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Abstract

A wide variety of natural language tasks are
currently being addressed with large-scale lan-
guage models (LLMs). These models are usu-
ally trained with a very large amount of un-
supervised text data and adapted to perform a
downstream natural language task using meth-
ods like fine-tuning, calibration or in-context
learning. In this work, we propose an approach
to adapt the prior class distribution to perform
text classification tasks without the need for la-
belled samples and only a few in-domain sam-
ple queries. The proposed approach treats the
LLM as a black box, adding a stage where the
model posteriors are calibrated to the task. Re-
sults show that these methods outperform the
un-adapted model for different number of train-
ing shots in the prompt and a previous approach
where calibration is performed without using
any adaptation data.

1 Introduction

In the last years, Large Language Models (LLMs)
like GPT-3 (Brown et al., 2020), FLAN-T5 (Chung
et al., 2022), InstructGPT (Ouyang et al., 2022)
have proven to be useful for a large variety of
complex natural language understanding tasks,
showing outstanding performance on many bench-
marks related to reading comprehension, sum-
marization, information retrieval, and generative
question-answering, among others (Narayan et al.,
2018; Zellers et al., 2019; Khattab et al., 2022;
Omar et al., 2023). LLMs are pre-trained on a
large amount of unsupervised text data following a
cost function that is usually self-supervised (autore-
gressive, denoising, etc.) (Yang et al., 2019; Chung
et al., 2022; Devlin et al., 2018).

Notably, LLMs achieve competitive results in a
zero-shot scenarios, i.e., without being adapted to
the downstream task of interest (Wei et al., 2021;
Chung et al., 2022; OpenAI, 2023). Nevertheless,

when data is available for adaptation, significant
gains can be achieved over the zero-shot scenario.
In these cases, the adaptation is done, for exam-
ple, through (full or selective) fine-tuning (De-
vlin et al., 2018; Chung et al., 2022), in-context
learning (Brown et al., 2020; Wei et al., 2021), or
post-processing of the model’s outputs (Zhao et al.,
2021; Jiang et al., 2021), depending on the size
of adaptation dataset, whether this data is labelled
or not, and the amount of computational resources
available.

In this work, we propose an approach to adapt
LLMs to text classification tasks using unlabelled
in-domain data. That is, we assume we have exam-
ples of the type of text that needs to be classified,
but we do not have the actual class of these exam-
ples. We propose a light-weight method inspired
by the theory of calibration which, for the datasets
we experimented with, required only a few dozen
of in-domain samples to achieve optimal perfor-
mance. We call this method UCPA (Unsupervised
Calibration through Prior Adaptation). We com-
pare our proposed approach with a previously pro-
posed approach which does not rely on any in-
domain data (Zhao et al., 2021) and show that the
additional information provides significant perfor-
mance improvements. Further, we compare our
method, theoretically and empirically, with super-
vised calibration of the posteriors using logistic re-
gression. We show that our approach performs sim-
ilarly to supervised calibration, without the need
for labelled data. Finally, another version of the
method is presented where we assume that, even
though no labelled data is available, the class pri-
ors can be estimated from knowledge of the task.
We call this variant SUCPA (Semi-Unsupervised
Calibration through Prior Adaptation) since some
information about the task is needed to estimate the
priors.
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2 Related Work

Large Language Models (LLMs) LLMs are lan-
guage models with a large number of parameters, in
the order of billions, trained with a massive amount
of text to minimize a cost function that can vary
from model to model. Models like GPT-2 (Rad-
ford et al., 2019), GPT-3 (Brown et al., 2020) or
LLaMA (Touvron et al., 2023) are decoder-only
transformer-based (Vaswani et al., 2017) architec-
tures trained with an autoregressive loss. In con-
trast, models like BERT (Devlin et al., 2018) or
T5 (Raffel et al., 2019) are trained to denoise the
input to obtain the output.

Fine-tuning Pre-trained LLMs can be adapted
to a specific task of interest using finetuning
techniques like Parameter Efficient Finetuning
(PEFT) (Liu et al., 2022), soft-prompt (Lester et al.,
2021) and Reinforcement Learning from Human
Feedback (RLHF) (Ouyang et al., 2022). Despite
the attempt of some methods to reduce the number
of trainable parameters without sacrificing perfor-
mance, finetuning is generally an expensive way of
adapting a LLM to a certain task since it requires
significant amounts of in-domain data, as well as
computational resources to load and train the LLM.

In-context Learning Given the large computa-
tional and data requirements of the fine-tuning
approach, alternative approaches to adapt LLMs
to a certain task of interest have been proposed.
In-context learning refers to the practice of pre-
pending instructions about the task of interest be-
fore the text to be classified, summarized or con-
tinued in some other way. Besides these instruc-
tions, examples (usually called “shots”) on how to
perform the task can be added to the prompt. The
GPT-3 paper (Brown et al., 2020) showed that close
to the state-of-the-art performance in many tasks
could be obtained by providing instructions in the
prompt without any further adaptation to the task.
This work led to the study of good prompt design
practices (Zhao et al., 2021).

Calibration There is a large body of literature
regarding calibration of classifiers’ outputs (Filho
et al., 2021), with some recent applications to Nat-
ural Language Processing Tasks (Jagannatha and
Yu, 2020; Braverman et al., 2019). Recently, a
work from Zhao et al. (2021) used the concept of
“content-free” input to perform an ad-hoc unsuper-
vised form of calibration for different tasks carried

out by a LLM. Our work can be seen as a gen-
eralization and formalization of this work, where
we derive the approach as unsupervised calibration
with an affine expression where the parameters are
obtained through the minimization of the cross-
entropy.

3 UCPA: Unsupervised Calibration
through Posterior Adaptation

An LLM produces posterior probabilities
P (n|h,q, e) for the next token, n, given the
history of previously generated words or tokens, h,
and the query, q, and preface, e, which together
form the prompt (e,q). The bolded variables
indicate sequences of one or more tokens, while
n is a single token. In our case, the preface
contains instructions on the classification task to be
solved (Chung et al., 2022) and, optionally, a set of
training examples for in-context learning (Brown
et al., 2020).

When using a LLM to do classification, we need
to use the model to obtain P (y|q, e) from a prompt
(e,q), where y ∈ Y and Y = {y1, . . . , yK} is the
set of possible classes. To do this, we first define
an ad-hoc label name wk for every label yk ∈ Y .
Then, we prompt the LLM, which we will call θ,
with the word sequence given by e followed by q
to get a score

sk = Pθ(wk|q, e) (1)

for the class yk. Finally, the probability distribution
P (y|q, e) is computed by normalizing this score
to get a probability distribution over the classes:

P (y = yk|q, e) =
sk∑
k′ sk′

(2)

Note that there may be cases in which the label
name is represented with more than one token (see
Table 1 for a complete list of datasets used and
the label names of each one). In those cases the
probability Pθ(wk|q, e) can be computed as

Pθ(wk|q, e) =
Mk−1∏
m=0

Pθ(w
m+1
k | q, e, w1:m

k ) (3)

where w1:m
k = [w1

k, . . . , w
m
k ] and w1:0

k is an empty
string. The posteriors on the right-hand side are
obtained directly from the LLM.

Using the definition of conditional probability,
the posterior P (y|q, e) can be written as:

P (y | q, e) = P (y | e) P (q | y, e)
P (q | e)

(4)
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Figure 1: Schematic of the proposed approach. The test sample (e,q) is processed by the LLM and plugged to
Equation (2) to produce the posterior P (y | q, e). In addition, a set of in-domain queries {q(1), . . . ,q(N)} is used
to reestimate the priors in a “naive” (bottom) or iterative (up) way. Lastly, estimated test priors P (q | e) are used
to produce adapted posteriors P̃ (y | q, e) or P̂ (y | q, e). For the UCPA approach, P (q | e) is assumed uniform,
whereas for SUCPA, specific knowledge of the task is used to estimate that prior.

The factor P (q | y, e)/P (q | e) is the ratio be-
tween the likelihood of the query given the preface
and the class name, and the likelihood given only
the preface. This likelihood ratio (LR) reflects the
increase in the likelihood of the query obtained by
adding the class name to the response.

The quantity P (y|e) can be understood as a prior
probability in the sense that it is not conditioned
on the query: it is the probability of the class given
only the preface. This prior depends strongly on
the task of interest. While the LLM might have a
tendency to predict a certain class given the preface,
this may not be the most likely class for the task of
interest. As we mentioned in Section 1, adapting
the model to the application of interest is key for
obtaining relevant responses from the LLM. While
the preface e is, in fact, a way to adapt the LLMs
outputs to the task of interest, it may not be suffi-
cient to fully adapt the posteriors since not all the
information about the task can be represented in a
short text explanation.

In this work we propose to improve the posteri-
ors computed from the LLM’s scores by explicitly
adjusting the priors to the task of interest. This is
done by assuming the following expression for the
in-domain posterior:

P̂ (y | q, e) = δ P (y | q, e) P̂ (y | e)
P (y | e)

(5)

which can be interpreted as taking away the effect
of the mismatched prior P (y|e) from the LLM-
derived posterior P (y|q, e), replacing it with the

in-domain prior P̂ (y|e), and then rescaling by δ
to make sure the resulting distribution adds up to
one. To obtain P̂ (y|q, e) we need to compute the
posterior, which is obtained directly from the LLM
using Equation (2), and the two priors.

The prior P̂ (y|e) is the prior we expect for our
task of interest. We may or may not know this
distribution. In this work we compare results under
two assumptions: 1) that we do not know anything
about the prior distribution in which case we sim-
ply assume a uniform distribution P̂ (yk|e) = 1/K
for all k, and 2) that, even though we do not have
labelled data, we do have a good estimate of the
frequencies of the classes we expect to see in prac-
tice. In our experiments, for this second scenario
we compute P̂ (yk|e) = Nk/N , where Nk is the
number of training samples of class k. In practice,
though, these priors could be estimated from knowl-
edge of the task rather than from in-domain labelled
data. Arguably, this second scenario is no longer
unsupervised, so we will call this method Semi-
Unsupervised Calibration through Prior Adaptation
(SUCPA), while the method that uses uniform pri-
ors will be called Unsupervised Calibration through
Prior Adaptation (UCPA).

The prior P (y | e) is the prior for y that
is implicit in our LLM. It is the distribution of
classes that the model would output for this task,
across all possible relevant queries we may pro-
vide. Hence, we estimate this prior by simply
running the LLM on (unlabelled) training data
Qtrain = {q(1), . . . ,q(N)} and averaging the re-
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sulting posteriors:

P (y|e) ≈ 1

N

N∑
i=1

P (y|q(i), e) (6)

The method above is a heuristic that relies on an
assumption (Equation (5)) that may or may not
hold, as well as on the approximation of the prior
above. When using this expression to obtain the
prior we call the method “UCPA/SUCPA-naive”.
As we will see, this heuristic works quite well in
our experiments. Further, as we explain in Section
4, we can also obtain the prior in a more princi-
pled way using an expression derived from linear
logistic regression.

3.1 Content-free Prompts

The approach proposed by Zhao et al. (2021) can be
seen as a special case of the UCPA-naive method.
In that work, calibrated posteriors are computed
using Equation (5), where the training set Qtrain

is composed of one or more “content-free” inputs,
in the sense that they do not contain any relevant
meaning, and they are created manually by the user.
For example, the authors experiment with using
“[MASK]”, “N/A”, and the empty string.

4 Supervised Affine Calibration and
Semi-UCPA (SUCPA)

A standard way to adapt the posterior probabili-
ties from a classifier to a certain domain of interest
is to calibrate them using in-domain labelled data.
Calibration refers to the process of transforming
the scores of a system to optimize the quality of
the scores as posteriors. This is usually done by
choosing a certain parameterized form for the trans-
form and training those parameters to minimize a
proper scoring rule like the cross-entropy (Filho
et al., 2021). One instance of this approach is lin-
ear logistic regression.

Linear logistic regression assumes that the loga-
rithm of the calibrated posteriors are given by:

log P̃ (yk|q, e) = γ+αk logP (yk|q, e)+βk (7)

where P (yk|q, e) is given by Equation (2), α and
β are parameters, and the value of γ is determined
so that

∑K
k=1 P̃ (yk|q, e) = 1. That is,

γ = − log

K∑
k′=1

P (yk′ |q, e)αkeβk′ (8)

The αk and βk parameters are estimated by
minimizing the cross-entropy on a training set
Ctrain = {(q(1), y(1)), . . . , (q(N), y(N))} where
q(i) and y(i) are the query and the class of sam-
ple i:

L = − 1

N

N∑
i=1

log P̃ (y(i)|q(i), e) (9)

In this work we take αk to be a scalar, independent
of the class. This is what is usually done for cali-
bration (Brummer and Van Leeuwen, 2006; Guo
et al., 2017; Platt et al., 1999). In particular, tem-
perature scaling (Guo et al., 2017), one of the most
widely used calibration methods, corresponds to
taking βk = 0 for all k and αk a single scalar.

If we restrict the calibration transformation to
have αk = 1 and set the derivative of the cross-
entropy to zero, we can derive the following ex-
pression for βk:

βk=log
Nk

N
−log

[
1

N

N∑
i=1

P (yk|q(i), e)eγ
(i)

]
(10)

where γ(i) is given by Equation (8) with q = q(i).
Note that this is not a closed-form expression for
βk but rather a system of equations since the right-
hand side contains all the βk within the γ(i).

We can now compare Equation (5) and Equa-
tion (7). Taking the logarithm of Equation (5) for
one specific class k we get:

log P̂ (yk|q, e) = γ′ + logP (yk|q, e) + β′
k (11)

where γ′ = log δ and

β′
k = log P̂ (yk|e)− logP (yk|e) (12)

The form of this expression is identical to that of
Equation (7) when taking αk = 1 for all k. Both γ
and γ′ are determined so that the posterior on the
left-hand side adds to one. Hence, if βk = β′

k, the
two posteriors would be identical.

Comparing the expressions for βk and β′
k we can

see that they coincide if we take P̂ (yk|e) = Nk/N
as we assume in our experiments for the SUCPA
approach, and if we take γ(i) = 0, since in that
case the second term in βk coincides with Equa-
tion (6). Of course, γ(i) is not necessarily zero.
Yet, as we will see in the experiments, making this
assumption has little effect on the results. Nev-
ertheless, we can also estimate the βk that satis-
fies Equation (10) exactly using an iterative ap-
proach where we first set γ(i) = 0 and compute
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βk for all k, plug those values into Equation (8)
to get a new value for γ(i) and plug that back into
Equation (10), repeating these steps until conver-
gence. We find that this algorithm leads to iden-
tical results as running linear logistic regression
with αk = 1. In the following, we will refer to
the UCPA (and SUCPA) approach described in
section 3 as “UPCA-naive” (and “SUCPA-naive”),
whereas the iterative version of this method will
be called simply UCPA (and SUCPA). Figure 1
summarizes both approaches for both the UCPA
and SUCPA variants.

5 Experimental Set Up

We evaluate the proposed approach on the n-shot
text classification task following a similar proce-
dure as Zhao et al. (2021). We use four datasets for
which the task is classification of a single text into
known categories: binary sentiment analysis using
SST-2 (Socher et al., 2013), 6-way question clas-
sification using TREC (Voorhees and Tice, 2000),
4-way news classification using AGNews (Zhang
et al., 2015), and the 14-way ontology classifica-
tion using DBPedia (Lehmann et al., 2015). Table
1 shows the number of test samples, class priors
and prompt used for each dataset.

We used the standard train and test partitions
for all datasets. For AGNews and DBPedia we
selected 1000 random samples from the test set
since their test splits were too large for computation
in our infrastructure. This approach was similar
to the one used by Zhao et al. (2021) where they
selected 300 test samples (see their github repos-
itory1). Also following this work, we used GPT-
2 XL which has 1.5B parameters and consists of
a decoder-only transformer architecture (Vaswani
et al., 2017). The checkpoint was downloaded from
the huggingface website2, and the code used
to run experiments is available on github3.

For each dataset, a set of n shots were selected
by random sampling the train split and added to
the preface (see Table 1). Then, the Qtrain set was
generated by random sampling 600 samples from
Qtrain after discarding the samples added to the
preface. The Ctrain set to train the calibrator was
the same as Qtrain with the difference that Ctrain

contains the labels and Qtrain does not. For some
1https://github.com/tonyzhaozh/

few-shot-learning
2https://huggingface.co/gpt2-xl
3https://github.com/LautaroEst/

efficient-reestimation

of the experiments we further subset the training
set to smaller sizes. When doing this, we use 10
different seeds to generate the subsets to assess the
variation in results due to varying training sets. For
each training set we obtain posteriors on the test set
and generate 100 bootstrap samples (Tibshirani and
Efron, 1993; Keller et al., 2005). The curves in the
figures 2 and 3 show the mean performance on the
pooled performance estimated from all training sets
and test bootstraps and confidence intervals plotted
one standard deviation away from the mean.

We show results in terms of error rate (1-
accuracy), equivalently to Zhao et al. (2021). Fur-
ther, in the final results, we also include the cross-
entropy performance. Cross-entropy is a proper
scoring rule which means that it evaluates the per-
formance of the provided scores as posterior proba-
bilities (Gneiting and Raftery, 2007). In the figures
we show normalized cross-entropy, where the cross-
entropy is divided by the cross-entropy of a naive
system that always outputs the prior distribution,
ignoring the input sample. A normalized cross-
entropy larger than 1.0 indicates that the system is
so badly calibrated that its performance is worse
than that of a naive system (Brummer, 2010; Ferrer,
2023).

6 Effect of the Training Set Size

Figure 2 shows the error rate for all datasets as a
function of the number of training samples used to
perform domain adaptation for the 0-shot scenario
(no examples added to the preface). This set is
used either to train the calibration model (in which
case the class labels are used), to compute Equa-
tion (6) for UCPA/SUCPA-naive, and to compute
Equation (10) for UCPA/SUCPA. For SUCPA, the
training labels are used to compute Nk/N which
is used to obtain P̂ (y|e) and in Equation (10). For
UCPA, the training labels are never used and Nk/N
is assumed uniform over the classes. The figure
also shows the results for the baseline system which
takes the posteriors from Equation (2) without any
prior adaptation. Finally, we show the performance
of a naive baseline that always chooses the most
likely class in the training data.

We first note that, as explained in Section 4,
SUCPA and linear logistic calibration with α = 1
gives identical performance. We found the same
results for the case of 1, 4 and 8-shot learning, in-
dicating that our iterative algorithm for estimating
the βk that satisfies Equation (10) is working as ex-

https://github.com/tonyzhaozh/few-shot-learning
https://github.com/tonyzhaozh/few-shot-learning
https://huggingface.co/gpt2-xl
https://github.com/LautaroEst/efficient-reestimation
https://github.com/LautaroEst/efficient-reestimation
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Dataset Class Priors Test Samples Prompt Template
TREC 0.28: Description

0.23: Number
0.19: Entity
0.16: Location
0.13: Person
0.02: Abbreviation

500 “Classify the questions based on whether their answer
type is a Number, Location, Person, Description, Entity,
or Abbreviation.
Question: [example 1] Answer Type: [label 1]
. . .
Question: [example n] Answer Type: [label n]
Question: [query] Answer Type:”

SST-2 0.50: Negative
0.50: Positive

1821 “Review: [example 1] Sentiment: [label 1]
. . .
Review: [example n] Sentiment: [label n]
Review: [query] Sentiment:”

AGNews 0.27: Technology
0.26: Business
0.25: Sports
0.22: World

1000 “Classify the news articles into the categories of World,
Sports, Business, and Technology.
Article: [example 1] Answer: [label 1]
. . .
Article: [example n] Answer: [label n]
Article: [query] Answer:”

DBpedia 0.09: Artist
0.09: Nature
0.08: Athlete
0.08: Plant
0.08: Company
0.07: School
0.07: Village
0.07: Animal
0.07: Transportation
0.07: Politician
0.07: Album
0.06: Book
0.06: Building
0.05: Film

1000 “Classify the documents based on whether they are about
a Company, School, Artist, Athlete, Politician, Trans-
portation, Building, Nature, Village, Animal, Plant, Al-
bum, Film, or Book.
Article: [example 1] Answer: [label 1]
. . .
Article: [example n] Answer: [label n]
Article: [query] Answer:”

Table 1: Number of test samples, class priors in the test set, and prompt used for each dataset in this work. The
instruction text for each case is taken from (Zhao et al., 2021).

pected. We can also see for both UCPA and SUCPA
(i.e., regardless of how the in-domain priors are esti-
mated), the naive and the iterative approaches give
similar performance, indicating that the average
posterior in Equation (6) is a good approximation
for the model’s prior. Both proposed approaches
show better performance than the original model
for three of the four datasets even when very few
(as low as 10) training samples are available to
do the prior adaptation. In the case of DBPedia,
however, we see that the SUCPA methods degrade
performance compared to the baseline when the
number of training samples is smaller than 80. This
is due to the fact that the priors estimated as Nk/N
cannot be robustly estimated on so few samples

for this 14-class. Since the priors in this dataset
are close to uniform (see Table 1), in this case it
is better to assume them uniform than to estimate
them from a very small dataset. A similar trend
can be found for SST-2 and AGNews for which the
priors are perfectly uniform so that assuming them
is always better than estimating them from data.
On the other hand, for the TREC dataset we can
see that, given enough training samples, SUCPA
works better than UCPA when the test priors are
not uniform. Similar trends to those seen in this
figure were found for a prompt containing 1, 4 and
8 shots.
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Figure 2: Error rate vs. the number of training samples used in the prior adaptation process in a zero-shot
configuration. The red lines show the iterative approach for UCPA and SUCPA, whereas the blue lines show the
naive version. The orange curve shows the calibration results for α = 1. The black curve shows the results without
adaptation and the grey dotted line represents the majority-class classifier (both are constant because they do not use
training data).

Figure 3: Cross-Entropy and Error Rate (1-Accuracy) vs. the number of examples (shots) contained in the prompt
for 600 training samples. The red lines show the iterative approach for UCPA and SUCPA. The lines in purple show
the results for content-free adaptation and the green line is the calibration using parameters α and β. As before, the
black line shows the case for which no adaptation has been performed.

7 Effect of the Number of Shots

Figure 3 shows the effect of the number of exam-
ples (shots) added to the preface for each dataset in
terms of error rate and cross-entropy when the num-
ber of training samples is 600. We compare our
proposed methods with four systems: 1) the non-
adapted posteriors (solid black line), 2) the affine
calibration method (solid green line) in which pa-

rameters α and β are trained using the labelled
training data, and 3) and 4) the two content-free
calibration methods explained in Section 3.1 with
the two sets of content-free inputs that were used
in the authors’ code (see footnote above), namely,
{‘IDK’} and {‘[MASK]’, ‘N/A’, ‘’}́. We can see
that, for 600 training samples, our proposed meth-
ods consistently improve upon the content-free
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baseline, as well as over the non-adapted posteriors.
In most cases, the non-adapted model presented a
mean cross-entropy close to or higher than 1 for
all number of shots, which implies that the model
is useless for this task and cannot learn from the
prompt shots. They also tend to have small stan-
dard deviation and a more stable tendency across
the number of shots. Of course, the content-free
approaches have the advantage that they do not re-
quire training data at all. Yet, these results show
that, if unlabelled training data is available, we can
obtain significant gains from our proposed UCPA
approach. Further, if an estimate of the class pri-
ors is available, the SUCPA approach can lead to
additional gains in datasets with imbalanced priors,
like TREC.

Figure 3 also shows that the affine calibration
system performs consistently better than our pro-
posed approaches, particularly in terms of cross-
entropy which better highlights issues of miscal-
ibration compared to accuracy. This is expected
since the calibrator is taking advantage of the la-
belled training data. Note that affine calibration is
one specific case of a downstream classifier, one
with very few parameters which can be trained with
a small number of samples. A more complex down-
stream classifier may give further improvements,
but would require larger labelled training datasets.

With some exceptions (like in SST-2), increasing
the number of examples added to the preface leads
to gains in all methods that do some kind of adap-
tation. The original posteriors, on the other hand,
have erratic behavior as a function of the number of
shots with a very large standard deviation resulting
from the specific selection of examples.

Additional experiments were performed when
the number of training samples is set to 40 showing
similar trends to those in Figure 3 with the excep-
tion that SUCPA works worse than UCPA in most
cases due to a bad estimate of the class priors. In
practice, the class priors would be estimated from
knowledge of the task rather than from the training
dataset, so that the SUCPA performance would in
fact depend on how good that estimate is.

Overall, we can see that the proposed method
leads to a large gain with respect to the non-adapted
posteriors, even in a scenario where a relatively
small amount of unlabelled data is available for
training. In terms of computational requirements in
comparison with the baseline method, the proposed
approach requires the computation of the probabil-

ities P (y|e). The time needed to compute these
probabilities depends linearly on the number of
training samples. During evaluation, the proposed
approach has a negligible overhead with respect
to the baseline system since the only difference
is that it needs to compute Equation (5) using the
pre-computed P (y|e) and target priors P̂ (y|e).

8 Conclusion and Future Work

In this work we proposed a method for calibrating
the posteriors generated by an LLM for a certain
text-classification task. We assume that only a rela-
tively small number of unlabelled in-domain sam-
ples are available for adaptation. We propose a sim-
ple method for calibrating the posteriors generated
by the LLM by adapting the prior class distribution
to the task of interest in an unsupervised manner.
Optionally, the method allows the new priors to be
set to the ones we expect to see during deployment,
when known. When such priors are unknown, they
can be assumed uniform. We show that, as long as
the test priors can be estimated reasonably well, or
that the uniform assumption is not too far off from
the test distribution, the proposed approach works
significantly better than the un-adapted posteriors
even with a small amount of available adaptation
samples. Further, we show that it works better than
a previous approach where calibration is performed
without using any adaptation data.

In our experiments, the proposed method was
shown to work well for classification tasks where
the number of classes was relatively small in num-
ber compared to the amount of training data. We
hypothesize that the requirement on training data
would increase linearly with the number of classes.
Future work will include a comparison with finetun-
ing techniques, as well as experiments with LLMs
larger than GPT-2 XL. Further, we will explore
the generalization of the proposed method to other
NLP tasks like question-answering and summariza-
tion where the required output is not necessarily
restricted to just a few tokens and to tasks outside
of the NLP domain where prior mismatch may also
be a common scenario.
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