@inproceedings{singhania-etal-2023-extracting,
title = "Extracting Multi-valued Relations from Language Models",
author = "Singhania, Sneha and
Razniewski, Simon and
Weikum, Gerhard",
editor = "Can, Burcu and
Mozes, Maximilian and
Cahyawijaya, Samuel and
Saphra, Naomi and
Kassner, Nora and
Ravfogel, Shauli and
Ravichander, Abhilasha and
Zhao, Chen and
Augenstein, Isabelle and
Rogers, Anna and
Cho, Kyunghyun and
Grefenstette, Edward and
Voita, Lena",
booktitle = "Proceedings of the 8th Workshop on Representation Learning for NLP (RepL4NLP 2023)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.repl4nlp-1.12/",
doi = "10.18653/v1/2023.repl4nlp-1.12",
pages = "139--154",
abstract = "The widespread usage of latent language representations via pre-trained language models (LMs) suggests that they are a promising source of structured knowledge. However, existing methods focus only on a single object per subject-relation pair, even though often multiple objects are correct. To overcome this limitation, we analyze these representations for their potential to yield materialized multi-object relational knowledge. We formulate the problem as a rank-then-select task. For ranking candidate objects, we evaluate existing prompting techniques and propose new ones incorporating domain knowledge. Among the selection methods, we find that choosing objects with a likelihood above a learned relation-specific threshold gives a 49.5{\%} F1 score. Our results highlight the difficulty of employing LMs for the multi-valued slot-filling task, and pave the way for further research on extracting relational knowledge from latent language representations."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="singhania-etal-2023-extracting">
<titleInfo>
<title>Extracting Multi-valued Relations from Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sneha</namePart>
<namePart type="family">Singhania</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Simon</namePart>
<namePart type="family">Razniewski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gerhard</namePart>
<namePart type="family">Weikum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 8th Workshop on Representation Learning for NLP (RepL4NLP 2023)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Burcu</namePart>
<namePart type="family">Can</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maximilian</namePart>
<namePart type="family">Mozes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Samuel</namePart>
<namePart type="family">Cahyawijaya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naomi</namePart>
<namePart type="family">Saphra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nora</namePart>
<namePart type="family">Kassner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shauli</namePart>
<namePart type="family">Ravfogel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abhilasha</namePart>
<namePart type="family">Ravichander</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chen</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Isabelle</namePart>
<namePart type="family">Augenstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kyunghyun</namePart>
<namePart type="family">Cho</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Edward</namePart>
<namePart type="family">Grefenstette</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lena</namePart>
<namePart type="family">Voita</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The widespread usage of latent language representations via pre-trained language models (LMs) suggests that they are a promising source of structured knowledge. However, existing methods focus only on a single object per subject-relation pair, even though often multiple objects are correct. To overcome this limitation, we analyze these representations for their potential to yield materialized multi-object relational knowledge. We formulate the problem as a rank-then-select task. For ranking candidate objects, we evaluate existing prompting techniques and propose new ones incorporating domain knowledge. Among the selection methods, we find that choosing objects with a likelihood above a learned relation-specific threshold gives a 49.5% F1 score. Our results highlight the difficulty of employing LMs for the multi-valued slot-filling task, and pave the way for further research on extracting relational knowledge from latent language representations.</abstract>
<identifier type="citekey">singhania-etal-2023-extracting</identifier>
<identifier type="doi">10.18653/v1/2023.repl4nlp-1.12</identifier>
<location>
<url>https://aclanthology.org/2023.repl4nlp-1.12/</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>139</start>
<end>154</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Extracting Multi-valued Relations from Language Models
%A Singhania, Sneha
%A Razniewski, Simon
%A Weikum, Gerhard
%Y Can, Burcu
%Y Mozes, Maximilian
%Y Cahyawijaya, Samuel
%Y Saphra, Naomi
%Y Kassner, Nora
%Y Ravfogel, Shauli
%Y Ravichander, Abhilasha
%Y Zhao, Chen
%Y Augenstein, Isabelle
%Y Rogers, Anna
%Y Cho, Kyunghyun
%Y Grefenstette, Edward
%Y Voita, Lena
%S Proceedings of the 8th Workshop on Representation Learning for NLP (RepL4NLP 2023)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F singhania-etal-2023-extracting
%X The widespread usage of latent language representations via pre-trained language models (LMs) suggests that they are a promising source of structured knowledge. However, existing methods focus only on a single object per subject-relation pair, even though often multiple objects are correct. To overcome this limitation, we analyze these representations for their potential to yield materialized multi-object relational knowledge. We formulate the problem as a rank-then-select task. For ranking candidate objects, we evaluate existing prompting techniques and propose new ones incorporating domain knowledge. Among the selection methods, we find that choosing objects with a likelihood above a learned relation-specific threshold gives a 49.5% F1 score. Our results highlight the difficulty of employing LMs for the multi-valued slot-filling task, and pave the way for further research on extracting relational knowledge from latent language representations.
%R 10.18653/v1/2023.repl4nlp-1.12
%U https://aclanthology.org/2023.repl4nlp-1.12/
%U https://doi.org/10.18653/v1/2023.repl4nlp-1.12
%P 139-154
Markdown (Informal)
[Extracting Multi-valued Relations from Language Models](https://aclanthology.org/2023.repl4nlp-1.12/) (Singhania et al., RepL4NLP 2023)
ACL
- Sneha Singhania, Simon Razniewski, and Gerhard Weikum. 2023. Extracting Multi-valued Relations from Language Models. In Proceedings of the 8th Workshop on Representation Learning for NLP (RepL4NLP 2023), pages 139–154, Toronto, Canada. Association for Computational Linguistics.