
Proceedings of Recent Advances in Natural Language Processing, pages 854–863
Varna, Sep 4–6, 2023

https://doi.org/10.26615/978-954-452-092-2_092

854

HTMOT : Hierarchical Topic Modelling Over Time

Judicael Poumay
ULiege/HEC Liege

Rue Louvrex 14, 4000 Liege, Belgium
judicael.poumay@uliege.be

Ashwin Ittoo
ULiege/HEC Liege

Rue louvrex 14, 4000 Liege, Belgium
ashwin.ittoo@uliege.be

Abstract

Topic models provide an efficient way of
extracting insights from text and supporting
decision-making. Recently, novel methods
have been proposed to model topic hierarchy
or temporality. Modeling temporality provides
more precise topics by separating topics that
are characterized by similar words but located
over distinct time periods. Conversely, mod-
eling hierarchy provides a more detailed view
of the content of a corpus by providing topics
and sub-topics. However, no models have been
proposed to incorporate both hierarchy and tem-
porality which could be beneficial for applica-
tions such as environment scanning. Therefore,
we propose a novel method to perform Hierar-
chical Topic Modelling Over Time (HTMOT).
We evaluate the performance of our approach
on a corpus of news articles using the Word
Intrusion task. Results demonstrate that our
model produces topics that elegantly combine
a hierarchical structure and a temporal aspect.
Furthermore, our proposed Gibbs sampling im-
plementation shows competitive performance
compared to previous state-of-the-art methods.

1 Introduction

In the field of natural language processing (NLP),
numerous methods for extracting topics from a
corpus have been proposed over the years (Al-
ghamdi and Alfalqi, 2015; Barde and Bainwad,
2017). While the seminal Latent Dirichlet Allo-
cation (LDA) algorithm (Blei et al., 2003) paved
the way for topic modeling, it lacks the ability to
capture hierarchical or temporal information.

In the past, hierarchical topic models have been
proposed (Paisley et al., 2015; Blei et al., 2004)
that enable the extraction of topics and sub-topics
organized in a tree-like structure. These models
dynamically determine the appropriate number of
topics and sub-topics during training and have been
found to be useful in ontology learning (Zhu et al.,

2017) and research idea recommendation (Wang
et al., 2019).

In parallel, temporal topic models have been
developed (Wang and McCallum, 2006; Nallapati
et al., 2007; Song et al., 2008; Blei and Lafferty,
2006) that allow for the extraction of topics that
describe events or trends occurring in a corpus.
These models have been applied to tasks such as
tracking trends in scientific articles (Hong et al.,
2011) and events in social media (Zhou and Chen,
2013).

Combining hierarchical and temporal informa-
tion in models can capture broad and detailed as-
pects of a corpus, benefiting applications like envi-
ronment scanning (El Akrouchi et al., 2021). Hi-
erarchical modeling yields detailed topics and sub-
topics for a comprehensive thematic understanding,
while temporal modeling provides precise descrip-
tions of events. This integration produces nuanced
models for informed decision-making and deeper
insights.

However, integrating temporal and hierarchical
information in topic models remains a challenge
(Nallapati et al., 2007; Song et al., 2008; Blei
and Lafferty, 2006; Wang and McCallum, 2006).
Many temporal models have their own structures
to represent time, such as time trees or time slices,
which complicates the integration with a hierarchi-
cal structure (Nallapati et al., 2007; Song et al.,
2008; Blei and Lafferty, 2006). The only temporal
model that does not require its own structure is ToT
(Wang and McCallum, 2006), but combining time
and hierarchy is still difficult due to the beta distri-
bution used to model time lacking a known conju-
gate prior, making it incompatible with stochastic
variational inference (SVI) used by previous hier-
archical models (Wang and McCallum, 2006).

Our proposed method, Hierarchical Topic Mod-
elling Over Time (HTMOT), jointly models topic
hierarchy and temporality to leverage the strengths
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of both dimensions and to overcome the challenges
associated with integrating them.

As a secondary contribution, we propose a novel
implementation of Gibbs sampling based on a tree-
based data structure called the Infinite Dirichlet
Tree. This implementation is comparable to SVI
in terms of speed. Our work provides a promising
avenue for addressing the need for topic models
that can incorporate both hierarchical and temporal
information. (Wang and McCallum, 2006)

We performed our experiments using a corpus of
62k news articles and evaluated our method using
the Word Intrusion task (Chang et al., 2009).

2 Related Work

We now describe previous topic modelling methods
most closely related to ours. For more comprehen-
sive reviews see Alghamdi and Alfalqi (2015) and
Barde and Bainwad (2017).

2.1 Topic Modelling

The seminal LDA (Blei et al., 2003) algorithm re-
mains the most popular topic model. It is the basis
of most subsequent models. At the core of LDA is
a Bayesian generative model based on Dirichlet dis-
tributions. These are used to model the document-
topic and the topic-word distributions. They are
learnt and optimized via an inference procedure,
which enables topics to be extracted. The main
weakness of LDA is that it requires the user to spec-
ify a predefined number of topics to be extracted.
However, such information is usually not known
in advance. Consequently, LDA requires a long
model validation step to determine the number of
topics.

The subsequent HDP (Teh et al., 2006) model
uses Dirichlet processes (DPs) to determine the
number of topics during training. Using DPs allows
us to have an indefinite number of topics contrary
to Dirichlet distributions. Otherwise, HDP operates
similarly to LDA.

2.2 Hierarchical Topic Modelling

Methods such as LDA and HDP are only capable of
extracting a flat topic structure. Hence, new meth-
ods have been developed to model topic hierarchies.
By extracting topics and sub-topics, we end up with
more detailed information about a corpus.

The state-of-the-art for hierarchical topic mod-
elling is nHDP (Paisley et al., 2015). It models
topic hierarchy by defining a potentially infinite

tree where each node corresponds to a topic. At
each branch of the tree, we exactly have the HDP
model. The difference is that, when a word is as-
signed to a topic during training, there is a chance
to go deeper in the tree based on a Bernoulli dis-
tribution. If we do go deeper, we repeat the HDP
algorithm with a sub-corpus made up of the docu-
ments and tokens assigned to the selected topic.

Other topic models have been proposed to model
hierarchy. hPAM (Mimno et al., 2007) proposes a
directed acyclic graph structure instead of a tree to
model topic hierarchy. Thus, high-level topics can
share low-level topics. While this provides more
precise relationships between topics, it is harder
to display and navigate. LSHTM (Pujara and Sko-
moroch, 2012) recursively applies LDA to the sub-
corpus defined by the topics of the previous LDA
application. Hence, each new application of LDA
provides a new depth to the topic tree. However, it
requires a pre-defined set of parameters to define
the shape of the final topic tree. Finally, the nCRP
(Blei et al., 2004) is the predecessor of nHDP and
works similarly. Nevertheless, it does not model
the document-topic distribution as in nHDP. Conse-
quently, the extracted documents do not have their
own topic tree. Hence, nHDP is more powerful
than LSHTM and nCRP (Pujara and Skomoroch,
2012; Blei et al., 2004) while keeping a strict tree
structure contrary to hPAM (Mimno et al., 2007).

2.3 Temporal Topic Modelling

Previous works also investigated the temporality of
topics. Providing information about when a topic
occurred and/or how it evolved. Understanding the
temporality of topics is important, especially for
environment scanning where events and changes in
the environment are important signals.

The ToT (Wang and McCallum, 2006) model is
a modified version of LDA which incorporates tem-
porality. Each document/word is associated with a
timestamp which are used to fit a beta distribution
for each topic. This beta distribution is optimized
jointly as the topics are being discovered. The re-
sults show topics that are either better localized
in time (events with specific dates) or with a clear
evolution through time (growth/decline).

Other topic models have been proposed to model
temporality. MTT (Nallapati et al., 2007) creates a
tree for each topic which provides the ability to un-
derstand topics at various time scales. Specifically,
deeper nodes correspond to a smaller timescale.
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DTM (Blei and Lafferty, 2006) slices the corpus
by periods. The first slice is processed similarly to
LDA and the following slices are processed using
the previous one as prior. Finally, the Dynamic Cor-
related Topic Model (DCTM) (Song et al., 2008)
also slices the corpus in periods. However, it uses
Gaussian processes and Singular Value Decomposi-
tion (SVD) instead of LDA-based techniques. The
advantage of ToT is that it is non-Markovian and
it models time as a continuum. Hence, ToT is the
only model which does not require its own structure
to model time such as slices or a binary tree. This
is important if we are already building a structure
for the topic hierarchy.

2.4 Topic Models Evaluation

Previous studies have used various methods to
evaluate topic models, such as perplexity and co-
herence. However, these methods have been re-
peatedly shown to be uncorrelated with human
judgement (Chang et al., 2009; Hoyle et al., 2021;
Doogan and Buntine, 2021; Bhatia et al., 2017).

Consequently, the Word Intrusion task was pro-
posed as an evaluation method that involves insert-
ing an intruder word into a topic’s top word list
and asking annotators to identify it (Chang et al.,
2009). The intruder word is selected at random
from a pool of words with a low probability in the
current topic but a high probability in another topic
to avoid rare words. The idea is that, in good top-
ics, it should be easy for annotators to identify the
intruder word. The final score is the average classi-
fication accuracy made by humans. In (Lau et al.,
2014), this task was automated with performance
similar to human annotators.

3 HTMOT : Hierarchical Topic
Modelling Over Time

We now describe our method for HTMOT. We be-
gin by presenting a new type of data structure at
the core of HTMOT (section 3.1). Next, we de-
scribe how temporality was incorporated into the
hierarchy (section 3.2). Then, we detail our novel
implementation of Gibbs sampling (section 3.3).
Finally, we denote important differences between
HTMOT and its predecessor (section 3.4).

3.1 Counting Words Using Infinite Dirichlet
Trees

Infinite Dirichlet Trees (IDTs) are efficient tree-
based data structures we developed. The name

refers to the potentially infinite number of topics
provided by the Dirichlet Processes, which define
how they grow. The role of these trees is to model
the topics, their hierarchical dependency, and tem-
porality. Hence, these trees are optimized during
the training process to serve as the final output of
HTMOT.

Each node of an IDT is identified by a finite
path in the tree as a sequence of node ids, starting
from the root. For example, the node ”root.A.B”
corresponds to a sub-topic of the topic ”Root.A”.
The nodes record word assignments (see figure 1)
and the timestamps of those words (associated with
the source document). Thus, each node represents
a topic and defines a topic-word and a topic-time
distribution.

The trees also model the hierarchical distribution
of topics. Words are assigned to a final topic and
to all ancestors of that topic. Hence, there are two
types of word assignments : ”through” and ”final”,
respectively for the ancestor topics and final topic.
This creates a hierarchical dependency between the
nodes and thus a hierarchical distribution.

We use multiple IDTs, one for the corpus and
one for each document. All words in the corpus
are assigned to nodes of the corpus tree. Simi-
larly, each document has an associated document
tree recording each word of that document. Hence,
combining all document trees together would yield
the corpus tree. For both the corpus and document
trees, each node (topic) will be assigned a differ-
ent number of words. Thus, nodes differ in size
which creates a distribution. Hence, the corpus tree
defines a corpus-topic distribution and each docu-
ment tree defines a document-topic distribution.

From the foregoing discussion, we can see
that the assignment of words to the different
trees defines the topic-word, topic-time, document-
topic, corpus-topic and topic-hierarchy distribu-
tions. Hence, by simply moving words around in
those trees, we can optimize all these distributions
jointly. Once optimized, the trees can be used di-
rectly as output to view topics, their hierarchy and
temporality for the corpus and each document.

3.2 Modelling Temporality

Temporality is modeled by associating topics with
a beta distribution as in ToT (Wang and McCallum,
2006). This allows us to extract topics that describe
specific events in time. Mathematically, we sepa-
rate topics that are lexically similar but located at
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Figure 1: Example of an IDT with word assignments
and time distribution (inside nodes).

different periods in time. However, applying tem-
porality to high-level topics would split them into
various periods. Each of these splits would have
similar sub-topics, which would lead to an unnec-
essary multiplication of topics. Hence, contrary to
ToT, we do not apply temporality to all topics but
only deep ones. For our experiments, we choose
depths of 3 or more. This allows us to extract pre-
cise topics about specific events in time at deeper
levels while keeping the high-level topics intact.

The parameters of the beta distribution ρ1i and
ρ2i are computed for a topic i based on the cur-
rent timestamps assignments (associated with each
word assignment). We used the method of the mo-
ment to estimate these parameters :

ρ1i = ti ∗ (
ti ∗ (1− ti)

σti
− 1) (1)

ρ2i = (1− ti) ∗ (
ti ∗ (1− ti)

σti
− 1) (2)

Where ti is the empirical average timestamp as-
signed to topic i and σti is the empirical variance.
These parameters are updated each time a word is
assigned or unassigned to topic i.

3.3 Training HTMOT Using Gibbs Sampling

Two methods are commonly used for training topic
models : Gibbs sampling and SVI. Gibbs sam-
pling is asymptotically exact, i.e. it can exactly ap-
proximate the target distribution, unlike SVI (Blei
et al., 2017). However, classical implementations
of Gibbs sampling are prohibitively slow as they re-
quire sampling from all distributions (see algorithm

Algorithm 1 Traditional Gibbs sampling
1: procedure CLASSICGIBBS(corpus)
2: for N iterations do
3: for each document in corpus do
4: for each word in document do
5: Sample word-topic
6: Sample topic-word
7: Sample document-topic
8: Estimate time-topic
9: Sample corpus-topic

10: Sample hierarchy-topic
11: end for
12: end for
13: end for
14: Return solution
15: end procedure

1).
Nevertheless, in the context of topic modeling,

we can avoid this issue (Xiao and Stibor, 2010)
and greatly speed up the process. Specifically, it is
possible to only draw from the word-topic assign-
ment distribution. This requires the construction of
a data structure tailored to the model to implicitly
represent the other distributions. This is the role
played by our Infinite Dirichlet Trees.

As stated in section 3.1, IDTs model the afore-
mentioned distributions based on how words are
assigned to them. Hence, simply by iteratively re-
arranging the words in the trees, we are implicitly
optimizing these distributions. This is the key to
speed up the Gibbs sampling process and repre-
sents our secondary contribution.

Hence, our training procedure consists essen-
tially of three steps (see figure 2). For each word
of each document in the corpus :

1. Unassign the word from its current topic (and
its ancestors) in the corpus and associated doc-
ument tree.

2. Draw a topic assignment for that word from
the word-topic assignment distribution.

3. Re-assign the word to the chosen topic (and
its ancestors) in the corpus tree and associated
document tree.

This procedure is repeated until convergence. Note
that, changing a word’s topic assignment will also
update the estimated time parameters of the af-
fected topics (equation 1). The initialization pro-
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cedure of our algorithm is similar except that it
ignores the first step as all words start unassigned.

Figure 2: Gibbs sampling with Infinite Dirichlet Trees.
Repeat for each word of each document until conver-
gence.

3.3.1 Sampling Topic-Word Assignments
(Paths in the Trees)

We will now explain the procedure behind sampling
from the word-topic assignment distribution. When
drawing a topic assignment for a word we have
three possible outcomes: (1) We draw a node/topic
from the associated document tree, (2) We draw a
node/topic from the corpus tree or (3) We create a
new node/topic.

Formally, given a word w with timestamp t in
document d, we wish to draw a new topic assign-
ment z. As stated in section 3.1, topics are identi-
fied as a sequence of node ids. Thus, we iteratively
draw the random sequence z0,L = (z0, ..., zL). The
length L of this sequence is decided by sampling a
Bernoulli distribution in-between the sampling of
each zj .

Hence each zj is sampled as :

zj |w, d, t ∼



with probability nd
α+nd

: (3)∑
k

βk(t)∗(A(k|d)+ϵ)∗(A(k|w)+ϕ)∗δk
(A(k)+(ϕ∗V ))∗nd

(4)

(5)

with probability nw
β+nw

∗ ( α
α+nd

): (6)∑
k

βk(t)∗(A(k|w)+ϕ)∗δk
nw

(7)

(8)

with probability β
β+nw

∗ α
α+nd

: (9)

Create a new topic (10)

Note that sampling a node from the corpus tree
can lead to the creation of a new node in the asso-
ciated document tree if that node does not already
exist. However, when creating an entirely new
node, it is created in both trees (corpus tree and
associated document tree).

Once a topic zj is drawn, we draw from a
Bernoulli with parameter p to decide if we stop
or go deeper in the tree:

p =
P + θ1

N + θ1 + θ2 + C + P
(11)

.

P =
βj(t) ∗ (A∗(z0,j |w) + ϕ) ∗ (A∗(z0,j |d) + ϵ)

A∗(z0,j) + (ϕ ∗ V )
(12)

N =
ϕ ∗ ϵ
ϕ ∗ V

(13)

C =
∑
k

βk(t) ∗ (A(k|w) + ϕ) ∗ (A(k|d) + ϵ)

A(k) + (ϕ ∗ V )

(14)
With A∗(z0,j) : the number of words assigned to

topic z0,j . P : the weight of the currently selected
node z0,j . C : the weight of all of the children of the
selected node z0,j . N : the weight of a potentially
new child for z0,j and θ1 / θ2 : the priors for the
Bernoulli distribution.

To summarize, when drawing a topic assignment
for a word, we either draw from the document tree,
corpus tree, or we create a new topic. Then, we
draw from a Bernoulli to decide if we go deeper
or not. If we do go deeper, we repeat the same
process until we eventually stop. This process is
then applied repeatedly too all of the words in the
corpus multiple times until convergence.

3.4 Comparing HTMOT vs. nHDP
The main difference between HTMOT and nHDP
is their use of Gibbs sampling and SVI training
procedures, respectively. However, other notable
differences exist. Firstly, our HTMOT algorithm
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Variable Description
n # words in the corpus
nd # words in the corpus that are part of document d
nw # words in the corpus that are instantiations of the word w

V Vocabulary length
A(k|w) # words w assigned to topic (z0,j−1, k) or its descendants (corpus tree information)
A(k|d) # words in document d assigned to topic (z0,j−1, k) or its descendants (document tree information)
A(k) # words assigned to topic (z0,j−1, k) or its descendants

βk Probability density function of the beta distribution with parameter ρ1k and ρ2k associated with topic (z0,j−1, k)
ϵ, ϕ, β, α Priors for the Dirichlet distributions and processes (more details are provided in the parameter section)

Table 1: Descriptions of variables for equations 3 to 10.

Variable Description
A∗(z0,j) Stricter version of A(*) which does not count descendant

P Weight of the currently selected node z0,j .
C Weight of all of the children of the selected node z0,j .
N Weight of a potentially new child for z0,j

θ1 and θ2 Prior for the Bernoulli distribution

Table 2: Descriptions of variables for equations 11 to 14.

starts with all words unassigned, while nHDP uses
a pre-clustering step with k-means. Secondly, we
do not use a greedy algorithm to select trees for
each document. Instead, the tree for each docu-
ment is created automatically as the Gibbs sampler
progresses. As a result, our training algorithm is
simpler and easier to implement, avoiding the need
for pre-clustering or greedy procedures.

4 Experimental Setup

4.1 Dataset

To perform our experiments, we crawled 62k arti-
cles from the Digital Trends 1 archives from 2015
to 2020. The crawling was performed using Python
with the help of the BeautifulSoup library. Digi-
tal Trends is a news website that mainly focuses
on technological news but also contains general
news. For all articles, we extracted the text, title,
and timestamp.

The timestamps were mapped to a number be-
tween 0 and 1, which corresponds to the domain of
the beta distribution used. Hence, 0 corresponds to
the earliest date of a document in the corpus, and 1
corresponds to the latest.

We cleaned the data as follows. First, we re-
moved common editor’s sentences such as ”we
strive to help our readers....” to remove noise from
the data. Then, we relied on Spacy’s Named En-
tity Recognition (NER) and Part-of-Speech (POS)

1https://www.digitaltrends.com/.

to filter relevant tokens 2. Specifically, we kept
specific kinds of entities (Person, Norp, Fac, Org,
Gpe, Loc, Product, Event, Work Of Art, Law, Lan-
guage) and POS elements (ADJ, NOUN, VERB,
INTJ, ADV). Finally, lemmatization was also ap-
plied.

A good pre-processing procedure is essential for
the interpretability of topics, as shown in (Mar-
tin and Johnson, 2015). Hence, our extraction of
named entities aims to enhance the topics’ inter-
pretability by showing actors in the topic such as
personalities and companies. The training algo-
rithm will not discriminate between words and en-
tities, but the visualization interface does. This
means that a topic is no longer displayed as a sim-
ple list of words but is instead represented by a list
of words and a list of entities.

4.2 Parameters

Many parameters control the behavior of our
model; this section will describe each of them.

First, we have the Infinite Dirichlet Trees param-
eters. α : the rate at which we create new topics in
the document trees. β : the rate at which we create
new topics in the corpus tree. θ : how likely we are
to create deeper sub-topics.

Second, we have parameters that regulate the
growth of the trees. These help speed up the al-
gorithm and keep memory usage to a minimum.
CM (Critical Mass) : the minimum valid size of a

2https://spacy.io/

https://www.digitaltrends.com/
https://spacy.io/
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topic; only valid topics are part of the final output.
SM (Splitting Mass) : the minimum size of a topic
before it can create sub-topics. Both are defined
as a percentage of the total number of words in
the corpus. TTL (Time To Live) : how many pass
through the corpus before destroying a non-valid
node. Nodes are also destroyed when they become
empty.

Third, we have the Dirichlet prior parameters as
in the traditional LDA model. ϕ : the prior for the
topic-word distribution. ϵ : the prior for the corpus
and document-topic distributions.

Finally, we have training parameters. Iterations
: how many batches we will go through during
training. SGI (Stop Growth Iteration) : a point at
which node new nodes won’t be created. Set SGI <
Iterations to ensure that the last topic to be created
has time to converge.

Table 3 defines the value of each parameter used
to perform our experiments.

Parameter Value
α 0.00005
β 0.0002
θ 0.25

Critical Mass (CM) 0.0005
Splitting Mass (SM) 0.005
Time To Live (TTL) 2

ϕ 0.1
ϵ 1

Iterations 4500
Batch size 500

Table 3: Parameters used for our model.

5 Results and Discussion

We now present our results, starting with a statis-
tical analysis of the training behavior of HTMOT.
Then, we will discuss the results of the Word Intru-
sion task, its drawbacks, and directions for future
topic modeling evaluation methods. Finally, we
will examine the various extracted topics qualita-
tively.

5.1 Convergence Tate, Training Speed, and
Algorithmic Complexity

To assess the convergence of our method during
training, we looked at the frequency of depth 1
topics over time. As these frequencies stabilize, it
indicates that the model has converged. Since hi-
erarchical topic models extract hundreds of topics,

it is not reasonable to observe the convergence of
each topic.

Our experiments revealed that the convergence
rate of our training algorithm is sub-linear with re-
spect to the dataset size. Using a dataset ten times
smaller leads to a halving of the time to conver-
gence. However, new topics created during training
can perturb this convergence, which is prevented
by the SGI parameter (see section 4.2).

To compare training times, we disabled HT-
MOT’s temporal modeling to ensure a fair compari-
son with nHDP, which lacks a temporal component.
Our sampler analyzes 135k documents per hour,
while nHDP’s SVI analyzes roughly 90k articles
per hour, based on figures reported in (Paisley et al.,
2015). Contrary to previous wisdom that SVI is
considerably faster than Gibbs sampling, our train-
ing algorithm is comparable in terms of speed. The
algorithmic complexity is linear with respect to the
dataset size, but the depth of topic trees and growth
and regulating parameters for the IDTs can greatly
impact performance.

Overall, our model achieved convergence after
10 hours of training on the full dataset on commod-
ity hardware.

5.2 Results of the Word Intrusion Task
We evaluated our model using the automated Word
Intrusion task, replicating the original study(Lau
et al., 2014). Unlike the classical task, we selected
intruder words only from sibling topics, making the
task more challenging as deeper topics tend to be
more lexically related to their siblings. This is im-
portant as it helps ensure topic distinctiveness. For
example, when selecting an intruder word for ”as-
tronomy”, we chose from its sibling topics like ”as-
tronaut”, making the chosen intruder semantically
closer to the target topic. This approach provides a
more robust evaluation of topic quality.

We observed an accuracy of 98% which is sim-
ilar to LDA’s performance (Chang et al., 2009).
This demonstrates that HTMOT provides topics of
similar quality with the added benefit of modeling
temporality and hierarchy.

5.3 Qualitative Examination of the Resulting
Topics

In figure 4, our model’s ability to extract atomic
events at the deeper level of the tree is demon-
strated through the well-localized time distribution
of the three sub-topics under ”astronauts”. These
sub-topics, namely the historic test launch of the
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Figure 3: Example of a topic tree with cousins and siblings.

Figure 4: Examples of depth 3 topics that are well localized in time.

spaceX Dragon capsule, the crew 1 launch, and
the crew 3 launch, were mostly interpreted from
top documents due to their depth, making it diffi-
cult to interpret based on top words. The timing of
these events matched their associated time distribu-
tion, occurring in May 2020, November 2020, and
November 2021 respectively. The model missed
the crew 2 launch event, which may be related to
the reduced output of digital trends news during
that period, as shown in figure 5.

Figure 5: Number of articles published by Digital
Trends over the years 2020 and 2021. We can see a
sharp decline at the beginning of the year 2021 (middle
of the graph).

6 Conclusion

We have proposed a new model for topic modeling
capable of modeling hierarchy and time jointly.
Through examples, we have demonstrated how
combining hierarchy and temporality provides us
with a more fine-grained understanding of a corpus
through detailed sub-topics which can represent
specific events. Moreover, we developed a novel
implementation of Gibbs sampling for hierarchi-
cal topic models. This implementation provides a
fast alternative to SVI that makes Gibbs sampling
a viable solution for training such complex models.
Moreover, we have shown how extracting entities
can help interpret and understand topics at a deeper
level.
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