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Abstract

Machine comprehension of procedural texts
is essential for reasoning about the steps and
automating the procedures. However, this re-
quires identifying entities within a text and re-
solving the relationships between the entities.
Previous work focused on the cooking domain
and proposed a framework to convert a recipe
text into a flow graph (FG) representation. In
this work, we propose a framework based on
the recipe FG for flow graph prediction of open-
domain procedural texts. To investigate flow
graph prediction performance in non-cooking
domains, we introduce the wikiHow-FG cor-
pus from articles on wikiHow, a website of
how-to instruction articles. In experiments,
we consider using the existing recipe corpus
and performing domain adaptation from the
cooking to the target domain. Experimental
results show that the domain adaptation models
achieve higher performance than those trained
only on the cooking or target domain data.

1 Introduction

A procedural text guides a human to complete daily
activities like cooking and furniture assembly. Ma-
chine comprehension of these texts is essential for
reasoning about the steps (Zhang et al., 2020b) and
automating the procedures (Bollini et al., 2013).
However, it needs to identify entities within a text
and resolve relationships between the entities. Con-
verting the text into an actionable representation
(e.g., flow graph (Momouchi, 1980)) is an approach
for solving these problems.

There are several works on converting a proce-
dural text into an action graph (Mori et al., 2014;
Kulkarni et al., 2018; Kuniyoshi et al., 2020). In the
cooking domain, various approaches (Mori et al.,
2014; Kiddon et al., 2015; Pan et al., 2020; Pa-
padopoulos et al., 2022) have been taken because
there are a rich amount of available resources on the
web. Among them, recipe flow graph (FG) (Mori

Figure 1: Example of flow graph prediction with our
framework. The prediction is in two stages: node pre-
diction (colored in blue) and edge prediction (colored
in red). In this work, we use this framework to predict
flow graphs of open-domain procedural texts.

et al., 2014) has the advantage of capturing fine-
grained relationships at entity-level. While the orig-
inal work (Mori et al., 2014) introduced a frame-
work and corpus in Japanese, the recent work (Ya-
makata et al., 2020) proposed those in English. The
current FG framework has two issues. Since FG
is designed to represent the flow of actions in a
procedural text, it should be applicable to other
procedural domains such as crafting. One is that
the framework has only been applied to the cooking
domain. The other is that preparing a large number
of annotations (e.g., thousands of articles) is unre-
alistic due to its complex annotation procedures.

In this work, we propose a framework based on
the English recipe flow graph (English-FG) (Ya-
makata et al., 2020) for FG prediction of open-
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Tag Meaning
C (F) Component (Food)
T Tool
D Duration
Q Quantity
Ae (Ac) Action by expert (chef)
Ae2 (Ac2) Discontinuous Ae (Ac)
Ac (Af) Action by component (food)
At Action by tool
Sc (Sf) State of component (food)
St State of tool

Table 1: Tags and their meanings. The inside of the
parenthesis represents a tag and its meaning in English-
FG.

domain procedural texts. We show the overview of
our framework in Figure 1. Our motivation is to
expand the scope of the recipe FG to non-cooking
domains by treating food ingredients as final prod-
uct components. Our framework predicts an FG in
two stages: node prediction and edge prediction,
following Maeta et al. (2015). Our framework is
compatible with the English-FG, and we can jointly
learn representations from data in the cooking and
non-cooking domains. To investigate FG predic-
tion performance in non-cooking domains, we in-
troduce the wikiHow-FG corpus from wikiHow
articles. The corpus was constructed by selecting
four domains from the wikiHow categories and
annotating 30 articles for each domain.

In experiments, we assume a low-resource sce-
nario in which we can access only a few training
examples in the target domain. This is a realis-
tic scenario considering the huge annotation cost
for FG. To tackle this issue, we consider domain
adaptation from the existing cooking domain to the
target domain. Experimental results show that do-
main adaptation models obtain higher performance
than those trained only on the cooking or target
domain data. We also considered two data augmen-
tation techniques to boost performance. From the
results, we found that they improve performance in
particular domains.

Our contributions are three-fold:

• We propose a framework based on the English-
FG for flow graph prediction of open-domain
procedural texts.

• We introduce the wikiHow-FG corpus, a new
corpus from wikiHow articles. This corpus is

Label Meaning
Agent Action agent
Targ Action target
Dest Action destination
T-comp Tool complement
C-comp (F-comp) Component (Food) complement
C-eq (F-eq) Component (Food) equality
C-part-of (F-part-of) Component (Food) part-of
C-set (F-set) Component (Food) set
T-eq Tool equality
T-part-of Tool part-of
A-eq Action equality
V-tm Head of clause for timing
other-mod Other relationships

Table 2: Labels and their meanings. The inside of the
parenthesis represents a label and its meaning in English-
FG.

based on four wikiHow domains and has 30
annotated articles for each domain.

• We assume a low-resource scenario in the tar-
get domain and consider domain adaptation
from the cooking to the target domain. Exper-
imental results show that domain adaptation
models outperform those trained only on the
cooking or target domain data.

2 Recipe flow graph

In this section, we provide a brief description of
the recipe flow graph (FG) (Mori et al., 2014).
A recipe FG is a directed acyclic graph G(V,E),
where V represents entities as nodes, while E repre-
sents the relationships between the nodes as labeled
edges. Currently, FG annotations are available in
Japanese (Mori et al., 2014) and English (Yamakata
et al., 2020), and these corpora provide annota-
tions of hundreds of recipes. Note that Japanese
and English frameworks for FG are not compat-
ible since the English FG uses additional tags to
handle English-specific expressions. As we focus
on texts in English, we consider the English-FG
framework (Yamakata et al., 2020) in the following
sections.

2.1 Flow graph representation

A recipe FG representation is divided into two
types of annotations; node and edge annotations.
Nodes represent entities with tags in the IOB-
format (Ramshaw and Marcus, 1995). As listed in
Table 1, 10 types of tags are used in the English-FG.
Labeled edges represent the relationships between
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the nodes. As listed in Table 2, 13 types of labels
are used in the English-FG.

2.2 Flow graph prediction

For the automatic prediction of the FG, previous
work (Maeta et al., 2015) proposed to divide the
problem into two subtasks: node prediction and
edge prediction. In both subtasks, models are
trained in a supervised fashion.

Node prediction identifies nodes in an article
with the tags. Maeta et al. (2015); Yamakata et al.
(2020) formulated this problem as a sequence label-
ing problem and used NER model (Lample et al.,
2016). While predicting tags at sentence-level is
common in NER (Lample et al., 2016), previous
work (Yamakata et al., 2020) used an entire recipe
text as input.1

Edge prediction constructs a directed acyclic
graph by predicting labeled edges between the
nodes. This is formulated as a problem of find-
ing the maximum spanning tree as:

Ĝ = argmax
G∈G

∑

(u,v,l)

s(u, v, l), (1)

where s(u, v, l) represents the score of a labeled
edge from u to v with label l. We can solve this
problem by using the Chu-Liu-Edmonds algorithm.
The scores are calculated using a graph-based de-
pendency parser (McDonald et al., 2005).

3 Flow graph prediction of open-domain
procedural texts

Our framework is based on the English-FG and
applies to non-cooking domains by treating foods
in recipe texts as final product components. Exam-
ples of the components include tomato and beef for
cooking, cardboard and glue for crafting, and gear
and tire for vehicle maintenance. The framework
uses tags and labels defined in Table 1 and Table 2,
respectively. These tags and labels are slightly mod-
ified from the definitions in the English-FG to avoid
confusion, and we did not add or delete any tags
and labels. Therefore, our framework is compatible
with the English-FG, and we can learn represen-
tations jointly from the cooking and non-cooking
domains.

1In our preliminary experiments, we found that predict-
ing the tags at document-level improves accuracy by 10%
compared to the prediction at sentence-level.

Figure 2: Example of swapping steps. The first and
second steps are swappable without violating causality.

With this framework, we consider predicting
flow graphs of open-domain procedural texts. The
prediction is performed in two stages: node predic-
tion and edge prediction as in Section 2. Models
are trained in a supervised way as the previous ap-
proach (Maeta et al., 2015). However, preparing a
large number of examples in a new domain is un-
realistic, considering the huge FG annotation cost.
Thus, we assume that only a few training examples
are available in the target domain. To tackle this
issue, we consider domain adaptation from the ex-
isting cooking domain data to the target domain
data. In the rest of this section, we formulate the
task in Section 3.1, then consider data augmenta-
tion techniques that fit our setting in Section 3.2.

3.1 Task definition

We are given N examples in the cooking domain
(V C

1 , EC
1 ), · · · , (V C

N , EC
N ) and M examples in the

target domain (V T
1 , ET

1 ), · · · , (V T
M , ET

M ), where
V C and EC are a set of vertices and edges in the
cooking domain, while V T and ET are those in
the target domain. Our goal is to maximize the
performance of node and edge prediction models in
the target domain. In this work, we use the English-
FG corpus (300 articles) as the cooking domain
examples and the wikiHow-FG corpus (Section 4)
as the target domain examples. Note that M is a
minimal number (namely, M = 5) in our setting,
and the task has an aspect of low-resource domain
adaptation (Xu et al., 2021). Note also that training
with only the cooking or target-domain examples
becomes zero-shot or few-shot learning scenarios,
respectively.

3.2 Data augmentation

For improving performance in a low-resource set-
ting, data augmentation is one of possible solu-
tions (Fadaee et al., 2017; Ding et al., 2020). In
this work, we consider the following two data aug-
mentation techniques: step swapping and word
replacement.
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Domain Task examples
Food and Entertaining Cooking acorn squash, Making lavender tea, Baking a cherry pie
Hobbies and Crafts Making a bar soap, Making a duct tape bow, Making a paper box
Home and Garden Cleaning a mattress pad, Installing a microwave, Making a scented candle
Cars & Other Vehicles Fixing a slipped bike chain, Cleaning car window, Cleaning tail lights

Table 3: Examples of article titles for each domain.

Domain # Characters # Words # Steps # Tags # Labels
Food and Entertaining 10,167 2,761 224 1,132 1,124
Hobbies and Crafts 9,407 2,556 247 1,062 1,076
Home and Garden 7,700 2,010 205 894 886
Cars & Other Vehicles 6,432 1,622 173 625 622

Table 4: Statistics of the wikiHow-FG corpus.

Step swapping augments an example by replac-
ing two arbitrary steps in an article as illustrated in
Figure 2. However, randomly choosing and swap-
ping two steps might break their causal relationship.
For example, we cannot swap two steps “Cut the
potatoes.” and “Add the potatoes to the pan.” in Fig-
ure 2. In this work, we augment examples keeping
this constraint by using flow graph annotations.

Word replacement augments an example by re-
placing a word with an arbitrary one. For each
word in a step, we replace a word with one of its
synonyms from WordNet (Dai and Adel, 2020)
with a probability p.

4 wikiHow-FG corpus

The wikiHow-FG corpus is a new flow graph cor-
pus from articles on wikiHow2, a website with
more than 110K how-to articles. wikiHow articles
have been used as a language resource for proce-
dural texts (Zhou et al., 2019; Zellers et al., 2019;
Zhang et al., 2020b,a; Zhou et al., 2022). In the fol-
lowing, we describe the data collection, annotation
procedure, and statistics of the annotation results.

4.1 Data collection
For the target domains, we selected four categories
from wikiHow: (i) Food and Entertaining, (ii) Hob-
bies and Crafts, (iii) Home and Garden, and (iv)
Cars & Other Vehicles. We decided on those do-
mains because many articles target and interact
with substantial objects. We show examples of
article titles in Table 3. Food and Entertaining
is a domain close to the cooking domain as with
the English-FG. Hobbies and Crafts is far from

2https://www.wikihow.com

the cooking domain in the sense that they assem-
ble non-edible materials (e.g., making a bar soap).
The remaining two domains are further from these
domains because they contain non-assembly tasks
(e.g., cleaning a table and fixing a broken chain).

We collected 30 articles for each domain from
the wikiHow corpus (Zhang et al., 2020b). To
exclude low-quality articles, we collected articles
with 25 or more words and more than 50% user rat-
ings. We then manually excluded articles with too
abstract goals or not targeting substantial objects.
We used article headlines as steps for annotation
and experiments. Note that each article has a ti-
tle and visual information (e.g., images or videos)
describing the procedures. Exploiting them is inter-
esting, but we leave that direction for future work.

4.2 Annotation procedure
Due to the dense, complex nature of the flow graph,
constructing a high-quality corpus is a challenging
problem. In order to guarantee the annotation qual-
ity, we first trained an annotator with 10 recipes
sampled from the English-FG corpus (Yamakata
et al., 2020). The training continued until the inter-
annotator agreements with the ground-truth anno-
tations reached over 80%. We then asked the an-
notator to annotate wikiHow articles. For both the
node and edge annotations, we used the flow graph
annotation tool (Shirai et al., 2022).3 The whole
annotation took 40 hours.

4.3 Statistics
We show statistics of the wikiHow corpus in Ta-
ble 4. The articles comprise 280.9 characters,

3Before the annotation, we tokenized steps into words with
the stanza toolkit (Qi et al., 2020).
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Annotation type Agreement
Node annotation 90.17%
Edge annotation 57.43%

Table 5: Inter-annotator agreements.

74.6 words, and 7.08 steps on average. The av-
erage number of tags and labels per article is 37.73
(±16.48) and 37.47 (±17.21) on Food and Enter-
taining, 35.40 (±9.08) and 35.87 (±9.44) on Hob-
bies and Crafts, 29.80 (±7.83) and 29.53 (±8.29)
on Home and Garden, and 20.83 (±6.40) and
20.73 (±7.14) on Cars & Other Vehicles. Since
articles on Home and Garden and Cars & Other
Vehicles have fewer words than the other two do-
mains, the number of tags and labels also becomes
smaller.

4.4 Inter-annotator agreements

To assess the consistency of the annotations, we
asked another annotator to re-annotate 10% of arti-
cles for each domain. We then measured F1 scores
between the two sets of annotations using the origi-
nal annotations as the ground-truth ones. Table 5
shows the results. The agreement for the node an-
notation (90.14%) was high, considering entities
corresponding to the tags greatly change depend-
ing on the domain. For the edge annotation, the
agreement (57.43%) drops from the one for node
annotation. However, this agreement is also high
considering errors from the node annotation influ-
ence this step and that a large number of candidate
edges for the annotation.

5 Node prediction

5.1 Experimental settings

Model. We adopted a BiLSTM-CRF
model (Lample et al., 2016) for node pre-
diction by replacing a BiLSTM encoder with a
pre-trained language model (LM) (Devlin et al.,
2019; Liu et al., 2019; He et al., 2021). While
previous work (Yamakata et al., 2020) used a
pre-trained BERT (Devlin et al., 2019) as the
encoder, we used a pre-trained DeBERTa (He et al.,
2021).4 This model has 140M parameters in total.

Training. We trained a domain adaptation model
by first training on the cooking domain data

4In our preliminary experiments, we confirmed that De-
BERTa improves the accuracy of BERT by 0.47% on the
English-FG corpus.

(English-FG) and then training again on the tar-
get domain data (wikiHow-FG). Note that we use
only target domain examples of the wikiHow-FG
corpus (e.g., when targeting Hobbies and Crafts,
we do not use examples in the other three domains.).
We also train models only on the cooking or target
domain data and report the results to compare with
the domain adaptation results.

For an optimization method, we used
AdamW (Loshchilov and Hutter, 2019) with
an initial learning rate of 5.0× 10−5 and a weight
decay of 1.0 × 10−5. We tuned a learning rate
with a cosine-annealing (Loshchilov and Hutter,
2019) (Sd steps) with a linear warm-up (Sw steps)
at every iteration. We created a mini-batch from B
articles. We set (B,Sw, Sd) = (5, 500, 4500) and
(B,Sw, Sd) = (3, 100, 900) for training on the
English-FG corpus and the wikiHow-FG corpus,
respectively. We tuned these hyper-parameters on
the development set. We used the data augmenta-
tion techniques only for the target domain data.
For the step swapping, we created 5 augmented
examples at maximum from one example. For the
word replacement, we set 0.5 to p and created 10
examples from one example.

Evaluation. We split the English-FG corpus into
80% for training, 10% for validation, and the rest
of 10% for testing. For the wikiHow-FG corpus,
we split 30 articles of each domain into 6 folds. For
more reliable results, we performed 6-fold cross-
validation by using 1 fold for training, 1 fold for
validation, and the remaining 4 folds for testing.
We used precision, recall, and F1 for evaluation
metrics, following Yamakata et al. (2020). On the
evaluation, we report the average scores of the mod-
els on the test set.

Model configurations. We refer to the domain
adaptation models as domain-adaptation models.
We also refer to the models trained only on the
English-FG or the wikiHow-FG corpus as cooking-
only and target-only models, respectively.

5.2 Results
The results are shown in Table 6. We see that the
target-only models achieve an F1 score of 66.9%
or more in all the target domains. This implies
that the node prediction model can predict nodes
to an extent with a few annotated articles. We also
see that the cooking-only models achieve compet-
itive performance with the target-only ones and
outperform them in the two domains of Food and
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Domain Model
Augmentation

Prec. Recall F1
Step-swap Word-replace

Food and Entertaining

Target-only 0.770 0.784 0.777
Cooking-only 0.884 0.877 0.880

Domain-adaptation 0.890 0.892 0.891
Domain-adaptation ✓ 0.894 0.895 0.895
Domain-adaptation ✓ 0.885 0.891 0.888

Hobbies and Crafts

Target-only 0.698 0.707 0.702
Cooking-only 0.703 0.684 0.693

Domain-adaptation 0.794 0.805 0.799
Domain-adaptation ✓ 0.784 0.795 0.789
Domain-adaptation ✓ 0.781 0.790 0.785

Home and Garden

Target-only 0.663 0.676 0.669
Cooking-only 0.734 0.742 0.738

Domain-adaptation 0.780 0.786 0.783
Domain-adaptation ✓ 0.787 0.791 0.786
Domain-adaptation ✓ 0.765 0.773 0.769

Cars & Other Vehicles

Target-only 0.650 0.690 0.669
Cooking-only 0.646 0.695 0.670

Domain-adaptation 0.748 0.784 0.765
Domain-adaptation ✓ 0.734 0.784 0.761
Domain-adaptation ✓ 0.729 0.772 0.750

Table 6: Results of the node prediction experiments. The check mark symbol (✓) indicates the used training data
(in cooking and target domains) and augmentation techniques (step-swap and word-replace).

Domain
Ae C T

Duplicates
F1

Duplicates
F1

Duplicates
F1

Src Adpt Src Adpt Src Adpt
Food and Entertaining 92.06% 0.941 0.952 72.11% 0.932 0.933 77.94% 0.896 0.882
Hobbies and Crafts 69.03% 0.943 0.951 10.33% 0.717 0.833 51.79% 0.398 0.588
Home and Garden 65.19% 0.954 0.961 18.40% 0.716 0.795 43.55% 0.567 0.678
Cars & Other Vehicles 46.04% 0.905 0.919 6.88% 0.666 0.805 27.47% 0.459 0.557

Table 7: F1 scores of Ae, C, and T tags with the percentage of entities that appeared in the English-FG corpus and
also in the wikiHow-FG corpus. Src and Adpt denote cooking-only and domain-adaptation models, respectively.

Entertaining and Home and Garden. Particularly
in Food and Entertaining, the cooking-only model
surpasses the target-only one by 10.3% in F1. We
consider that this domain is close to the cooking
domain of the English-FG; thus, the cooking-only
model is more advantageous as it can access more
examples.

Next, the domain-adaptation models achieve
the best performance in all the domains compared
with the cooking-only and target-only models
(76.5% or more F1). The most significant improve-
ments are obtained in the two domains of Hobbies
and Crafts and Cars & Other Vehicles (9.5% and
10.5% improvements in F1). These results indi-
cate that domain adaptation from the cooking to
the target domain is effective for training the node

prediction model.
Third, we see that using the augmented data by

the step swapping slightly improves performance
from the domain-adaptation models in Food and
Entertaining and Home and Garden. On the other
hand, the word replacement does not contribute to
any improvement. One possible reason is that a
replaced word does not necessarily match the cor-
responding tag, and this disrupts the improvement.

5.3 Tag-level prediction performance

Entities for each tag can greatly change depending
on the domain. In that case, the degree of im-
provement from the cooking-only to the domain-
adaptation model is expected to increase as the
duplicate entities between the domains decrease.
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Domain Model
Augmentation

Prec. Recall F1
Step-Swap Word-Replace

Food and Entertaining

Target-only 0.335 0.338 0.337
Cooking-only 0.725 0.731 0.728

Domain-adaptation 0.750 0.756 0.753
Domain-adaptation ✓ 0.747 0.752 0.750
Domain-adaptation ✓ 0.761 0.752 0.749

Hobbies and Crafts

Target-only 0.285 0.281 0.283
Cooking-only 0.613 0.605 0.609

Domain-adaptation 0.649 0.640 0.644
Domain-adaptation ✓ 0.646 0.638 0.642
Domain-adaptation ✓ 0.653 0.644 0.648

Home and Garden

Target-only 0.229 0.232 0.231
Cooking-only 0.644 0.649 0.646

Domain-adaptation 0.659 0.665 0.662
Domain-adaptation ✓ 0.656 0.662 0.659
Domain-adaptation ✓ 0.674 0.680 0.677

Cars & Other Vehicles

Target-only 0.154 0.155 0.154
Cooking-only 0.587 0.590 0.587

Domain-adaptation 0.607 0.610 0.609
Domain-adaptation ✓ 0.607 0.610 0.608
Domain-adaptation ✓ 0.617 0.620 0.618

Table 8: Results of the edge prediction experiments. The check mark symbol (✓) indicates the used training data (in
cooking and target domains) and augmentation techniques (step-swap and word-replace).

To investigate this assumption, we measured tag-
level prediction performance in F1 with the du-
plicate ratio of entities of the wikiHow-FG in the
English-FG. We targeted the three tags of Ae, C,
and T because these tags frequently appear in all
the domains.

The results are shown in Table 7. For Ae, the
degree of improvement from the cooking-only to
the domain-adaptation model is small regardless
of the duplicate ratios, which is contrary to our
assumption. These results imply that recognizing
entities for Ae is easy irrespective of the domain.
For C and T, the domain-adaptation models sig-
nificantly outperform the cooking-only ones in the
three domains other than Food and Entertaining.
These results imply that the domain adaptation is
effective for recognizing C and T tags when the
domain is further from the cooking domain.

6 Edge prediction

6.1 Experimental settings

Model. We adopted a biaffine dependency
parser (Dozat and Manning, 2018) for edge pre-

diction.5 This model uses separate modules for
edge prediction and label prediction. The resulting
loss l is defined as a weighted sum of losses from
the two modules:

l = λl(edge) + (1− λ)l(label), (2)

where λ controls the strength of the two losses. We
empirically set 0.5 to λ. We used a pre-trained
DeBERTa (He et al., 2021) to obtain contextual-
ized word representations. This model has 149M
parameters in total.

Training. Similarly to Section 5.1, we trained a
domain adaptation model for edge prediction first
on the English-FG corpus and then on the wikiHow-
FG corpus. For an optimization method, we used
AdamW (Loshchilov and Hutter, 2019) with a com-
bination of a cosine-annealing and linear warm-up
learning rate scheduling method. We used the same
hyperparameters in Section 5.1.

Evaluation. We used the same splits of the
English-FG and wikiHow-FG corpora as in Sec-
tion 5 and performed 6-fold cross-validation for

5Previous work (Maeta et al., 2015) used a linear model,
but we confirmed that our model achieves higher performance
on the English-FG corpus.
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Domain F1
Food and Entertaining 0.679 (-9.8%)
Hobbies and Crafts 0.501 (-22.2%)
Home and Garden 0.494 (-25.4%)
Cars & Other Vehicles 0.449 (-26.3%)

Table 9: Results of the pipeline experiments. The inside
of the parenthesis represents the performance drop from
the domain-adaptation model with ground-truth tags.

more reliable results. We report the average scores
of the models on the test set. For evaluation metrics,
we used precision, recall, and F1 between predicted
and ground-truth labeled edges of (u, v, l).

Model configurations. We used the same model
notations of cooking-only, target-only, and
domain-adaptation models as in Section 5.

6.2 Results

The results are shown in Table 8. We used ground-
truth tags to identify nodes. Contrary to the node
prediction results, the target-only models achieve
poor performance in all the domains (33.8% or less
in all the metrics). On the other hand, the scores of
the cooking-only models are more than twice those
of the target-only models. These results show that
the edge prediction model requires more training
examples than the node prediction one. These also
show that with the English-FG corpus, predicting
edges with 58.7% or more F1 is possible in non-
cooking domains.

Next, the domain-adaptation models outper-
form the target-only and cooking-only ones in all
the domains. This is consistent with the results in
the node prediction task. These results mean that
the domain adaptation from the cooking to the tar-
get domain is also effective for the edge prediction
model. For the results with the data augmentation
techniques, the step swapping does not contribute
to any improvement, contrary to Section 5.2. The
word replacement improves the performance of the
domain-adaptation models in the three domains
other than Food and Entertaining.

6.3 Pipeline experiments

So far, the model has used ground-truth tags to
identify nodes. However, in a realistic scenario,
the model must predict labeled edges with the pre-
dicted nodes. In this scenario, errors in the node
prediction step would affect performance in the
edge prediction step. To investigate edge prediction

performance in this setting, we conducted experi-
ments of edge prediction with the predicted nodes.
We predicted nodes using the models in Section 5.2.
In order to evaluate the model with tag information,
we measured F1 of tuples of (u, v, l, nu, nv) be-
tween ground-truth and predicted ones, where nu

and nv are the tags of the starting and ending nodes,
respectively.

Table 9 shows the results with performance
drops from those in Table 8. We see that 9.8%
drops in Food and Entertaining, and more signifi-
cant drops occur in the other three domains (about
24.6%). In these three domains, F1 scores of the
node prediction are about 10% smaller than that of
Food and Entertaining, and this gap would cause
such large performance drops. We consider that
improving node prediction performance would al-
leviate these drops.

7 Related work

Mori et al. (2014) designed a flow graph (FG) rep-
resentation in the cooking domain and introduced
a corpus of recipe texts. Subsequent works intro-
duced a corpus in English (Yamakata et al., 2020)
and corpora with visual annotations (Nishimura
et al., 2020; Shirai et al., 2022). Maeta et al. (2015)
proposed a method for an automatic FG prediction.
Our work stems from this line of research and is the
first attempt to apply the framework to non-cooking
domains. Ours is also the first work to use a neural
network-based method for the edge prediction.

Other than the recipe FG, there are several works
that focus on obtaining an actionable representation
from a procedural text. In cooking, Kiddon et al.
(2015) proposed an unsupervised EM algorithm,
while Pan et al. (2020); Papadopoulos et al. (2022)
proposed supervised approaches. In biochemistry,
Kulkarni et al. (2018); Tamari et al. (2021) intro-
duced datasets for mapping wet lab protocols to an
action graph. In material science, Kuniyoshi et al.
(2020) represented the synthesis process with flow
graphs. The works (Pan et al., 2020; Papadopoulos
et al., 2022; Tamari et al., 2021; Kuniyoshi et al.,
2020) are especially close to ours in the sense that
they aim to obtain a document-level action graph
in a supervised way.

8 Conclusion

We proposed a framework based on the English-
FG and investigated flow graph prediction perfor-
mance in non-cooking domains. We presented the
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wikiHow-FG corpus from wikiHow articles. We
considered domain adaptation from the cooking
to the target domain. Experimental results show
that domain adaptation models outperform those
trained only on the cooking or target domain data.
In future work, we consider applying this frame-
work to other domains, such as material science and
biochemistry. One can also try improving perfor-
mance using more sophisticated data augmentation
techniques. We hope that our work will provide
new insights into procedural text understanding.
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