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Abstract 

A cancer registry is a critical database for cancer 

research, which require diverse domain 

knowledge and manual extraction of vital 

information from patient records for surveillance. 

In order to building a real-time and high-quality 

cancer registry database, a named entity 

recognition (NER) model based on bidirectional 

long short-term memory (BiLSTM)-conditional 

random fields (CRFs) to automatically extract 

14 cancer registry items from unstructured 

pathology reports was developed for five 

hospitals. Because not all hospitals have 

sufficient training data, so that we apply transfer 

learning to develop our models for different 

hospitals. However, catastrophic forgetting leads 

to poor performance of the transferred model on 

the source hospital. To address this issue, we 

study the effectiveness of applying the elastic 

weight consolidation (EWC) method for the 

extraction of cancer registry items from the 

unstructured pathology reports of colorectal 

cancer to mitigate the occurrence of catastrophic 

forgetting. In our results, we observe that 

effective parameter settings can reduce the 

impact of catastrophic forgetting. 

Keywords: Electronic Medical Records, Natural 

Language Processing, Transfer Learning, Elastic Weight 

Consolidation 

1 Introduction 

Electronic medical records (EMR) contain large 

amounts of data collected during routine medical 

care delivery and have the potential to generate 

practice-based evidence, such as early diagnosis of 

cancer patients and improved quality of care. 

Cancer is one of the main causes of mortality 

worldwide, and it is the leading cause of death in 

Taiwan, and the overall incidence rate has 

gradually increased (Kuo et al., 2020). In recent 

years, domestic cancer research has continued to 

increase, promoting cooperation and resource 

integration among cancer centers to accelerate 

breakthroughs in cancer research bottlenecks. The 

Taiwan Cancer Registry (TCR), which provide a 

comprehensive measurement of cancer incidence, 

morbidity, survival, and mortality for persons with 

cancer in Taiwan. Unfortunately, the process of 

reporting cancer cases requires manual review of 

numerous reports, such as radiology reports and 

pathology reports, which is obviously labor-

intensive and time-consuming. One solution to this 

problem currently being explored is the application 

of Natural Language Processing (NLP) techniques 

to automatically read and extract information from 

cancer reports. 

In the field of machine learning, the quantity 

of the dataset has a significant impact on the 

performance and generalization ability of 

algorithms. Transfer learning has been proven to be 

an effective learning method to solve the problem 

of dataset scarcity (Hutchinson et al., 2017). It uses 

the knowledge gained from training a model on 

one task to improve the performance of another 

related task, which can speed up convergence, 

reduce data requirements and improve 

performance when obtaining labeled data for the 

new task is challenging or time-consuming. Dai et 
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al. (2021) demonstrated the utility of employing 

transfer learning for cross-corpus training in cancer 

registries. However, their study was limited to 

cases where the source hospital had same cancer 

registry items as the target hospital. In practical 

scenarios, cancer registration standards followed 

by different hospitals at different times may lead to 

different items and content of the target cancer. For 

example, different American Joint Committee on 

Cancer (AJCC) versions have different numbers of 

items, staging criteria, tumor descriptors and 

prognostic factors.  

Despite transfer learning alleviates the issue  

of learning from small datasets in cancer registries 

across healthcar institutions, catastrophic 

forgetting may occur during the process of learning 

a new set of cancer registry items leading to a 

degradation of the model's performance on the 

original item set. The issue of catastrophic 

forgetting is paramount importance as it directly 

impacts the effectiveness of transfer learning and 

the overall performance of models. When 

catastrophic forgetting occurs, the learned 

knowledge from earlier tasks may be overwritten 

or weakened by the learning of subsequent tasks, 

leading to suboptimal performance on all tasks. 

McCloskey and Cohen (1989) demonstrated that 

interference leading to forgetting occurs whenever 

new knowledge could alter the weights of old 

knowledge. Ratcliff (1990) conducted experiments 

using backpropagation-based training on multi-

layer models, revealing that memory and context 

models with pre-learned knowledge are unable to 

address catastrophic forgetting. Recently, 

Ramasesh, Dyer, and Raghu (2020) conducted 

experiments on the publicly available CIFAR-10 

image dataset, showing that catastrophic forgetting 

often occurs in deep neural network layers closer 

to the output. Arumae, Sun, and Bhatia (2020) used 

the RoBERTa model pre-trained on PubMed 

articles by combining with the elastic weight 

consolidation (EWC) (Kirkpatrick et al., 2017) 

method to achieve better results in the i2b2 named 

entity recognition (NER) task than that of the 

original RoBERTa model alone. Arumae found 

that using the EWC method helped mitigate 

catastrophic forgetting with only a 0.33% decrease 

in performance across the seven general-domain 

tasks in the GLUE benchmark. This approach 

demonstrated competitive performance in 

biomedical tasks as well. 

In this study, we focus on mitigating the 

adverse repercussions of catastrophic forgetting in 

transfer learning. To this end, we conduct 

experiments to study the following two interrelated 

research questions, each of which will be discussed 

and elaborated in subsequent sections, as follows: 

RQ1: The effect of different transfer learning 

strategies. 

RQ2: Extent of catastrophic forgetting in transfer 

learning: To illustrate the extent of catastrophic 

forgetting in transfer learning scenarios when the 

developed model learned on one additional 

hospital’s data. 

2 Method 

2.1 Datasets 

In this study, we used pathology reports of 

colorectal cancer from five medical institutes 

including Hospital-A (HA), Hospital-B (HB), 

Hospital-C (HC), Hospital-D (HD) and Hospital-E 

(HE) as our dataset. In order to simulate the 

situation of limited data, we randomly selected 300 

and 100 pathology reports from each medical 

institution in the pre-processing stage as the 

training set and test set respectively. Table 1 shows 

the number of datasets compiled for the five 

medical institutions. 

2.2 Corpus Construction 

Due to the variations in cancer-related items of 

interest across different hospitals, which is owing 

to the adoption of different AJCC versions or other 

clinical research concerns, the annotation process 

was discussed separately. To enhance the precision 

of annotations, each hospital established an 

annotation team consisting of at least three 

members and utilized Fleiss’ Kappa (Fleiss, Nee, 

& Landis, 1979) to assess annotation consistency. 

Source HA HB HC HD HE 

# of Reports 541 1,735 965 1,732 748 

Training Set 300 300 300 300 300 

Test Set 100 100 100 100 100 

Table 1:  Datasets collected from five medical institutions. 

centers. 
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Based on Taiwan's cancer registration reports, we 

focused on specific factors related to pathological 

examinations and colorectal cancer site-specific 

factors (SSFs), resulting in a total of 14 items. 

Table 2 presents the 14 colorectal cancer items, 

including histology types (H), grades (G)、stage 

classification (SC), pathological TNM 

classifications (TNM), the number of examined 

nodes (NE) and positive nodes (PN), tumor size 

(TS), lymphovascular invasion (LI), perineural 

invasion (PI), AJCC stage classification (ASC), 

carcinoembryonic antigen (CEA), and Kirsten rat 

sarcoma viral oncogen homolog (KRAS). 

The annotation process of the dataset was 

carried out independently by the annotation teams 

in the five medical institutes.  They followed a 

consistent annotation guideline when the cancer 

registry items were shared among them. Initially, 

the annotators annotated a set of 100 randomly 

sampled pathology reports according to the 

annotation guidelines to estimate the Kappa value, 

which is interpreted as follows: value ≤ 0 as no 

agreement, 0.61-0.80 as substantial, and  0.81-1.00 

as almost perfect agreement. If the kappa value did 

not exceed 0.85, further discussions and criteria 

modifications were carried out iteratively. Once the 

consistency criterion was met, the remaining 

reports were evenly distributed among the 

annotators for individual annotation.  

2.3 Network Architecture for Cancer 

Registry Information Extraction  

To process pathology reports, we first de-identify 

the unstructured reports and then apply the 

sentence segmentation. Subsequently, the task is 

formulated as a sequence labeling task by using the 

IOB2 encoding. We utilize a neural network 

architecture that combines bidirectional long short-

term memory (BiLSTM) with conditional random 

fields (CRFs) as depicted in Figure 1. 

2.4 Fine-tuning with EWC 

EWC employs a penalty mechanism in updating 

model parameters based on their importance. The 

 

Figure 1: BiLSTM-CRF Network Architecture. 

Type Description HA HB HC HD HE 

H The structure of primary tumor cells under a microscope. O O O O O 

G 
Grading/differentiation of solid tumors at the primary site after 

surgery. 

O O O O O 

NE Total number of regional lymph nodes examined by pathologists. O O O O O 

PN 
Total number of regional lymph nodes examined by pathologists 

that tested positive. 

O O O O O 

TS Size of tumor. O O O O O 

SC Symbols of AJCC Pathological Staging Prefixes/Roots. O O O O O 

T Size or extent of the primary tumor. O O O O O 

N 
Presence of regional lymph node metastasis and extent of 

metastasis. 

O O O O O 

M Presence of distant metastasis of the tumor. O X O O O 

LI 
Presence of lymphatic or vascular invasion in the primary site 

report. 

O X X X O 

PI 
Presence of neural invasion documented in the pathology report 

for the primary site in the medical record. 

O X X X O 

ASC AJCC Cancer Staging Edition. O X X X O 

KRAS Normal value for KRAS testing . O X O O O 

CEA carcinoembryonic antigen. O X X X O 

Table 2:  The fourteen defined cancer registry items. If the hospital does not contain the cancer registry item, 

it will be noted as X. 
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Fisher information matrix ( 𝐹𝑖,𝑖 ) is utilized to 

identify significant parameters. During EWC fine-

tuning, the Fisher information matrix serves as a 

criterion to slow down the decrease of loss, scaling 

the cost of the original parameters 𝜃𝑖
∗  to the 

updating parameters 𝜃𝑖. The following equation is 

the lose function defined for the model with the 

parameter set 𝜃.  

𝐿(𝜃) =  𝐿𝐹𝑇(𝜃) + ∑
𝜆

2
𝐹𝑖,𝑖(𝜃𝑖 − 𝜃𝑖

∗)2

𝑖

 (1) 

Here, λ is a controllable hyperparameter. 𝐿𝐹𝑇(𝜃) is 

the loss of target domain. 

2.5 Transfer Learning among Different 

Hospitals 

Previous studies have observed that transfering the 

parameters of all layers of the BiLSTM-CRF 

model for the recognition of cancer registry items 

achieve the best scores even with a small amount 

of data. However, those works only focuses on the 

transfer learning of the same recognition task. In 

this study, the number of cancer registry items can 

be different as shown in Table 2, which can be 

summarized as the following three types:  

1. The numbers and types of items are the 

same. 

2. Transfer from more items to fewer 

items: In this case, the set of the types 

of the source domain items is the 

superset of the target hospital’s items. 

3. Transfer from fewer items to more 

items:  In this case, the number of the 

types of the target domain items is the 

superset of the source hospital’s items. 

Due to the fact that the number of the target 

hospital’s items surpassed that in the source 

domain, it is necessary to modify the last linear 

layer shown in Figure 1 to align with the target 

domain. In our implementation for the first and 

second cases, the parameters of all layers of the 

developed models were directly transferred to the 

new models. For the third case, we migrated the 

trained parameters from the source hospital to the 

target hospital for the matched registry items. For 

new items not present in the source hospital, 

random initialization was applied to set the initial 

weights for the corresponding node in the last 

linear layer. 

2.6 Experiment Configurations 

We conduct experiments to study the 

effectiveness of applying EWC in the 

aforementioned scenarios to mitigate catastrophic 

forgetting. For comparison purpose, we 

developed models followed the conventional 

transfer learning methods. Furthermore, the 

following two methods were developed, which 

are served as the upper and lower bounds 

respectively: 

• Merged corpus: Models trained on the 

merged training sets of the source and 

target hospitals. The configuration is 

served as an upper bound. 

• Direct Prediction: Making predictions 

directly by using the source model. The 

configuration serves as a lower bound. 

The neural networks were implemented using 

PyTorch and trained with a Nvidia GeForce RTX 

2080 Ti GPU with 11GB of memory. 

In the following experiments, the number of 

epochs was set to 150 with a batch size of 256 and 

the learning rate was set to 1× 10−1  . We used 

cross entropy as the loss function and employed 

stochastic gradient descent as the optimizer. The  λ 

of EWC was set to 400,  same as  Kirkpatrick et al. 

(2017).  

3 Results 

3.1 Statistics of the Experimental Datasets 

and the Evaluation Results 

We collected a total of 5,721 pathology reports 

from five hospitals. In this study, the corpora from 

each hospital (shown in Table 3) were further 

randomly sampled to extract 300 reports as the 

training set, ensuring no overlap with the 100 

reports in the test set. The training set was then 

divided proportionally into subsets of 15, 60, 120, 

180, and 240 reports each. This process aimed to 

simulate scenarios of learning with limited data. 

The Kappa values for each hospital are detailed in 

Table 4. As HE did not undergo Kappa consistency 

testing, the table does not include its Kappa score.  

For the collected data, we notice that each 

hospital has its unique way of releasing the 

pathology reports, leading to variations in the 

amount of information included. For instance, the 

reports for each patient are created separately at 
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HA, but HD consolidates diagnostic reports for the 

same patient and  clinical pathology  number into a 

single report. Table 3 shows the performance of the 

developed models evaluated on their test sets 

respectively. The models were then served as the 

pre-trained models for transferring the learned 

parameters to the model for other target hospitals 

in the following experiments. 

While this practice can save time in case finding, 

it may introduce uniqueness to the labeling process. 

Taking HD's corpus as an example, a single report 

could contain multiple diagnostic reports with the 

same writing style. However, the annotators only 

label the grade based on the last diagnostic report 

in that combined report. 

The varying annotation styles across different 

hospitals pose a challenge for transferring learning 

from one hospital to another in this study.  

3.2 RQ1: The Effect of Different Transfer 

Learning Strategies 

To investigate RQ1, this experiment is divided into 

three configurations based on whether to inherit the 

parameters of the last layer: 

• Non-inherit: Not inheriting the 

parameters of the last layer, and 

initializing all parameters of that layer 

randomly (while still inheriting 

parameters of other layers).  

• Inherited: Based on the “Non-inherit”, 

the configuration further inherits the 

parameters of the last layer matched with 

the output nodes of the source model. 

• EWC: Based on the “Inherited”, this 

configuration further apply the EWC 

method during the training phase. 

The datasets compiled for all of the five 

hospitals were used in this experiment, and transfer 

learning was conducted between each pair of 

hospitals. The results are presented according to 

the task types described in Section 2.5 which can 

be divided as follows: 

• Type 1: The number and types of items 

are the same. The model was first pre-

trained on the full source dataset and then 

transferred to the target training dataset. 

Type HA HB HC HD HE 

H 539 948 911 537 2,097 

G 436 908 852 695 919 

NE 584 450 1,046 710 1,148 

PN 516 450 770 714 920 

TS 1,119 350 1,671 1,272 727 

SC 534 320 629 275 1,273 

T 364 319 352 275 785 

N 366 198 337 275 682 

M 364 1 41 84 214 

LI 303 N/A N/A N/A 294 

PI 298 N/A N/A N/A 252 

ASC 316 N/A N/A N/A 298 

KRAS 8 N/A 1 312 256 

Numbers of reports 300 300 300 300 300 

Numbers of sentences 18,544 14,054 29,877 39,794 31,913 

Numbers of annotations 2,039 1,928 3,236 2,759 5,507 

Table 3:  Corpus statistics for the compiled corpora of train sets. 

Hospital Kappa Value 

HA 0.802 (substantial) 

HB 0.914 (almost perfect) 

HC 0.955 (almost perfect) 

HD 0.819 (substantial) 

HE N/A 

Table 4:  Kappa values of the compiled dataset.  
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The evaluation results on the target test 

set was presented in Figure 2. 

• Type 2: The model was transferred from 

the source dataset with more item types to 

the target dataset with less item types. 

The test set results for the target hospital 

is presented in Figure 3. 

• Type 3: The model was trained with less 

item types but transferred to the target 

hospital with more item types. The 

evaluation results on the target test set is 

illustrated in Figure 4. 

We only select three results with different types as 

a result of the gr eat mass of data. In general, the 

outcomes  are mostly consistent. Take Figure 2 as 

an example. We fine-tuned the models pre-trained 

with the HD training set on the varied sizes of the 

HC training set (ranged from 15 reports to 300 

reports as depicted in the x-axis). It’s worth noting 

that the performance of the configurations of all 

inherited approaches among all of the three types 

achieved above 0.9 scores when the target hospital 

only provides 15 reports. The configurations 

trained with more than 15 reports achieved an F-

score of 0.9 or higher, except for the lower-bound 

configuration. Consistent with the observations of 

other related configuration results, the inclusion of 

EWC during the training phase results in a model 

with a better F-score than that of the model trained 

with the conventional transfer learning. On the 

other hand, we can observe that the performance of 

the non-inherited configurations is significantly 

lower when the training set size is limited. Some of 

them even underperform the lower bound model. 

We will discuss it later in the Error Analysis section.  

3.3 RQ2: Extent of Catastrophic Forgetting 

in Transfer Learning 

In this section we study the extent of catastrophic 

forgetting following the same type definitions used 

in the RQ1. The results are depicted in Figures 5-7 

in which we report the performance of the 

transferred models evaluated on the original source 

test sets. Take Figure 5 as an example. We fine-

tuned the models pre-trained with the HD training 

set on the sampled HC training set ranging from 15 

reports to 300 reports. We then plot the fine-tuned 

models’ performance on the HD test set.  

 

Figure 5: The HD test set performance of the HD (10) 

model fine-tune on the corresponding HC (10) training 

set with varied sizes. 

Figure 2: Type 1 results for the HC test set; the model 

was transferred from HD (10) to HC (10). 

Figure 3: Type 2 results for the HB test set; the 

model was transferred from HA (13) to HB (9). 

Figure 4: Type 3 results for the HC test set; the model 

was transferred from HB (9) to HC (10). 
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 As Figure 5-7 presented, when the target domain 

has less than 120 reports, the configuration of non-

inherited has more serious extent of catastrophic 

forgetting than the inherited one. Furthermore, we 

observe that when the item types between the target 

and source domain are consistent, the extent of 

catastrophic forgetting for the inherited 

configuration is minor. As shown in Figure 5, when 

the size of the target domain’s dataset increases, the 

performance of the source domain approaches the 

upper bound and even surpasses the models trained 

solely on the dataset of source domain. 

With regard to the performance of EWC method, 

it was evident that EWC can mitigate forgetting 

more effectively. However, in some case EWC 

method perform worse than the inherited 

configuration when the amount of data is limited. 

One potential explanation for this phenomenon is 

that EWC's regularization of initially important 

parameters might lead to a slower learning rate. 

 It was noticed that some non-inherited 

configurations perform worse than the lower 

bound when the amount of target domain training 

set less than 60 reports. These cases occur when 

transferring from the source domain with fewer 

item types to a target domain with more item types. 

With respect to these errors, we will discuss them 

in following section.  

4 Error Analysis 

As mentioned in the previous chapter, this section 

focuses on the error analysis of the prominent 

discrepancies. First, as the result of RQ1 presented, 

we find that some of the non-inherited 

configurations underperformed the lower bound in 

case when they were fine-tuned on a limited 

training set like 15 reports. The error analysis 

demonstrates that fine-tuning the transferred model 

on such a limited dataset can enhances its recall on 

the target dataset, but its precision diminishes 

significantly, resulting in a reduced overall F-score. 

In contrast, the model without transfer learning 

struggles to recognize registry items such as G, NE, 

PN, TS, SC, and TNM. Nonetheless, it maintains 

the ability to recognize H (histology) across most 

cases, owing to this study only focus on the 

colorectal cancer type, thereby yielding a slightly 

higher F-score. Additionally, we notice that some 

histology terms like "Mucinous adenocarcinoma" 

appeared in one hospital’s reports, does not appear 

in the other hospitals’ reports. The counts for 

lymph node examination (NE) and positive nodes 

(NP) are typically denoted as integers in most 

hospitals. However, our investigation has revealed 

that, in the case of HC, some counts are directly 

expressed in English. For example, the sentence 

"Twelve dissected lymph nodes have no evidence 

of tumor metastasis" labels "Twelve" as "NE." As 

discussed above, directly predicting for unfamiliar 

Figure 6: The HA test set performance of the HA (13) 

model fine-tuned on the HB (9) training sets with 

varied sizes. 

Figure 7: The HB test set performance of the HB (9) 

model fine-tuned on the corresponding HC (10) 

training sets with varied sizes. 

 
Lower-

bound 

Non-

inherit 

H 0.2985 0.0761 

G 0.0000 0.0000 

NE 0.9748 0.9812 

PN 0.9969 0.9969 

TS 0.0303 0.0435 

SC 0.9872 0.9829 

T 0.9741 0.9697 

N 0.9343 0.9343 

Overall  0.6182 0.5573 

Table 5:  At 60 instances, when transferring from HB 

(9 categories) to HC (10 categories), and predicting 

the detailed NER performance of HB (bold scores 

are those below the micro-average). 
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knowledge can disregard the variations in labeling 

styles across target domains, resulting in higher 

accuracy compared to the transfer effect with 

randomly initialized parameters. This is also due to 

the combined impact of transfer and the random 

initialization of the linear layer.  

Next, RQ2 discuss the extent of catastrophic 

forgetting, and the comparison table of HB fine-

tuning result presented in Table 5. Additionally, 

during the examination of the original training data, 

it was noticed that a few annotation errors which 

may causing the confusion during the training 

phase and prediction confusion. For instance, 

"Grade 1 (moderately differentiated)" was entirely 

labeled as Histology, when in reality, this 

annotation should be "Grade". The above 

observation highlight the potential for annotation 

errors can contribute to inaccurate predictions and 

confusion in the training and prediction phases. We 

discovered that in the non-inherited setting, there 

are instances where “NOS” is wrongly predicted as 

Path_N, resulting in the frequent occurrence of 

“NOS” and the subsequent decrease in accuracy. 

In conclusion, based on the observations from 

the results of RQ1 and RQ2, it's evident that the 

inherited approach indeed outperforms the non-

inherited approach, and the EWC method exactly 

perform well when the target domain have more 

than 120 reports.  

5 Conclusions 

In this study, we aimed to mitigate catastrophic 

forgetting under transferring learning. The total of 

five different hospitals provided the unstructured 

reports of colorectal cancer. We utilized manually 

annotated pathology reports to create datasets 

which including 14 items of cancer registry. Our 

research method explored the importance of 

inherited parameters and the EWC method under 

various transfer learning scenarios with different 

labeling quantities and transfer orders. In RQ1, we 

arrive at the conclusion that regardless of the 

amount  of  target domain item, inheriting the 

parameters in the last linear layer with little 

training data leads to better performance. Besides, 

we also demonstrating that EWC doesn't 

negatively affect the training of the original model 

and that it effectively mitigates forgetting. The 

transfer order between unequal label types doesn't 

significantly impact the effectiveness of the 

approach. In RQ2, we demonstrated that EWC 

method can mitigate the extent of forgetting 

whether the quantities of transferring labels were 

consistent or not. The configuration of inheriting 

parameters cause the  lower catastrophic forgetting 

when the target hospital had limited data.  

The error analysis explained that the mislabeling 

led to the worse performance and the stylish of 

labeling cause the knowledge transferring problem. 

In the future work, we prefer to the integration of 

the labeling golden standard, and try more deep 

learning algorithm and regularization method on 

transferring to avoid forgetting. 
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