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Abstract

The prompting paradigm is an uprising trend in
the field of Natural Language Processing (NLP)
that aims to learn tasks by finding appropri-
ate prompts rather than fine-tuning the model
weights. Such prompts can express an inten-
tion, e.g., they can instruct a language model
to generate a summary of a given event. In
this paper, we study how to influence (”con-
trol”) the language generation process such that
the outcome fulfills a requested linguistic prop-
erty. More specifically, we look at controllable
active-passive (AP) voice generation, i.e., we
require the model to generate a sentence in the
requested voice. We build upon the prefix tun-
ing approach and introduce control tokens that
are trained on controllable AP generation. We
create an AP subset of the WebNLG dataset
to fine-tune these control tokens. Among four
different models, the one trained with a con-
trastive learning approach yields the best re-
sults in terms of AP accuracy (≈ 95%) but at
the cost of decreased performance on the origi-
nal WebNLG task.

1 Introduction

Prompt-based learning is an uprising trend in Nat-
ural Language Processing. In contrast to the pre-
train and fine-tune paradigm, prompt-based meth-
ods aim to adapt to new downstream tasks by find-
ing or using new prompts that maximize the task
performance. In that way, arbitrary tasks can be
wrapped as language modeling tasks (Radford et al.,
2019; Brown et al., 2020). This approach has the
advantage that the pre-trained model parameters
remain intact, and a single model can be used to
solve many tasks by using the appropriate prompt
without having to readjust all model parameters.
However, it poses the challenge of finding a prompt
with satisfactory performance. Manually finding
such prompts can be tedious, and the results can
sometimes be unintuitive (Gao et al., 2020). To

Figure 1: Our proposed method inputs task-specific
prefix tokens and control tokens into GPT-2 in order to
create a sentence from an input triple in the requested
voice (active or passive).

that end, many techniques have been proposed to
automatically find good discrete (Shin et al., 2020)
or continuous prompts (Lester et al., 2021; Qin and
Eisner, 2021; Li and Liang, 2021).

Our work investigates the use of continuous
prompts, as proposed by Li and Liang (2021), for
controllable generation. More specifically, we at-
tempt to guide a generative model to create sen-
tences that are formulated in either active or pas-
sive voice. For instance, the fact that “J.V. Jones”
wrote the book “A Fortress of Grey Ice” can be
formulated in either active voice (The author of A
Fortress of Grey Ice is J.V. Jones.) or passive voice
(A Fortress of Grey Ice was written by J. V. Jones.).
We use the data-to-text dataset WebNLG (Gardent
et al., 2017) as a benchmark and measure both task
performance and the model’s ability to generate
outputs in the requested voice.

We use task-specific prefix tokens and additional
control prefix tokens (cf. Figure 1), similar to Clive
et al. (2021), and propose three different training
objectives to train the additional control prefix to-
kens: implicit training, classifier guidance, and
contrastive learning. We compare these three ap-
proaches and use the model without control pre-
fix tokens as the baseline. Both implicit training
and classifier guidance achieve only minor im-
provements in terms of control abilities but pre-
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serve most of the task performance. In contrast, a
contrastive learning approach achieves the highest
active-passive (AP) voice generation accuracy of
≈ 95%. However, the semantic accuracy of the
generated sentences is decreased compared to the
other approaches, which is reflected in our qualita-
tive and quantitative analyses.

The core contributions of this paper are as fol-
lows: first, we propose two new datasets that are
derived from the WebNLG dataset called WebNLG-
AP and WebNLG-AP-Pairs, which can be used to
train on active/passive voice generation. Second,
based on GPT-2 (Radford et al., 2019), we com-
pare four training setups and assess their ability
to control the voice while accurately performing
the data-to-text task. Last, we make our dataset
publicly available.1

2 Related Work

Controllable text generation is the task of gener-
ating natural language text while controlling sec-
ondary aspects of the output (Prabhumoye et al.,
2020). These aspects can for instance be the sen-
timent, formality, persona, or content. Leng et al.
(2020) control the length of generated sentences, as
well as the sentence split, i.e., how many sentences
are generated and how many facts each sentence
contains. Zhang et al. (2022) propose a categoriza-
tion of generative tasks involving control, including
Data to Text and Format Control. Therefore, the
WebNLG task can be seen as a control task where
the control aspect is the information content, while
our active-passive control falls into the category of
Format Control.

Li and Liang (2021) propose prefix tuning, a
prompt-based method that trains a set of continu-
ous prompts that are prepended to the input. To
increase the expressiveness of the method, a set of
prefix tokens is not only learned for the input layer,
but for every layer. This was later found to be bene-
ficial for natural-language understanding (NLU) as
well (Liu et al., 2021). Based on empirical results,
the authors decide to reparameterize the prefix to-
kens using a multi-layer perceptron in order to sta-
bilize training and improve performance. They find
that prefix tuning outperforms other lightweight
fine-tuning methods like adapters (Houlsby et al.,
2019) in few-shot settings and provides competi-
tive performance to regular fine-tuning in full data

1https://github.com/ValeKnappich/
WebNLG-AP-RANLP

Split Sample
Counts

Active Passive Mixed

WebNLG
Train 18,102 8,849 5,758 3,495
Dev 2,268 1,127 719 422
Test 4,928 2,546 1,485 897

WebNLG-AP
Train 11,516 5,758 5,758
Dev 1,438 719 719
Test 2,970 1,485 1,485

Table 1: The sample counts of the WebNLG and our
newly created WebNLG-AP dataset for train, dev, and
test split and their classification into active, passive, and
mixed voice.

settings.
Clive et al. (2021) extend the prefix tuning

method by adding input-dependent control tokens.
For each of the domain categories, a set of control
tokens is created and dynamically chosen based on
the category. Contrary to our work, their main goal
is to improve task performance and the control to-
kens are trained with a regular language modeling
loss.

3 Modeling and Dataset Preparation

3.1 Task Description

We use the WebNLG dataset, which provides
triples extracted from a knowledge base, e.g.,
{Jones County, Texas : isPartOf : Abilene, Texas}.
The task in this dataset is to generate a natural
language sentence from a set of input triples. In
the example above, the corresponding target sen-
tence (also referred to as lexicalization) is “Abi-
lene, Texas is part of Jones County, Texas.” Counts
for the different splits as well as the initial ac-
tive/passive distribution are provided in Table 1.
These triples are categorized into seven distinct
topics. Five of them occur within the train and dev
sets, namely “Airport, Astronaut, Building, Food,
WrittenWork”. The last two topics “Artist” and
“Politician” only occur within the test set.

3.2 Active-Passive Dataset

To learn the control over active or passive voice,
we construct a dataset, WebNLG-AP, based on
WebNLG including voice annotations. We use a
heuristic to identify active or passive voice in the
samples of the original dataset. To annotate the

https://github.com/ValeKnappich/WebNLG-AP-RANLP
https://github.com/ValeKnappich/WebNLG-AP-RANLP
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complete WebNLG dataset, we use the dependency
parser provided by spaCy (Honnibal et al., 2020)
configured with the “en core web trf” language
model. We assume that a sentence is written in
passive voice if one of the following dependency
tags occurs within this sentence: { NSUBJPASS,
AGENT, AUXPASS }2, where NSUBJPASS refers to
a nominal subject in a passive clause, AUXPASS

denotes an auxiliary verb in passive and AGENT

refers to the cause or initiator of an event. For
example, in “The kid was stung by a bee,” kid is
the (passive) nominal subject (NSUBJPASS), was
the passive auxiliary verb (AUXPASS) and bee the
agent (AGENT). This implies that passive voice
has precedence over active voice, i.e., if a sentence
contains multiple verbs and one of them is tagged
as passive, the entire sentence is treated as passive
voice. Furthermore, if a sample consists of multi-
ple sentences, we only conclude that a sample is
in active or passive voice if all sentences that are
part of the same lexicalization are classified into
the same voice in our WebNLG-AP dataset. Mixed
samples are not treated as active or passive and are
thus filtered out. Moreover, we require that the
dataset includes the same number of active and pas-
sive examples and thus truncate the set of samples
for the predominant voice. The distribution across
all splits in WebNLG-AP is provided in Table 1.

This active/passive detection pipeline is based
on a heuristic and potentially creates noise in the
dataset. Since this heuristic is used to create our
dataset as well as to evaluate the results in Section 4,
we verify that it works robustly. To that end, we ran-
domly sample 100 sentences that have been tagged
as either active, passive, or mixed and manually in-
spect the results. Out of these 100 random samples,
all 25 mixed samples were classified correctly and
only two out of 41 active samples were misclassi-
fied; one of these two because of a typographical
error in the WebNLG dataset. Edge cases arise
in the 34 passive samples. As already mentioned
above, a sentence with multiple verbs is considered
to be in passive voice if at least one passive voice
signal occurs in it. Under this assumption, there
are no misclassifications. Moreover, 12 out of 34
passive voice samples do not fall under this case
and have been correctly tagged as well. This leads
to a total tagging accuracy of 98%. Based on these
observations, we conclude that the heuristic creates

2Explanation can be found here: https://github.
com/explosion/spaCy/blob/master/spacy/
glossary.py

very little noise while allowing us to automate both
dataset creation and model evaluation.

There are also verb phrases for which there is no
analogue in the opposite voice. For instance, there
is no passive voice for statements about someone
dying, since “is died” is not a valid grammatical
form. Furthermore, some passive voice samples are
instances of the so-called stative passive. This term
refers to verbs that are formulated in passive voice
and that describe a potentially static condition, e.g.,
Stuttgart is located in Germany is a fact that is
formulated in stative passive and does not change
over time. We treat these cases as instances of
passive voice.

We additionally introduce WebNLG-AP-Pairs,
which, unlike WebNLG-AP, contains only triples
for which WebNLG contains both active and pas-
sive lexicalizations. This is required for the
contrastive learning approach described in Sec-
tion 3.3.3. There are 1, 858 samples in the train
split, 225 samples in the dev split, and 459 samples
in the test split.

3.3 Computational Modeling
We use the OpenPrompt framework (Ding et al.,
2021) for our modeling tasks, which provides an
implementation of prefix tuning. We extend this
implementation to additionally use control prefix
tokens, as proposed by Clive et al. (2021).

In all training setups, we first train the task-
specific prefix tokens for a GPT-2 model (Radford
et al., 2019) on the WebNLG dataset and verify
that the results are consistent with state-of-the-art
publications. In a second fine-tuning stage, we add
a set of control prefix tokens for every control label,
i.e., one set of active tokens {ca1 , ca2} and one set
of passive tokens {cp1 , cp2} that are abstract numer-
ical vectors and therefore not human-interpretable.
Depending on the desired voice of the output sen-
tence, either the active or the passive tokens are
added after the prefix tokens. For a sentence that is
supposed to be in active voice, the input looks as
follows:

input = [p1, p2, p3, p4, p5︸ ︷︷ ︸
Prefix Tokens

,

AP Control Tokens︷ ︸︸ ︷
ca1 , ca2 ,X;Y]

where X is the sequence of input triples formatted
as strings and Y is the ground truth sentence (as for
example presented in Section 3.1). Since the prefix
tokens are vectors and X and Y are lists of tokens,
the actual concatenation happens after computing

https://github.com/explosion/spaCy/blob/master/spacy/glossary.py
https://github.com/explosion/spaCy/blob/master/spacy/glossary.py
https://github.com/explosion/spaCy/blob/master/spacy/glossary.py
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the key and value hidden states of the attention
block for X and Y. This representation of the input
is simplified in the way that trainable parameters
are not only injected at the embedding layer but at
every layer, as proposed by Li and Liang (2021).
Following preliminary empirical results, we keep
the task-specific prefix tokens frozen during the
second fine-tuning stage. The LM weights remain
frozen during the entire training.

To train the control prefix tokens, we propose
three different training objectives: implicit training,
classifier guidance, and contrastive learning.

3.3.1 Baseline: Implicit Training
In the baseline training procedure, we do not mod-
ify the training objective, i.e., we use cross entropy
as the loss function:

lCE(y, ŷ) = −
∑
i

yi · log(ŷi)

where y is the set of ground truth tokens and ŷ is the
set of logits. The ground truth labels are the indices
of tokens in the vocabulary that are expected to be
generated by the model.

The control prefix tokens are selected for each
sample individually, depending on whether this
sample is marked as active or passive. This ap-
proach is comparable to jointly training the model
backbone with both voices and separately train-
ing two language modeling heads for the respec-
tive voices. Esentially, parts of the parameters are
shared between voices to learn the task (model
backbone or task-specific prefix tokens), while oth-
ers are specific to the voice (separate language mod-
eling heads or control prefix tokens). Therefore,
we want the model to learn that the active control
tokens are only trained on active samples and vice
versa.

We find that this is not sufficient to accurately
control the voice of the output sentence. Intuitively,
the representations of semantically equivalent ac-
tive and passive sentences are very similar. There-
fore, the signal from this implicit training objective
is too weak to properly guide the model. Details
on the experiment results will be discussed in Sec-
tion 4.2. Motivated by this finding, we propose two
methods to provide a stronger, more explicit signal
between the active and passive sentences.

3.3.2 Classifier Guidance
To provide a stronger signal about the voice, we
first propose to use a frozen classifier on top of our

Features Accuracy

last-token 87%
mean-3 99.18%
concat-3 99.86%
mean-5 99.86%
concat-5 100%

Table 2: Experimental results for different aggregation
strategies of token embeddings for the classifier guid-
ance approach. The concat-5 strategy performs best.

model which is used to backpropagate whether the
model generated the correct voice. This approach is
comparable to Prabhumoye et al. (2018), who use
a similar setup for style transfer. Unlike Dathathri
et al. (2019), we use the classifier loss to train the
tokens, rather than directly optimizing the hidden
representations.

The first step is to train the classifier. The main
challenge is that we cannot train a classifier on
the output text directly because beam search is
not differentiable and would hence break the back-
propagation. Therefore, we train it on the hidden
representations of the GPT-2 model including the
task-specific prefix tokens. Since GPT-2 is an au-
toregressive model, the hidden representation of
the last token is dependent on all previous tokens
and can thus be used as a sentence representation.
However, we find that an aggregation of the last
n token embeddings significantly improves perfor-
mance. We experiment with n ∈ {1, 3, 5}. On top
of that, we test mean and concatenation as aggrega-
tion methods and find that using the concatenation
of the last 5 tokens works best. Table 2 shows how
accurately the different approaches can classify ac-
tive and passive voice given the respective hidden
states of the model.

The classifier is an MLP with 2 linear layers,
GELU activation function (Hendrycks and Gimpel,
2016), and sigmoid output. We proceed with the
best classifier, attach it to GPT-2 as a second classi-
fication head and backpropagate an additional loss
term:

L(y, ŷ, l, l̂) =
1

w + 1
(

LM CE︷ ︸︸ ︷
−
∑
i

(yi log(ŷi))+

w ·(l · log(l̂) + (1− l) · log(1− l̂))︸ ︷︷ ︸
Classifier BCE

)

where l is the flag indicating whether the sentence
is active or passive, l̂ is the classifier output, and w
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is a hyperparameter to balance the tradeoff between
language modeling and classification. The total
loss is normalized by 1

w+1 such that high values for
w don’t change the magnitude of the gradients too
much.

3.3.3 Contrastive Learning
We furthermore implement Contrastive Learning
as a means to provide a direct gradient signal be-
tween active and passive voice. To that end, we use
Contrastive Cross Entropy (CCE) as loss function:

CCE(y+, y−, ŷ) =

Cross Entropy︷ ︸︸ ︷∑
t∈y+

− log(ŷt)+∑
t′∈y−
t′ /∈y+

−wc · log(1− ŷt′)

︸ ︷︷ ︸
Contrastive Term

where y+ denotes the target sentence correspond-
ing to the currently prompted voice and y− to the
respective contrastive sample. The contrastive term
iterates over all tokens only occurring in the con-
trastive counterpart but not in the actual target sen-
tence. The aim is to reduce the probability of these
exclusive counterpart tokens for the currently re-
quested voice by taking the respective logit values
into account. For instance, consider an example
where y+ = [Apollo, 8, is, operated, by, NASA]
and y− = [The, Apollo, 8, operator, is, NASA]. In
this case, the loss function would reduce the likeli-
hood of the tokens “The” and “operator”.

The weight wc is a hyperparameter that influ-
ences the importance of the contrastive term. In
our experiments, wc = 3 has yielded the best re-
sults. Since this approach requires both alternatives
in terms of active and passive voice, we use our
WebNLG-AP-Pairs dataset that contains at least
one active and one passive sample for each input
triple.

3.4 Evaluation
To evaluate the performance of our models on the
WebNLG task, we use the evaluation scripts pro-
vided by Nan et al. (2021) in their Github reposi-
tory.3 We use them to calculate BLEU scores (Pa-
pineni et al., 2002) on the three categories “seen,
unseen,” and “all”, which refer to the different cate-
gories in the dataset and indicate whether the topic
occurred during training or not (hence, “seen” or

3https://github.com/Yale-LILY/dart

Hyperparameter Value

Training
epochs 5
lr 5e−5
eps (AdamW) 1e−8
n prefix tokens 5
n control tokens 2× 2

Decoding
num beams 5
top p 0.9
top k 0
temperature 1

Table 3: The hyperparameters used for training the GPT-
2 model.

“unseen” by the model during training). We also
evaluate with respect to the BLEURT score (Sellam
et al., 2020) since we believe that NLG tasks are
much more complex than scores such as BLEU are
able to reflect.

We evaluate the voice control ability using the
accuracy of the AP generation process:

acc(L, L̂) =

∑
i 1li,l̂i

|L|
, li ∈ L̂

where L denotes the set of ground truth AP labels,
L̂ the AP labels of generated sentences (again de-
termined by using our heuristics as described in
Section 3.2) and 1li,l̂i is an indicator function eval-
uating to 1 if both labels are equal to each other for
sample i.

4 Experiments

4.1 Setup

As described in Section 3.3, we train our models
in two stages. We first train 5 task-specific prefix
tokens on the WebNLG dataset and afterward train
2×2 control tokens using one of the approaches in-
troduced above. In each stage, the model is trained
for 5 epochs with the hyperparameters listed in
Table 3. Training a model in this setup takes ap-
proximately two hours on an Nvidia V100 GPU.

4.2 Results

Table 4 shows the results of our four models. The
first row shows the scores of the model, which only
uses the five WebNLG task-specific prefix tokens
on top of the GPT-2 LM. It has therefore never

https://github.com/Yale-LILY/dart
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Configuration
WebNLG WebNLG-AP

BLEU BLEURT
BLEU AP-Acc

S U A S U A

WebNLG 61.13 43.29 54.25 0.40 0.25 0.33 42.12 75.69
WebNLG → implicit 59.22 45.79 53.16 0.38 0.26 0.32 41.78 76.36
WebNLG → classifier 59.16 46.20 53.32 0.39 0.26 0.32 42.13 78.08

WebNLG → contrastive 52.22 34.76 44.67 0.31 0.19 0.25 35.77 95.22

Table 4: Experimental results in terms of BLEU, BLEURT, and AP accuracy. S, U, and A correspond to the “seen,
unseen,” and “all” categories, respectively.

been specialized in the AP control task. The sec-
ond model uses the two additional control tokens
implicitly learned by exchanging them based on
the sample that is currently presented. The third
model uses classifier guidance, and the last one has
been trained using the contrastive dataset and loss
function.

The baseline model without AP control tokens
achieves the best results on the original WebNLG
task. The BLEU score is 54.25 and therefore al-
most consistent with the results reported by Li and
Liang (2021) (55.1). When it comes to active-
passive generation, the baseline model already
yields an accuracy of 75.69%. That is, the model
already scores above random without target voice
information. We conclude that there are biases in
the input that hint at the target voice in some cases.
Some samples only sound natural in one of the
voices. For instance, in the sentence “Juan Peron
belongs to the Labour Party in Argentina.”, belongs
is an intransitive verb and hence does not have a
passive counterpart.

The second row in the table shows the model
with additional control tokens that have been
trained implicitly. It almost fully preserves the
performance on the original WebNLG task, with
both scores decreasing by approximately 1% in
absolute terms. The AP accuracy has increased
by approximately 0.8% which means that the two
implicitly trained AP control tokens provide the
model with some guidance in terms of active and
passive generation. However, the absolute gain is
rather small compared to the additional training
time. As a result, we draw the conclusion that the
approach of just implicitly learning these AP con-
trol tokens is not sufficient to achieve meaningful
results.

Consequently, the last two rows in the table show
the results of our approaches that provide an ex-

BLEU BLEURT AP-Acc

w = 1 52.93 0.32 77.27
w = 5 52.95 0.32 76.97
w = 10 53.12 0.32 76.70
w = 999 53.32 0.32 78.08

Table 5: Results for experiments on the tradeoff between
language modeling and classifier loss. Higher values for
w lead to a higher weight on the classifier loss.

plicit signal regarding the voice. The first is the
one trained with classifier guidance. As with the
implicitly trained one, original task performance
is almost preserved. Moreover, there is an abso-
lute gain in AP accuracy of around 2.5%, which
is around three times as high as the gain of the
approach before. We experiment with the hyper-
parameter w that controls the tradeoff between the
language modeling loss and the classifier loss and
report the results in Table 5.

The model trained with contrastive learning
shows by far the highest increase in AP perfor-
mance with an absolute gain of almost 20% com-
pared to the baseline. On the other hand, both
BLEU and BLEURT scores significantly decrease
by around 10% and 8%, respectively. This is a
non-negligible performance drop since preserving
performance on the WebNLG task is an important
aspect when it comes to evaluating the overall qual-
ity of the model. Having such a significant decrease
indicates that this model either generates unnatural-
sounding sentences or it does not fully reconstruct
all information provided by the input triples. We
provide further insights in the qualitative analysis
presented in the next section.

5 Discussion

This section provides detailed insights into the re-
sults of our models by analyzing the generated
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sentences. This helps to understand why the con-
trastive learning approach decreases original perfor-
mance scores far more significantly than the other
approaches. Our analysis provides guidance for
possible improvements for future research.

5.1 Contrastive Learning

As already discussed in Section 4, the model
trained using a contrastive loss function loses
around 10% in terms of BLEU and 8% in terms
of BLEURT on the WebNLG task. Especially the
much lower BLEURT score is an indicator of the re-
duced semantic quality of the generated sentences.
Table 6 lists four different comparisons between
generated sentence and the corresponding target
sentence.

The first example is an instance for which the
model generated the <pad> token instead of a
real token. It could reflect a problem that is intro-
duced by the contrastive loss function as it strictly
decreases the likelihood of some tokens being gen-
erated. As a result, the model might be confused
here as there is no real token likely to be generated.
The <pad> token is generated 86 times across 12
samples during evaluation on the full WebNLG
dataset. Compared to an overall count of 1,862
test samples, we can conclude that this is indeed
a smaller issue. Another issue that can be seen in
this sample is that there are two distinct parts in
the generated sentence that are not semantically
connected at all. This is definitely reflected by both
BLEU and BLEURT scores since there is not just
a large difference to the target sentence, but there
is also no real semantic meaning at all.

The second sample shows an instance where the
same word is being generated over and over again
until the maximum sequence length is reached (e.g.,
in this case, it is California). This of course also
lowers the scores on the WebNLG task since there
cannot be any matching n-grams for a repeating
sequence of a specific word.

The third sample is an example of a generated
sentence that sounds unusual and lacks some addi-
tional words. This is also an issue that occurs multi-
ple times. The model trained with contrastive cross-
entropy sometimes tends to generate unnatural-
sounding sentences. A possible explanation for
this behavior might be that the model focuses more
strictly on generating the correct voice rather than
on generating the most naturally sounding sentence.
However, this is also a rare sample in which the

voice does not match.

The last comparison in Table 6 shows that the
contrastive model also has problems with leaving
out specific information, which of course is also
reflected by the BLEURT score in the end. On
the one hand, the first part of the target sentence
is indeed generated by the model in a semantically
equivalent way. On the other hand, the second part
of the target sentence is completely left out by the
contrastive model. This, of course, implies a perfor-
mance drop as the model tends to leave out relevant
information that must be considered in evaluating
the overall performance of this approach.

However, as the AP accuracy score already in-
dicates, there are many samples on which the con-
trastive model performs really well. One example
is the generated sentence Antwerp International
Airport is located in Antwerp, Belgium, where the
German language is spoken. The target sentence
is marked as passive in the WebNLG-AP dataset
and it gets clear that the model strictly followed the
passive prompt when it generated this sentence.
There are two semantic parts in it: One which
states where the airport is located and one which
describes the language spoken there. Both parts
are formulated in the passive voice as requested.
This makes clear that the contrastive model indeed
has a strong sense of what is active and passive
voice and is furthermore able to apply it during
generation. Another positive example is the gener-
ated sentence A.C. Chievo Verona is managed by
Rolando Maran. It has been correctly generated
using the passive prompt. In contrast, the model
with classifier guidance produced the active sen-
tence A.C. Chievo Verona’s manager is Rolando
Maran, although it has been prompted with the
passive flag. These are two of many examples in
which the contrastive model strictly followed the
prompt whereas the other models did not. Further-
more, these are well-formulated instances without
any grammatical or other semantic issues. Hence,
these are promising results to build upon.

To sum up the findings of the contrastive learning
approach, there are a few issues that almost fully ex-
plain the decreased performance on the WebNLG
task. First of all, the model sometimes seems to
have problems with semantically unconnected parts
within a generated sentence, i.e., it lacks a proper
structure. Secondly, there are samples in which in-
formation is clearly missing or put into the wrong
context. This is not a syntactic, but rather semantic
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Ground Truth Lexicalization Generated Lexicalization

”Juan Peron belongs to the Labour Party in Argentina.” ”Juan Perón is a member <pad> Juan Perón is the Labour
Party.”

”Antioch is part of Contra Costa County in California
[...]”

”Antioch, California is part of Contra Costa County, Cali-
fornia, California, California, California, [...]”

”The novel ”Castle” is written in English.” ”Castle is in the English language.”

”Aleksandr Chumakov was born in Moscow, Russia and he
died in Russia. The leader of Moscow is Sergey Sobyanin.”

”Aleksandr Chumakov, born in Moscow, died in Russia.”

Table 6: Comparison between sentences generated using the model trained with contrastive loss and ground truth
sentences. Four different error cases are shown.

issue since the model should also be able to gener-
ate correct facts. Finally, one issue is tokens being
generated multiple times in a row. However, this
does not happen very often. Still, this approach
yields by far the best AP accuracy in our experi-
ments. Section 6 discusses possible improvements
for future research work.

5.2 Classifier Guidance

Classifier Guidance resulted in a small but signif-
icant improvement of the AP accuracy compared
to implicit training. However, the results are in
parts unintuitive to us. A larger increase in AP
accuracy and a larger decrease in task performance
would have been expected from this explicit sig-
nal about the voice. Instead, we observe a small
improvement in AP accuracy and even slightly bet-
ter task performance compared to implicit training
(see Table 4). Furthermore, the results from exper-
imenting with the loss weights in Table 5 elicit a
very counterintuitive trend: increasing the weight
of the classifier loss improves task performance
and has no apparent correlation with the AP accu-
racy. Further investigations are necessary to better
understand these results and make better use of this
technique.

6 Conclusion and Outlook

We studied controllable active-passive generation
using continuous prefix prompts on top of a gener-
ative language model. Our goal was to explicitly
guide a generative model into generating sentences
formulated in either active or passive voice. Three
different approaches that we tested have shown dif-
ferent strengths and weaknesses. It becomes clear
that there is a trade-off between the semantic qual-
ity of generated sentences and the strict enforce-
ment of active or passive voice. The model which
is trained using contrastive learning achieves the

best results in terms of controllable AP generation.
However, the quality of the generated sentences de-
creased, as reflected by BLEU and BLEURT scores,
as well as a qualitative analysis of the generated
sentences. On the contrary, the model trained using
classifier guidance was able to maintain the task
performance quite well but only improved voice
control very slightly.

Future work should investigate how to maintain
more of the task performance while achieving a
high AP accuracy. The most apparent technique
towards that goal would be to combine the con-
trastive learning and classifier guidance objective
functions, given that their results were complemen-
tary: one is good at maintaining task performance
while the other is good at controlling the voice. It
could also be beneficial to include additional loss
functions in the experiments, like less strict con-
trastive loss functions or directly optimizing the
BLEURT score (Sellam et al., 2020; Shu et al.,
2021). Furthermore, a promising direction for fu-
ture research is instance-dependent prompt tuning
(Tang et al., 2022; Jin et al., 2022), where the prefix
tokens depend on the input rather than being static
per task or control class.

In the broader context of applying prompt tuning
methods to controllable text generation, future re-
search should investigate whether our insights from
studying active-passive voice control generalize to
other control tasks such as sentiment or formality
control. In particular, it would be interesting to
see if control prefix tokens are composable (flexi-
bly controlling multiple aspects at the same time)
and transferable between domains and datasets (Su
et al., 2021; Gu et al., 2021; Vu et al., 2021).
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Limitations and Broader Impact

This work results from a student research project
conducted in the summer of 2022 as part of gradu-
ate studies. A few months after project completion,
new state-of-the-art models like ChatGPT and GPT-
4 have been made publicly available. As a result,
our work does not consider models that have been
released past the summer of 2022. Therefore, this
paper does not investigate the AP performance of
these new models. This is subject to future re-
search. We believe that our work still provides
valuable contributions and insights into prefix and
prompt tuning when relying on the more traditional
fine-tuning paradigm, which itself is still a very
commonly used technique for low-resource and
domain-specific settings.
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