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Abstract

While static word embedding models are
known to represent linguistic analogies as par-
allel lines in high-dimensional space, the un-
derlying mechanism as to why they result in
such geometric structures remains obscure. We
find that an elementary contrastive-style opti-
mization employed over distributional infor-
mation performs competitively with popular
word embedding models on analogy recovery
tasks, while achieving dramatic speedups in
training time. Further, we demonstrate that
a contrastive loss is sufficient to create these
parallel structures in word embeddings, and
establish a precise relationship between the co-
occurrence statistics and the geometric struc-
ture of the resulting word embeddings.

1 Introduction

Static word embeddings take inspiration from
the distributional hypothesis (Firth, 1957) and as-
sign vector representations to words based on co-
occurrence statistics. Such embeddings are known
to implicitly encode syntactic and semantic analo-
gies as parallelogram-type structures (Mikolov
et al., 2013a,b). This discovery inspired a series
of theoretical investigations (Levy and Goldberg,
2014; Gittens et al., 2017; Allen and Hospedales,
2019; Ethayarajh et al., 2019).

Recent studies reconsider whether analogies are
indeed represented as parallelograms in the embed-
ding space (Schluter, 2018; Linzen, 2016; Fournier
and Dunbar, 2021), and propose a weaker notion
of viewing analogies as parallel lines (Arora et al.,
2016) as a more appropriate model (cf. Figure 1).
While this claim is shown to hold empirically for
popular word embeddings (Fournier et al., 2020),
few analyze the theoretical underpinnings of this
phenomenon.

In this paper, we present a remarkable obser-
vation that a simple contrastive-style optimiza-
tion (Chopra et al., 2005) performs just as well
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Figure 1: Visualization of analogies as parallelo-
grams and as parallel lines. For the quadruple “man,
woman, king, queen", two analogy relations coin-
cide (“man:woman = king:queen" representing gen-
der and “man:king = woman:queen" representing
royalty). In contrast, the quadruple “run, running,
scream screaming" contains only one analogy rela-
tion (“run:running = scream:screaming" represent-
ing present participle). Representing analogies as lines
relaxes the geometric requirements on the analogy struc-
ture.

as highly-optimized versions of popular word em-
beddings while achieving 50× speedup in training
time. Our work theoretically analyzes the precise
conditions under which this optimization proce-
dure can recover analogies as parallel lines. We
further investigate the extent to which real-world
data satisfies these conditions, and the contrastive
loss recovers such parallel structures.

In Section 2, we review recent literature on the
theory of word embeddings. Sections 3 and 4
present our contrastive learning objective and its
analysis. Section 5 showcases the performance of
our approach on analogy-based benchmarks.1

2 Related Work

Analogies as Parallelograms. Gittens et al. (2017)
study the parallelogram phenomenon by analyzing
analogies as a relation between paraphrases. Allen
and Hospedales (2019) extend this line of work
and show that analogies are captured as parallelo-

1Code can be found at https://github.com/
narutatsuri/cwm.
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grams when the vectors are linear projections of the
Pointwise Mutual Informaton (PMI) matrix. Etha-
yarajh et al. (2019) further generalize Gittens’ re-
sult by introducing the co-occurrence shifted point-
wise mutual information (csPMI)2 and analyze the
conditions on the csPMI for which parallelograms
emerge.

Analogies as Parallel Lines. To the best of
our knowledge, the only theoretical work that ex-
plores analogies more generally as parallel lines
is by Arora et al. (2019), who propose that analo-
gies are encoded as such when the inner products
between embeddings weakly recover the PMI of
word co-occurrence statistics. We take an alternate
approach and show that a contrastive-style opti-
mization suffices to encode analogies as parallel
lines.

3 The Contrastive Word Model (CWM)

Contrastive learning methods are based on an in-
tuitive yet powerful idea that pulling similar items
closer together while pushing dissimilar items away
significantly improves model performance.

We can employ the same push-pull dynamics
in word embeddings by placing the vector repre-
sentations of words that co-occur closer together
than those of words that do not. We call this the
Contrastive Word Model (CWM), detailed below.

3.1 Notation & Formulation

Given a training corpus, we denote the vocabulary
as W . We aim to learn a D-dimensional vector
representation vw for each word w in the vocabu-
lary. The collection of all these vectors is denoted
by V = {v1, . . . , v|W |}. We refer to the length-
normalized version of a vector v as v̂.

Let #(i) be the occurrence count of word i and
#(i, j) the co-occurrence count (for a context win-
dow of size ∆) of words i and j in the training
corpus. We denote window words as words that co-
occur with a reference center word (these are remi-
niscent of the target and context words in Mikolov
et al., 2013b), and negative window words as words
that do not co-occur with the center word. The
center-, window-, and negative window words are
denoted as c, w,w′ respectively. Let Dc,w be the
set of negative window words for fixed c, w. We

2csPMI(a, b) = PMI(a, b) + log p(a, b).

define the CWM objective as:
∑

c∈W

∑

w∈W
#(c, w) ·

∑

w′∈Dc,w

[
m− v̂c · v̂w︸ ︷︷ ︸

pull

+ v̂c · v̂w′︸ ︷︷ ︸
push

]
+

,

where [·]+ is the hinge function and m is a tunable
hyperparameter.

To better understand our proposed loss, consider
its effect on a fixed center word c. The difference
between the terms v̂c · v̂w and v̂c · v̂w′ encourages
the angle between vectors vc and vw to be smaller
than that between vc and vw′ by at least a margin
of m. The hinge function neutralizes the loss once
the vectors satisfy the desired relationship. Such
max-margin type losses among triples are well in-
vestigated in metric learning literature (Weinberger
et al., 2005).

3.2 Relation to Popular Word Embeddings
Interestingly, popular word embedding models
such as Skip-gram (Mikolov et al., 2013a) and
GloVe (Pennington et al., 2014) can be viewed
as implicitly employing a push-pull action simi-
lar to CWM. Consider Skip-gram’s objective: for
a fixed pair of co-occurring words c and w, the
model updates the word vector vc as:

vnew
c =vold

c +

(
1− ev

⊺
wuc′

∑
w′∈W ev

⊺
wuw′

)

︸ ︷︷ ︸
pull

vw (1)

− Ew′∼W [vw′ ]︸ ︷︷ ︸
push

+additional terms.

Here, the word c′ (and its target vector uc′) co-
occurs with both c and w, encouraging all of them
to be mapped together (pull), whereas the nega-
tive term pushes away randomly sampled words w′

from c. See Appendix A.3 for a derivation.
The GloVe objective, on the other hand, per-

forms a series of updates on c, w, and w′ as:

pull

{
vnew
c = vold

c + g(c, c′)uc′
vnew
w = vold

w + g(w, c′)uc′
(2)

push
{
vnew
w′ = vold

w′ − g(w′, c′)uc′ ,

where g(·, ·) always returns a positive value. No-
tice that the positive contribution of g in the first
two updates encourages vc and vw to be closer to-
gether (pull), while the negative contribution to the
vw′ update encourages it to be pushed away. See
Appendix A.4 for a derivation.

165



We believe that part of the success of these word
embedding models is due to their implicit push-pull
dynamics. Hence, a natural question to consider is
what happens when one purely optimizes for the
push-pull action alone.

4 Analysis

In this section, we provide a theoretical justification
for the emergence of analogies as parallel lines
when we optimize for the CWM objective.

Consider the expression for word vectors vc ∈ V
that minimizes the global objective:

vc = ρc

(∑

w∈W

(#(c, w)

#(c)
v̂w

)
− E
w′∼U(W )

[v̂w′ ]

)
, (3)

where ρc ∈ R is a constant dependent on c. In
essence, vc is the difference between the weighted
average of the window words and the mean of all
word vectors. See Appendix A.1 for derivation.

Under Eq. (3), we consider the conditions that
word co-occurrence statistics need to satisfy for a
set of words a, b, c, d to form parallel geometric
structures.

Theorem 1 For any quadruple of words
a, b, c, d ∈ W , if there exists a constant ζ ∈ R
where the co-occurrence statistics satisfy the
condition: ∀w ∈ W

(
#(a,w)
#(a) − #(b,w)

#(b)

)/(
#(c,w)
#(c) − #(d,w)

#(d)

)
:= ζ, (4)

then the corresponding word vectors satisfy the
property:

v̂a − v̂b = ζ (v̂c − v̂d) .

Note that Theorem 1 establishes a direct relation-
ship between word co-occurrence statistics—which
are solely derived from the training corpus—and
the geometric structure of the word embedding.

For a given quadruple a, b, c, d ∈ W (regardless
of whether they form an analogy), the existence of
ζ induces parallel structures between v̂a, v̂b, v̂c, v̂d.
If such a ζ exists and is equal to 1, then v̂b − v̂a =
v̂d − v̂c and the quadruple forms a parallelogram.
When ζ ̸= 1, then the difference vectors v̂b−v̂a and
v̂d − v̂c are mainly parallel, inducing a trapezoidal
structure among v̂a, v̂b, v̂c, v̂d (cf. Figure 1).

One would expect that the co-occurrence statis-
tics of real data conform with the existence of such
a ζ value for analogy quadruples, whereas ζ does

Analogies Training
Model PCS MSM Time (hrs) Speedup
CWM 0.677 0.469 0.59 49×
SGNS 0.675 0.433 29.27 1×
GloVe 0.667 0.423 30.71 0.91×

Table 1: Performances for word embedding models.
CWM refers to our contrastive word model. SGNS
refers to Skip-gram with negative sampling. Best num-
bers are bolded.

not exist for random quadruples. This is empiri-
cally investigated in Section 5.3. The relationship
between the value of ζ and the resulting parallel-
ogram structure (parallelogram vs. trapezoid) is
empirically verified in Section 5.4.

5 Experiments

We first compare the performance of CWM to that
of other popular word embedding methods on anal-
ogy recovery (Section 5.2). We then empirically
verify the degree to which our assumptions regard-
ing co-occurrences hold on real data (Section 5.3)
as well as the relation between ζ and the parallelo-
gram structure (Section 5.4).

5.1 Data and Training Procedure

We use the 03/2023 version of Wikimedia Down-
loads dump (Foundation, 2023) and train CWM
for a single pass over the corpus using ∆ = 5 and
m = 0.2 (chosen via cross validation from the
range 0.1 ∼ 1). For comparison, we also train
Skip-gram with Negative Sampling (SGNS) and
GloVe over the same corpus with the default pa-
rameter settings provided by Mikolov et al. (2013b)
and Pennington et al. (2014) respectively.

We utilize the BATS analogy dataset (Gladkova
et al., 2016) for all analogy related tasks. For all
word embeddings, we use dimension D = 300 and
the vectors are length-normalized to follow practi-
cal conventions (Mikolov et al., 2013b). Training
was done on 256 instances of AMD EPYC 7763
64-Core Processor machine.

5.2 Analogy Recovery

To assess the degree to which word embeddings
encode analogies as lines consistently in the embed-
ding space, we use two intuitive metrics proposed
by Fournier et al. (2020): the Pairing Consistency
Score (PCS) and Mean Similarity Measure (MSM).
PCS assesses analogy alignment precision (the
number of non-analogy offsets incorrectly aligned
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Figure 2: Cosine similarities between co-occurrence
vectors C⃗a,b and C⃗c,d for words a, b, c, d from uniformly
sampled word quadruples (Random), shuffled analogy
pairs (Shuffled), and true analogy pairs (Analogy).

with true analogy offsets), while MSM measures
absolute alignment.

Table 1 shows the relative performance of pop-
ular word embeddings. Notice that our method
performs 7% better than popular word embeddings
on the MSM metric, indicating that the word vec-
tors learned by CWM exhibit higher alignment
among analogy quadruples than Skip-gram and
GloVe. CWM’s performance on the PCS metric
indicates that parallel lines are not erroneously en-
coded for non-analogy words. For completeness,
see Appendix B.3 for parallelogram recovery per-
formances (previous literature questions the valid-
ity of the standard evaluation method).

5.3 Existence of ζ and Analogies
Theorem 1 provides insight into the conditions re-
quired for CWM to induce parallel lines in the
learned word vectors, but these conditions are not
specific to analogy word pairs. Thus, the question
remains: does ζ exist only when a quadruple forms
an analogy?

Here, we study the level at which the co-
occurrence statistics of analogy and non-analogy
pairs satisfy the condition in Theorem 1. To assess
the existence of ζ , consider the vectors C⃗a,b, C⃗c,d ∈
R|W | (derived purely from co-occurrence counts):

C⃗a,b =

[(
#(a,w1)
#(a) − #(b,w1)

#(b)

)
, . . . ,

(
#(a,w|W |)

#(a) − #(b,w|W |)
#(b)

)]
,

C⃗c,d =

[(
#(c,w1)
#(c) − #(d,w1)

#(d)

)
, . . . ,

(
#(c,w|W |)

#(c) − #(d,w|W |)
#(d)

)]
.

Existence of a ζ where Eq. (4) holds for a, b, c, d,
implies that all entries in C⃗a,b are equal to the cor-
responding entries in C⃗c,d scaled by a factor of ζ.
This indicates that when ζ exists, C⃗a,b and C⃗c,d

are collinear. Thus, we can approximate assessing
the existence of ζ by evaluating whether the co-
sine similarity between C⃗a,b and C⃗c,d is sufficiently

Analogy Quadruple Sim.
fall:rise = under:over 1.000
prevent:preventing = follow:following 0.9901
lancaster:lancashire = salford:manchester 0.9812
refer:referred = agree:agreed 0.9740
organized:arranged = dollars:bucks 0.0006
staircase:step = shilling:pence 0.0006
guitar:string = church:altar 0.0004
monkey:infant = fox:cub 0.0001

Table 2: Samples of analogy quadruples illustrating
cosine similarity values between C⃗a,b and C⃗c,d. "Sim."
denotes the value of |cos(C⃗a,b, C⃗c,d)|.

high.
We consider three settings from which the

quadruples are obtained: randomly sampled word
quadruples, false shuffled analogies, and true analo-
gies using the BATS dataset. We compute the dis-
tribution of cosine similarities for all quadruples
from these settings.

Results are shown in Figure 2. Observe that the
cosine similarities of random and shuffled quadru-
ples is significantly lower than that for analogy
words. This indicates a positive association be-
tween ζ and analogy word quadruples in real world
corpora.

Furthermore, it is worth noting the presence of
"ambiguous" analogies within the BATS dataset.
These include analogies with valid alternative re-
placements (e.g. sun:orange = sea:blue can
also be sun:red = sea:blue), or analogies with
unclear relationships (e.g. lexicographic analogies
such as father:dad = lady:madam). We investi-
gate whether the ambiguity of an analogy correlates
with its cosine similarity between C⃗a,b and C⃗c,d by
sampling from analogy quadruples with high and
low values of |cos(C⃗a,b, C⃗c,d)|.

Results are shown in Table 2. Observe that anal-
ogy quadruples with high cosine similarity between
C⃗a,b and C⃗c,d seems to demonstrate a clear rela-
tionships, whereas those with low cosine similarity
exhibit weaker/ambiguous relationships.

5.4 ζ and Geometric Structure

We now examine the effect of ζ on the geometry of
analogy word pairs. Recall that ζ exists for quadru-
ples where |cos(C⃗a,b, C⃗c,d)| = 1. As this condition
is unlikely to hold exactly on real data, we ap-
proximate ζ with the ratio ζ̂ := ∥C⃗a,b∥/∥C⃗c,d∥ for
quadruples with high cosine similarity (which we
define as |cos(C⃗a,b, C⃗c,d)| ≥ 0.9). We expect the
word vectors to form parallelograms when ζ̂ ≈ 1
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k = 1 k = 5

ζ̂ ̸≈ 1 0.800 (619/774) 0.862 (667/774)

ζ̂ ≈ 1 0.652 (137/210) 0.871 (183/210)

Table 3: Parallelogram/trapezoid recovery performances
for different values of ζ̂. Parallelogram recovery for all
analogy pairs is 0.27 (see Table 4 in Appendix), indi-
cating dramatic performance increase for the analogy
subset where ζ̂ ≈ 1.

(0.95 ≤ ζ̂ ≤ 1.05), and form trapezoids otherwise.
Specifically, for each such quadruple, we com-

pute the word w that minimizes ∥v̂b− v̂a+ v̂c− v̂w∥
for parallelograms; ideally, w should equal d. For
trapezoids, we retrieve the word w that maximizes
the quantity cos(v̂b − v̂a, v̂w − v̂c). If the word d is
among the top k words, we deem the quadruple to
satisfy the corresponding geometric structure. For
both cases, we consider k = 1 and 5.

Results are shown in Table 3. Observe that for
k = 5, 87% of the quadruples form parallelograms
when ζ̂ ≈ 1 (i.e., 0.95 ≤ ζ̂ ≤ 1.05), and 86%
of quadruples form trapezoid-type structures when
ζ̂ ̸≈ 1. This validates our expectation that paral-
lelograms and trapezoids indeed form when ζ̂ ≈ 1
and ζ̂ ̸≈ 1 respectively.

6 Conclusion and Discussion

We demonstrate that optimizing a contrastive-style
objective over word co-occurrences is indeed suf-
ficient to encode analogies as parallel lines. Our
analysis (Theorem 1) sheds light on the inner work-
ings of word embeddings: parallel geometry is in-
duced largely from word co-occurrence statistics
for any push-pull model. Our work builds upon and
generalizes previous literature that illuminates the
underlying mechanisms governing the geometry of
word embeddings.

Note that while our results demonstrate the suf-
ficiency of the push-pull mechanism for recover-
ing analogies as parallel lines, it remains unclear
whether push-pull is a necessary condition for this
phenomenon. Investigating alternative mechanisms
and their ability to achieve similar results would
provide further insight into the relationship be-
tween word co-occurrence statistics and the recov-
ery of analogies.
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A Proofs

A.1 Derivation of Eq. (3)

Recall that the global objective of CWM for the
vocabulary W and set of word vectors V can be
written as:

L(V ) =
∑

c∈W

∑

w∈W
#(c, w)

∑

w′∈Dc,w

[
m− v̂c · v̂w + v̂c · v̂w′

]
+

,

where Dc,w = {w′|w′ ∼ U(W )}, |Dc,w| = k de-
notes the set of k negative window words sampled
uniformly from the vocabulary for each c, w word
pair and U(W ) denotes the uniform distribution
over the vocabulary.

For fixed c, w,w′, consider the two cases where
m−v̂c·v̂w+v̂c·v̂w′ > 0 and m−v̂c·v̂w+v̂c·v̂w′ ≤ 0.
As the word vectors are not updated for the latter
case, we examine the former by taking the partial
derivative of L(V ) with respect to vc and setting it
to 0:

0 = −
∑

w∈W
#(c, w)

∑

w′∈Dc,w

(
vw

∥vc∥∥vw∥
− vw′

∥vc∥∥vw′∥

+

(
v̂c · v̂w′

∥vc∥2
− (v̂c · v̂w)

∥vc∥2
)
vc

)

⇔
∑

w∈W
#(c, w)

∑

w′∈Dc,w

vw
∥vc∥∥vw∥

−
∑

w∈W
#(c, w)

∑

w′∈Dc,w

vw′

∥vc∥∥vw′∥

=
∑

w∈W
#(c, w)

∑

w′∈Dc,w

(
vcvw

∥vc∥2∥vw∥

− vcvw′

∥vc∥2∥vw′∥

)
vc
∥vc∥

.

As
∑

w∈W #(c, w)
∑

w′∈Dc,w

vw′
∥vw′∥ represents∑

w∈W #(c, w) ·k = k ·#(c) uniform i.i.d. draws
from the vocabulary, the following holds for suffi-
ciently large values of k ·#(c):

∑

w∈W
#(c, w)

∑

w′∈Dc,w

vw′

∥vw′∥ =

k#(c)Ew′∼U(W )

[
vw′

∥vw′∥

]
.

Setting Ew′∼U(W )

[
vw′

∥vw′∥

]
= vp and dividing

both sizes by k#(c)
∥v∥ ,

∑

w∈W

#(c, w)

#(c)

vw
∥vw∥

− vp

=

[
vc
∥vc∥

(∑

w∈W

#(c, w)

#(c)

vw
∥vw∥

− vp

)]
⊙ vc

∥vc∥
.

Setting
∑

w∈W
#(c,w)
#(c)

vw
∥vw∥ = vp′ and

γc =
∥∥∥ vc
∥vc∥

(∑
w∈W

#(c,w)
#(c)

vw
∥vw∥ − vp

)∥∥∥ ,
the above equation can be rewritten as:

vc
∥vc∥

=
vp′

γc
· 1∥∥∥ vc

∥vc∥

∥∥∥
· 1

cos θ
.

where θ indicates the angle between vp′ and vc
∥vc∥ .

As
∥∥∥ vc
∥vc∥

∥∥∥ = 1,

vc = ∥vc∥ ·
vp′

γc
· 1

cos θ

Notice that vc ∥ vp′ by the above construction , so
cos θ = 1. Thus,

vc = ∥vc∥ ·
vp′

γc
=

α#(c)
1
β

γc
· vp′ . ■

The second equality is derived from the empir-
ically observed property ∥vc∥ ∝ #(c)

1
β for some

constant β ∈ R, which is verified below.
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Interestingly, a similar linear relationship is
also observed in existing word embedding mod-
els (Arora et al., 2016).

A.2 Proof for Theorem 1
Under the assumption that Eq. (3) holds, we can
write the expressions for v̂a− v̂b, v̂c− v̂d as follows.

v̂a − v̂b =
1

γa

(∑

w∈W

(
#(a,w)

#(a)

vw
∥vw∥

)
− vp

)

− 1

γb

(∑

w∈W

(
#(b, w)

#(b)

vw
∥vw∥

)
− vp

)
.
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Under the assumption that ∀c ∈ W : γc = γ for
some γ ∈ R,

v̂a − v̂b =
1

γ

∑

w∈W

(
#(a,w)

#(a)
− #(b, w)

#(b)

)
vw

∥vw∥

Using Eq. (4),

v̂a − v̂b =
ζ

γ

∑

w∈W

(
#(c, w)

#(c)
− #(d,w)

#(d)

)
vw
∥vw∥

= ζ(v̂c − v̂d). ■

The invariance of the value γc can be verified
through randomly sampling 5000 words c and com-
puting the respectivve γc. The resulting mean and
variance are respectively γ̄c = 5.626,Var(γc) =
0.033, indicating a tight concentration around the
mean.

A.3 Derivation of Eq. (1)
Here, we show that vanilla Skip-gram with the
cross-entropy loss where the target distribution is
represented as a one-hot vector induces an implicit
pulling action on co-occuring words and pushes
away other words.

For a given context word c, the cross-entropy
loss is:

H(p(·|c), p̂(·|c)) = −
∑

w∈W
p̂(w|c) log p(w|c),

where p(w|c) = ev
⊺
c uw

∑
w′∈W ev

⊺
c uw′

denotes the pre-

dicted distribution by Skip-gram. p̂(·|c) denotes
the target distribution where:

∀w ∈ W : p̂(w|c) =
{
1 if w is the target word
0 otherwise

By construction of p̂(w|c), each term in the sum of
the cross-entropy loss reduces to:

p̂(w|c) log p(w|c) =


− log ev

⊺
c uw

∑
w′∈W ev

⊺
c uw′

if w is the target word

0 otherwise

Thus, for a fixed context word c and target word
w, the loss of Skip-gram reduces to:

LSGNS(c, w) = − log
ev

⊺
cuw

∑
w′∈W ev

⊺
cuw′

.

Now, consider two words c, w that co-occur.
Without loss of generality, if we assume w appears

prior to c in the training corpus, Skip-gram first
updates the context and target vectors of w and c
respectively. Taking the gradient of LSGNS with
respect to va and ub for two co-occurring words
a, b ∈ W ,

∂LSGNS

∂va
=
∑

w∈W

(
ev

⊺
aub

∑
w′∈W ev

⊺
auw′

uw

)
− ub,

(5)

∂LSGNS

∂ub
=

(
ev

⊺
aub

∑
w′∈W ev

⊺
auw′

− 1

)
va. (6)

Observe that the gradients induce a pulling ac-
tion between the vectors va and ub.

Define the set of words that lie between c and
w in the training corpus as C. Notice that c and
w will co-occur with ∆ − 1 words. Hence, for
each word c′ ∈ C = {c1, ..., cw−1}, the gradient
update in Eq. (5) and (6) is applied to all word pairs
(w, c1), ..., (w, cw−1) and (c, c1), ..., (c, cw−1).

Consider the pulling action induced by the word
pairs (w, ci) and (b, ci) for some i ∈ [∆ − 1]. As
we first update the context and target vectors for w
and ci, notice that

vnew
w = vw + uc′ −

∑

x∈W

(
ev

⊺
wuc′

∑
w′∈W ev

⊺
wuw′

ux

)
,

unew
c′ = uc′ +

(
1− ev

⊺
wuc′

∑
w′∈W ev

⊺
wuw′

)
vw. (7)

Similarly, if we now update the context and target
vectors for c and ci,

vnew
c = vc + unew

c′ −
∑

x∈W

(
ev

⊺
cuc′

∑
w′∈W ev

⊺
cuw′

ux

)
.

Plugging the expression for unew
c in Eq. (7), we get

vnew
c =vc +

(
1− ev

⊺
wuc′

∑
w′∈W ev

⊺
wuw′

)
vw + uc′

−
∑

x∈W

(
ev

⊺
wuc

∑
w′∈W ev

⊺
wuw′

ux

)
.

The expression above indicates that vc is pulled
towards vw implicitly and shifted closer to uc′ ex-
plicitly in the update process while pushing away
the weighted average of all word vectors. This
update resembles the push-pull action in CWM.
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A.4 Derivation of Eq. (2)
For a fixed word pair i, j, GloVe’s local objective
is:

LGloVe(i, j) = f(Xij)(v
⊺
i uj + bi + b̃j − logXij),

where Xij is the co-occurrence count of words
i and j, f(Xij) is a weighting term, bi, b̃j are
bias terms, and vi, uj denote the word vector
and context word vectors respectively (cf. Pen-
nington et al., 2014). Typically, f(Xij) is set to
min{(Xi/Xmax)

α, 1} where Xi denotes the occur-
rence count of word i and Xmax = 100. For the
sake of demonstrating the pushing action in the
gradient update, we consider a weighting function
f(Xij) = min{(Xi/Xmax)

α + ϵ, 1} for a arbitrar-
ily small ϵ > 0.

The derivative of the local objective with respect
to vi and uj are:

∂LGloVe

∂vi
= 2f(Xij)(v

⊺
i uj + bi + b̃j − logXij)uj ,

∂LGloVe

∂uj
= 2f(Xij)(v

⊺
i uj + bi + b̃j − logXij)vi.

(8)

Consider two co-occurring words c, w and a word
w′ that co-occurs with neither. Then, there exists
a word c′ that co-occurrs with c and w but does
not co-occur with w′. Define Xc′w′ = 0, Xcc′ =
ωc, Xwc′ = ωw where ωc, ωw ∈ N.

With Eq. (8), the updated vectors for c, w,w′

can be written as:

vnew
c = vold

c + 2f(ωc)(v
⊺
cuc′ + bc + b̃c′ − logωc)uc′ ,

vnew
w = vold

w + 2f(ωw)(v
⊺
wuc′ + bw + b̃c′ − logωw)uc′ ,

vnew
w′ = vold

w′ + 2f(ϵ)(v⊺w′uc′ + bw′ + b̃c′ − log ϵ)uc′ .

As ∀i, j : fXij > 0, notice that

(v⊺cuc′ + bc + b̃c′ − logωc) < 0,

(v⊺wuc′ + bw + b̃c′ − logωw) < 0,

(v⊺w′uc′ + bw′ + b̃c′ − log ϵ) > 0,

for sufficiently large ωc and ωw and for sufficiently
small ϵ. Setting 2 · |f(Xij)(v

⊺
i uj + bi + b̃j −

logXij)| = g(i, j), we see that

vnew
c = vold

c + g(c, c′)vc′ ,

vnew
w = vold

w + g(w, c′)vc′ ,

vnew
w′ = vold

w′ − g(w′, c′)vc′ .

Model WordSim MEN SimLex
CWM 0.27 0.66 0.73 0.34
SGNS 0.29 0.72 0.74 0.36
GloVe 0.29 0.61 0.75 0.37

Table 4: Performances for embedding models on par-
allelogram analogy recovery and word similarity tasks.

refers to parallelogram recovery task. For word simi-
larity, reported values are Spearman’s rank correlation
between word similarity rankings of human annotators
and cosine similarites computed from word vectors.

This indicates that vc and vw will be pulled towards
the context word vectors of words that c and w both
co-occur with, while words that do not co-occur
with c and w will be pushed away from vc and vw.

B Supplementary Experiments

B.1 Metric Details
Given a set of word pairs in an analogy A =
{(a1, b1), (a2, b2), . . . }, PCS measures relative di-
rectional alignment by computing the separability
of cosine similarities between true vector offsets
vai − vbi and false offsets vai − vbj , i ̸= j. Con-
cretely, denoting the set of true and false offsets
as P and N respectively, PCS computes the ex-
pectation of the ROC-AUC score between P and
a subset of the false vector offsets N ′ ⊂ N where
|P | = |N ′|:

PCS(A) = EN ′∼U(N)

[
AUC(P,N ′)

]
,

where U(N) denotes the uniform distribution over
all false vector offsets. Typically, the expectation
is approximated by sampling s = 50 subsets.

In contrast, MSM represents the absolute align-
ment within analogies by computing the cosine
similarities between all true vector offsets and the
mean of the true offsets.

MSM(A) =
1

|P |
∑

vp∈P
cos


vp,

1

|P |
∑

vp∈P
vp




A high value of MSM indicates alignment between
true vector offsets. However, note that MSM is
susceptible to scoring undesirable vector structures
with high values (e.g. when all vectors are collapsed
onto one point in the embedding space, MSM = 1).

B.2 Word Similarity
While the analogy task is our primary focus, we
evaluate CWM on other commonly used bench-
marking tasks for completeness. To this end, we
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benchmark our model on WordSim353 (Finkelstein
et al., 2002), the MEN Test Collection (Bruni et al.,
2014), and SimLex999 (Hill et al., 2015).

On all tasks, CWM performs comparably with
existing models (Table 4). We highlight that minor
performance differences on word similarity tasks
are negligible, as such benchmarks are built using
human annotations and are subject to noise. Never-
theless, we believe further refinement of the CWM
model is required to boost performance on various
downstream tasks.

B.3 Analogies as Parallelograms
We also benchmark all models on the traditional
parallelogram analogy recovery task using the
BATS dataset.

Concretely, given an analogy pair a : b = c :
d, we utilize the most common metric where we
compute the x that satisfies:

x = min
x∈W\{a,b,c}

∥vb − va + vc − vx∥,

and compare whether x = d.
Results from Table 4 indicate that CWM recov-

ers analogies as parallelograms comparably to ex-
isting models.
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