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Abstract

Topic models are often evaluated with mea-
sures such as perplexity and topic coherence.
However, these methods fall short in determin-
ing the comprehensiveness of identified topics.
This research introduces a complementary ap-
proach to evaluating unsupervised topic models
using a labeled dataset. By training hierarchi-
cal topic models and utilizing known labels for
evaluation, we found a high accuracy of 70%
for expected topics. Despite having 90 labels
in the dataset, even those representing only 1%
of the data achieved an average accuracy of
37.9%, illustrating hierarchical topic models’
effectiveness on smaller subsets. Additionally,
we confirmed that this new evaluation method
helps assess the topic tree quality, demonstrat-
ing that hierarchical topic models generate co-
herent taxonomies. Lastly, we established that
coherence measures alone are insufficient for a
holistic topic model evaluation.

1 Introduction

Hierarchical Topic Models such as the
LSHTM(Pujara and Skomoroch, 2012), nCRP(Blei
et al., 2004), nHDP(Paisley et al., 2015), and
HTMOT(Poumay and Ittoo, 2021) enable the
extraction of topics and sub-topics organized in
a tree-like hierarchy. Topic hierarchies provide
a more fine-grained view of the underlying data,
which is particularly useful in applications such
as ontology learning (Zhu et al., 2017) and
research idea recommendation(Wang et al., 2019).
Additionally, models like nCRP, NHDP, and
HTMOT dynamically determine the appropriate
number of topics and sub-topics during training,
contrary to the traditional model of LDA(Blei
et al., 2003).

Evaluating the quality of the extracted topics is
crucial to ascertain their real-world utility. How-
ever, as these methods extract knowledge in an

unsupervised manner, previous studies on topic
model evaluation have been limited to evaluating
the quality of the resulting topics. Hence, many
methods have been proposed to study the perfor-
mance of these models, such as perplexity and co-
herence measures (Newman et al., 2010; Doogan
and Buntine, 2021a; Bhatia et al., 2017).

Nevertheless, these measures have proven to be
unrelated to human judgment (Chang et al., 2009;
Doogan and Buntine, 2021b; Bhatia et al., 2017),
indicating that humans do not agree with these
measures when it comes to the quality of the top-
ics extracted. Recently, the word intrusion task
has been proposed to evaluate the extracted topic
quality (Chang et al., 2009). While its initial im-
plementation relies on human annotators, it can be
automated without losing the link to human judg-
ment (Lau et al., 2014).

However, all the methods previously presented
have failed to ask other essential questions about
the extracted topics and the completeness of the
results. For example: Do we extract every topic?
How well do we extract them? Do we extract unex-
pected topics? And in the context of hierarchical
topic models, is the hierarchy produced coherent?

Hence, in this article, we propose a method for
evaluating topic models using a well-known la-
beled dataset (Reuters-21578 (Tekn, 2020)), but
the method can be extended to another dataset. Our
approach differs from previous methods by focus-
ing on known topics that we expect to extract and
their quality, providing a better understanding of
the completeness of the model. Using known la-
bels, we can automatically name extracted topics.
Afterward, we can study whether the document
topic distribution can predict the actual labels of
the documents. We call this label accuracy, and it
provides a quantitative assessment of how well we
fit the training set. Moreover, if more topics are ex-
tracted than expected, we can study their relevance
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and unexpectedness. Finally, as the extracted topics
exist in a hierarchy, we can analyze the coherence
of the taxonomy produced from the known labels.

To perform our experiments, we trained 60 dif-
ferent models (30 hierarchical and 30 flat models)
with various hyperparameters to understand how
and if this new evaluation approach can help us
determine quantitatively which model provides the
best topics.

Results show that label accuracy provides a more
conservative measure of topic quality compared to
coherence. We show that while low coherence
(Newman et al., 2010) is a good indicator of poor
quality in topics, a high coherence score is not suffi-
cient to determine the quality of a set of topics. We
also compute the label accuracy for labels that ac-
count for less than 1% of the data and demonstrate
that it is a good metric if we care about extracting
small sub-topics. Precisely, we see that although
we have 90 labels, the accuracy of small topics
can get as high as 37.9%, while the largest topics
achieve more than 70% accuracy. In that sense, we
have noticed a logarithmic relationship between the
number of documents per label and its accuracy, as
accuracy quickly goes up with the number of doc-
uments, indicating that hierarchical topic models
can extract small topics effectively.

2 Background and Related Work

2.1 Topic Models

LDA (Blei et al., 2003) is the first traditional topic
model. At the core of LDA is a Bayesian genera-
tive model with two Dirichlet distributions, respec-
tively for the document-topic distributions and for
the topic-word distributions. These distributions
are learned and optimized via an inference proce-
dure which enables topics to be extracted. The
main weakness of LDA is that it requires the user
to specify a predefined number of topics to be ex-
tracted. The subsequent HDP (Teh et al., 2006)
model uses Dirichlet Processes to determine the
number of topics during training.

Since then, many hierarchical topic models
have been proposed (Pujara and Skomoroch, 2012;
Mimno et al., 2007; Blei et al., 2004; Paisley et al.,
2015; Poumay and Ittoo, 2021). These are mod-
els that extract topics and sub-topics resulting in
a topic hierarchy that provides a deeper under-
standing of the underlying themes inside a corpus.
Simple approaches like LSHTM (Pujara and Sko-
moroch, 2012) recursively apply LDA to a corpus.

Therefore, it suffers from the same weakness as
LDA, as the topic tree dimension must be decided
in advance. Models like nCRP, nHDP, and HTMOT
(Blei et al., 2004; Paisley et al., 2015; Poumay and
Ittoo, 2021) use Dirichlet Processes to automati-
cally decide the number of topics to extract during
training. Each model is an improvement over the
previous one. The nCRP model only allowed docu-
ments to sample topics in one branch of the topic
tree, while the nHDP lets documents sample from
any number of branches. HTMOT followed suit
by integrating temporality into the model to ex-
tract specific events at the deeper level of the topic
tree. Finally, hPAM (Mimno et al., 2007) proposes
another approach using a directed acyclic graph
structure instead of a tree to model topic hierarchy.

2.2 Evaluating Topic Models

Perplexity has been the standard for comparing
topic models for a long time. It defines how likely it
is that the training data would have been generated
by the trained topic model. However, it has been
discovered that this method does not correlate with
human judgment (Chang et al., 2009). Hence, new
methods for evaluating topics have been proposed,
but none have provided a new standard.

Topic coherence (Newman et al., 2010) was
also proposed as a method of topic evaluation.
This method consists of computing some similarity
scores between the top N topic words. Specifically,
it is computed as (where wi is more frequent than
wj):

∑
i<j score(wi, wj). Topic coherence is a

modular evaluation method as it allows for many
different scoring functions. The most popular are
UCI and UMass, which use word co-occurrence to
score word sets. UCI is an extrinsic measure based
on Wikipedia articles, while UMass is intrinsic and
uses the training corpus. However, other score
functions such as the cosine similarity of word em-
beddings can also be used. The topic coherence
score of a model is the average coherence score of
the topics. Nevertheless, a recent study puts into
question whether coherence measures themselves
correlate with human ratings (Newman et al., 2010;
Doogan and Buntine, 2021a; Bhatia et al., 2017).

The Word Intrusion task is the latest evaluation
method devised. For each topic, it involves insert-
ing an intruder word in the topic top word list and
then asking people to find it (Chang et al., 2009).
This intruder is selected at random from a pool of
words with a low probability in the current topic
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but a high probability in some other topic to avoid
rare words. The idea is that in good topics, the
annotators would easily find this intruder. With
this evaluation method, the final score corresponds
to the average classification accuracy made by hu-
mans.

Finally, all topic modeling methods presented
provide a qualitative analysis of the extracted topics.
Compared to opaque measures such as coherence
and perplexity, the qualitative analysis provides a
direct understanding of the model’s performance.
However, such an evaluation method is prone to
cherry-picking, especially when many topics are
extracted.

Hence, all of the methods presented have been
demonstrated to be unreliable on their own. More-
over, none of these methods here answers our re-
search questions: Do we extract every topic we
expect to extract? How well do we extract them?
Do we extract unexpected topics? Is the hierar-
chy produced coherent? Hence, it is clear that we
need new tools to evaluate topic models, especially
hierarchical ones.

3 Methodology

4 Overview

Our evaluation methodology consists of multiple
steps. We aim to assess the sensitivity of the topic
models and compare the performance of hierarchi-
cal and flat models. To achieve this, we extract
topics from our corpus using 60 variations of topic
models (30 hierarchical and 30 flat models with dif-
ferent parameters as shown in table 1) by training
them on the Reuters dataset. The varying parame-
ters include basic LDA parameters that control the
topic-word and document-topic prior distributions,
as well as the dynamic parameters controlling the
creation of new topics during training.

Following this, we automatically assign labels to
the topics by using the known labels from the cor-
responding dataset, based on the document-topic
distribution. Next, for each document with n la-
bels, we compare the top n+k labeled topics for
that document to calculate label accuracy. Finally,
we evaluate the results.

5 Corpus

For our experiments, we will employ the Reuters-
21578 corpus (Tekn, 2020), a widely used dataset
in the literature on topic models. Composed of

English news articles primarily focused on business
and politics, this corpus was used as it has detailed
and multiple labels for each document.

We preprocessed the corpus by filtering relevant
tokens using Spacy’s Named Entity Recognition
and Part-of-Speech tags and applied lemmatization.
Consequently, our training set consists of 10,788
documents, each labeled with one or more of the
90 tags in the corpus (e.g. wheat, gold, money-fx,
etc.).

The label distribution is highly uneven, resem-
bling a power-law distribution, with labels such as
’earn’ or ’acq’ constituting approximately 36% and
22% of the documents, respectively. In contrast,
labels like ’rye’ and ’castor-oil’ appear only in a
single document each.

6 Constructing and Training the Models

In our experiments, we utilized the nHDP and
HDP topic models albeit with a distinct training
procedure. While the original implementation of
these models used Stochastic Variational Inference
(SVI), we employ a fast implementation of Gibbs
sampling for training (Poumay and Ittoo, 2021).
According to (Blei et al., 2017), Gibbs sampling
outperforms SVI for small topics. Small topics
are crucial since they may represent weak signals
in the data, and hierarchical topic models tend to
generate more small topics compared to their flat
counterparts.

We explored 48 distinct models, training 24 hier-
archical models (nHDP) and 24 flat models (HDP).
Each hierarchical/flat model pair shares the same
set of parameters (refer to table 1).

The parameters that we vary in each model are
defined as follows: α: the rate at which we create
new topics in the document trees. β: the rate at
which we create new topics in the corpus tree. ϕ:
the prior for the topic-word distribution. ϵ: the prior
for the corpus and document-topic distributions.

These 30 pairs of models are grouped as follows:

• 6 pairs of models with different values for
alpha

• 6 pairs of models with different values for beta

• 6 pairs of models with different values for
epsilon

• 6 pairs of models with different values for phi
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Models alpha beta phi epsilon
A1 0.000005 0.02 0.1 0.5
A2 0.00001 0.02 0.1 0.5
A3 0.00005 0.02 0.1 0.5
A4 0.0005 0.02 0.1 0.5
A5 0.001 0.02 0.1 0.5
A6 0.005 0.02 0.1 0.5
B1 0.0001 0.001 0.1 0.5
B2 0.0001 0.002 0.1 0.5
B3 0.0001 0.004 0.1 0.5
B4 0.0001 0.1 0.1 0.5
B5 0.0001 0.2 0.1 0.5
B6 0.0001 0.4 0.1 0.5
E1 0.0001 0.02 0.1 0.001
E2 0.0001 0.02 0.1 0.01
E3 0.0001 0.02 0.1 0.02
E4 0.0001 0.02 0.1 0.1
E5 0.0001 0.02 0.1 2.
E6 0.0001 0.02 0.1 5.
P1 0.0001 0.02 0.001 0.5
P2 0.0001 0.02 0.01 0.5
P3 0.0001 0.02 0.02 0.5
P4 0.0001 0.02 0.5 0.5
P5 0.0001 0.02 1. 0.5
P6 0.0001 0.02 5. 0.5

Table 1: Sets of parameters for the models trained

7 Automatic Titling

To automatically assign a label l to a topic we used
a simple heuristic. For each trained model, we com-
pute the label-topic distribution of label l by averag-
ing the document-topic distribution of documents
that have this label. If the model is hierarchical,
this means we end up with a topic tree with topic
frequencies corresponding to this label.

Starting from the root, we select the topic with
the highest frequency for that label. We do the
same for the sub-topic of the selected topic until
we reach a leaf. In the end, we have selected a
branch of the tree where the label is most frequent.

Next, we compare the known frequency of the
label l with each topic of this branch and select the
topic with the closest frequency. This topic will be
given the label l.

This method is applied iteratively for each label.
It is worth noting that a topic may have multiple
labels in its title if it is selected by several labels.

This heuristic is simple by design and is an
important hypothesis that has a large impact on
the performance of our evaluation methodology.
Nonetheless, we will show that it is sufficient to
provide interesting results.

8 Computing Top n+k Label Accuracy

To calculate the top n+k label accuracy, we order
labeled topics by their document-topic distribution
for each document. Considering that document d
has n labels, we choose the top n+k topics from the
sorted list. We subsequently extract the labels given
to these topics. Finally, using the set of extracted
labels from the topics T and the use of known la-
bels of the document L, we determine the label
accuracy for document d using the formula |L∩T |

|L| .
The overall top n+k label accuracy of the model
is calculated as the average across all documents.
The overall top n+k label accuracy of each label l
is calculated as the average across all documents
with that label l.

In addition to the overall top n+k label accuracy,
we compute the small topic label accuracy, which
excludes labels that correspond to more than 1% of
the dataset. This exclusion accounts for 80% of the
tags, or 72 tags in total.

9 Results

In this section, we will review the results of our
experiments. We will start by comparing the coher-
ence measure to the label accuracy measure. Next,
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we will compare the performance of the flat and
hierarchical models. Finally, we will study the
hyperparameters’ importance.

9.1 Coherence vs Label Accuracy

In table 2, we display the metrics computed for six
of the 7 models. Three were the worst in at least one
metric and four were the best in at least one metric.
The metrics are the average topic coherence and
the top 3 label accuracy. The topic 3 label accuracy
is computed for all the labels in each hierarchical
model, in their flat counterpart (F), for small topics
(S), and for both small topics in the flat model
(F/S).

We observe that the model with the worst co-
herence (P1) did produce topics that are difficult
to interpret. However, the model with the highest
coherence (E1) is decisively not the best model.
The label tree it produces is incoherent and most
of the labels are pushed to the leaves of the tree.
Consequently, this model has many topics sharing
multiple labels indicating that the model could not
separate the labels properly. Specifically, 81% of
labels share a topic, and one topic shares as many
as 34 labels. Moreover, this model created many
duplicate topics, with the majority of the topics be-
ing similar if not the same. Finally, we can observe
that this model also has poor accuracy being the
second worst.

The best-performing model is (B5) with the high-
est small topic accuracy. Although its coherence is
lower than (E1), its label tree is much more coher-
ent and detailed. Most labels do not share co-labels
meaning that the model is better at separating the
labels into specific topics. Specifically, 34% of la-
bels share a topic, and one topic shares as many
as 5 labels. B5 being the highest small topic accu-
racy, we also observed that small labeled topics are
easily interpretable.

Figure 1: Coherence vs label accuracy across all models

Id A A (F) A (S) A (S/F) C
P2 .218 .247 .057 .006 .244
P1 .643 .543 .178 .004 .206
A4 .711 .338 .323 .003 .296
A2 .778 .590 .271 .012 .316
E1 .382 .542 .128 .005 .342
B5 .727 .350 .379 .006 .290
E2 .631 .373 .267 .018 .340

Table 2: Comparing best and worst models for each
measure. A corresponds to the top 3 label accuracy
and C corresponds to the UMass coherence. (F) corre-
sponds to the equivalent flat model performance. (S)
corresponds to the small topics’ performance.

Tags Real B5 P2
nat-gas proportion 0.89 16
gnp 1.19% 2.15 1.02
coffee 1.49% 1.41 12.09
trade 1.6% 2.25 1.06
crude 5.31% 3.13 6.62
money-fx 6.01% 1.53 6.49
acq 6.91% 20.57 8.6
MSE 24.56% 10.499 63.932

Table 3: Comparing the worst hierarchical topic model
(P2) with the best small accuracy topic model on a set of
random topics. We compare the real proportion of the
tags in the data with the proportion of the topics with
that label. We then compute the Mean Square Error
(MSE) of this difference for both models.

Hence, the coherence measure is good at deter-
mining if a set of topics is of bad quality. How-
ever, it is not sufficient in itself to determine if the
topics are of good quality. A set of coherent but
duplicate topics will yield a high coherence score
even if this results in bad topic extraction overall.
Moreover, high coherence does not guarantee that
topics are well separated or that the inferred hier-
archical structure of topics makes sense. Figure 1
shows that both label accuracy and coherence are
not highly correlated which indicates they measure
a different aspect of a model’s performance.

Another way to ensure that the label accuracy
represents the model’s performance is to look at
the discrepancy between the actual label size and
the size of the topic with that label. In table 3, we
compare the worst and best models for small label
accuracy. We see that for the best model, labels
correspond to topics with a size that is closer to the
actual label size.

We can also compare how the coherence and
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label accuracy metrics compare depending on the
size of labels or topics. Since coherence is com-
puted for each topic and label accuracy is computed
for each label we cannot make a direct compari-
son. In the figures 3 and 2, we plot these results
and observe that there is a logarithmic relation-
ship between label accuracy and size. Indicating
that the quality of topics greatly increases with a
small increase in the number of documents. This
implies that topic models could detect weak sig-
nals and emerging trends early as a few documents
can produce relatively decent topics. However, for
coherence, there is not such a clear relationship
between topic size and coherence; the bigger topics
do not seem to gain in coherence either. Nonethe-
less, a qualitative analysis of topics reveals that
bigger topics are much easier to interpret.

Figure 2: Topic coherence vs size. The x-axis uses a
logarithmic scale.

Hence, we have demonstrated that while coher-
ence is good at avoiding bad topics it is not suffi-
cient to select good topic trees. The accuracy of
small labels on the other hand provides us with a
better understanding of the quality of a topic tree
as a whole.

9.2 Flat vs Hierarchical Models
In table 2, we can observe the label accuracy for the
flat topic model for all the labels and the small ones.
While the label accuracy can get close to 60%,
it is mostly a reaction to the highly unbalanced
labels in the corpus. Once, we focus on the smaller
labels, this accuracy nearly drops to zero. This
demonstrates the power of the hierarchical topic
model to uncover smaller topics.

As we automatically label topics in a topic tree,
we can also observe the coherence of the hierarchy
produced. While the original labels are not struc-
tured in a hierarchy, we observe that the taxonomy
created from the topic makes sense (see figure 4
for a sample). Thus, indicating that hierarchical

topic models can produce coherent taxonomy from
labeled documents.

9.3 Hyper-Parameter Importance

Finally, we can study the hyper-parameter impor-
tance. We observe that ϵ and ϕ are positively corre-
lated with label accuracy which controls document-
topic and word-topic distributions, indicating that
a more uniform distribution provides a better prior
for this dataset. Nonetheless, for coherence higher
values for ϕ and lower values for ϵ are preferable.
For ϵ this discrepancy is interesting, although we
have discussed that the model (E1) with the lowest
value for ϵ is one of the worst models qualitatively
and in terms of label accuracy.

If we believe in label accuracy, we may conclude
that it is better to start with a uniform prior which
does not set up the model in any specific local
minimum. Indeed, lower values of ϵ or ϕ will lead
the model to select some random configuration for
these distributions early on before it has been able
to see the whole data; this is called the burn-in
phase of the Gibbs procedure. On the other hand,
starting with a uniform prior distribution forces the
model to remain uniform until it has seen enough
data that the empirical distribution in the data takes
precedence over the prior. However, even higher
values for these priors eventually lead to degrading
performance since it will eventually have a higher
weight than the data itself.

Considering the parameters that control the cre-
ation of topics during training. We see that higher
β, which controls the rate at which we create new
topics in the corpus tree, does not significantly im-
pact label accuracy but does negatively impact co-
herence. We observe similar results for α: the
rate at which we create new topics in the document
trees. Except that higher values for α are correlated
with higher small label accuracy. Once again, these
priors mostly impact the model during the burn-in
phase of the Gibbs procedure.

9.4 Do we Extract Unexpected Topics?

While quantitative analysis of topic models is im-
portant, it is necessary to remember that such mod-
els are not predictive. Hence, part of the reason we
use topic models is to discover unexpected topics.
It is important to note that while we have 90 labels
in the dataset, we extract about 1500 topics on av-
erage. Meaning that on average less than 5% of
topics receive a label.
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Figure 3: Label accuracy vs size. The x-axis uses a logarithmic scale.

Figure 4: Selected sample of the label hierarchy pro-
duced. The entire label tree is too large to be shown
entirely.

Hence, other unexpected topics have been ex-
tracted as well. We can look at the small unex-
pected topics extracted by the B5 model; these
topics are displayed in table 4. These topics are not
specifically described by any of the labels present
in the original dataset.

10 Conclusion

Our study introduces a novel method for evalu-
ating hierarchical topic models based on labeled
data. We trained hierarchical topic models on the
Reuters-21578 dataset and used the known labels to
evaluate the quality of the resulting topics. Our ap-
proach differs from previous methods by focusing
on known topics that we expect to extract, provid-
ing a better understanding of the completeness of
the model.

We found that labels with a large number of doc-
uments yielded high accuracy above 70%, while
smaller labels (1% of the data) had lower accuracy,
but remained relatively high for multi-class accu-
racy with 90 labels at 37.9%. Additionally, we

Ship attack Ore reserves Trade dispute
iranian estimate semiconductor
attack reserve tariff
tanker property pact
missile exploration sanction
platform total impose
war mining market
oil development japanese
protect prove failure
ship result chip
shipping program computer

Table 4: A selection of small unexpected topics. These
topics have a frequency of 0.49%, 1.11%, 0.49% respec-
tively.

observed a logarithmic relationship between label
accuracy and size, indicating that even a small in-
crease in the number of documents could greatly
improve the quality of the extracted topics. This
suggests that topic models can detect weak signals
and emerging trends early, with just a few docu-
ments producing relatively decent topics.

Furthermore, we demonstrated that coherence
alone is not sufficient to select a good topic tree,
and the accuracy of small labels provides a better
understanding of the quality of the topic tree. Our
approach also allowed us to discover unexpected
topics, such as trade disputes or ore reserves, that
would have been missed by traditional evaluation
methods. Lastly, we have shown that hierarchi-
cal topic models produce relatively coherent label
taxonomy.

Future research could build on our approach by
developing better evaluation methods that consider
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not only the quality of topics extracted but also the
ability to extract expected topics. Another direction
for future research is to measure the unexpected-
ness of extracted topics since topic models are often
used to discover unknown patterns in the data.
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