@inproceedings{rahimi-surdeanu-2023-improving,
title = "Improving Zero-shot Relation Classification via Automatically-acquired Entailment Templates",
author = "Rahimi, Mahdi and
Surdeanu, Mihai",
editor = "Can, Burcu and
Mozes, Maximilian and
Cahyawijaya, Samuel and
Saphra, Naomi and
Kassner, Nora and
Ravfogel, Shauli and
Ravichander, Abhilasha and
Zhao, Chen and
Augenstein, Isabelle and
Rogers, Anna and
Cho, Kyunghyun and
Grefenstette, Edward and
Voita, Lena",
booktitle = "Proceedings of the 8th Workshop on Representation Learning for NLP (RepL4NLP 2023)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.repl4nlp-1.16",
doi = "10.18653/v1/2023.repl4nlp-1.16",
pages = "187--195",
abstract = "While fully supervised relation classification (RC) models perform well on large-scale datasets, their performance drops drastically in low-resource settings. As generating annotated examples are expensive, recent zero-shot methods have been proposed that reformulate RC into other NLP tasks for which supervision exists such as textual entailment. However, these methods rely on templates that are manually created which is costly and requires domain expertise. In this paper, we present a novel strategy for template generation for relation classification, which is based on adapting Harris{'} distributional similarity principle to templates encoded using contextualized representations. Further, we perform empirical evaluation of different strategies for combining the automatically acquired templates with manual templates. The experimental results on TACRED show that our approach not only performs better than the zero-shot RC methods that only use manual templates, but also that it achieves state-of-the-art performance for zero-shot TACRED at 64.3 F1 score.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rahimi-surdeanu-2023-improving">
<titleInfo>
<title>Improving Zero-shot Relation Classification via Automatically-acquired Entailment Templates</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mahdi</namePart>
<namePart type="family">Rahimi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mihai</namePart>
<namePart type="family">Surdeanu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 8th Workshop on Representation Learning for NLP (RepL4NLP 2023)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Burcu</namePart>
<namePart type="family">Can</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maximilian</namePart>
<namePart type="family">Mozes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Samuel</namePart>
<namePart type="family">Cahyawijaya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naomi</namePart>
<namePart type="family">Saphra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nora</namePart>
<namePart type="family">Kassner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shauli</namePart>
<namePart type="family">Ravfogel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abhilasha</namePart>
<namePart type="family">Ravichander</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chen</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Isabelle</namePart>
<namePart type="family">Augenstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kyunghyun</namePart>
<namePart type="family">Cho</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Edward</namePart>
<namePart type="family">Grefenstette</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lena</namePart>
<namePart type="family">Voita</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>While fully supervised relation classification (RC) models perform well on large-scale datasets, their performance drops drastically in low-resource settings. As generating annotated examples are expensive, recent zero-shot methods have been proposed that reformulate RC into other NLP tasks for which supervision exists such as textual entailment. However, these methods rely on templates that are manually created which is costly and requires domain expertise. In this paper, we present a novel strategy for template generation for relation classification, which is based on adapting Harris’ distributional similarity principle to templates encoded using contextualized representations. Further, we perform empirical evaluation of different strategies for combining the automatically acquired templates with manual templates. The experimental results on TACRED show that our approach not only performs better than the zero-shot RC methods that only use manual templates, but also that it achieves state-of-the-art performance for zero-shot TACRED at 64.3 F1 score.</abstract>
<identifier type="citekey">rahimi-surdeanu-2023-improving</identifier>
<identifier type="doi">10.18653/v1/2023.repl4nlp-1.16</identifier>
<location>
<url>https://aclanthology.org/2023.repl4nlp-1.16</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>187</start>
<end>195</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Improving Zero-shot Relation Classification via Automatically-acquired Entailment Templates
%A Rahimi, Mahdi
%A Surdeanu, Mihai
%Y Can, Burcu
%Y Mozes, Maximilian
%Y Cahyawijaya, Samuel
%Y Saphra, Naomi
%Y Kassner, Nora
%Y Ravfogel, Shauli
%Y Ravichander, Abhilasha
%Y Zhao, Chen
%Y Augenstein, Isabelle
%Y Rogers, Anna
%Y Cho, Kyunghyun
%Y Grefenstette, Edward
%Y Voita, Lena
%S Proceedings of the 8th Workshop on Representation Learning for NLP (RepL4NLP 2023)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F rahimi-surdeanu-2023-improving
%X While fully supervised relation classification (RC) models perform well on large-scale datasets, their performance drops drastically in low-resource settings. As generating annotated examples are expensive, recent zero-shot methods have been proposed that reformulate RC into other NLP tasks for which supervision exists such as textual entailment. However, these methods rely on templates that are manually created which is costly and requires domain expertise. In this paper, we present a novel strategy for template generation for relation classification, which is based on adapting Harris’ distributional similarity principle to templates encoded using contextualized representations. Further, we perform empirical evaluation of different strategies for combining the automatically acquired templates with manual templates. The experimental results on TACRED show that our approach not only performs better than the zero-shot RC methods that only use manual templates, but also that it achieves state-of-the-art performance for zero-shot TACRED at 64.3 F1 score.
%R 10.18653/v1/2023.repl4nlp-1.16
%U https://aclanthology.org/2023.repl4nlp-1.16
%U https://doi.org/10.18653/v1/2023.repl4nlp-1.16
%P 187-195
Markdown (Informal)
[Improving Zero-shot Relation Classification via Automatically-acquired Entailment Templates](https://aclanthology.org/2023.repl4nlp-1.16) (Rahimi & Surdeanu, RepL4NLP 2023)
ACL