
Proceedings of the 8th Workshop on Representation Learning for NLP (RepL4NLP 2023), pages 22–39
July 13, 2023 ©2023 Association for Computational Linguistics

Grammatical information
in BERT sentence embeddings as two-dimensional arrays

Vivi Nastase and Paola Merlo
Department of Linguistics

University of Geneva
Paola.Merlo@unige.ch, vivi.a.nastase@gmail.com

Abstract

Sentence embeddings induced with various
transformer architectures encode much seman-
tic and syntactic information in a distributed
manner in a one-dimensional array. We investi-
gate whether specific grammatical information
can be accessed in these distributed representa-
tions. Using data from a task developed to test
rule-like generalizations, our experiments on
detecting subject-verb agreement yield several
promising results. First, we show that while the
usual sentence representations encoded as one-
dimensional arrays do not easily support extrac-
tion of rule-like regularities, a two-dimensional
reshaping of these vectors allows various learn-
ing architectures to access such information.
Next, we show that various architectures can de-
tect patterns in these two-dimensional reshaped
sentence embeddings and successfully learn a
model based on smaller amounts of simpler
training data, which performs well on more
complex test data. This indicates that current
sentence embeddings contain information that
is regularly distributed, and which can be cap-
tured when the embeddings are reshaped into
higher dimensional arrays. Our results cast
light on representations produced by language
models and help move towards developing few-
shot learning approaches.

1 Introduction

Transformer-based models have taken the NLP
world, and not only, by storm in recent years. They
have even reached super-human performance on
standard benchmarks such as SuperGLUE (Wang
et al., 2019) and SQuAD (Rajpurkar et al., 2018),
and the output of GPT-* and chatGPT are often
worryingly difficult to distinguish from human-
produced data (Marcus, 2022; Susnjak, 2022). Con-
sidering such performance, the expectations are
high that the word and sentence representations
produced by transformer-based architectures can
also be useful for finer-grained tasks, such as those
that target specific grammatical phenomena.

Long-distance agreement, a specific and simple
grammatical phenomenon, is often used to test the
syntactic abilities of deep neural networks (Linzen
et al., 2016; Gulordava et al., 2018; Goldberg, 2019;
Linzen and Baroni, 2021). Long-distance agree-
ment tests are usually framed as a prediction task:
whether the model gives higher probability to the
correct form of the verb, despite intervening attrac-
tors – nouns appearing between the subject and the
verb. This decision is somehow implicit: the lan-
guage model gives a prediction based on the data it
has been built on.

In this paper, we investigate what happens when
we target subject-verb agreement explicitly in
BERT sentence embeddings for detecting subject-
verb agreement in French sentences. We work with
raw BERT sentence embeddings – not fine-tuned
for specific tasks – and investigate how this spe-
cific information is encoded in the distributed rep-
resentations. More specifically, we ask: Can we
detect subject-verb agreement in sentence embed-
dings? And can we manipulate the raw sentence
embeddings to make this phenomenon more easy
to detect? To address these questions, we adopt the
framework and task definition for rule-like learning
described in Merlo et al. (2021). In this framework,
learning a given linguistic property or rule is for-
mulated as a task of implicit rule detection in a
multiple-choice setup, based on input sequences
that share the target property. For the problem un-
der investigation here, each sequence consists of
sentences that share subject-verb agreement, but
have different distances between the subject and
the verb, different clause structures, and different
agreement patterns.

We show that BERT sentence embeddings en-
coded as a one-dimensional array are only success-
ful at detecting subject-verb agreement when pro-
vided with large amounts of data. Reshaping the
embeddings to two-dimensional arrays, and com-
bining these with VAE-based architectures, allows

22



a system to detect better the shared patterns in the
input sequences, while relying on much smaller
amounts of simpler data. These results open up
new avenues of exploration for few-shot learning
(Fei-Fei et al., 2006; Brown et al., 2020; Schick
and Schütze, 2021). They also support further anal-
yses of more disentangled representations, those
representations that encode underlying rule-like
generalisations, typical of human knowledge repre-
sentation, but not of neural networks (Sablé-Meyer
et al., 2021). The contributions of this paper are:

1. We show that that there are higher-dimension
patterns that encode syntactic phenomena in
BERT sentence embeddings, beyond the one-
dimensional array representation that is read-
ily available from the transformer output.

2. We show that, used together with VAE-based
architectures, two-dimensional reshapings of
these representations facilitate the discovery
of patterns that encode specific targeted gram-
matical phenomena.

3. We show that, through the 2D-ed representa-
tions, we get better access to encoded patterns,
and can detect better the targeted grammati-
cal phenomenon when training with a smaller
amount of simpler data.

The code and the data are available
here: https://github.com/CLCL-Geneva/
BLM-SNFDisentangling.

Terminology Sentence embeddings can be read
from the output of BERT systems as a 1×N vector
(N usually 768 or 1024). This can be viewed as the
projection of the sentence into an N-dimensional
space. In this paper, we use the word dimensions
to refer to the shape of the data structure used to
represent the sentence embeddings. In particular,
we use one-dimensional array to refer to the 1 ×
N vector sentence representation obtained directly
from BERT, and 2D representations to refer to the
2D reshaped (Rows× Columns) array.

2 Related work

Producing sentence representations is a non-trivial
issue, mainly because of the structural grammatical
and semantic relations they express and their vary-
ing complexity and length (Stevenson and Merlo,
2022). The deep learning framework has allowed
for a variety of elegant solutions to explicitly learn

sentence representations or to induce them as a
side-effect or modeling of a more complex prob-
lem (Mikolov et al., 2013; Pennington et al., 2014;
Bojanowski et al., 2017; Peters et al., 2018). Trans-
former architectures, such as BERT (Devlin et al.,
2019), have provided one such solution, where the
representation of an input text as a one-dimensional
array (usually 1x768 or 1x1024 for the large ver-
sions of the model) can be readily obtained from
the output of the model. Depending how the system
is trained, the sentence embedding can be obtained
from the encoding of the [CLS] token, or as a com-
bination of the embeddings of the tokens in the
sentence.

Sentence transformers (Reimers and Gurevych,
2019) implement architecture and training regime
changes on BERT to optimize sentence embed-
dings for downstream tasks. Nikolaev and Padó
(2023) analyze the relation between specific sen-
tence properties (e.g. the contribution of different
POS) and the geometry of the embedding space of
sentence transformers.

Whether obtained from sentence transformers or
directly from the output of a BERT-based system,
sentence embeddings have been shown to capture
information about syntactic and semantic proper-
ties. For example, Manning et al. (2020) show that
attention heads capture information about depen-
dency relations in transformer models, and Thrush
et al. (2020) show the BERT representations con-
tain important information about argument struc-
ture and the meaning of verbs.

Subject-verb agreement is one of the phenom-
ena used to probe a deep-learning system’s syn-
tactic abilities. While it is a simple word-level
phenomenon, it encodes long-distance relations be-
tween words and requires knowledge of structural
sentence properties to be correctly learned. Gold-
berg (2019) shows that sentence embeddings cap-
ture this property, by testing the language model
learned by BERT in predicting the contextually
appropriate form of the verb. Linzen and Baroni
(2021) include an overview of work that analyzes
deep-learning models on this task. While the mod-
els tested show high performance in predicting the
contextually correct form of a verb, they are guided
– and misled – by biases within the corpus on which
they were trained, e.g. they pay undue attention
to the first noun in the sentence. Linzen and Ba-
roni also include a survey of work that probe deep
learning models to understand how grammatical

23

https://github.com/CLCL-Geneva/BLM-SNFDisentangling
https://github.com/CLCL-Geneva/BLM-SNFDisentangling


information is encoded. Giulianelli et al. (2018);
Conneau et al. (2018); McCoy et al. (2018) show
that specific grammatical information – such as the
plurality of the subject, the maximal depth of the
parse tree of the sentence, the verb auxiliaries – can
be decoded from the sentence encodings (or the hid-
den state) of the respective systems. Lakretz et al.
(2021) analyze the actual architecture of an LSTM
language model (Gulordava et al., 2018), and track
the impact of each unit on the long-distance agree-
ment performance. They uncover a combination of
a sparse mechanism – two units – and a larger dis-
tributed circuit that together keep track of number
and syntactic structure.

Lasri et al. (2022) focus on how BERT encodes
grammatical number in English and how this infor-
mation is used for performing number agreement.
The focus is on word embeddings and quantify-
ing how much number information they encode at
various layers of the BERT architecture. Using a
combination of probing approaches, they discover
that subjects and predicates embeddings do encode
number information, but at different layers. Further
investigations into where and how the number infor-
mation is shared reveals that number information
is not directly shared, but rather passed through
intermediate tokens.

We also target BERT embeddings to investigate
the subject-verb agreement property. Rather than
looking at properties of word/token embeddings,
we analyze sentence embeddings as the embed-
dings of the special [CLS] token. We investigate
how accessible the number agreement is in raw
BERT sentence embeddings in several steps:

• test whether the subject-verb agreement rule
can be recovered through the sentence repre-
sentation

• test whether different shapes of the sentence
embedding – 1D and various 2D forms – make
the targeted rule more easy to find

• test these different shapes of sentence em-
beddings with several encode-decoder archi-
tectures, based on variational autoencoders
(Kingma and Welling, 2013).

3 Sentence representations for detecting
subject-verb agreement

3.1 Data
Specific grammatical phenomena are often studied
on specifically designed or selected datasets (e.g.

CONTEXTS TEMPLATE
1 NP-sg PP1-sg VP-sg
2 NP-pl PP1-sg VP-pl
3 NP-sg PP1-pl VP-sg
4 NP-pl PP1-pl VP-pl
5 NP-sg PP1-sg PP2-sg VP-sg
6 NP-pl PP1-sg PP2-sg VP-pl
7 NP-sg PP1-pl PP2-sg VP-sg
8 NP-pl PP1-pl PP2-sg VP-pl

ANSWER SET
1 NP-sg PP1-sg et NP2 VP-sg Coord
2 NP-pl PP1-pl NP2-sg VP-pl correct
3 NP-sg PP1-sg VP-sg WNA
4 NP-sg PP1-sg PP2-sg VP-pl AE
5 NP-pl PP1-sg PP1-sg VP-pl WN1
6 NP-pl PP1-pl PP2-pl VP-pl WN2

Figure 1: BLM instances for verb-subject agreement,
with two attractors. WNA=wrong nr. of attractors;
AE=agreement error; WN1=wrong nr. for 1st attractor
(N1); WN2=wrong nr. for 2nd attractor (N2).

EXAMPLE OF CONTEXTS
1 The vase with the flower leaks.
2 The vases with the flower leak.
3 The vase with the flowers leaks.
4 The vases with the flowers leak.
5 The vase with the flower from the garden leaks.
6 The vases with the flower from the garden leak.
7 The vase with the flowers from the garden leaks.
8 ???

EXAMPLE OF ANSWERS
The vase with the flower and the garden leaks. Coord
The vases with the flowers from the garden leak. Correct
The vase with the flower leaks. WNA
The vase with the flower from the garden leak. AE
The vases with the flower from the garden leak. WN1
The vases with the flowers from the gardens leak. WN2

Figure 2: Examples of actual sentences of type I data
(original in French).

(Nikolaev and Padó, 2023; Linzen et al., 2016)).
We use BLM-AgrF (An et al., 2023). The structure
of each problem in this task and dataset is inspired
from RPM visual pattern tests – Raven Progressive
Matrices – where one problem consists of over-
lapping rules the solver must detect (Raven, 1938;
Zhang et al., 2019). A Blackbird Language Matrix
(BLM) problem (Merlo et al., 2021) for subject-
verb agreement consists of a context set of seven
sentences that share the subject-verb agreement
phenomenon, but differ in other aspects – e.g. num-
ber of intervening attractors between the subject
and the verb, different grammatical numbers for
these attractors, and different clause structures. An
example template is illustrated in Figure 1, and an
actual example in Figure 2.

The dataset comprises three subsets, of increas-
ing lexical complexity. Type I data is generated

24



based on manually provided seeds, and a template
that captures the rules mentioned above. Type II
data is generated based on Type I data, by introduc-
ing lexical variation with the aid of a transformer,
by generating alternatives for masked nouns. Type
III data is generated by combining sentences from
different instances from the Type II data. This will
allow us to investigate the impact of lexical varia-
tion on the ability of a system to detect grammatical
patterns.

Each subset contains an equal number of in-
stances comprising three clause structures (we in-
clude complete instances – in French – in Appendix
A.1). These structural variations alter the distance
and relative depth of the subject and verb to pro-
duce a variety of conditions, to allow us to investi-
gate how the subject-verb agreement information
is encoded in BERT sentence embeddings.

Each problem is paired with a set of candidate
answers. To allow for probing the learned model,
apart from the correct answer, the answer sets con-
tain negative examples built by corrupting some
of the generating rules. This helps investigate the
kind of information and structure learned, and the
type of mistakes a system is prone to.

Table 1 shows the data statistics. Each of the
three subsets of datasets is split 90:10 into train and
test subsets, which are provided with the data. We
use 20% of the train data for development.

dataset number of problems train:test split
Type I 2304 90:10
Type II 38400 90:10
Type III 38400 90:10

Table 1: Data statistics. The different types of data
reflect different amounts of lexical variation within a
problem instance.

3.2 Sentence representations

We investigate BERT sentence representations in
a series of architectures designed to test whether
we can access the relevant information for subject-
verb agreement detection. We obtain the sentence
embedding from the last layer of BERT, as the
embedding of the [CLS] special token.

Figure 3 shows the summary of the architectures
explored. Details of the architecture parameters are
in Appendix A.2.

To investigate the impact of 2D-ing the sentence
embeddings, the input sequences are given as a

FFNN baseline

CNN baseline

encoder-decoder

dual VAE

Figure 3: Architecture variations for exploring sentence
embeddings

stack of 1D or 2D-ed sentence embeddings. This
sequence of architectures also allows us to test the
impact of additional abstracting steps – through
compression into a latent VAE layer – for accessing
patterns that encode the desired information.1

FFNN baseline The FFNN baseline is a three-
layer feed-forward neural network. It transforms
the sequence of the seven context sentence embed-
dings into a 1D-tensor, which is passed through
three fully-connected layers, and outputs a vector
that we take to represent the embedding of the an-
swer sentence. This architecture allows the system
to find patterns within and across sentences through
the nodes in the successive layers.

The learning objective is to maximize the prob-
ability of the correct answer from the candidate
answer set. Because the incorrect answers in the an-
swer set are specifically designed to be minimally
different from the correct answer, we implement
the objective through the max-margin loss function.
This function combines the scores of the correct
and erroneous ones relative to the sentence embed-
ding predicted by the system. We first compute a

1The code is available here: https://github.com/
CLCL-Geneva/BLM-SNFDisentangling

25

https://github.com/CLCL-Geneva/BLM-SNFDisentangling
https://github.com/CLCL-Geneva/BLM-SNFDisentangling


score for the embedding ei of each candidate an-
swer ai in the answer set A with respect to the
predicted sentence embedding epred as the cosine
of the angle between the respective vectors:

score(ei, epred) = cos(ei, epred)

The loss uses the max-margin between the score
for the correct answer ec and for each of the incor-
rect answers ei:

La =
∑

ei

[1−score(ec, epred)+score(ei, epred)]
+

For prediction, the answer with the highest score
from a candidate set is taken as the correct answer.

CNN baseline The CNN baseline consists of N
convolutional steps, followed by a linear layer to
compress the output to the desired dimensions. The
input consists of a stack of sentence representations.
We use two variations of this architecture: (i) Base-
line_CNN_1DxSeq: for a stack of 1D sentence
representations, there are three 2D convolutional
steps, which use kernels of size 3x3; (ii) Base-
line_CNN_{NxM}: for a stack of (NxM) 2D-ed
sentence representations, there is one 3D convolu-
tional layer, with a kernel size 3x15x15. The size of
the kernels was set after preliminary experiments.
For both variations, the kernels allow the system
to detect patterns within a sentence representation
and across the sequence.

This system uses the same max-margin loss func-
tion as the FFNN baseline system.

Encoder-decoder This system is essentially
a variational autoencoder (VAE) (Kingma and
Welling, 2013; Kingma et al., 2015), but it does
not reconstruct the input, rather it constructs an an-
swer. For each of the input variations, the encoder
consists of a similar architecture as the correspond-
ing CNN baseline2, but the output of the linear
layer is the size L of the latent layer (2× L to rep-
resent the mean and standard deviation for a vector
of length L). A new vector (of size L) is sam-
pled using the output of the encoder as the means
and standard deviation of L normal distributions,
using the reparametrization trick (Kingma et al.,
2015). This vector is then unpacked through a de-
coder to produce a sentence representation. The

2Because the FFNN baseline performed very well, and this
set-up provides a full receptive field, we also had an encoder-
decoder variation using FFNN but it performed much worse
than the other variations, and we do not report on it here.

architecture of the decoder mirrors as close as pos-
sible the architecture of the encoder. It differs in
that it outputs a single sentence representation, and
not the representation of a sequence of sentences.
The two variations are named VAE_1DxSeq and
VAE_{MxN} in the upcoming results tables.

The training objective is to maximize the prob-
ability of the correct answer, while improving the
approximation of the posterior distribution on the
latent layer. This is implemented through a loss
function that combines the max-margin loss on the
constructed answer (as for previous architectures),
with an additional factor – the regularization factor
on the latent layer, typical of VAE models:

Ll = KL(qenc(z|x) ∥ p(z))

where qenc is the approximate posterior distribution
of p, p(z) = N (0, 1) and qenc(z|x) = N (µx, σx),
where the [µx;σx] is the latent vector output by the
encoder for the input vector x.

The final loss function is:

Lenc−dec = La + β ∗ Ll

The β coefficient is used to push for disentangle-
ment on the latent layer of a VAE (Higgins et al.,
2016). For the reported experiments β = 1.

Dual VAE The dual VAE adds a decoder to re-
construct the input to the encoder-decoder sys-
tem, which mirrors the encoder in architec-
ture and parameters. The two variations are
Dual_VAE_1DxSeq and Dual_VAE_{NxM}.

The training objective is to maximize both the
probability of the answer and the reconstructed in-
put, and improve the approximation of the posterior
distribution on the latent layer. Essentially, we add
a factor to the loss function of the encoder-decoder
architecture, reflecting the reconstruction loss:

LdV AE = La + α ∗ Lrecon + β ∗ Ll

where α is a coefficient that can control the contri-
bution of the input reconstruction signal. For the
experiments reported, α = 0.01, and serves as a
scaling factor, to bring the value of the reconstruc-
tion loss within the same magnitude as the answer
loss La. The reconstruction loss is computed as the
mean-square error between the representation of
the input sequence (x) and the reconstructed one
(x′): Lrecon = MSE(x, x′)

26



Figure 4: (best seen in color) F1 scores (averages over five runs) on the FFNN baseline and CNN, enc-dec and dual
VAE systems with 48x16 2D-ed sentence embeddings. The graphs shows the difference in F1 between the systems
relative to the reference baseline (FFNN). Each panel includes results on training on the same amount of data (left)
and training on full data (right).

4 Experiments

We report experiments on seven systems – the base-
line FFNN, and two variations (the input as a stack
of 1D or 2D sentence representations) for each of
the other three architectures.

Our aim was to explore raw BERT sentence em-
beddings, and not variations fine-tuned for spe-
cific tasks. The results reported here are based
on sentence embeddings obtained using BERTTo-
kenizer and BERTModel from the transformers
Python library, using the pretrained "BERT-base-
multilingual-cased" model3.4

Preliminary experiments have been used to deter-
mine the kernel size for processing the 2D and 3D
tensors with the stack of 1D and 2D-ed sentence
embeddings respectively. The optimal kernel for
2D tensors was 3x3, and for the 3D tensors was
3x15x15. This large kernel size imposes specific
restrictions on the dimensions of the 2D-ed sen-
tence embeddings. Because a sentence embedding
is a one-dimensional array of length 768, there are

3https://huggingface.co/
bert-base-multilingual-cased

4We have run preliminary experiments with French-
specific sentence embeddings using FlauBERT (Le et al.,
2020). The results were lower than when using a multilin-
gual cased BERT language model.

only 4 possible 2D values, where both dimensions
are greater than 15 (16x48, 24x32, 32x24, 48x16).

We have also explored the size of the latent layer
(5:25, step 5), and chosen the latent size 5. All
systems used a learning rate of 0.001 and Adam
optimizer, and batch size 100. For the baselines and
experiments on the full training set for type II and
type III data the training was done for 50 epochs,
and for type I data and the sameTrain set-up, the
training was done for 120 epochs.

The experiments were run on an HP PAIR Work-
station Z4 G4 MT, with an Intel Xeon W-2255
processor, 64G RAM, and a MSI GeForce RTX
3090 VENTUS 3X OC 24G GDDR6X GPU.

4.1 Results

Figures 4 and 5 show the main experimental results.
All results represent F1 averages over five runs.
More details are provided in Appendix A.3.

Figure 4 shows the difference in F1 between
the FFNN baseline (the black lines) and the in-
creasingly complex architectures. Each row corre-
sponds to the data type used for training, and the
columns to the data type used for testing. Each
panel shows the test results of models trained on
the same amount of data, on the left, and training
on full data, on the right.

27

https://huggingface.co/bert-base-multilingual-cased
https://huggingface.co/bert-base-multilingual-cased


Figure 5: Impact of different reshapings: F1 results (averages over five runs) on (16x48), (24x32), (32x24), (48x16)
reshaping, using the dual VAE architecture, and trained on similar amounts of training data.

Figure 5 shows the results obtained using dif-
ferent 2D transformations of the one-dimensional
tensor BERT sentence embeddings with the dual
VAE system, when training on the same amount
of data (2073 instances – the amount available for
type I data). Overall, the best-performing embed-
ding is the one reshaped in a 48x16 matrix, the
setting then used for the results reported in the sys-
tem study, shown in Figure 4.

Figure 7 shows the impact of the amount of train-
ing data on the performance of the models. The
results reported are average F1 scores over 5 runs,
using the dual-VAE architecture with 48x16 sen-
tence embedding.

4.2 Discussion

Impact of 2D-ed representations and VAE-based
architectures In Figure 4, the horizontal black
lines represent the performance of the Baseline
FFNN system, and the bars show the relative per-
formance of the system variations with 1D and
2D-ed sentence representations.

When using the full training data the results on
type II and type III subsets are very high. This
is in line with ML theory, as input with more vari-
ety leads to better-performing models, when given
enough training data. The low results of the base-
lines and the systems using the 1D representations
on the restricted training set-up (2073 instances –
the available amount of training+validation data for
type I – for all subsets) shows that these systems do
not access the most relevant information from the
sentence embedding for our targeted phenomenon.

Pairwise comparisons of similar architectures
with different types of input show that 2D-ed rep-
resentations lead to better results in almost all set-
tings, particularly in the harsher training scenario
with limited data (the left bar group in each plot).

The progression of architectures – from the CNN

to the dual VAE – also show an increase in re-
sults, for both types of input representations. The
phenomenon is more evident – and more useful
– particularly for the restricted training scenario.
It shows that forcing the representations to more
compressed and abstract forms is useful for distill-
ing the information useful to detect our targeted
grammatical phenomenon.

The most interesting result is a combination of
the impact of the 2D-ed representations and the
various architectures: as the panels corresponding
to training on type I data (first row in Figure 4)
show, the combination of the dual VAE architecture
with 2D-ed sentence embedding leads to the best
results when testing on type II and type III data,
which are lexically more complex than type I data.
This shows that with a good combination of input
representation and system, a model can find robust
patterns even in a smaller amount of simple data.

Impact of 2D-ing the sentence representation
The results presented in Figure 4 show that the
48x16 2D version of the sentence representation
leads to better results than the 1x768 version. Fig-
ure 5 shows the impact of various 2D variations,
when training the systems on the same amount of
training+validation data. The results are obtained
with the dual VAE architecture. The (overall) best
performing representation from the 4 variations is
the 48x16 version. In fact, for the N ×M 2D-ing,
the results are better the smaller M becomes. This
indicates that information is somehow uniformly
distributed in a BERT sentence embedding, within
subsequences of length close to 16 – at least the
information relevant to our particular subject-verb
agreement task.

Impact of training data Figure 4 shows that the
2D-ed sentence representation combined with the
dual VAE architecture leads to the best results, par-

28



Figure 6: (best seen in color) Error analysis on the four systems trained with the same amount of data. The y-axis is
the percentage of the error relative to the size of the test set (i.e. downward bars indicate an improvement.)

ticularly when training the systems on the same
amount of training+validation data. We further an-
alyze the learning curves when varying the amount
of training+validation data from 50 to 2073 (split
80:20 into training and validation data). Figure 7
shows these results.

Figure 7: (best seen in color) Training data analysis
using the the Dual_VAE_48x16 system

The curves corresponding to training on type I

data – in shades of purple – approach the higher
performance fastest, showing that they are able to
exploit smaller amounts of data better. The lexical
variations in type II and type III data seem to ob-
fuscate the targeted patterns, as they require more
training data.

4.3 Error Analyses

The error analysis shown in Figure 6 clearly shows
that errors are almost always of the same kind —
the assignment of the wrong grammatical number
to the second attractor, closer to the verb— thus
performing a local kind of agreement instead of
the correct longer-distance structural agreement.
These types of errors are frequent in humans too
(Linzen and Leonard, 2018). It can be seen that the
dual-VAE corrects these errors to a great degree
(and greater than the other models), thus showing
that it can detect the non-local patterns better than
the other architectures. The combination of 2D-ing
the sentence embedding and the large size of the
kernel allows the system to find more distant pat-
terns in the sentence embedding, thus connecting
more distant tokens.

5 Conclusion

We have proposed and investigated variations of
BERT sentence representations for the task of iden-

29



tifying the rule of subject-verb agreement and some
of its properties in a dataset consisting of sequences
of sentences that instantiate these underlying rules.
BERT sentence embeddings, as 1D arrays, have
been successfully used for a variety of tasks, but the
information they encode about specific phenomena
is distributed over the vector. Reshaping the sen-
tence representation into two-dimensional inputs
leads to improved results, and an additional step of
abstracting these 2D-ed sentence embeddings leads
to further improvements for the task. These more
abstracted 2D-ed embeddings also learn a robust
model based on a smaller amount of simpler train-
ing data, while showing good performance on the
more lexically-complex data.

We plan to explore whether BERT sentence em-
bedding may have even higher-dimension patterns,
and whether such nD-ed BERT sentence represen-
tation can be used to detect other grammatical or
semantic phenomena. We also plan to directly dis-
till 2D sentence representation in more compact
and disentangled representation, to encode more
explicitly some of the distributed information in
these embeddings.

Limitations

The experiments reported were performed on a
dataset of French sentences, with a particular or-
ganization: sequences of sentences as input, each
with a slightly different structure but sharing the
subject-verb agreement rule. All sentences in the
input sequence are processed together. In future
work we plan to separate the distillation of rules
from a sentence representation from the processing
of the sequence.

We have investigated only part of the parameters
in the proposed architectures. In particular, the
β coefficient in the encoder-decoder and the dual
VAE architectures was set to 1. Higher values may
lead to more disentangled representations on the
latent layer.

Ethics Statement

To the best of our knowledge, there are no ethics
concerns with this paper.

Acknowledgments

We gratefully acknowledge the partial support of
this work by the Swiss National Science Foun-
dation, through grants #51NF40_180888 (NCCR

Evolving Language) and SNF Advanced grant
TMAG-1_209426 to PM.

References
Aixiu An, Chunyang Jiang, Maria A. Rodriguez, Vivi

Nastase, and Paola Merlo. 2023. BLM-AgrF: A new
French benchmark to investigate generalization of
agreement in neural networks. In Proceedings of the
17th Conference of the European Chapter of the As-
sociation for Computational Linguistics, pages 1363–
1374, Dubrovnik, Croatia. Association for Computa-
tional Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. TACL, 5:135–146.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Alexis Conneau, German Kruszewski, Guillaume Lam-
ple, Loïc Barrault, and Marco Baroni. 2018. What
you can cram into a single $&!#* vector: Probing
sentence embeddings for linguistic properties. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2126–2136, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Li Fei-Fei, R. Fergus, and P. Perona. 2006. One-
shot learning of object categories. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
28(4):594–611.

Mario Giulianelli, Jack Harding, Florian Mohnert,
Dieuwke Hupkes, and Willem Zuidema. 2018. Under
the hood: Using diagnostic classifiers to investigate
and improve how language models track agreement
information. In Proceedings of the 2018 EMNLP
Workshop BlackboxNLP: Analyzing and Interpreting

30

https://aclanthology.org/2023.eacl-main.99
https://aclanthology.org/2023.eacl-main.99
https://aclanthology.org/2023.eacl-main.99
https://transacl.org/ojs/index.php/tacl/article/view/999
https://transacl.org/ojs/index.php/tacl/article/view/999
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1109/TPAMI.2006.79
https://doi.org/10.1109/TPAMI.2006.79
https://doi.org/10.18653/v1/W18-5426
https://doi.org/10.18653/v1/W18-5426
https://doi.org/10.18653/v1/W18-5426
https://doi.org/10.18653/v1/W18-5426


Neural Networks for NLP, pages 240–248, Brussels,
Belgium. Association for Computational Linguistics.

Yoav Goldberg. 2019. Assessing bert’s syntactic abili-
ties. arXiv preprint arXiv:1901.05287.

Kristina Gulordava, Piotr Bojanowski, Edouard Grave,
Tal Linzen, and Marco Baroni. 2018. Colorless green
recurrent networks dream hierarchically. In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1195–1205. Association for Computational Linguis-
tics.

Irina Higgins, Loic Matthey, Arka Pal, Christopher
Burgess, Xavier Glorot, Matthew Botvinick, Shakir
Mohamed, and Alexander Lerchner. 2016. beta-vae:
Learning basic visual concepts with a constrained
variational framework.

Diederik P Kingma, Tim Salimans, and Max Welling.
2015. Variational dropout and the local reparame-
terization trick. In Advances in Neural Information
Processing Systems, volume 28. Curran Associates,
Inc.

Diederik P Kingma and Max Welling. 2013. Auto-
encoding variational bayes. arXiv preprint
arXiv:1312.6114.

Yair Lakretz, Dieuwke Hupkes, Alessandra Vergallito,
Marco Marelli, Marco Baroni, and Stanislas Dehaene.
2021. Mechanisms for handling nested dependen-
cies in neural-network language models and humans.
Cognition.

Karim Lasri, Tiago Pimentel, Alessandro Lenci, Thierry
Poibeau, and Ryan Cotterell. 2022. Probing for the
usage of grammatical number. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
8818–8831, Dublin, Ireland. Association for Compu-
tational Linguistics.

Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Max-
imin Coavoux, Benjamin Lecouteux, Alexandre Al-
lauzen, Benoît Crabbé, Laurent Besacier, and Di-
dier Schwab. 2020. FlauBERT : des modèles de
langue contextualisés pré-entraînés pour le français
(FlauBERT : Unsupervised language model pre-
training for French). In Actes de la 6e conférence
conjointe Journées d’Études sur la Parole (JEP, 33e
édition), Traitement Automatique des Langues Na-
turelles (TALN, 27e édition), Rencontre des Étudi-
ants Chercheurs en Informatique pour le Traitement
Automatique des Langues (RÉCITAL, 22e édition).
Volume 2 : Traitement Automatique des Langues Na-
turelles, pages 268–278, Nancy, France. ATALA et
AFCP.

Tal Linzen and Marco Baroni. 2021. Syntactic structure
from deep learning. Annual Review of Linguistics,
7(1):195–212.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of LSTMs to learn syntax-
sensitive dependencies. Transactions of the Associa-
tion of Computational Linguistics, 4(1):521–535.

Tal Linzen and Brian Leonard. 2018. Distinct patterns
of syntactic agreement errors in recurrent networks
and humans. In Proceedings of the 40th Cognitive
Science Society.

Christopher D. Manning, Kevin Clark, John Hewitt,
Urvashi Khandelwal, and Omer Levy. 2020. Emer-
gent linguistic structure in artificial neural networks
trained by self-supervision. Proceedings of the Na-
tional Academy of Sciences, 117:30046 – 30054.

Gary Marcus. 2022. The dark risk of large language
models. WIRED.

R Thomas McCoy, Robert Frank, and Tal Linzen. 2018.
Revisiting the poverty of the stimulus: Hierarchical
generalization without a hierarchical bias in recurrent
neural networks. In Proceedings of the 40th Annual
Conference of the Cognitive Science Society. Austin,
TX: Cognitive Science Society.

Paola Merlo, Aixiu An, and Maria A. Rodriguez. 2021.
Blackbird’s language matrices (BLM): a new bench-
mark to investigate disentangled generalisation in
neural networks.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
In Advances in Neural Information Processing Sys-
tems, volume 26. Curran Associates, Inc.

Dmitry Nikolaev and Sebastian Padó. 2023. Represen-
tation biases in sentence transformers. In Proceed-
ings of the 17th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 3701–3716, Dubrovnik, Croatia. Association
for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings EMNLP), pages 1532–
1543.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proc. of NAACL.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for SQuAD. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 784–789,
Melbourne, Australia. Association for Computational
Linguistics.

John C. Raven. 1938. Standardization of progressive
matrices. British Journal of Medical Psychology,
19:137–150.

31

https://doi.org/10.18653/v1/N18-1108
https://doi.org/10.18653/v1/N18-1108
https://proceedings.neurips.cc/paper/2015/file/bc7316929fe1545bf0b98d114ee3ecb8-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/bc7316929fe1545bf0b98d114ee3ecb8-Paper.pdf
https://doi.org/202110.1016/j.cognition.2021.104699
https://doi.org/202110.1016/j.cognition.2021.104699
https://doi.org/10.18653/v1/2022.acl-long.603
https://doi.org/10.18653/v1/2022.acl-long.603
https://aclanthology.org/2020.jeptalnrecital-taln.26
https://aclanthology.org/2020.jeptalnrecital-taln.26
https://aclanthology.org/2020.jeptalnrecital-taln.26
https://aclanthology.org/2020.jeptalnrecital-taln.26
https://doi.org/10.1146/annurev-linguistics-032020-051035
https://doi.org/10.1146/annurev-linguistics-032020-051035
https://www.mitpressjournals.org/doi/abs/10.1162/tacl_a_00115
https://www.mitpressjournals.org/doi/abs/10.1162/tacl_a_00115
https://www.wired.com/story/large-language-models-artificial-intelligence/
https://www.wired.com/story/large-language-models-artificial-intelligence/
https://doi.org/10.48550/ARXIV.2205.10866
https://doi.org/10.48550/ARXIV.2205.10866
https://doi.org/10.48550/ARXIV.2205.10866
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://aclanthology.org/2023.eacl-main.268
https://aclanthology.org/2023.eacl-main.268
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124


Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Mathias Sablé-Meyer, Joël Fagot, Serge Caparos, Timo
van Kerkoerle, Marie Amalric, and Stanislas De-
haene. 2021. Sensitivity to geometric shape regu-
larity in humans and baboons: A putative signature
of human singularity. Proceedings of the National
Academy of Sciences, 118(16).

Timo Schick and Hinrich Schütze. 2021. Exploiting
cloze-questions for few-shot text classification and
natural language inference. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 255–269, Online. Association for Computa-
tional Linguistics.

Suzanne Stevenson and Paola Merlo. 2022. Beyond the
benchmarks: Toward human-like lexical representa-
tions. Frontiers of Artificial Intelligence, 5:796741.

Teo Susnjak. 2022. ChatGPT: The end of online exam
integrity?

Tristan Thrush, Ethan Wilcox, and Roger Levy. 2020.
Investigating novel verb learning in BERT: Selec-
tional preference classes and alternation-based syn-
tactic generalization. In Proceedings of the Third
BlackboxNLP Workshop on Analyzing and Interpret-
ing Neural Networks for NLP, pages 265–275, On-
line. Association for Computational Linguistics.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2019. Superglue: A stickier
benchmark for general-purpose language understand-
ing systems. In Advances in Neural Information
Processing Systems, volume 32. Curran Associates,
Inc.

Chi Zhang, Feng Gao, Baoxiong Jia, Yixin Zhu, and
Song-Chun Zhu. 2019. Raven: A dataset for rela-
tional and analogical visual reasoning. In Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

32

https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.1073/pnas.2023123118
https://doi.org/10.1073/pnas.2023123118
https://doi.org/10.1073/pnas.2023123118
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/doi: 10.3389/frai.2022.796741
https://doi.org/doi: 10.3389/frai.2022.796741
https://doi.org/doi: 10.3389/frai.2022.796741
https://arxiv.org/abs/2212.09292
https://arxiv.org/abs/2212.09292
https://doi.org/10.18653/v1/2020.blackboxnlp-1.25
https://doi.org/10.18653/v1/2020.blackboxnlp-1.25
https://doi.org/10.18653/v1/2020.blackboxnlp-1.25
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf


A Supplementary Materials
A.1 Type I instance examples

Main clause
1 L’ordinateur avec le programme est en panne.
2 Les ordinateurs avec le programme sont en panne.
3 L’ordinateur avec les programmes est en panne.
4 Les ordinateurs avec les programmes sont en panne.
5 L’ordinateur avec le programme de l’expérience est en panne.
6 Les ordinateurs avec le programme de l’expérience sont en panne.
7 L’ordinateur avec les programmes de l’expérience est en panne.
8 Les ordinateurs avec les programmes de l’expérience sont en panne.
Completive clause
1 Jean suppose que l’ordinateur avec le programme est en panne.
2 Jean suppose que les ordinateurs avec le programme sont en panne.
3 Jean suppose que l’ordinateur avec les programmes est en panne.
4 Jean suppose que les ordinateurs avec les programmes sont en panne.
5 Jean suppose que l’ordinateur avec le programme de l’expérience est en panne.
6 Jean suppose que les ordinateurs avec le programme de l’expérience sont en panne.
7 Jean suppose que l’ordinateur avec les programmes de l’expérience est en panne.
8 Jean suppose que les ordinateurs avec les programmes de l’expérience sont en panne.
Relative clause
1 L’ordinateur avec le programme dont Jean se servait est en panne.
2 Les ordinateurs avec le programme dont Jean se servait sont en panne.
3 L’ordinateur avec les programmes dont Jean se servait est en panne.
4 Les ordinateurs avec les programmes dont Jean se servait sont en panne.
5 L’ordinateur avec le programme de l’expérience dont Jean se servait est en panne.
6 Les ordinateurs avec le programme de l’expérience dont Jean se servait sont en panne.
7 L’ordinateur avec les programmes de l’expérience dont Jean se servait est en panne.
8 Les ordinateurs avec les programmes de l’expérience dont Jean se servait sont en panne.

Answer set for problem constructed from lines 1-7 of the main clause sequence
1 L’ordinateur avec le programme et l’experiénce est en panne. N2 coord N3
2 Les ordinateurs avec les programmes de l’experiénce sont en panne. correct
3 L’ordinateur avec le programme est en panne. wrong number of attractors
4 L’ordinateur avec les programmes de l’experiénce sont en panne. agreement error
5 Les ordinateurs avec le programme de l’experiénce sont en panne. wrong nr. for 1st attractor noun (N1)
6 Les ordinateurs avec les programmes des experiénces sont en panne. wrong nr. for 2nd attractor noun (N2)

Figure 8: BLM-AgrF instances for verb-subject agreement, with two attractors (programme, experiénce), and three
clause structures. And candidate answer set for a problem constructed from lines 1-7 of the main clause sequence.

A.2 System architecture details
Baseline_FFNN
===================================================================================
Layer (type:depth-idx) Output Shape Param #
===================================================================================
BaselineFFNN [100, 768] --
--Linear: 1-1 [100, 1536] 8,259,072
--Linear: 1-2 [100, 1536] 2,360,832
--Linear: 1-3 [100, 768] 1,180,416
===================================================================================
Total params: 11,800,320
Trainable params: 11,800,320
Non-trainable params: 0
Total mult-adds (G): 1.18
===================================================================================
Input size (MB): 2.15
Forward/backward pass size (MB): 3.07
Params size (MB): 47.20
Estimated Total Size (MB): 52.42
===================================================================================

33



Baseline_CNN_1DxSeq: CNN with stack of 1D sentence embeddings

===================================================================================
Layer (type:depth-idx) Output Shape Param #
===================================================================================
BaselineCNN_1DxSeq [100, 768] --
--Conv2d: 1-1 [100, 4, 5, 766] 40
--Conv2d: 1-2 [100, 8, 3, 764] 296
--Conv2d: 1-3 [100, 16, 1, 762] 1,168
--Linear: 1-4 [100, 768] 9,364,224
===================================================================================
Total params: 9,365,728
Trainable params: 9,365,728
Non-trainable params: 0
Total mult-adds (G): 1.11
===================================================================================
Input size (MB): 2.15
Forward/backward pass size (MB): 37.29
Params size (MB): 37.46
Estimated Total Size (MB): 76.91
===================================================================================

Baseline_CNN_48x16: CNN with 48x16 2D-ed sentence embedding

===================================================================================
Layer (type:depth-idx) Output Shape Param #
===================================================================================
BaselineCNN [100, 7, 768] --
--Conv3d: 1-1 [100, 32, 5, 34, 2] 21,632
--Linear: 1-2 [100, 768] 8,356,608
===================================================================================
Total params: 8,378,240
Trainable params: 8,378,240
Non-trainable params: 0
Total mult-adds (G): 1.57
===================================================================================
Input size (MB): 2.15
Forward/backward pass size (MB): 9.32
Params size (MB): 33.51
Estimated Total Size (MB): 44.98
===================================================================================

34



VAE_1DxSeq: encoder-decoder with stack of 1D sentence embeddings

===================================================================================
Layer (type:depth-idx) Output Shape Param #
===================================================================================
VariationalAutoencoder [100, 5] --
--Encoder: 1-1 [100, 5] --

--Conv2d: 2-1 [100, 4, 5, 766] 40
--Conv2d: 2-2 [100, 8, 3, 764] 296
--Conv2d: 2-3 [100, 16, 1, 762] 1,168
--Linear: 2-4 [100, 10] 121,930

--simpleSampling: 1-2 [100, 5] --
--Decoder_answer: 1-3 [100, 1, 1, 768] --

--Linear: 2-5 [100, 12192] 73,152
--ConvTranspose2d: 2-6 [100, 8, 1, 764] 392
--ConvTranspose2d: 2-7 [100, 4, 1, 766] 100
--ConvTranspose2d: 2-8 [100, 1, 1, 768] 13

===================================================================================
Total params: 197,091
Trainable params: 197,091
Non-trainable params: 0
Total mult-adds (M): 230.28
===================================================================================
Input size (MB): 2.15
Forward/backward pass size (MB): 54.40
Params size (MB): 0.79
Estimated Total Size (MB): 57.33
===================================================================================

VAE_48x16: encoder-decoder with 48x16 2D-ed sentence embeddings

===================================================================================
Layer (type:depth-idx) Output Shape Param #
===================================================================================
VariationalAutoencoder [100, 5] --
--Encoder: 1-1 [100, 5] --

--Conv3d: 2-1 [100, 32, 5, 34, 2] 21,632
--Linear: 2-2 [100, 10] 108,810

--simpleSampling: 1-2 [100, 5] --
--Decoder_answer: 1-3 [100, 1, 1, 48, 16] --

--Linear: 2-3 [100, 2176] 13,056
--ConvTranspose3d: 2-4 [100, 1, 1, 48, 16] 7,201

===================================================================================
Total params: 150,699
Trainable params: 150,699
Non-trainable params: 0
Total mult-adds (G): 1.30
===================================================================================
Input size (MB): 2.15
Forward/backward pass size (MB): 11.07
Params size (MB): 0.60
Estimated Total Size (MB): 13.82
===================================================================================

35



Dual_VAE_1DxSeq: dual VAE with stack of 1D sentence embeddings

===================================================================================
Layer (type:depth-idx) Output Shape Param #
===================================================================================
VariationalAutoencoder [100, 5] --
--Encoder: 1-1 [100, 5] --

--Conv2d: 2-1 [100, 4, 5, 766] 40
--Conv2d: 2-2 [100, 8, 3, 764] 296
--Conv2d: 2-3 [100, 16, 1, 762] 1,168
--Linear: 2-4 [100, 10] 121,930

--simpleSampling: 1-2 [100, 5] --
--Decoder_mirror: 1-3 [100, 1, 7, 768] --

--Linear: 2-5 [100, 12192] 73,152
--ConvTranspose2d: 2-6 [100, 8, 3, 764] 1,160
--ConvTranspose2d: 2-7 [100, 4, 5, 766] 292
--ConvTranspose2d: 2-8 [100, 1, 7, 768] 37

--Decoder_answer: 1-4 [100, 1, 1, 768] --
--Linear: 2-9 [100, 12192] 73,152
--ConvTranspose2d: 2-10 [100, 8, 1, 764] 392
--ConvTranspose2d: 2-11 [100, 4, 1, 766] 100
--ConvTranspose2d: 2-12 [100, 1, 1, 768] 13

===================================================================================
Total params: 271,732
Trainable params: 271,732
Non-trainable params: 0
Total mult-adds (M): 635.19
===================================================================================
Input size (MB): 2.15
Forward/backward pass size (MB): 95.37
Params size (MB): 1.09
Estimated Total Size (MB): 98.61
===================================================================================

36



Dual_Vae_48x16: dual VAE with 48x16 2D-ed sentence embeddings

===================================================================================
Layer (type:depth-idx) Output Shape Param #
===================================================================================
VariationalAutoencoder [100, 5] --
--Encoder: 1-1 [100, 5] --

--Conv3d: 2-1 [100, 32, 5, 34, 2] 21,632
--Linear: 2-2 [100, 10] 108,810

--simpleSampling: 1-2 [100, 5] --
--Decoder_mirror: 1-3 [100, 1, 7, 48, 16] --

--Linear: 2-3 [100, 10880] 65,280
--ConvTranspose3d: 2-4 [100, 1, 7, 48, 16] 21,601

--Decoder_answer: 1-4 [100, 1, 1, 48, 16] --
--Linear: 2-5 [100, 2176] 13,056
--ConvTranspose3d: 2-6 [100, 1, 1, 48, 16] 7,201

===================================================================================
Total params: 237,580
Trainable params: 237,580
Non-trainable params: 0
Total mult-adds (G): 12.92
===================================================================================
Input size (MB): 2.15
Forward/backward pass size (MB): 24.07
Params size (MB): 0.95
Estimated Total Size (MB): 27.17
===================================================================================

37



A.3 Detailed experimental results
Results on 2D-ing BERt sentence embeddings The detailed version of the results in Figure 5

TRAIN ON TEST ON 16X48 F1 (STD) 24X32 F1 (STD) 32X24 F1 (STD) 48X16 F1 (STD)
type I type I 0.9905 (0.0069) 0.9740 (0.0061) 0.9879 (0.0064) 0.9887 (0.0080)
type I type II 0.6682 (0.0035) 0.6683 (0.0041) 0.6815 (0.0021) 0.6855 (0.0028)
type I type III 0.5795 (0.0049) 0.5819 (0.0011) 0.6072 (0.0045) 0.6066 (0.0018)
type II type I 0.7732 (0.0283) 0.8355 (0.0137) 0.8632 (0.0089) 0.8242 (0.0065)
type II type II 0.6333 (0.0132) 0.6725 (0.0077) 0.6984 (0.0046) 0.6855 (0.0040)
type II type III 0.5431 (0.0069) 0.5689 (0.0024) 0.5952 (0.0058) 0.5969 (0.0046)
type III type I 0.5550 (0.0461) 0.6649 (0.0059) 0.7221 (0.0228) 0.7281 (0.0259)
type III type II 0.4947 (0.0218) 0.5474 (0.0076) 0.5884 (0.0053) 0.6096 (0.0064)
type III type III 0.4620 (0.0151) 0.5042 (0.0089) 0.5515 (0.0050) 0.5794 (0.0054)

Table 2: Analysis of 2D-ing the BERT sentence embeddings: F1 (std) scores for the four 2D combinations. The
highest value for each train/test combination highlighted in bold.

Results on system analysis The detailed version of the results in Figure 4

TRAIN ON TEST ON BASELINE_FFNN BASELINE_CNN
48X16

VAE_48X16 DUAL_VAE_48X16

TRAIN ON FULL TRAINING DATA

type I type I 0.9870 (0) 0.9827 (0) 0.9957 (0) 0.9905 (0.0042)
type I type II 0.6482 (0) 0.6612 (0) 0.6729 (0) 0.6829 (0.0070)
type I type III 0.5643 (0) 0.5229 (0) 0.5776 (0) 0.6089 (0.0062)
type II type I 0.9913 (0) 0.9913 (0) 0.9801 (0.0052) 0.9896 (0.0044)
type II type II 0.9523 (0) 0.9552 (0) 0.9331 (0.0014) 0.9215 (0.0017)
type II type III 0.7391 (0) 0.6622 (0) 0.8156 (0.0019) 0.8152 (0.0037)
type III type I 0.9784 (0) 0.8571 (0) 0.9853 (0.0035) 0.9913 (0.0027)
type III type II 0.9086 (0) 0.7578 (0) 0.9309 (0.0039) 0.9146 (0.0040)
type III type III 0.8987 (0) 0.7062 (0) 0.9089 (0.0016) 0.9047 (0.0046)

TRAIN ON THE SAME AMOUNT OF DATA (2073 INSTANCES: 1658 TRAIN/415 VALIDATION)
type I type I 0.9870 (0) 0.9827 (0) 0.9957 (0) 0.9887 (0.0080)
type I type II 0.6482 (0) 0.6612 (0) 0.6729 (0) 0.6855 (0.0028)
type I type III 0.5643 (0) 0.5229 (0) 0.5776 (0) 0.6066 (0.0018)
type II type I 0.5801 (0) 0.6061 (0) 0.8571 (0) 0.8242 (0.0065)
type II type II 0.5336 (0) 0.5411 (0) 0.6833 (0) 0.6855 (0.0040)
type II type III 0.4974 (0) 0.4901 (0) 0.5846 (0) 0.5969 (0.0046)
type III type I 0.4892 (0) 0.4459 (0) 0.5238 (0) 0.7281 (0.0259)
type III type II 0.4542 (0) 0.4576 (0) 0.4935 (0) 0.6096 (0.0064)
type III type III 0.4419 (0) 0.4380 (0) 0.4529 (0) 0.5794 (0.0054)

Table 3: Analysis of systems: F1 (std) scores for the FFNN baseline and the 3 2D-ed system architectures. The
highest value for each train/test combination is highlighted in bold.

38



TRAIN ON TEST ON BASELINE_CNN_1DXSEQ VAE_1DXSEQ DUAL_VAE_1DXSEQ

TRAIN ON FULL TRAINING DATA

type I type I 0.9948 (0.0064) 0.9489 (0.0088) 0.9403 (0.0084)
type I type II 0.6518 (0.0044) 0.6305 (0.0069) 0.6347 (0.0026)
type I type III 0.4961 (0.0043) 0.5194 (0.0086) 0.5357 (0.0037)
type II type I 0.9974 (0.0035) 0.9697 (0.0039) 0.9264 (0.0152)
type II type II 0.9256 (0.0041) 0.8393 (0.0016) 0.7819 (0.0111)
type II type III 0.5837 (0.0064) 0.7060 (0.0154) 0.6853 (0.0107)
type III type I 0.8173 (0.0390) 0.9628 (0.0065) 0.9385 (0.0050)
type III type II 0.6865 (0.0191) 0.8279 (0.0060) 0.8020 (0.0020)
type III type III 0.6205 (0.0180) 0.8046 (0.0038) 0.7727 (0.0036)

TRAIN ON THE SAME AMOUNT OF DATA (2073 INSTANCES: 1658 TRAIN/415 VALIDATION)
type I type I 0.9939 (0.0044) 0.9558 (0.0042) 0.9385 (0.0069)
type I type II 0.6491 (0.0070) 0.6358 (0.0039) 0.6335 (0.0018)
type I type III 0.4946 (0.0047) 0.5249 (0.0092) 0.5346 (0.0051)
type II type I 0.7489 (0.0387) 0.6095 (0.0202) 0.5203 (0.0330)
type II type II 0.6146 (0.0180) 0.5306 (0.0077) 0.4862 (0.0185)
type II type III 0.4898 (0.0062) 0.4774 (0.0048) 0.4608 (0.0072)
type III type I 0.5134 (0.0193) 0.4641 (0.0213) 0.6286 (0.1111)
type III type II 0.4994 (0.0093) 0.4595 (0.0071) 0.5377 (0.0502)
type III type III 0.4516 (0.0019) 0.4440 (0.0051) 0.4884 (0.0299)

Table 4: Analysis of systems: F1 (std) scores for the three 1DxSeq system architectures. The highest value for each
train/test combination highlighted in bold.

39


