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Abstract

This paper introduces the Cross-lingual
Fact Extraction and VERification (XFEVER)
dataset designed for benchmarking the fact ver-
ification models across different languages. We
constructed it by translating the claim and ev-
idence texts of the Fact Extraction and VERi-
fication (FEVER) dataset released by Thorne
et al. (2018) into six languages. The training
and development sets were translated using ma-
chine translation, whereas the test set includes
texts translated by professional translators and
machine-translated texts. Using the XFEVER
dataset, two cross-lingual fact verification sce-
narios, zero-shot learning and translate-train
learning, are defined, and baseline models for
each scenario are also proposed in this paper.
Experimental results show that the multilingual
language model can be used to build fact verifi-
cation models in different languages efficiently.
However, the performance varies by language
and is somewhat inferior to the English case.
We also found that we can effectively mitigate
model miscalibration by considering the predic-
tion similarity between the English and target
languages.1

Keywords: cross-lingual fact verification, pre-
trained language models

1 Introduction

Automated fact verification is a part of the fact-
checking task, verifying that a given claim is
valid against a database of textual sources. It
can be formulated as a classification task, tak-
ing the claim and associated evidence as input
and determining whether the given evidence sup-
ports the claim. Deep learning is used to build

∗ This work was conducted during the author’s internship
under National Institute of Informatics, Japan.

1The XFEVER dataset, code, and model check-
points are available at https://github.com/
nii-yamagishilab/xfever.

classifiers for this purpose, but deep models are
data-hungry and require massive amounts of la-
beled data. The Fact Extraction and VERifica-
tion (FEVER) database (Thorne et al., 2018) is
known as a well-resourced English database that
enables us to build large networks, but building a
database of the same scale as FEVER from scratch
for each language is significantly time-consuming
and costly. Our main question in this paper is: Can
we build fact-checking models for other languages
without huge costs?

In this work, we hypothesize that facts are facts
regardless of languages. Suppose we have a per-
fect translator to translate English text into other
languages without missing or changing informa-
tion in the original texts. The relationship between
a specific claim-evidence pair in the source lan-
guage, which is the output of the fact verifica-
tion model, should be the same even if they are
translated into another target language as shown
in Figure 1. Using this hypothesis, we construct
a new Cross-lingual Fact Extraction and VERifi-
cation (XFEVER) dataset by automatically trans-
lating the claim and evidence texts of the FEVER
dataset into five other languages: Spanish, French,
Indonesian, Japanese, and Chinese. These lan-
guages cover several language families, including
isolated languages such as Japanese. In addition
to the machine-translated texts, a set of texts writ-
ten and verified by professional translators is also
available as an additional evaluation set to analyze
whether the translation methods will affect the per-
formance.

Using the XFEVER dataset, we define two cross-
lingual fact verification scenarios: zero-shot learn-
ing and translate-train learning. In the zero-shot
learning scenario, the model is trained on the En-
glish corpus only and applied to other languages
with zero shots. In the translate-train learning sce-
nario, a multilingual fact verification model is built
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Claim: Youtubeはウェブサイトではありません。

YouTubeは、カリフォルニア州サンブルーノに本社
を置く、アメリカの動画共有サイトです。

Evidence:

Claim: Youtube is not a website.

YouTube is an American video-sharing website 
headquartered in San Bruno, California.

Evidence:
REFUTED

Translate to Japanese

REFUTED

Should be the same

Figure 1: For the English example, it is clear that the given evidence refutes the claim. Suppose we have accurate
translations from English to another language (e.g., Japanese). The claim in Japanese must also be refuted on the
basis of the evidence in Japanese. In other words, the relationship between the claim and evidence text should be
consistent across languages.

in English and multiple languages, assuming that
the machine-translated text in the non-English lan-
guages contains errors but is still somewhat useful
for model training. We also report baseline systems
in each scenario. In the zero-shot learning scenario,
we show how beneficial the multilingual language
models are. In the translate-train scenario, given
the parallel data of texts translated from English
into other languages, we also evaluate a baseline
that uses the similarity of the predicted results or
intermediate representations of the model in the
English and other language cases as part of the
loss.

The rest of the paper is organized as follows: We
review the related work in the next section. Then,
we overview the XFEVER dataset in Section 3
and describe details of our baseline methods in
Sections 4 and 5. We provide experimental results
in Section 6. Finally, we summarize our research
and future work in Section 7.

2 Related Work

Automated fact-checking
The importance of automated fact-checking is
growing with an increase in misinformation, mal-
information, and disinformation (Nakov et al.,
2021; Guo et al., 2022). Automated fact-checking
by machine learning, which should improve the ef-
ficiency of time-consuming fact-checking, consists
of three steps (Thorne et al., 2018): (1) search-
ing the knowledge database to find out documents
related to the claim to be verified, (2) finding sen-
tences or paragraphs that serve as evidence in the
documents found, and (3) predicting a verdict la-
bel for the claim to be verified on the basis of the
retrieved evidence.

The third task, verdict prediction, is relevant to
the textual entailment task (Dagan et al., 2010)
where using the given two sentences as inputs, we
determine whether (i) they contradict each other or
whether (ii) one sentence entails the other sentence
without contradiction. The verdict prediction task
examines whether the retrieved evidence entails
the claim or whether they contradict each other.
Various architectures have been investigated, in-
cluding graph-based neural networks (Liu et al.,
2020; Zhong et al., 2020) and self-attention (Kru-
engkrai et al., 2021), and evaluations and compar-
isons have also been made using various language
models (Lee et al., 2021; Rae et al., 2021).

Fact-checking datasets
There are several existing datasets for automated
fact-checking. FEVER (Thorne et al., 2018) and
its series (Thorne et al., 2019; Aly et al., 2021) are
well-known datasets for fact extraction and verifica-
tion against textual sources. The original FEVER
dataset consists of 185,445 claims manually ver-
ified against relevant Wikipedia articles. Wiki-
FactCheck (Sathe et al., 2020) is another dataset of
124K examples extracted from English Wikipedia
articles and real-world claims (uncontrolled claims
written by annotators). Sources of evidence may
change over time, requiring fact-checking mod-
els to be sensitive to subtle differences in support-
ing evidence. VitaminC (Schuster et al., 2021) is
a benchmark for testing whether a fact-checking
model could identify such subtle factual changes.

Datasets for cross-lingual understanding tasks
Large multi-lingual language models such as
mBERT (Devlin et al., 2019) and XLM-R (Con-
neau et al., 2020) have been reported to be effec-
tive on cross-lingual tasks, and a number of bench-
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Language Claim / Evidence

English Roman Atwood is a content creator.
He is best known for his vlogs, where he posts updates about his life on a daily basis.

Spanish Roman Atwood es un creador de contenidos.
Es conocido sobre todo por sus vlogs, en los que publica a diario noticias sobre su vida.

French Roman Atwood est un créateur de contenu.
Il est surtout connu pour ses vlogs, où il publie quotidiennement des mises à jour sur sa vie.

Indonesian Roman Atwood adalah pembuat konten.
Dia terkenal karena vlog-nya , di mana dia memposting pembaruan tentang hidupnya setiap hari.

Japanese ローマン・アトウッドは、コンテンツクリエイター。

彼は彼のブログで最もよく知られている、彼は毎日のように彼の人生についての更新を投稿している。

Chinese 罗曼-阿特伍德是一个内容创作者。

他最出名的是他的博客，在那里他每天都会发布关于他的生活的更新。

Table 1: Examples (claim and evidence) from six languages in the XFEVER dataset with the SUP class.

Split Trans SUP REF NEI

Train Machine 100,570 41,850 35,639
Dev Machine 3,964 4,323 3,333
Test Machine 4,019 4,358 3,333

Test-6h Machine 200 200 200
Human 200 200 200

Table 2: Number of examples per class for each target
language in the XFEVER dataset. The column “Trans”
indicates the translation method. The test-6h set consists
of two small subsets: machine- and human-translated
sets.

marks have been designed for the cross-lingual task:
XTREME (Hu et al., 2020) and XGLUE (Liang
et al., 2020).

The XTREME benchmark includes nine cor-
pora and covers four natural language tasks: clas-
sification, structured prediction, question answer-
ing, and sentence retrieval. Among them, the
Cross-lingual Natural Language Inference (XNLI)
corpus (Conneau et al., 2018) is the most re-
lated to XFEVER, which is an extended version
of the Multi-Genre Natural Language Inference
(MultiNLI) corpus (Williams et al., 2018) and con-
tains 15 languages translated by professional trans-
lators. There exists a multilingual fact-checking
dataset named X-FACT, which consists of 31,189
real-world claims collected from fact-checking
websites (Gupta and Srikumar, 2021). Although
XNLI (and our XFEVER) can be regarded as artifi-
cially created datasets, they have certain advan-
tages, such as having similar data distributions
across languages (Conneau et al., 2018).

3 The XFEVER dataset

3.1 Overview
Inspired by the XNLI dataset construction (Con-
neau et al., 2018), we extended the FEVER
dataset (Thorne et al., 2018) to XFEVER by trans-
lating the English claim-evidence pairs into differ-
ent languages. We used the dataset version pre-
processed by Schuster et al. (2021), where only
claims that require evidence from single sentences
are considered. We considered a total of six lan-
guages: Spanish (es), French (fr), Indonesian (id),
Japanese (ja), Chinese (zh), and the source lan-
guage English (en).

Table 1 shows examples in the languages in-
cluded in the XFEVER dataset. We automatically
translated the original English data to the five target
languages using DeepL.2 To analyze whether the
translation methods affect the prediction accuracy,
we created a small test set (test-6h) containing 600
randomly-selected claim-evidence pairs translated
and verified by professional translators.

Table 2 shows the data statistics per language.
Each claim-evidence pair has one of the class la-
bels: supported (SUP), refuted (REF), and not
enough info (NEI). We assigned the same labels as
the original ones to translated pairs.

3.2 Two scenarios
Given the XFEVER dataset, we explore two sce-
narios.

• Zero-shot learning: We can only access the
English training and development sets to train
2https://www.deepl.com/pro-api
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a model and evaluate the trained model on the
test set in all languages.

• Translate-train learning: We assume that
machine-translated data are available. We then
build a model using the training and develop-
ment sets in all languages simultaneously. The
evaluation is the same as the zero-shot learning
scenario.

4 Cross-lingual fact verification

In this section, we first introduce notation and then
describe the frameworks for zero-shot and translate-
train learning scenarios. We consider cross-lingual
fact verification as a classification problem. We
want to train a model fθ : X → Y parameterized
by θ, which maps an input x ∈ X to a label y ∈
Y = {1, . . . ,K}.3 Our model is a neural network
consisting of a multilayer perceptron (MLP) on top
of a pre-trained language model (PLM):

fθ(x) = MLP(PLM(x)).

The PLM takes x (a concatenation of claim and
evidence sentences) as input and produces a vector
representation. The MLP then maps the vector rep-
resentation to K real-valued numbers (i.e., logits).
We finally obtain the predicted probability p ∈ RK

by applying the softmax function:

p(y|x) = softmax(fθ(x)). (1)

4.1 Zero-shot learning scenario
In the zero-shot learning scenario, we only use the
original data D = {(xi, yi)}Ni=1 for training. In
our study, we refer to the original data as the non-
translated data, which are in English. We aim to
minimize the average loss:

Jz(θ) =
1

N

∑

(x,y)∈D
L(x, y; θ), (2)

where the loss function L(x, y; θ) is the cross-
entropy between the ground-truth label distribution
q ∈ RK (i.e., one-hot encoding) and the predicted
distribution p:

L(x, y; θ) = H(q, p) = −
∑

y∈Y
q(y|x) log p(y|x).

(3)

With help from the multilingual PLM (e.g.,
mBERT or XML-R), we expect that the zero-shot
model would work with other languages as well.

3In our task, K = 3, where 1 = SUP, 2 = REF, and
3 = NEI.

4.2 Translate-train learning scenario
In the translate-train learning scenario, we assume
that the machine-translated data D̃ exists so that
we can exploit them for training. We define D̃ =⋃

t∈T D̃t, where T = {es, fr, id, ja, zh} is the set
of our target languages.

4.2.1 Non-parallel training
The most straightforward strategy is to mix all the
available data. We write the average loss for non-
parallel (np) training as:

Jnp(θ) =
1

Nnp

∑

(x,y)∈D∪D̃

L(x, y; θ), (4)

where Nnp = N×(|T |+1) is the number of all
mixed examples. The loss function L(x, y; θ) is
still the cross-entropy loss. In practice, we reshuf-
fle the training examples at the beginning of each
epoch, so x comes from D or D̃ at random.

4.2.2 Parallel training
Non-parallel training does not consider that the
predicted label of the machine-translated example
x̃ should be the same as the original example x.
To take the consistency of predictions into account,
we explicitly create parallel examples of x and x̃
and use such pairs for training. We formulate the
average loss for parallel (p) training as:

Jp(θ) =
1

Np

∑

t∈T

∑

(x,x̃,y)

∈(D,D̃t)

L(x, x̃, y; θ), (5)

where Np = N×|T | is the number of all parallel
examples. Since we reshuffle parallel examples
at every epoch similar to non-parallel training, x̃
comes from one of D̃t randomly. We define the
loss function L(x, x̃, y; θ) as:

L(x, x̃, y; θ) = L(x, y; θ) + L(x̃, y; θ) + λR(θ),
(6)

where the first and second terms are the cross-
entropy losses for the original and translated ex-
amples, and the last term R(θ) is a regularization
function with a strength coefficient λ. In the follow-
ing section, we discuss various choices for R(θ).

5 Consistency regularization

We use the regularization function R(θ) to enforce
cross-lingual consistency. Previous work has pre-
sented specific forms of consistency regulariza-
tion (Zheng et al., 2021; Yang et al., 2022). Here,
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we examine a wide range of regularization func-
tions where we categorize them into types: predic-
tion and representation. In addition, we discuss
how prediction consistency relates to the confi-
dence penalty.

5.1 Prediction consistency
Let p̃(y|x̃) denote the predicted distribution given
the machine-translated example x̃. Intuitively, the
predicted distributions for the original and trans-
lated examples should be close to reaching the
same predictions. To achieve this, we can regular-
ize the loss in Eq. (6) with an information-theoric
divergence measure between p and p̃. We explore
the following divergence measures:

• Kullback–Leibler (KL) divergence: We hy-
pothesize that the prediction of the original ex-
ample tends to have better accuracy than the
machine-translated one. Thus, we push p̃ to-
wards p with the KL divergence (Kullback and
Leibler, 1951):

R(θ) = KL(p ∥ p̃). (7)

• Jeffreys (J) divergence: The multilingual infor-
mation in the PLM can be helpful and captured
through the translated example. Also, to pro-
mote the consistency of predictions, we push p
and p̃ towards each other by applying the sym-
metric measure called the J divergence (Jeffreys,
1946):

R(θ) = J(p ∥ p̃)
= KL(p ∥ p̃) + KL(p̃ ∥ p). (8)

• Jensen–Shannon (JS) divergence: The KL and
J divergence measures are unbound. Another
symmetric and bounded measure is the JS diver-
gence (Lin, 1991):

R(θ) = JS(p ∥ p̃)

=
1

2

(
KL(p ∥ p+ p̃

2
) + KL(

p+ p̃

2
∥ p̃)

)
.

(9)

Relationship between prediction consistency
and confidence penalty
When the model predicts a label with a probabil-
ity (i.e., confidence) of 0.95, we expect it to have a
95% chance of being correct. However, researchers
have found that neural models tend to be overconfi-
dent. In other words, the model’s confidence poorly

aligns with the ground-truth correctness likelihood.
Guo et al. (2017) attributed the cause of overcon-
fident predictions to cross-entropy loss overfitting,
where the model places most of the probability
mass on a single label, resulting in a peaked pre-
dicted distribution.

In this section, we discuss cross-entropy loss
overfitting from a KL divergence perspective. We
can rewrite the cross-entropy loss in Eq. (3) in a
KL divergence form as:

L(x, y; θ) = H(q, p)− H(q) + H(q)

= KL(q ∥ p) + H(q)︸︷︷︸
constant

.

Thus, we minimize the loss at training time by
pushing p (the predicted distribution) towards q
(the ground-truth one-hot distribution). When over-
fitting occurs, p becomes peaky.

There are several calibration methods to mitigate
the above issue. One of which is the confidence
penalty (Pereyra et al., 2017) in which a penalized
term (i.e., a negative entropy) is added to the cross-
entropy loss:

L(x, y; θ)cp = H(q, p)− λH(p).

The model attempts to maximize the entropy H(p)
to minimize the loss L(x, y; θ)cp. Thus, p becomes
smoother (or less peaky).

Our key observation is that the regularization
functions of prediction consistency intrinsically in-
troduce the confidence penalty to the loss. Let us
consider the parallel training loss with the J diver-
gence as an example. We know that:

KL(p ∥ p̃) = H(p, p̃)− H(p),

KL(p̃ ∥ p) = H(p̃, p)− H(p̃).

From Eqs. (3), (6), and (8), we obtain:

L(x, x̃, y; θ) = H(q, p) + H(q, p̃) + λJ(p ∥ p̃)
= H(q, p)− λH(p)

+ H(q, p̃)− λH(p̃)

+ λ
(
H(p, p̃) + H(p̃, p)

)
. (10)

Thus, the loss in Eq. (10) includes the negative
entropy terms of p and p̃, which should help reduce
model overconfidence. We verify this observation
in Section 6.2.3.
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5.2 Representation consistency
Recall that we derive the predicted distribution
from the logits in Eq. (1). We can also impose
consistency in the intermediate representation be-
fore the logits. Here, we examine two represen-
tation levels: penultimate and feature. We refer
to the penultimate and feature representations as
the output of the last layer right before the logits
and that of the PLM, respectively. Let h and h̃ be
the representations4 of the original and translated
examples. Since both representations are vectors,
we can apply the following distance measure:

• Mean square error (MSE): We compute the
MSE (or the square of Euclidean distance) as:

R(θ) = ∥h− h̃∥2. (11)

Thus, if h and h̃ are similar, R(θ) approaches
zero.

• Cosine distance (COS): An alternative measure
is the cosine distance computed as:

R(θ) = 1− cos(h, h̃) = 1− h · h̃
∥h∥∥h̃∥

. (12)

For the cosine distance, the magnitudes of h and
h̃ have no effect because they are normalized to
the unit vectors.

6 Experiments

6.1 Training details
We implemented our models using Hugging Face’s
Transformers library (Wolf et al., 2020). In the
zero-shot setting, we compared the multilingual
PLMs against their monolingual versions to exam-
ine their benefits. For the monolingual PLMs, we
used BERT-base (110M), RoBERTa-base (125M),
and RoBERTa-large (355M). The number in the
parenthesis denotes the number of parameters.
For the multilingual PLMs, we used mBERT
(178M), XLM-R-base (470M), and XLM-R-large
(816M). The mBERT model was pre-trained on
the Wikipedia entries of 104 languages, while the
XLM-R models were pre-trained on the Common
Crawl Corpus covering 100 languages. The pre-
training datasets for mBERT and XLM-R include
all six languages in the XFEVER dataset.

For all experiments, we used the Adafactor op-
timizer (Shazeer and Stern, 2018) with a batch

4They can be either penultimate or feature representation.

size of 32. We used a learning rate of 2e-5 for
BERT-base/RoBERTa-base/mBERT and 5e-6 for
RoBERTa-large/XLM-R-large. We trained each
model for up to ten epochs or until the accuracy
on the development set had not improved for two
epochs. For consistency regularization, we set λ to
1 unless otherwise specified. We conducted all the
experiments on 32GB NVIDIA Tesla A100 GPUs.

6.2 Results

6.2.1 Effect of multilingual PLMs in zero-shot
learning

Table 3 shows the accuracy gains of multilingual
PLMs over the monolingual counterparts in the
zero-shot learning scenario. Specifically, we obtain
+28.9% (BERT→mBERT), +21.5% (RoBERTa-
base→XLM-R-base), and +23.4% (RoBERTa-
large→XLM-R-large) improvements on average.
As expected, the monolingual PLMs yield high
accuracy for the source language (English) but
cannot maintain reasonable accuracy for the tar-
get languages. The multilingual PLMs help allevi-
ate this issue. For example, changing RoBERTa-
large→XLM-R-large yields +43% and +45.6% im-
provements for Japanese and Chinese, respectively.
These results indicate that the multilingual PLMs
are extremely helpful when the training set in the
target language are unavailable.

6.2.2 Effect of translate-train learning on
performance improvement

Table 4 shows the results of various settings using
mBERT.5 When we can access machine-translated
data, our non-parallel training Jnp works well for
most target languages. The type of regularization
functions or representations has less effect on per-
formance in terms of accuracy. As shown in Ta-
ble 5, we also attempt to combine prediction and
representation consistencies. While these consis-
tencies improve the accuracy scores with mBERT,
their effects diminish with XLM-R-large. In the
next section, we inspect the benefit of consistency
regularization in reducing miscalibration.

6.2.3 Effect of consistency regularization in
reducing miscalibration

We can quantify miscalibration by measuring the
gap between model confidence (conf) and accuracy
(acc). A common metric is the expected calibration

5The results of XLM-R-large are in Appendix A.
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PLM en es fr id ja zh Avg

Monolingual
BERT 87.7 53.2 53.2 49.6 36.9 39.1 53.3
RoBERTa-base 88.9 67.4 67.2 56.5 40.3 37.7 59.7
RoBERTa-large 90.1 79.2 72.2 54.3 39.0 37.5 62.1

Multilingual
mBERT 87.9 83.7 84.3 82.6 72.4 82.1 82.2
XLM-R-base 87.7 83.7 81.3 81.9 74.4 78.0 81.2
XLM-R-large 89.5 87.3 85.3 85.5 82.0 83.1 85.5

Table 3: Accuracy scores of monolingual and multilingual PLMs on the test set in zero-shot learning Jz.

Model Consistency R en es fr id ja zh Avg

Zero-shot Jz – – 87.9 83.7 84.3 82.6 72.4 82.1 82.2
Non-parallel Jnp – – 88.1 86.8 86.5 86.0 85.4 86.0 86.5
Parallel Jp – – 87.0 85.7 85.7 85.3 79.8 82.9 84.4

Pred KL 87.4 86.1 85.7 85.6 81.4 84.1 85.0
J 86.9 85.7 85.6 85.8 81.7 83.9 84.9
JS 87.4 86.0 85.8 85.9 81.7 84.2 85.2

Repr MSE-feat 87.4 85.7 86.0 85.9 82.2 85.1 85.4
MSE-penu 87.5 86.1 86.0 86.2 82.4 84.4 85.4
COS-feat 87.4 85.7 85.8 85.8 83.0 84.3 85.3
COS-penu 87.1 85.7 85.7 85.7 82.2 84.1 85.1

Table 4: Accuracy scores of mBERT on the test set. Pred = Prediction; Repr = Representation; feat = feature; penu
= penultimate.

Consistency (R) mBERT XLM-R-large

– 84.4 88.3
Pred (JS) 85.2 88.1
Repr (MSE-feat) 85.4 88.1
Pred (JS) & Pepr (MSE-feat) 85.3 88.0

Table 5: Additional results of parallel training Jp.

error (ECE, Naeini et al. 2015):

ECE =
M∑

i=1

|Bi|
N
|acc(Bi)− conf(Bi)|,

acc(Bi) =
1

|Bi|
∑

j∈Bi

1(ŷj = yj),

ŷj = argmaxyj∈Y p(yj |xj),

conf(Bi) =
1

|Bi|
∑

j∈Bi

p̂j ,

p̂j = maxyj∈Y p(yj |xj),

where Bi is the set of examples belonging to the ith

bin.6

6We divide the confidence range of [0, 1] into M equal-
size bins, where the ith bin covers the interval of ( i−1

M
, i
M
].

We set M = 20.

In Section 5.1, we find that our prediction consis-
tency contains the negative entropy of the predicted
distribution, which should help mitigate miscali-
bration as in the confident penalty (Pereyra et al.,
2017). As shown in Table 6, the symmetric di-
vergence measures, J and JS, significantly reduce
the ECE scores because they encourage the model
to output high entropy for both the original and
translated examples. Although we observed slight
differences in accuracy among our regularization
functions in Section 6.2.2, we would prefer a model
having lower ECE (i.e., better calibrated) in prac-
tice. Thus, we suggest applying prediction consis-
tency with a symmetric divergence measure (J or
JS).

6.2.4 Performance comparison of human- and
machine-translated data

So far, we have used machine-translated data to
evaluate the performance on the target languages.
We now examine whether there is a performance
disparity between machine- and human-translated
data because we expect to apply our model to
human-written texts. We experiment with the test-
6h set, where a subset of 600 examples from the
original test set were translated by both machines
(DeepL) and professional translators.
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Model Consistency R en es fr id ja zh Avg

Zero-shot Jz – – 6.0 8.5 7.9 9.2 14.6 8.6 9.1
Non-parallel Jnp – – 4.9 5.2 5.2 5.4 4.2 5.0 5.0
Parallel Jp – – 8.7 7.5 7.4 7.7 7.6 6.2 7.5

Pred KL 3.4 5.2 5.6 5.8 8.4 6.4 5.8
J 1.5 2.4 2.7 2.6 5.3 4.1 3.1
JS 3.5 3.1 2.7 2.8 4.1 3.8 3.3

Repr MSE-feat 8.1 8.3 7.9 8.0 7.6 6.7 7.8
MSE-penu 7.6 7.2 7.2 7.2 6.5 6.3 7.0
COS-feat 8.7 8.6 8.5 8.2 7.7 7.3 8.2
COS-penu 8.9 8.1 8.0 8.2 8.0 7.8 8.2

Table 6: ECE scores (lower is better) of mBERT on the test set.

Scenario PLM Trans es fr id ja zh Avg

Zero-shot Jz mBERT Machine 83.5 83.8 82.3 74.3 82.5 81.3
Human 83.5 84.8 81.5 77.2 83.0 82.0

XLM-R-large Machine 85.2 83.3 85.0 81.3 83.5 83.7
Human 83.8 84.2 83.3 83.7 82.0 83.4

Translate-train Jnp mBERT Machine 87.2 85.8 87.2 83.5 85.8 85.9
Human 87.5 86.7 86.2 82.0 84.8 85.4

XLM-R-large Machine 86.8 86.7 87.5 86.2 87.2 86.9
Human 86.0 87.0 85.5 87.7 84.7 86.2

Table 7: Comparison of accuracy scores on the machine- and human-translated test-6h set.

As shown in Table 7, the average differences are
only around 0.3∼0.7%. We attribute these minor
discrepancies to DeepL’s accurate translations. Our
results suggest that translate-train learning is effec-
tive when we can have high-quality translated data.
Appendix B shows examples of the machine- and
human-translated texts from the test-6h set.

7 Conclusion

False claims can spread across languages. Iden-
tifying these claims is an important task since a
number of online claims might cause harm in the
real world. Existing benchmarks for fact verifica-
tion are mainly in English. To address the lack of
benchmarks for non-English languages, we intro-
duced the XFEVER dataset for the cross-lingual
fact verification task.

We presented a series of baselines in two scenar-
ios: zero-shot learning and translate-train learning.
For the latter scenario, we explored various regu-
larization functions. We found that translate-train
learning with high-quality machine-translated data
can be effective. In addition, consistency regular-
ization with symmetric divergence measures can
help reduce miscalibration.

For future work, we plan to investigate a scenario
when large machine-translated data are unavail-

able, but we can acquire a few examples for train-
ing. We also want to expand XFEVER’s human-
translated data to cover more languages, especially
low-resource ones.
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A Additional results

We conducted preliminary experiments and found
that the default λ = 1 does work well with the J
divergence and XLM-R-large. One plausible rea-
son is that the J divergence penalizes the loss more
heavily than other divergence measures. If we fol-
low the proof of Theorem 1 in Lin (1991), we can
obtain the following bound:

JS(p ∥ p̃) ≤ 1

4
J(p ∥ p̃).

Thus, we heuristically reduce λ to 0.25 for the J di-
vergence to alleviate the issue. Tables 8 and 9 show
the accuracy and ECE scores of XLM-R-large on
the test set, respectively.

B Machine vs. human translations

Table 10 shows examples of the machine- and
human-translated texts from the test-6h set.

The 35th Conference on Computational Linguistics and Speech Processing (ROCLING 2023) 

Taipei City, Taiwan, October 20-21, 2023. The Association for Computational Linguistics and Chinese Language Processing 

 

 

 

10



Model Consistency R en es fr id ja zh Avg

Zero-shot Jz – – 89.5 87.3 85.3 85.5 82.0 83.1 85.5
Non-parallel Jnp – – 89.7 88.7 88.4 88.4 88.1 88.0 88.6
Parallel Jp – – 89.7 88.5 87.6 88.7 87.4 87.7 88.3

Pred KL 89.3 88.4 87.1 88.4 86.8 87.1 87.8
J 89.6 88.5 87.7 88.8 87.1 87.7 88.2
JS 89.7 88.3 87.4 88.4 87.1 87.6 88.1

Repr MSE-feat 89.7 88.4 87.5 88.7 87.0 87.5 88.1
MSE-penu 89.7 88.5 87.6 88.4 86.7 87.7 88.1
COS-feat 89.5 88.4 87.6 88.5 87.4 87.5 88.1
COS-penu 89.6 88.4 87.5 88.4 87.0 87.6 88.1

Table 8: Accuracy scores of XLM-R-large on the test set. Pred = Prediction; Repr = Representation; feat = feature;
penu = penultimate.

Model Consistency R en es fr id ja zh Avg

Zero-shot Jz – – 8.8 10.6 12.4 12.4 15.1 14.2 12.2
Non-parallel Jnp – – 6.0 6.5 6.6 6.9 5.9 6.5 6.4
Parallel Jp – – 5.7 5.3 5.3 5.4 3.7 4.6 5.0

Pred KL 2.4 4.0 5.0 4.3 4.9 5.0 4.3
J 3.6 4.4 4.5 4.4 4.2 4.5 4.3
JS 2.6 2.8 2.9 2.8 3.1 2.7 2.8

Repr MSE-feat 4.8 4.8 5.0 4.9 3.8 4.5 4.6
MSE-penu 5.5 5.6 5.9 6.1 5.3 5.6 5.7
COS-feat 5.3 5.4 5.5 5.7 4.4 5.3 5.3
COS-penu 5.8 5.7 5.8 5.9 4.7 5.3 5.5

Table 9: ECE scores (lower is better) of XLM-R-large on the test set.

Language Trans Claim / Evidence

English Original Simon Pegg is an actor.
He and Nick Frost wrote and starred in the sci-fi film Paul ( 2011 ).

Spanish
Machine Simon Pegg es un actor.

Él y Nick Frost escribió y protagonizó la película de ciencia ficción Paul ( 2011 ).

Human Simon Pegg es un actor.
Él y Nick Frost escribieron y protagonizaron la película de ciencia ficción Paul (2011).

French Machine Simon Pegg est un acteur.
Avec Nick Frost, il a écrit et joué dans le film de science-fiction Paul ( 2011 ).

Human Simon Pegg est un acteur.
Avec Nick Frost, il a écrit et joué dans le film de science-fiction Paul (2011).

Japanese Machine サイモン・ペッグは、俳優である。
ニック・フロストとともにSF映画『ポール』( 2011 )で脚本と主演を務めた。

Human Simon Peggは俳優です。
彼と Nick FrostはSF映画『Paul』(2011年)の脚本を書き、主演もしています。

Chinese Machine 西蒙-佩吉是一名演员。
他和尼克-弗罗斯特编剧并主演了科幻电影《保罗》(2011)。

Human 西蒙·佩吉是一名演员。
他和尼克·弗罗斯特(Nick Frost)在科幻电影《保罗》(2011)中担任编剧并主演。

Table 10: Examples (claim and evidence) from six languages in the XFEVER’s test-6h set. Machine = DeepL;
Human = professional translators.
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