pre-
dicted scores to all words in the VUAMC, MOH-X,
and TroFi datasets. Initially, the SVM is trained on
the sensory and body-object datasets using BERT
pre-trained vectors as input to represent each word
in these lists. Next, BERT pre-trained vectors are
extracted for each word in the metaphorical cor-
pora, and these vectors are then utilized in the SVM
to assign a predicted score for each word.

Subsequently, the predicted scores are concate-
nated with the GloVe-ELMo embeddings to serve
as the input for the metaphor detection models. As
reported by Alnafesah et al. (2020), integrating
a probability distribution for concreteness rating
into both the classification and sequence labelling
models yielded significant improvements in perfor-
mance, with the F1 scores increasing by 10.23%
and 6.81%, respectively. The probability distribu-
tion provided valuable information regarding the
scoring of specific words, leading to improved per-
formance in metaphor detection for the models.
Table 4 displays the F1 scores obtained from the
tenfold cross-validation during the training of the
SVMs on the sensory and body-object datasets.

5.2 Classification and Sequence Labelling for
Metaphor Detection

The sentence-level metaphor detection baseline is
established using the BiSTLM model introduced by
Gao et al. (2018). This model classifies sentences
as either metaphor (assigning 1) or literal (assign-
ing 0) based on the target verb and its surrounding
context. For word-level metaphor detection, the
baseline is built on the RNN HG model proposed
by Mao et al. (2019). This model assigns a la-
bel of 1 for metaphor or a label of 0 for literal to
each word in the sentence, based on the word’s
surrounding context. This section presents the re-
sults for each step of testing the sensory experience
and body-object interaction using these models for
metaphor detection task.

In step 1, only words in VUAMC, MOH-X, and
TroFi that are present in the sensory and body-
object datasets are given scores. This step aims to
evaluate the existing ratings without the interven-
tion of the SVM. Table 5 displays the results of
this step, denoted as SEN ST1 and BOI ST1, for
precision, recall, and F1 in both detection models.
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Exp. P. R. F1 H size Drop1 Drop3 B size Layer Epch
VUAMC Cl. 56.28% 51.107% 53.57% 128 0.3 0.2 64 1 20
VUAMC Seq. 76.23% 64.45% 71.22% 256 0.5 0.2 2 1 29
MOH-X Cl. 75.44% 77.393% 76% 300 0.2 0.2 10 1 30
MOH-X Seq. 76.408% 81.63% 78.46% 256 0.5 0.1 2 1 20
TroFi Cl. 69.661% 73.04% 71.088% 300 0.2 0 10 1 15
TroFi Seq. 68.98% 74.489% 71.575% 256 0.5 0.1 2 1 20

Table 3: The hyperparameters used to acquire the baselines used for these experiments. The classification
experiments are built on Gao et al. (2018), and the sequence labelling experiments are built on Mao et al. (2019).
Precision, Recall and F1 for MOH-X and TroFi are the best of the tenfold cross-validation.

SVM F1 Mean F1 MAX F1 MIN
SEN-single 38.678% 43.247% 35.213%
SEN-prob. 40.026% 44.273% 37.606%
BOI-single 38.881% 42.887% 36.791%
BOI-prob 39.03% 41.711% 35.508%

Table 4: The mean, max. and min. F1 scores for each
SVM trained on the sensory experience and body–object
interaction datasets.

The F1 scores for sensory with the classification
model showed an increase in all three datasets, with
VUAMC experiencing the highest increase, reach-
ing 57.603% from 53.57%. Similarly, recall for
VUAMC increased, reaching 61.839%. However,
precision decreased in VUAMC and TroFi, while
there was a small increase of 1.67% in MOH-X. As
for body-object, precision increased for VUAMC
and MOH-X, while recall and F1 for MOH-X
and TroFi showed the opposite trend. TroFi’s re-
call showed a greater increase, reaching 76.613%,
while MOH-X’s F1 showed a better increase, reach-
ing 77.048%. The sequence model with sensory
showed improvement in F1 for all three datasets.
Recall increased in VUAMC (71.199%) and TroFi
(76.471%), but slightly decreased in MOH-X. Sim-
ilarly, for body-object, F1 increased in all datasets.
Recall in VUAMC reached 73.298% and 75.638%
for TroFi, while it decreased slightly in MOH-X.

In step 2, the SVMs’ single-score assigned pre-
dictions are tested. These models assign sensory
and body-object scores as a single digit to all
words in the three metaphor datasets. The results
are shown under SEN ST2 and BOI ST2 in Table
5. The classification with sensory experiments
in VUAMC, there were minimal changes in all
three metrics. Recall and F1 of the MOH-X and
TroFi datasets increased slightly, while precision
decreased slightly. For body-object in the MOH-
X dataset, there were increases in all three met-
rics. On the other hand, in VUAMC’s results, pre-

cision increased to 58.04%, while recall and F1
decreased. In contrast, recall and F1 increased
for TroFi dataset, while precision decreased. The
TroFi dataset experiments with sensory showed im-
provement in all three metrics. F1 for VUAMC
and MOH-X increased to 73.85% and 79.033%,
up from 71.22% and 78.46%, respectively. Preci-
sion decreased in VUAMC and increased in MOH-
X, while the opposite was true for recall in both
datasets. For the body-object in the sequence ex-
periments, there was an overall increase in almost
all metrics for all datasets. However, precision for
VUAMC and TroFi showed decreases in the re-
sults.

In step 3, the sensory and body-object predic-
tions as a probability distribution are tested for all
three datasets. The predictions, in the form of a six-
digit score, are added to the vectors for all words.
The results are shown in Table 5 under SEN ST3
and BOI ST3. The classification model for MOH-X
with the sensory experiments showed an increase in
results for all three metrics. VUAMC’s and TroFi’s
recall and F1 increased, while precision slightly
decreased. VUAMC’s F1 reached 56.1%, and re-
call reached 56.7%. However, for body-object,
the model’s performance with VUAMC showed
a decrease in all metrics. On the other hand, pre-
cision and F1 increased in MOH-X, while recall
decreased very slightly from 77.393% to 77.358%.
As for TroFi, F1 and recall increased to 75.418%
and 71.664%, respectively, but Precision decreased
to 68.416%. For MOH-X and TroFi, all three met-
rics increased slightly in the sensory experiments
with the sequence model. In contrast, precision de-
creased in VUAMC, while recall and F1 increased
to 71.968% and 73.27%, respectively. Similarly,
in body-object, VUAMC’s precision decreased to
74.96%, while recall increased to 70.799%, and
F1 to 72.82%. However, recall decreased in MOH-
X and TroFi, while F1 increased to 79.275% and
71.925%, respectively. Precision also increased in
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Classification
Exp. Metrics Baseline SEN ST1 SEN ST2 SEN ST3 BOI ST1 BOI ST2 BOI ST3

VUAMC
P. 56.28% 53.91% 56.13% 55.4% 63.06% 58.04% 56.85%
R. 51.107% 61.839% 50.65% 56.7% 33.84% 49.17% 48.2%
F1 53.57% 57.603% 53.25% 56.1% 44.05% 53.24% 52.21%

MOH-X
P. 75.44% 76.7% 74.115% 76.622% 77.566% 76.43% 77.272%
R. 77.393% 80.209% 78.943% 77.328% 77.655% 78.39% 77.358%
F1 76% 77.807% 76.216% 76.468% 77.048% 77.097% 76.88%

TroFi
P. 69.661% 68.937% 69.068% 68.852% 68.18% 68.439% 68.416%
R. 73.04% 73.952% 75.961% 74.113% 76.613% 75.216% 75.418%
F1 71.088% 71.312% 72.159% 71.227% 71.98% 71.643% 71.664%

Sequence Labelling
Exp. Metrics Baseline SEN ST1 SEN ST2 SEN ST3 BOI ST1 BOI ST2 BOI ST3

VUAMC
P. 79.58% 76.23% 78.1% 74.6% 75.188% 76.84% 74.96%
R. 64.45% 71.199% 70.046% 71.968% 73.298% 69.46% 70.799%
F1 71.22% 73.629% 73.85% 73.27% 74.23% 72.97% 72.82%

MOH-X
P. 76.408% 78.82% 78.795% 77.562% 78.403% 77.396% 79.439%
R. 81.63% 80.053% 79.809% 81.804% 80.292% 83.192% 79.841%
F1 78.46% 79.257% 79.033% 79.204% 78.967% 79.767% 79.275%

TroFi
P. 68.98% 68.598% 69.358% 69.963% 68.984% 67.579% 70.03%
R. 74.489% 76.471% 75.591% 74.439% 75.638% 77.311% 74.1255%
F1 71.575% 72.172% 72.212% 72.001% 72.066% 71.99% 71.925%

Table 5: The results of the classification and sequence labelling experiments for both sensory and body-object are
presented. The results for MOH-X and TroFi represent the best performance from the tenfold cross-validation. The
highest values of recall and F1 for each dataset under each feature are highlighted in bold.

both MOH-X and TroFi to 79.439% and 70.03%,
respectively.

6 Analysis and Discussion

When analysing the incorrectly predicted files for
the classification model of sensory experience,
prepositions frequently appear, and the word get
is prominent on the list. For instance, in the sen-
tence “probably need to get Ken’s permission!”,
all words received a sensory predicted score of 1,
except for the word Ken, which received a score
of 2. Despite the slight shift in ratings, especially
for the word Ken following the target verb get, the
model failed to make the correct prediction. This
could be attributed to the very low sensory experi-
ence ratings for all words in the context, along with
the nature of the word get as a metaphor. Words
like get and others in similar situations are fre-
quently used words that have lost their metaphori-
cal meaning and have become literal. Additionally,
the misprediction could be due to the lack of a no-
ticeable rating shift, causing the model to overlook
the metaphoricity indicators.

In another example, the case of the phrasal verb
appears in “I’ll get some tables up with erm” where
the SVM’s predicted sensory ratings for “get some
tables up” were 1, 1, 3, and 2. The words get (1)
and up (2) had slightly shifted ratings. However, it

is possible that the model did not detect the phrasal
verb due to the distance between its parts. Addi-
tionally, the model’s decision could be related to
the actual meaning of the sentence. In this context,
get is used as the literal verb acquire, and the word
table represents an object that can be acquired in
a literal sense. Because there was no significant
shift in the sensory ratings with the rating distance,
the model classified the sentence literally based on
these factors.

The word produce in the sensory rating was
also misclassified in the sentence “He chuckled,
produced two cardboard cups, and poured me a
generous slug of the whiskey.” A similar situation
was observed where the meaning of the target word
matched the context, and there were no noticeable
rating shifts. As a result, the model incorrectly
classified the sentence as literal. In this case, the
phrase “produced two cardboard cups” could be
interpreted as literal since it refers to the actual
action of creating the object cup. However, the
intended meaning of the sentence was likely bring
out two cups rather than make two cups. The phrase
to produce can also mean to bring out or to make
apparent or present to the public. This alterna-
tive meaning is what the sentence is likely trying
to convey. The lack of noticeable sensory experi-
ence rating shifts (with sensory ratings of 2, 1, 3,
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and 3) might not have provided enough helpful in-
formation for the classification model to correctly
understand the intended meaning of the sentence.
As a result, it classified the sentence as literal based
on the available information.

The analysis of the incorrectly predicted files
for body-object with classification reveals that the
words got (body-object rating of 1), go (body-
object rating of 2), and back (body-object rating
of 5) appear at the top of the list. For instance,
in the example “having got some of the plumbing
details wrong” (having 2, got 1, some 1, of 1, the
1, plumbing 3, and details 2), it is evident that the
rating shift between the words is slight, from 1 to 2
to 3. Furthermore, the words plumbing (rating of
3) and details (rating of 2) do not indicate strong
physical manipulation. These factors combined
could explain why the model’s performance did
not exhibit significant improvements, as observed
in the sensory experiments. The same reasoning
applies to the sentence “Well, hang on a minute,”
where the ratings are 1, 1, 2, 1, and 1, with the verb
hang as the target. The notable shifts in ratings
could not provide any additional information be-
yond what was already known from the GloVe and
ELMo embeddings.

The sensory ratings with sequence experiments
misclassified the word plant in the sentence “pull
all nuclear plant out of the impending sale.” as a
non-metaphor. When examining the sensory rat-
ings (pull 3, all 1, nuclear 3, plant 3, out 2, of 1, the
1, impending 2, and sale 2), the ratings were low,
combined with the lack of an apparent shift, which
may have led to missing the metaphoricity hints in
using the word plant with nuclear. The word down
in “two dressing rooms and toilets down there.”
could be explained in the same way. The lack of
noticeable rating shifts (two 1, dressing 2, rooms
3, and 1, toilets 3, down 2, and there 2) and the
matching meaning of the word down as the direc-
tion, with the context being the position of rooms,
could have pushed the model to misclassify the
word down as literal.

The words got and go are also among the incor-
rectly predicted words for the sequence labelling
experiments. The body–object interaction rating
for got is 1 and for go is 2, both of which have low
body–object interaction ratings. In the example
“I ’ve only got until tomorrow.” the model mis-
classified the word got as literal. The body–object
interaction ratings (I 2, ’ve 1, only 1, got 1, until 1,

and tomorrow 2) show no noticeable shifts between
the words. Although the word tomorrow indicates
time, and got indicates a somewhat physical ac-
tion, the model should not misclassify the word
got, because handling time physically is impossi-
ble. However, the body–object interaction rating
did not reflect that when it gave the word got a low
body–object interaction rating.

According to Pexman et al. (2019), the ratings
reflect the ease of physical interaction with these
words. Some of the words, in their sense, are simi-
lar; however, their body-object interaction ratings
are different. For instance, he has a body-object
interaction rating of 2.96, she has 3.30, boy has
4.9, and girl has 5.52. These variations in ratings
for words that are supposed to be close in meaning
space could have affected the metaphor learning
with the body-object interaction ratings. Further-
more, Pexman et al. (2019) stated that the ratings
were derived from concreteness and imageability
ratings, along with other variables, but these spe-
cific variables were not specified.

7 Conclusion

This paper examined the impact of adding senso-
rimotor knowledge (sensory experience and body-
object interaction) as external lexical resources to
neural network models for the automatic detection
of metaphors in text. Sensory relies on an image
scheme, where a mental image is evoked along
with other sensory activations to convey the in-
tended meaning. On the other hand, body-object is
derived from concreteness and imageability, which
describe how easy it is to interact with a particular
entity. Both concepts have been extensively studied
in fields outside of NLP. The ratings from the lists,
as well as the ratings obtained from trained SVMs,
were tested on three metaphorical datasets using
two types of deep learning models: one classifies
sentences, and the other classifies words as literals
or metaphors based on context. The models’ perfor-
mances demonstrated promising results, showing
improvements in recall and F1 for metaphor detec-
tion across the three datasets. For future work, a
more comprehensive breakdown of the variables
could be used to acquire the ratings for sensory and
body-object lists. This could include making the
type of activated sensory more apparent. Addition-
ally, considering imageability and concreteness in
these tests might help bridge the gap in some of
the variations in ratings observed, as mentioned



88

previously (he and boy, girl and she).
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