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Abstract

Existing sentence textual similarity benchmark
datasets only use a single number to summarize
how similar the sentence encoder’s decision is
to humans’. However, it is unclear what kind of
sentence pairs a sentence encoder (SE) would
consider similar. Moreover, existing SE bench-
marks mainly consider sentence pairs with low
lexical overlap, so it is unclear how the SEs
behave when two sentences have high lexical
overlap. We introduce a high-quality SE diag-
nostic dataset, HEROS. HEROS is constructed
by transforming an original sentence into a new
sentence based on certain rules to form a mini-
mal pair, and the minimal pair has high lexical
overlaps. The rules include replacing a word
with a synonym, an antonym, a typo, a random
word, and converting the original sentence into
its negation. Different rules yield different sub-
sets of HEROS. By systematically comparing
the performance of over 60 supervised and un-
supervised SEs on HEROS, we reveal that most
unsupervised sentence encoders are insensitive
to negation. We find the datasets used to train
the SE are the main determinants of what kind
of sentence pairs an SE considers similar. We
also show that even if two SEs have similar per-
formance on STS benchmarks, they can have
very different behavior on HEROS. Our result
reveals the blind spot of traditional STS bench-
marks when evaluating SEs.1

1 Introduction

Sentence encoders (SEs) are fundamental build-
ing blocks in miscellaneous natural language
processing (NLP) tasks, including natural lan-
guage inference, paraphrase identification, and re-
trieval (Gillick et al., 2018; Lan and Xu, 2018).
SEs are mostly evaluated with the semantic tex-
tual similarity (STS) datasets (Agirre et al., 2016;
Cer et al., 2017) and SICK-R (Marelli et al., 2014),

1We release the dataset on
https://huggingface.co/datasets/dcml0714/Heros.

R1 R2 RL Lev Len

STS-b 55.8 32.5 53.2 0.54 12.2
SICK-R 61.2 37.4 56.2 0.53 10.0
HEROS 92.9 84.8 92.9 0.10 13.8

Table 1: We use the ROUGE F1 scores (R1, R2, RL)
and the normalized Levenshtein distance (Lev) between
sentence pairs to evaluate the degree of lexical overlaps
in HEROS and another two widely used STS bench-
marks. A higher ROUGE score and a lower normalized
Levenshtein distance imply higher lexical overlaps. Len
is the average sentence length. Please find details about
the metrics used here in Appendix B.

which consist of sentence pairs with human-labeled
similarity scores. The performance of the SEs is
summarized using Spearman’s correlation coeffi-
cient between the human-labeled similarity and the
cosine similarity obtained from the SE.

While the STS benchmarks are widely adopted,
there are two problems with these benchmarks.
First, the performance on the STS dataset does
not reveal much about what kind of sentence pairs
would the SE deem similar. Spearman’s correlation
coefficient only tells us how correlated the sentence
embedding cosine similarity and the ground truth
similarity are. However, the idea of what is similar
can vary among different people and depend on the
task at hand. Therefore, just because the sentence
embedding cosine similarity is strongly correlated
to the ground truth similarity, it does not provide
much information about the specific type of similar-
ity that the SE captures. Prior works mostly resort
to a few hand-picked examples to illustrate what
kind of sentence pairs an SE would consider sim-
ilar or dissimilar (Gao et al., 2021; Chuang et al.,
2022; Wang et al., 2022). But it is hard to fully
understand the traits of an SE by using only a few
hand-picked samples.

The second issue is that sentence pairs in the
STS-related benchmarks often have low lexical
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overlaps, as shown in Table 1, making it unclear
how the SEs will perform on sentence pairs with
high lexical overlaps, which exist in real-world
applications such as adversarial attacks in NLP.
Adversarial samples in NLP are constructed by re-
placing some words in an original sentence with
some other words (Alzantot et al., 2018), and the
original sentence and the adversarial sample will
have high lexical overlaps. SEs are often adopted
to check the semantic similarity between the origi-
nal sentence and the adversarial sample (Garg and
Ramakrishnan, 2020; Li et al., 2020b). If we do
not know how SEs perform on high lexical overlap
sentences, using them to check semantic similarity
is meaningless.

To address the above issues, we construct and re-
lease a new dataset, HEROS: High-lexical overlap
diagnostic dataset for sentence encoders, for evalu-
ating SEs. HEROS is composed of six subsets, and
each subset includes 1000 sentence pairs with very
high lexical overlaps. For the two sentences in a
sentence pair, one of them is created by modifying
the other sentence based on certain rules, and each
subset adopts a different rule. These rules are (1)
replacing a word with a synonym, (2) replacing a
word with an antonym, (3) replacing a word with
a random word, (4) replacing a word with its typo,
and (5,6) negating the sentence. By comparing the
sentence embedding cosine similarity of sentence
pairs in different subsets, we can understand what
kind of sentence pairs, when they have high lex-
ical overlaps, would be considered similar by an
SE. We evaluate 60 sentence embedding models on
HEROS and reveal many intriguing and unreported
observations on these SEs.

While some prior works also crafted sentence
pairs to understand the performance of SEs, they
either do not make the datasets publicly avail-
able (Zhu et al., 2018; Zhu and de Melo, 2020)
or do not consider so many SEs as our paper
does (Barancikova and Bojar, 2020), especially
unsupervised SEs. Our contribution is relevant and
significant as it provides a detailed understanding
of SEs using a new dataset. The contribution and
findings of this paper are summarized as follows:

• We release HEROS, a high-quality dataset con-
sisting of 6000 sentence pairs with high lex-
ical overlaps. HEROS allows researchers to
systematically evaluate what sentence pairs
would be considered similar by SEs when the
lexical overlap is high.

• We evaluate 60 SEs on HEROS and reveal sev-
eral facts that were never reported before or
only studied using a few hand-picked exam-
ples.

• We show that supervised SEs trained for dif-
ferent downstream tasks behave differently on
different subsets of HEROS, indicating that
the SEs for different tasks encode different
concepts of similarity.

• We find that all unsupervised SEs are consid-
erably insensitive to negation, and further fine-
tuning on NLI datasets makes them acquire
the concept of negation.

• We observe that SEs can have very different
performances on different subsets of HEROS

even if their average STS benchmark perfor-
mance difference is less than 0.2 points.

2 HEROS

HEROS consists of six subsets, and each subset
consists of 1000 sentence pairs. The six subsets are
Synonym, Antonym, Typo, Random MLM, and
two types of Negation subsets. In all subsets, each
pair of sentences have high lexical overlap, and the
two sentences only differ in at most one content
word; we call these paired sentences minimal pairs.

The dataset is constructed from the GoEmotions
dataset (Demszky et al., 2020), a dataset for emo-
tion classification collected from Reddit comments.
We select one thousand sentences from GoEmo-
tions and replace one word in the original sentences
with its synonym, antonym, a typo of the replaced
word, and a random word obtained from BERT (De-
vlin et al., 2019) mask-infilling. Last, we convert
the original sentence into its negation using two
different rules. After this process, we obtain six
sentences for each of the 1000 selected sentences.
We pair the original sentence and a converted
sentence to form a minimal pair, which has high
lexical overlaps. We will explain the above process
in detail in Section 2.2. Samples from HEROS are
shown in Table 2.

2.1 Motivation and Intended Usage
Unlike traditional STS benchmark datasets that
asked humans to assign a similarity score as the
ground truth similarity, HEROS does not provide
a ground truth similarity score for sentence pairs.
This is because it is difficult to define how simi-
lar two sentences should be for them to be given
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a certain similarity score. Moreover, the concept
of similarity differs in downstream tasks. For ex-
ample, in paraphrase tasks, a Negation minimal
pair is considered semantically different; but for a
retrieval task, we might consider them similar.

Thus, instead of providing a ground truth label
for each sentence pair and letting future researchers
pursue state-of-the-art results on HEROS, we hope
this dataset is used for diagnosing the characteris-
tics of an SE. Specifically, one can compare the
average sentence embedding cosine similarity of
sentence pairs in different subsets to understand
what kind of similarity is captured by the sentence
embedding model.

Different subsets in HEROS capture various as-
pects of semantics. Comparing the average cosine
similarity between minimal pairs in Synonym and
Antonym allows one to understand whether replac-
ing a word with an antonym is more dissimilar to
the original semantics than replacing a word with a
synonym. The average cosine similarity between
minimal pairs in Negation can tell us how negation
affects sentence embedding similarity. Typos are
realistic and happen every day. While humans can
infer the original word from a typo and get the orig-
inal meaning of the sentence, it will be interesting
to see how the typos affect the sentences’ similarity
with the original sentences. The Random MLM
subset can tell us how similar the sentence embed-
ding can be when two sentences are semantically
different but with high lexical overlaps. By compar-
ing the performance of different SEs on different
subsets in HEROS, we can further understand the
trait of different SEs.

2.2 Dataset construction
2.2.1 Raw dataset preprocessing
HEROS are constructed from GoEmotions. For the
sentences in GoEmotions, we only select sentences
whose lengths are more than 8 words and less than
25 words. We filter out sentences with cursing,
and we use language-tool to filter out sentences
that language-tool find ungrammatical. We manu-
ally remove the sentences that we find offensive or
harmful. The selected sentences are called original
sentences in our paper. More details on preprocess-
ing are presented in Appendix A.1.

2.2.2 Selecting which word to replace
The next step is to determine which word to re-
place in the original sentences obtained from pre-
processing. The selected word must be (1) seman-

tically significant to the original sentence so that
when it is replaced with a non-synonym word, the
two sentences will have vastly different meanings
and would be considered contradictory in an NLI
task. (2) The selected word must have synonyms
and antonyms at the same time since it will be re-
placed with its synonyms and antonyms. We only
select verbs and adjectives for replacement because
changing them greatly alters the semantics of a sen-
tence. Sentences that do not contain a word that
satisfies the two criteria are dropped.

2.2.3 Synonym and Antonym Subsets
The first subset in HEROS includes the minimal
pairs formed by replacing a word in the original
sentence with its synonym; the second subset in-
cludes the minimal pairs formed by replacing a
word with its antonym. After selecting the word
to be replaced, we determine what synonym and
antonym should be used for replacement. There are
three principles for replacement: (1) the replace-
ment should fit in the context, (2) the synonym
should match the word sense of the original word
in the sentence2, and (3) the collocating words (e.g.,
prepositions, definite articles) may also need to be
modified. The three guiding principles make this
process require high proficiency in English and this
process is impossible to be done using an automatic
process. Thus, this process is performed by the au-
thors ourselves. We use our proficiency in English
and four online dictionaries to select the replace-
ment words. The four resources are thesaurus.com,
thesaurus of Merriam-Webster, Online Oxford Col-
location Dictionary, and Cambridge Dictionary.
This step takes 72 hours.

2.2.4 Random MLM
The third subset in HEROS is obtained by replac-
ing the word to be replaced with a random word
predicted by a masked language model. We mask
the word to be replaced by [MASK] token and use
bert-large-uncased to fill in the masked posi-
tion. We filter out the synonym, antonym, and their
derivational forms3 from the masked prediction us-
ing WordNet and LemmInflect. Additionally, we
filter out punctuations and subword tokens that are
not complete words. Moreover, we manually filter
out mask predictions that are very similar in mean-

2A word can have different word senses, and each word
sense has its own synonym sets. Synonym sets of different
word senses might be different.

3For example, different tenses of a verb.
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Subset Example (adjective) Example (verb)

Original And that is why it is (or was) illegal. You do not know how much that boosted
my self-esteem right now.

Synonym And that is why it is (or was) illegitimate. You do not know how much that increased
my self-esteem right now.

Antonym And that is why it is (or was) legal. You do not know how much that lowered
my self-esteem right now.

Random
MLM

And that is why it is (or was) here. You do not know how much that affects my
self-esteem right now.

Typo And that is why it is (or was) illiegal. You do not know how much that booste my
self-esteem right now.

Negation
(Main)

And that is not why it is (or was) illegal. You do know how much that boosted my
self-esteem right now.

Negation
(Antonym)

And that is why it is (or was) not illegal. You do not know how much that did not
boost my self-esteem right now.

Table 2: Two examples from HEROS. One example selects a verb while the other selects an adjective for replacement.
The first row shows the original sentences in the GoEmotions, and the words highlighted in blue are the words to be
replaced. Starting from the second rows are the corresponding sentences obtained from the original sentence for
different subsets, and the changes compared with the original sentence are highlighted in green.

ing to the original word when used in the same
context. This is because even if a word is not a
synonym of the word to be replaced, it may still
express the same meaning when used in the same
context. For example, "great" is not a synonym of
"good" according to WordNet, but their meaning
is very similar. The resulting sentences can be un-
grammatical in very few cases, but we leave them
as is.

2.2.5 Typos
The fourth subset in HEROS is constructed by swap-
ping the word to be replaced with its typo. Typos
are spelling or typing errors that occur in real life.
If the word to be typoed is in the Wikipedia lists
of common misspellings, we replace the word with
its typo in the list. If the word is not in the com-
mon misspelling list, we create a typo by randomly
deleting or replacing one character or swapping two
different characters in the word (He et al., 2021).

2.2.6 Negation
The last subset in HEROS is constructed by negat-
ing the original sentence. Negation can happen at
different levels in a sentence, and we create two
different types of negation datasets based on where
the negation happens. The first one is negating the
main verb, which is the action performed by the

subject, in the sentence.4 If the main verb is not
negated, we negate it by adding appropriate auxil-
iary verbs and the word "not". If the main verb is
already negated, we directly remove the word "not"
and do not remove the auxiliary verb. We call this
type of negation dataset the Negation (Main).

The other type of negation dataset is related
to the Antonym subset. A minimal pair in the
Antonym subset is formed by replacing a word in a
sentence with its antonym. This implicitly negates
the meaning of the original sentence. Here, we con-
struct another subset called Negation (Antonym),
which explicitly negates the word that is replaced
with an antonym in the Antonym subset. Given
a sentence pair in the Antonym dataset, there is
a verb or adjective in the original sentence that is
replaced by its antonym in the converted sentence.
We directly negate that word in the original sen-
tence by adding "not" in front of an adjective or
adding "not" and an auxiliary verb for verbs.5. If
the word is already negated, we remove the "not".
These sentences might sound a bit strange, but

4When selecting the original sentences, we do not consider
interrogative sentences, so we will not create a negative inter-
rogative sentence. An interrogative sentence and its negation
ask the same question and are not semantically different.

5If the negation of the minimal pair in the Antonym dataset
happens at the main verb, the sentence pair in Negation (Main)
and Negation (Antonym) will be the same.
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they are still understandable. This type of nega-
tion dataset is called Negation (Antonym) because
the negation is in the same place as the antonym
replacement in the Antonym subset.

3 Comparing 60 Sentence Embedding
Models

In this section, we compare the behavior of 60 SEs
on HEROS. Detailed information about the SEs,
including training data and model size, is listed
in Appendix C. We calculate the cosine similarity
between each minimal pair in HEROS and normal-
ize it by a baseline cosine similarity to remove
the effect of anisotropic embedding space (Etha-
yarajh, 2019; Li et al., 2020a). The baseline cosine
similarity is calculated by averaging the similarity
between 250K random sentence pairs (details in
Appendix D). We report the average normalized
similarity of different subsets in HEROS for each
SE. For simplicity, we will use "similarity" to refer
to the normalized cosine similarity.

3.1 Supervised SEs

We use 30 supervised transformer-based SEs in
the SentenceTransformers toolkit (Reimers and
Gurevych, 2019, 2020). These SEs are trained
supervisedly using different datasets for specific
downstream tasks. The results are presented in Fig-
ure 1. In Figure 1, we group SEs into groups based
on what training dataset they used. We denote the
datasets used to fine-tune the SEs in the parentheses
in Figure 1. There are a lot of interesting observa-
tions one can obtain from Figure 1, and we are just
listing some of those observations.

SEs fine-tuned only on QA datasets are insen-
sitive to negation: The first and second blocks
in Figure 1 include different SEs obtained from
fine-tuning on QA datasets using contrastive learn-
ing (Hadsell et al., 2006). In the fine-tuning stage,
a positive pair for contrastive learning is a pair of
question and the answer to the question. The high
similarity of the two Negation subsets can be ex-
plained by the dataset type used for fine-tuning:
whether the answer is negated or not, it may still be
considered a valid answer to the question. Hence,
it is reasonable that a sentence and its negation
have high similarity. We also find that replacing a
word with a typo will cause the resulting sentence
to have lower similarity with the original sentence
compared with replacing the word with a synonym.
While humans can understand the real meaning of

a typo word, this is not the case for the SEs.

SEs fine-tuned from T5 are less sensitive to
typos when the model size scales up: The GTR
models (Ni et al., 2021) in the second block of
Figure 1 and the ST5 models (Ni et al., 2022) in
the fourth block are SEs fine-tuned from T5 (Raffel
et al., 2020). Although the two types of models
are trained using different datasets, we find that
their performance on the Typo subset shares an
interesting trend when the model size scales up
from the smallest base-size model to the largest
xxl-size model: The similarity on the Typo subset
grows higher as the model gets larger and can be as
high as or higher than the similarity of the Synonym
subset; meanwhile, the similarity on the Synonym
subset is almost unchanged when the model size
gets larger. This shows that deeper model can better
mitigate the negative impact of typos on sentence
embeddings.

SEs fine-tuned on paraphrase datasets are
extremely sensitive to negations and antonyms:
The third block in Figure 1 includes the results of
SEs fine-tuned on paraphrase datasets using con-
trastive learning. Paraphrase datasets include a
combination of different datasets such as premise-
hypothesis pairs in NLI datasets and duplicate
question pairs. Contrary to the previous para-
graph which shows fine-tuning only using question-
answer pairs makes the model insensitive to nega-
tion, we see a completely different result in the
third block of Figure 1. We infer that this is mainly
due to the NLI datasets used for fine-tuning: negat-
ing the original sentence results in a sentence that
semantically contradicts the original sentence, and
will be considered as a hard negative in contrastive
learning. Hence, SEs fine-tuned on NLI will be
very sensitive negation. For the same reason, these
SEs are also sensitive to replacing words with
antonyms. The only exception is the MiniLM L3
(para) model (Wang et al., 2020), which has very
high similarity on the Negation subsets and is even
higher than the Synonym subset. We hypothesize
that this is because the number of parameters of the
model and the sentence embedding dimension are
too small, thus limiting the expressiveness of the
sentence embeddings.

SEs fine-tuned on all available sentence pair
datasets are again insensitive to negations: The
models in the last block in Figure 1 are fine-tuned
on all available sentence-pair training data, denoted
as (all). The training data consist of 32 datasets
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Synonym Antonym Negation (M.) Negation (A.) Random (MLM) Typo

DistilBERT base (QA)

MiniLM L6 (QA)

mpnet base (QA)

GTR base (QA)

GTR large (QA)

GTR xl (QA)

GTR xxl (QA)

ALBERT small (para)

DistilRoBERTA base (para)

MiniLM L12 (para)

MiniLM L6 (para)

MiniLM L3 (para)

mpnet base (para)

Multilingual MiniLM L12 (para)

Multilingual mpnet base (para)

TinyBERT L6 (para)

ST5 base (QA+NLI)

ST5 large (QA+NLI)

ST5 xl (QA+NLI)

ST5 xxl (QA+NLI)

DistilRoBERTa (all)

MiniLM L12 v1 (all)

MiniLM L12 v2 (all)

MiniLM L6 (all)

MiniLM L6 (all)

mpnet base (all)

mpnet base (all)

RoBERTa large (all)

DistilUSE multilingual v1 (all)

DistilUSE multilingual v2 (all)

M
od

el
0.923 0.884 0.965 0.976 0.860 0.873

0.922 0.888 0.973 0.980 0.871 0.858

0.934 0.870 0.947 0.955 0.838 0.879

0.893 0.835 0.940 0.946 0.817 0.839

0.901 0.832 0.925 0.933 0.808 0.881

0.903 0.822 0.916 0.919 0.803 0.889

0.903 0.812 0.910 0.911 0.794 0.900

0.892 0.743 0.745 0.788 0.803 0.823

0.926 0.742 0.734 0.779 0.812 0.862

0.921 0.770 0.771 0.811 0.824 0.839

0.913 0.791 0.812 0.842 0.835 0.829

0.894 0.829 0.901 0.918 0.855 0.806

0.934 0.727 0.707 0.741 0.809 0.848

0.938 0.784 0.780 0.821 0.837 0.889

0.950 0.748 0.734 0.772 0.821 0.897

0.911 0.713 0.689 0.735 0.800 0.823

0.936 0.743 0.741 0.766 0.808 0.910

0.936 0.691 0.685 0.705 0.783 0.921

0.937 0.669 0.669 0.685 0.771 0.936

0.939 0.654 0.662 0.669 0.766 0.954

0.918 0.854 0.922 0.942 0.833 0.856

0.910 0.863 0.946 0.959 0.842 0.828

0.908 0.855 0.942 0.956 0.840 0.827

0.902 0.866 0.958 0.968 0.846 0.817

0.901 0.860 0.955 0.966 0.845 0.825

0.922 0.849 0.914 0.935 0.825 0.833

0.923 0.831 0.897 0.917 0.819 0.850

0.928 0.834 0.884 0.909 0.812 0.878

0.949 0.910 0.941 0.957 0.871 0.929

0.955 0.914 0.941 0.957 0.873 0.933

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Figure 1: Normalized cosine similarity of supervised SEs. We group SEs that use different training datasets or
training procedures together. We denote the datasets used to train the SEs in parentheses.

and have a total of 1.17B sentence pairs, includ-
ing question-answer pairs in QA datasets, premise-
hypothesis pairs in NLI dataset, and context-
passage pairs in retrieval datasets. In the fifth block,
the similarity between sentence pairs from the two
Negation subsets is very high and is even higher

than the similarity of the Synonym subset for most
models. This means that when using these models
for retrieval, given a source sentence, it is more
likely to retrieve the negation of the source sen-
tence, instead of another sentence that only differs
from the source sentence by a synonym. While
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Synonym Antonym Negation (M.) Negation (A.) Random MLM Typo

Word embedding GloVe 

SimCSE bert-base (unsup)

SimCSE bert-large (unsup)

SimCSE roberta-base (unsup)

SimCSE roberta-large (unsup)

SimCSE bert-base (sup)

SimCSE bert-large (sup)

SimCSE roberta-base (sup)

SimCSE roberta-large (sup)

DiffCSE bert-base (unsup)

DiffCSE roberta-base (unsup)

PromptBERT bert-base (unsup)

PromptBERT roberta-base (unsup)

PromptBERT bert-base (sup)

PromptBERT roberta-base (sup)

SNCSE bert-base (unsup*)

SNCSE bert-large (unsup*)

SNCSE roberta-base (unsup*)

SNCSE roberta-large (unsup*)

RankEncoder SimCSE (unsup)

RankEncoder PromptBERT (unsup)

RankEncoder SNCSE (unsup)

VisualCSE bert-base (unsup)

VisualCSE roberta-base (unsup)

VisualCSE roberta-large (unsup)

VisualCSE bert-base (sup)

AudioCSE bert-base (unsup)

AudioCSE roberta-base (unsup)

AudioCSE roberta-large (unsup)

AudioCSE bert-base (sup)

M
od

el

0.861 0.831 0.988 0.992 0.833 0.842

0.906 0.828 0.915 0.931 0.832 0.801

0.912 0.819 0.887 0.904 0.830 0.795

0.884 0.797 0.939 0.945 0.793 0.766

0.911 0.805 0.936 0.933 0.792 0.827

0.940 0.783 0.778 0.809 0.839 0.874

0.945 0.767 0.756 0.780 0.832 0.875

0.949 0.752 0.737 0.764 0.826 0.895

0.953 0.703 0.705 0.718 0.802 0.907

0.910 0.847 0.949 0.956 0.848 0.816

0.898 0.794 0.923 0.924 0.808 0.795

0.940 0.897 0.907 0.939 0.886 0.849

0.917 0.853 0.938 0.944 0.850 0.793

0.941 0.796 0.803 0.833 0.845 0.829

0.949 0.723 0.750 0.752 0.822 0.889

0.933 0.882 0.876 0.913 0.873 0.830

0.901 0.806 0.795 0.837 0.801 0.736

0.911 0.836 0.928 0.935 0.847 0.794

0.939 0.892 0.944 0.955 0.876 0.894

0.929 0.871 0.926 0.941 0.867 0.852

0.938 0.877 0.907 0.933 0.880 0.857

0.938 0.877 0.874 0.904 0.878 0.848

0.912 0.848 0.940 0.951 0.847 0.761

0.884 0.790 0.940 0.940 0.788 0.748

0.912 0.799 0.933 0.925 0.793 0.834

0.940 0.765 0.756 0.789 0.835 0.868

0.897 0.811 0.934 0.942 0.823 0.799

0.890 0.814 0.934 0.942 0.795 0.737

0.904 0.789 0.930 0.926 0.782 0.822

0.940 0.767 0.760 0.794 0.836 0.867

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Figure 2: Normalized cosine similarity of unsupervised SEs and their derived supervised SEs. We group the SEs
based on the unsupervised fine-tuning method.

these models are also fine-tuned on NLI datasets,
the NLI datasets only compose 0.24% of the whole
training data. This makes the models in this block
much less sensitive to negations, compared with

models fine-tuned mainly with NLI datasets (e.g.,
ST5) and models fine-tuned on paraphrase datasets.

HEROS reveal different characteristics of dif-
ferent SEs: Overall, we see that even if the sen-
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tences in HEROS all have high lexical overlaps, the
similarity score can still be very different among
HEROS subsets for the same SE. HEROS also shows
that how the concept of similarity is encoded by an
SE is highly related to what the SE is trained on.
This further allows us to understand what kind of
similarity is required by the task related to the train-
ing dataset. For example, NLI tasks consider nega-
tion pairs as dissimilar while question-answer pair
retrieval task considers negation to be similar. Such
interesting observations are not revealed by any
prior SE benchmarks, making HEROS very valu-
able. It will also be interesting to see if there is any
correlation between an SE’s performance on dif-
ferent subsets in HEROS and different downstream
tasks in SentEval (Conneau and Kiela, 2018); we
save this in future work.

3.2 Unsupervised SEs

Next, we turn our attention to unsupervised SEs.
Unlike supervised SEs that are fine-tuned on la-
beled pairs of sentences, unsupervised SEs are
trained using specially designed methods that do
not use labeled sentence pairs. Most of these un-
supervised SEs can be further fine-tuned on NLI
datasets to further improve the performance on the
STS benchmarks (Gao et al., 2021; Jiang et al.,
2022; Jian et al., 2022). We show the result on
HEROS of 7 different types of unsupervised SEs
and their derived supervised SEs in Figure 2.

For the completeness of the result, we also report
the performance of sentence embeddings calculated
by averaging the GLoVe embeddings (Pennington
et al., 2014) in the sentence. The result is presented
in the first row in Figure 2. We observe that the
sentence before and after negation have very high
similarity, and the similarity is much higher than
replacing one word with its synonym or antonym.
This shows that negation words have a very small
contribution to the sentence embedding obtained
from averaging the GLoVe embeddings.

Unsupervised SEs are insensitive to nega-
tion: Unsupervised SEs, denoted with unsup in
Figure 2, have high similarity on Negation sub-
sets, sometimes even higher than Synonym subsets.
SNCSE (Wang et al., 2022) models are an excep-
tion, where Negation subsets may have a lower
similarity. SNCSE uses the dependency tree of a
sentence to convert it into its negation as a "soft-
negative" in contrastive learning, but it needs a
dependency parser, making it not truly unsuper-

vised. Hence, we use unsup* to denote SNCSE
models in Figure 2. The lower similarity on Nega-
tion datasets is not consistent for different SNCSE
models, possibly due to a poor negation method in
the implementation of SNCSE that does not con-
sider negative contractions, resulting in low-quality
augmented data.

Further supervised fine-tuning on NLI
datasets significantly change the model’s behav-
ior on HEROS: Fine-tuning unsupervised SEs on
NLI datasets (denoted with sup in Figure 2) leads
to a significant drop in similarity on Negation and
Antonym and an increase in similarity on the Syn-
onym subset. This show that supervised fine-tuning
greatly changes how SEs encode similarity. An in-
teresting trend is that after fine-tuning, similarity on
the Typo subset increases for most models, likely
because the SE better captures semantic similarity
and pays less attention to superficial lexical form.

Almost all SEs rate Negation (Main) to be
less similar compared with Negation (Antonym)
Recall that the Negation (Main) subsets are cre-
ated by negating the main verb while the Negation
(Antonym) subset does not always negate the main
verb. The lower similarity on the Negation (Main)
subset shows that SEs consider negating the main
verb to be less similar to the original sentence, com-
pared with negating other positions in the original
sentence. This implies that the SEs can capture
the level of the verb in the dependency tree of the
sentence, and it considers negating the main verb
to be more influential to sentence embeddings.

Close performance on STS benchmarks can
have different behaviors on HEROS: We find
that two SEs that achieve similar average per-
formance on STS benchmarks (STS 12-17, STS-
b, and SICK-R) can perform very differently on
HEROS. For example, RoBERTa large (all) and
DistilRoBERTa base (para) in Figure 1 have
similar average STS scores (81.07 and 81.12, re-
spectively), but the former have very high similarity
on the Negation subsets while the latter does not.
This is also the case for SNCSE roberta-large
in Figure 2 and mpnet base (para) in Figure 1,
which have average scores of 81.77 and 81.57 on
the STS benchmarks, respectively. This shows that
HEROS can reveal some traits of the SEs that the
traditional STS benchmarks cannot identify.

296

https://github.com/Sense-GVT/SNCSE/blob/main/generate_soft_negative_samples.py


4 Conclusion

We introduce HEROS, a new dataset of 6000 human-
constructed sentence pairs with high lexical over-
laps. It is composed of 6 subsets that capture dif-
ferent linguistic phenomena. Evaluating an SE on
HEROS can reveal what kind of sentence pairs the
SE considers similar. HEROS fills a void in current
SE evaluation methods, which only use correlation
coefficients with human ratings or performance on
downstream tasks to summarize an SE, and mainly
use sentence pairs with low lexical overlaps. We
use HEROS to evaluate 60 models and reveal nu-
merous new observations. We believe that HEROS

can aid in interpreting SE behavior and comparing
the performance of different SEs.

Limitations

The SEs in this paper are mainly transformer-based
SEs, and we are not sure whether the observations
hold for other SEs. However, considering that
transformer-based SEs dominate the current NLP
community, we think it is fine to only evaluate 59
transformer-based SEs. Another limitation is that
the sentences in HEROS are converted from Reddit,
which is an online forum and the texts on Reddit
may be more casual and informal. This makes the
sentence pairs in HEROS tend to be more informal.
Users should note such a characteristic of the sen-
tence pairs of HEROS and beware that the results
obtained using HEROS may be different from the
results obtained using more formal texts. An addi-
tional limitation is that there can be more diverse
rules to create different sentence pairs other than
the six subsets included in HEROS, and our paper
cannot include them all. As a last limitation, during
the construction of HEROS, we remove sentences
that are ungrammatical based on language-tool, so
our results may not generalize to ungrammatical
sentences.

Ethics Statement

The main ethical concern in this paper is our
dataset, HEROS. HEROS is constructed from an ex-
isting dataset, GoEmotion. As listed in the model
card of GoEmotion, GoEmotion contains biases
in Reddit and some offensive contents. As stated
in Section 2.2.1, the authors have tried our best
to remove all content that we find to be possibly
offensive to users. We cannot guarantee that our
standard of unbiased and unharmful fits everyone.

Thus, we also remind future users of HEROS to
be aware of such possible harms. To make sure
the accessibility of our paper, we have used an on-
line resource to carefully check that the figures in
the paper are interpretable for readers of different
backgrounds.
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A Further Details of HEROS

A.1 Dataset Preprocess
The sentences in GoEmotions are already
anonymized, where the names of people are re-
placed with a special [NAME] token, so we do not
need to further perform anonymization. We filter

out all sentences that have more than one [NAME]
token and replace all [NAME] with a gender-neutral
name "Jackie".

A.2 Dataset License
HEROS is constructed based on the GoEmotion
dataset (Demszky et al., 2020). GoEmotion is re-
leased under the Apache 2.0 license, so our modifi-
cation and redistribution to GoEmotion are granted
by the dataset license. Our dataset, HEROS is also
released under the Apache 2.0 license.

B Comparing the Lexical Overlaps of
Different Datasets

In Table 1, we show the basic statistics of three
different datasets. We use the ROUGE F1 and
Levenshtein distance to quantify the lexical overlap
between sentence pairs of a dataset. The statistics
of HEROS is averaged over different subsets, and
those of STS-b and SICK-R are calculated based
on the test set.

R1, R2, and RL: ROUGE F1 score between the
sentence pairs. (R1 and R2: unigram and bigram
overlap; RL: longest common subsequence.) We
use the implementation of python rouge 1.0.1 to
calculate the ROUGE score.

Lev is the average normalized token-level Lev-
enshtein distance among the sentence pairs, and
the normalized Levenshtein distance is the Leven-
shtein distance between two sentences divided by
the length of the longer sequence of the sentence
pairs. We first tokenize the sentence using the to-
kenizer of bert-base-uncased and calculate the
Levenshtein distance between the token ids of the
sentence pairs. We normalize the Levenshtein dis-
tance to make it falls in the range of [0, 1].

The average sentence length is the average
number of tokens per sentence, and the to-
kens are obtained by using the tokenizer of
bert-base-uncased.

C Supplementary Materials for Sentence
Encoders

C.1 Supervised Sentence Encoders
Table 3 shows the number of parameters and the
sentence embedding dimension of the SEs used in
this paper.

C.1.1 Datasets Used to Train Supervised SEs
The datasets indicated in Figure 1 is listed as fol-
lows:
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all Reddit comments (2015-2018) (Henderson
et al., 2019), S2ORC Citation pairs (Abstracts) (Lo
et al., 2020), WikiAnswers Duplicate question
pairs (Fader et al., 2014), PAQ (Question, Answer)
pairs (Lewis et al., 2021), S2ORC Citation pairs (Ti-
tles) (Lo et al., 2020), S2ORC (Title, Abstract) (Lo
et al., 2020), Stack Exchange (Title, Body) pairs,
MS MARCO triplets (Craswell et al., 2021),
GOOAQ: Open Question Answering with Diverse
Answer Types (Khashabi et al., 2021), Yahoo An-
swers (Title, Answer) (Zhang et al., 2015), Code
Search, COCO Image captions (Lin et al., 2014),
SPECTER citation triplets (Cohan et al., 2020),
Yahoo Answers (Question, Answer) (Zhang et al.,
2015), Yahoo Answers (Title, Question) (Zhang
et al., 2015), SearchQA (Dunn et al., 2017),
Eli5 (Fan et al., 2019), Flickr 30k (Young et al.,
2014), Stack Exchange Duplicate questions (titles),
SNLI (Bowman et al., 2015), MNLI (Williams
et al., 2018), Stack Exchange Duplicate ques-
tions (bodies), Stack Exchange Duplicate ques-
tions (titles+bodies), Sentence Compression (Fil-
ippova and Altun, 2013), Wikihow (Koupaee and
Wang, 2018), Altlex (Hidey and McKeown, 2016),
Quora Question Triplets (Wang et al., 2019), Sim-
ple Wikipedia (Coster and Kauchak, 2011), Nat-
ural Questions (NQ) (Kwiatkowski et al., 2019),
SQuAD2.0 (Rajpurkar et al., 2016), and TriviaQA.

QA All the QA datasets in all.

paraphrase SNLI (Bowman et al., 2015),
MNLI (Williams et al., 2018), Simple
Wikipedia (Coster and Kauchak, 2011), Al-
tlex (Hidey and McKeown, 2016), MS MARCO
triplets (Craswell et al., 2021), Quora Question
Triplets (Wang et al., 2019), COCO Image
captions (Lin et al., 2014), Flickr 30k (Young et al.,
2014), Yahoo Answers (Title, Question) (Zhang
et al., 2015), Stack Exchange Duplicate questions
(titles+bodies) and WikiAtomicEdits (Faruqui
et al., 2018).

GTR fine-tuning data: QA+MRC Natural
Questions (NQ) (Kwiatkowski et al., 2019), MS
MARCO triplets (Craswell et al., 2021), input-
response pairs and question-answer pairs from on-
line forums and QA websites including Reddit,
Stack-Overflow, etc.6

ST5 fine-tuning data: QA+NLI SNLI (Bow-
man et al., 2015) and question-answer pairs from

6Ni et al. (2021) does not specify the exact online forums.

community QA websites.

C.2 Unsupervised Sentence Encoders
The full list of unsupervised SEs and their super-
vised derivations we compared are: SimCSE (Gao
et al., 2021), DiffCSE (Chuang et al., 2022),
PromptBERT (Jiang et al., 2022), SNCSE (Wang
et al., 2022), RankEncoder (Seonwoo et al., 2022),
AudioCSE and VisualCSE (Jian et al., 2022). For
all the unsupervised SEs shown in Figure 2, if it
is a base-size model, its number of parameters is
roughly 110M; if it is a large-size model, its number
of parameters is roughly 335M. The bert models
shown in Figure 2 are all uncased models.

D Normalization

For each SE, we first calculate the cosine similarity
between each minimal pair in HEROS. However, if
the embedding space is highly anisotropic (Etha-
yarajh, 2019; Li et al., 2020a), the cosine similarity
between two random sentences is expected to be
rather high. To remove the effect of anisotropic
embedding space and better interpret the result, we
normalize the cosine similarity by a baseline co-
sine similarity. The baseline cosine similarity is
calculated by the following procedure: We split
the 1000 original sentences into the first 500 and
the last 500 sentences, and calculate the average
cosine similarity between the sentence embeddings
of these 500 × 500 random sentence pairs. This
average cosine similarity, cosavg, gives us an idea
of how similar sentence embedding can be for two
randomly selected sentences. Last, we normalize
the cosine similarity of the minimal pairs to lessen
the effect of anisotropy by the following formula:

cosnormalized =
cosorig − cosavg

1− cosavg
, (1)

where cosorig is the original cosine similarity of
a sentence pair and cosnormalized is the similarity
after normalization.

E Runtime and Computation Resource

The experiments on Section 3, except T5 xl and xxl,
are conducted on an NVIDIA 1080 Ti, and it takes
less than one hour to run all the experiments. The
T5 xxl and xl models cannot be loaded on a 1080
Ti, and we use V100 to conduct the experiment
of the SEs whose base models are T5 xl and xxl,
which takes less than 15 minutes.
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Model and Link #Param demb

Word embedding GloVe 120M 300
DistilBERT base (multi-QA) 66M 768

MiniLM L6 (multi-QA) 22M 384
mpnet base (multiQA) 110M 768

ALBERT small (paraphrase) 11M 768
DistilRoBERTA base v2 (paraphrase) 82M 768

MiniLM L12 v2 (paraphrase) 33M 384
MiniLM L3 v2 (paraphrase) 17M 384
MiniLM L6 v2 (paraphrase) 22M 384
mpnet base v2 (paraphrase) 110M 768

Multilingual MiniLM L12 v2 (paraphrase) 33M 384
Multilingual mpnet base v2 (paraphrase) 110M 768

TinyBERT L6 v2 (paraphrase) 14.5M 768
GTR base 110M 768
GTR large 335M 768

GTR xl 1,24B 768
GTR xxl 4.8B 768

Sentence-T5 base 110M 768
Sentence-T5 large 335M 768

Sentence-t5 xl 1,24B 768
Sentence-T5 xxl 4.8B 768

DistilRoBERTa v1 (all) 82M 768
MiniLM L12 v1 (all) 33M 384
MiniLM L12 v2 (all) 33M 384
MiniLM L6 v1 (all) 22M 384
MiniLM L6 v2 (all) 22M 384
mpnet base v1 (all) 110M 768
mpnet base v2 (all) 110M 768

RoBERTa large v1 (all) 355M 1024
DistilUSE base multilingual v1 (all) 134M 512
DistilUSE base multilingual v2 (all) 134M 512

Table 3: The model sizes and embedding dimensions of the supervised SEs shown in Figure 1. The model names
are clickable links. # is the number of parameters of the SE, and demb is the dimension of the sentence embedding.
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