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Abstract

The objective of Sentence-level Revision
(SentRev) is to enhance the fluency of En-
glish writing; however, the performance
of the three baseline methods is notably
suboptimal. In this study, we propose
a method utilizing neural reinforcement
learning, tailored to the specific character-
istics of this task, which has resulted in su-
perior performance over the baseline meth-
ods, surpassing them in multiple evalua-
tion metrics. Moreover, we have identified
conspicuous bottlenecks in SentRev’s effi-
cacy in improving the fluency of English
writing.

Keywords: English Writing Assistant,
SentRev, NRL

1 Introduction

The inadequate English writing proficiency
of many non-native English speakers renders
their academic English writing a challenging
task, hence academic writing assistant has be-
come a popular downstream task in the field
of Natural Language Processing (NLP). How-
ever, much of the previous work has predom-
inantly concentrated on English Grammati-
cal correction (GEC), with scarce results pub-
lished concerning the more challenging aspect
of English writing fluency enhancement.

(Ito et al., 2019) has introduced Sentence-
level-revision (SentRev), a task dedicated to
enhancing the fluency of English writing. The
authors have established baseline performance
for the task at hand by employing methodolo-
gies from a variety of other Natural Language
Processing tasks. However, significant room
for improvement in baseline performance re-
mains. In pursuit of an optimized approach for

the task at hand, we conducted a comprehen-
sive analysis of its characteristics. Our inves-
tigation revealed that the task inherently in-
volves iterative sentence-level revisions aimed
at enhancing English writing fluency. This as-
pect aligns closely with the self-improving na-
ture of reinforcement learning, which contin-
uously refines its performance to achieve su-
perior outcomes. Consequently, we adopted
a reinforcement learning paradigm tailored to
the unique requirements of this task and em-
ployed the GLUE (Wang et al., 2018) as the
reward function to drive the optimization pro-
cess. An evaluation was conducted on the
SMITH dataset (Ito et al., 2019), and the re-
sults substantiated that our proposed method
exhibits a significant improvement over the
baseline performance. Additionally, our ex-
perimental findings have revealed limitations
within SentRev, resulting in conspicuous bot-
tlenecks in the enhancement of English writing
fluency.

2 Related Works

2.1 Grammatical Error Correction
(GEC)

The objective of Grammatical Error Correc-
tion (GEC) is to transform a sentence S with
grammatical errors into a corrected version,
denoted as S’. Given its nature of transforming
a sequence output into a new sequence, mod-
ern approaches to this task commonly treat it
as a machine translation problem. In essence,
it involves ′′translating′′ a sentence with gram-
matical errors into a corrected sentence.

With the introduction of the Transformer
(Vaswani et al., 2017), significant advance-
ments have been made in the GEC task over
the past few years, particularly in the do-
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main of English Grammatical Error Correc-
tion (Yuan and Briscoe, 2016; Omelianchuk
et al., 2020; Stahlberg and Kumar, 2020).
Most grammatical errors in English can now
be effectively rectified. However, for non-
native English speakers, improving the fluency
of their English writing poses a greater chal-
lenge, especially when engaging in academic
English writing, as non-fluent English expres-
sion may hinder their ability to effectively
present their academic viewpoints. Unfortu-
nately, the enhancement of English writing flu-
ency has received limited attention in research
due to its entanglement with numerous linguis-
tic intricacies.

2.2 Sentence-level Revsion (SentRev)

(Ito et al., 2019) proposes Sentence-level Re-
vision (SentRev) to address the challenge of
improving English writing fluency. This task
conceptualizes the enhancement of English flu-
ency as the act of rewriting sentences. The
specific process is illustrated in Figure 1.

Figure 1: Overview of the process of SentRev. Fig-
ure copied from (Ito et al., 2019)

In this endeavor, the authors have con-
structed a manually annotated test dataset
named the SMITH dataset for evaluating Sen-
tRev. Subsequently, three distinct NLP down-
stream task models were employed for this pur-
pose, namely, the Heuristic noising and denois-
ing model, the Enc-Dec noising and denoising
model, and the GEC model (Zhao et al., 2019).
These models were used to establish baseline
scores on the SMITH dataset, however, the
attained baseline scores were deemed unsatis-
factory.

2.3 Neural Reinforcement Learning
(NRL)

Neural Reinforcement Learning (NRL) is a
synthesis of Reinforcement Learning (RL)
and Deep Learning, leveraging the expressive
power of neural networks to approximate com-
plex functions that represent the state and ac-
tion spaces (Mnih et al., 2015).

In traditional RL, an agent learns to take
actions in an environment to maximize some
notion of cumulative reward. The learning pro-
cess is often guided by the Bellman equation:

V (s) = max
a

(
R(s, a) + γ

∑

s′
P (s′|s, a)V (s′)

)

(1)

In NRL, deep neural networks are utilized
to approximate the value functions V (s) or the
policy π(a|s), allowing the approach to handle
high-dimensional state and action spaces (Gu
et al., 2016).

In the context of Natural Language Process-
ing (NLP) downstream tasks, RL has been em-
ployed in various applications including MT
(Wu et al., 2018), GEC (Sakaguchi et al.,
2017), and Text Style Transfer (Gong et al.,
2019), achieving amazing performance. The
resemblances between these downstream tasks
and SentRev provide valuable insights and
precedents for the application of RL in Sen-
tRev.

3 Proposed Method
In order to address the issue of low compat-
ibility between the baseline method and Sen-
tRev, We propose a method based on NRL
for SentRev. This proposition emerges from
our observation that the rewriting process of
SentRev is congruent with the characteristics
inherent to NRL. We have engineered a com-
prehensive NRL method specifically tailored
for SentRev. The aim of this method is to
maximize the expected GLEU score through
the optimization of model parameters, and it
has been specifically adjusted in accordance
with the task requirements. All these compo-
nents and choices collectively delineate a com-
plete, explicit, and coherent method that can
be employed for the transformation of non-
fluent drafts into fluent English sentences ad-
hering to an academic style. The high-level
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description of the training procedure is shown
in Algorithm 1. Details of the specific design
are delineated below.

3.1 State Representation
Assume that the source sentence (referred to
as the Draft) is denoted by S = {s1, s2, ..., sm},
the currently rewritten portion is denoted by
H = {h1, h2, ..., ht}, and the academically flu-
ent English sentence (referred to as the Refer-
ence) is denoted by R = {r1, r2, ..., rn}.

Word Embedding Representation By
utilizing Word2Vec (Mikolov et al., 2013), each
word is mapped into a K-dimensional space.

S = Embed(si) ∈ Rm×K (2)
H = Embed(hi) ∈ Rt×K (3)
R = Embed(ri) ∈ Rn×K (4)

Position Encoding Position encoding is in-
troduced to capture sequential information
within the sentence.

Spos = PosEncode(S) ∈ Rm×K (5)
Hpos = PosEncode(H) ∈ Rt×K (6)
Rpos = PosEncode(R) ∈ Rn×K (7)

Length Information The length of the sen-
tence can be represented as a scalar feature.

LS = m (8)
LH = t (9)
LR = n (10)

N-gram Overlap Compute the n-gram
overlap statistics between H and S, and H and
R, and subsequently normalize them.

OHS =
Overlap(H,S)

max(Overlap(H,S),Overlap(H,R))
(11)

OHR =
Overlap(H,R)

max(Overlap(H,S),Overlap(H,R))
(12)

Final State Representation Concatenate
the above features to form the final state rep-
resentation.

State = Concat(Spos,Hpos,Rpos,LS ,LH ,LR,OHS ,OHR)

(13)

Herein, Concat refers to the concatenation
operation, and the ultimate State is the in-
put to the model, encapsulating the current
rewriting status, information pertaining to the
source and reference sentences, as well as fea-
tures related to length and n-gram overlap.

3.2 Strategy Network
The Strategy Network is tasked with generat-
ing the subsequent action based on the current
state representation (e.g., selecting the next
word). Below are the components and detailed
equations of the Strategy Network.

Input Layer The input for the Strategy
Network is represented by the state vector
State.

Multi-Layer LSTM A sequence of LSTM
(Hochreiter and Schmidhuber, 1997) layers is
employed to capture potential long-range de-
pendencies that might exist.

H1 = LSTM1(State) (14)
H2 = LSTM2(H1) (15)

... (16)
HL = LSTML(HL−1) (17)

Here, Hi denotes the hidden state of the i-
th layer, and L refers to the number of LSTM
layers.

Output Layer The output layer transforms
the output of the final LSTM layer into a prob-
ability distribution over the action space. As-
suming that there are V possible actions (e.g.,
words in the vocabulary), the output layer can
be defined as

P = Softmax(WHL + b) (18)

where W ∈ RV×D and b ∈ RV are the
parameters to be learned, and D represents
the dimensionality of the output from the last
LSTM layer.
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Action Selection Finally, the action (e.g.,
the next word) is sampled from the probabil-
ity distribution P. Techniques such as temper-
ature scaling can be employed to control the
degree of randomness.

at = Sample(P) (19)

3.3 Value Function Network
The Value Function Network is devised to es-
timate the expected returns for a given state.
This section delineates the key components
and underlying mathematical formulations of
the Value Function Network.

Input Layer The input for the Value Func-
tion Network is analogous to that of the Policy
Network, both encompassing the state repre-
sentation State.

Hidden Layers Multiple hidden layers are
employed to capture the intricate representa-
tion of the state. The mathematical expres-
sions for these layers can be presented as fol-
lows:

F1 = ReLU(W1State + b1) (20)
F2 = ReLU(W2F1 + b2) (21)

... (22)
FH = ReLU(WHFH−1 + bH) (23)

In this framework, Fi denotes the activation
of the i-th hidden layer, while Wi and bi sym-
bolize the corresponding weights and biases,
respectively. H signifies the number of hidden
layers.

Output Layer The output layer is consti-
tuted as a scalar, expressing the current state’s
value estimation:

V (State) = WoFH + bo (24)

In this context, Wo and bo denote the
weights and biases of the output layer.

Training The training objective of the
Value Function Network is to minimize the
mean squared error between the estimated val-
ues and the actual returns. Let V̂ (State) be

the network’s output and R be the actual re-
turn; the loss function is defined as:

L =
1

N

N∑

i=1

(V̂ (Statei)−Ri)
2 (25)

where N represents the number of samples.

3.4 Reward Function

The reward function delineates the methodol-
ogy for assessing the value of each action based
on the similarity between the model-generated
output and the target reference output. In the
context of this task, the reward function uti-
lizes GLEU to gauge the resemblance between
non-fluent English sentences, denoted as H,
and the fluent English sentences in academic
style, symbolized as R, with consideration of
the n-grams in the source sentence S.

Computation of GLEU The GLEU score
represents an automated evaluation metric,
with the computation formula defined as:

GLEU = min
(
1, |H|

|S|

)
×
(∑N

n=1 CountClipped(n)∑N
n=1 Count(n)

)

(26)

Wherein: |H| and |S| correspond to the
lengths of sentences H and S, respectively.
CountClipped(n) denotes the count of n-grams
in H, with overlapping n-grams clipped to
match the quantity present in R. Count(n)
refers to the count of n-grams in H, without
regard to the overlap with S. N signifies the
maximum n-gram length under consideration.

Definition of Reward The reward func-
tion is characterized as the difference between
the GLEU scores of the sentence produced by
the current action and the preceding action:

Reward = GLEU(Hcurrent, R, S)− GLEU(Hprevious, R, S)

(27)

Such a definition of reward incentivizes the
model to generate actions that augment the
GLEU score.
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Conclusion The reward function incen-
tivizes the model by computing the GLEU
score, thereby motivating the model to en-
hance the similarity with the reference sen-
tence R, while simultaneously maintaining
minimal overlap with the source sentence S.
This function, in conjunction with the policy
network and value function network, is utilized
to train the NRL model, thus facilitating the
learning of optimal parameters to maximize
the expected GLEU score.

This design assures an optimal balance be-
tween academic style and fluency, by exclu-
sively rewarding overlap with the reference sen-
tence R, while concurrently penalizing unnec-
essary overlap with the source sentence S.

3.5 Algorithm Training
To maximize the anticipated GLEU score, we
have opted for the following specific training
algorithms and components:

Sampling Strategy We employ the epsilon-
greedy strategy for balancing between explo-
ration and exploitation. Specifically, a ran-
dom action is chosen with a probability of ϵ,
while an action recommended by the policy
network is selected with a probability of 1− ϵ.

at =

{
Random action with probability ϵ

Sample(P) with probability 1− ϵ

(28)

Optimization Algorithm Proximal Policy
Optimization (PPO) (Schulman et al., 2017)
is utilized as the primary optimization algo-
rithm. PPO constrains the magnitude of pol-
icy updates by employing a clipped objective
function.

LPPO(θ) =
1
N

∑N
i=1 min

(
πθ(ai|si)

πθold (ai|si)
Ai, clip

(
πθ(ai|si)

πθold (ai|si)
, 1− ϵ, 1 + ϵ

)
Ai

)

(29)

Herein, πθ is the current policy, πθold is the
policy prior to updating, and Ai is the advan-
tage function.

Experience Replay We employ an experi-
ence replay buffer to store transitions and train
the network through mini-batch random sam-
pling.

The choices made in these configurations
align with our objective of maximizing the
expected GLEU score, reflecting a well-
considered approach to the training process.

4 Experiments

Baseline Our baseline framework consists of
three distinct models employed by (Ito et al.,
2019), namely: the Heuristic Noising and De-
noising Model (H-ND), the Encoder-Decoder
Noising and Denoising Model (ED-ND), and
the GEC model. Specifically, for the Nois-
ing and Denoising approach, the authors opted
to select several sentences from the ACL An-
thology Sentence Corpus (AASC)1 and imple-
mented a sequence of genetic rules to intro-
duce noise directly into the dataset, thereby
generating training material. Subsequently,
the authors trained a denoising model utilizing
the Transformer architecture as found in the
fairseq (Ott et al., 2019) framework. In the
case of the Encoder-Decoder Noising and De-
noising approach, the authors employed three
neural Encoder-Decoder structures to synthe-
size training data. These data, in conjunction
with the datasets generated via the previously
mentioned genetic methodology, were used to
train the denoising model. Notably, the model
architecture was identical to that of the heuris-
tic model. Lastly, a pre-trained GEC model
(Zhao et al., 2019) was harnessed as the third
baseline model in the authors’ investigative
framework.”

Data In the context of training the NRL
model, we have utilized synthetic data gener-
ated within the baseline, serving as our source
of training information. While the quality of
these synthesized datasets may not compare
favorably with the manually curated SMITH
dataset, they represent the optimal choice for
our purposes at this current juncture.

Hyperparameters The hyperparameters
for the NRL model are shown in table 1:

Evaluation We evaluated our model using
the SMITH dataset. The SMITH dataset con-
sists of 10,000 pairs of data, divided equally
into 5,000 pairs for the development set and
5,000 pairs for the test set. The underlying

1https://github.com/KMCS-NII/AASC
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Algorithm 1 Sentence-level Revision with Neural Reinforcement Learning
1: Initialize: Actor network with parameters θ, Critic network with parameters ϕ, experience

replay buffer D
2: for epoch = 1, . . . , epochs do
3: // Sampling from the experience replay buffer
4: Sample a mini-batch of transitions (s, a, r, s′) from D
5: // Computing advantage estimation
6: Compute advantage estimation using critic network: At = rt + γV (st+1)− V (st)
7: // Updating the policy network
8: Update actor network by optimizing PPO loss: LPPO(θ)
9: // Updating the value function network

10: Update critic network by minimizing squared error: (V (st)− yt)
2

11: // Updating the replay buffer
12: Update experience replay buffer D with new transitions
13: end for
14: Output: Trained actor network with parameters θ

Hyperparameter Value
Number of LSTM layers 3
LSTM units 256
Hidden units 128
PPO clipping range 0.2
Learning rate 3× 10−4

Replay buffer size 50000
Mini-batch size 64
ϵ (Exploration factor) 0.1
Max n-gram length 4
Training iterations 10000

Table 1: Hyperparameters

idea behind the generation of this dataset is
to extract English sentences from scholarly
papers according to specific rules, and then
translate them into Japanese using a high-
quality machine translation model. Subse-
quently, these sentences are transcribed back
into English by non-native English speakers
from Japan.

In terms of evaluation metrics, in addition
to the GLUE, we sought to provide a more
comprehensive assessment of our model. We,
therefore, calculated the F0.5 scores using ER-
RANT (Bryant et al., 2017) and the Perplexity
(PPL) was also calculated utilizing the Natu-
ral Language Toolkit (NLTK)2 for the purpose
of evaluating the model.

2https://www.nltk.org/

Model GLUE P R F0.5 PPL
H-ND 9.5 5.4 2.9 4.6 406
ED-ND 23.8 21.8 12.8 19.2 236
GEC 7.3 22.2 6.2 14.6 414
NRL (Our) 35.85 29.2 14.1 24.0 225

Table 2: Results of quantitative evaluation

Results The experimental results are shown
in Table 2, An example output comparison is
shown in Table 3.

Analysis The evaluation demonstrates that
our NRL model has exhibited improvements
across all performance metrics in comparison
to three baseline models, thereby validating
the efficacy of our method. In Example 3, as il-
lustrated in Table 3, our model has transcribed
′′in all documents′′ in the Draft as ′′for the
whole document.′′ Though it deviates by a sin-
gle word from the reference ′′for a whole docu-
ment,′′ this deviation nonetheless underscores
a more potent transcription capability in our
model compared to the baseline models. Fur-
thermore, the determination of whether to use
′′a′′ or ′′the′′ in this instance cannot be ascer-
tained solely from this sentence, as it requires
contextual comprehension, which is beyond
the objective of the SentRev task. Therefore,
although there remains a discrepancy with the
reference, we consider the current output to
be quite ideal, given the characteristics of the
SentRev task.

Our initial conjecture was that the continu-

The 35th Conference on Computational Linguistics and Speech Processing (ROCLING 2023) 

Taipei City, Taiwan, October 20-21, 2023. The Association for Computational Linguistics and Chinese Language Processing 

 

 

 

207



Draft The global modeling using the reinforcement learning in all documents is our work in the future.
H-ND The global modeling of the reinforcement learning using all documents in our work is the future.
ED-ND In our future work, we plan to explore the use of global modeling for reinforcement learning in all documents.
GEC Global modelling using reinforcement learning in all documents is our work in the future.
NRL (Our) The global modelling using reinforcement learning for the whole document is a future work.
Reference The global modeling using reinforcement learning for a whole document is our future work.

Table 3: A example of Comparison of Different Model Outputs

ous learning and self-enhancement attributes
of NRL would align with the incremental
rewriting characteristics of SentRev. Conse-
quently, we hypothesized that the NRL model
might perform critical transcription on some
key parts of the Draft, a supposition that has
now been corroborated. On the other hand,
we opted for GLUE as our reward function,
and the evaluation has substantiated that this
can effectively enhance the fluency of English
sentences.

5 Conclusion and future work

In this study, we introduce a meticulously
crafted method of NRL for the application
in SentRev. Our approach outperforms three
baseline methods across multiple metrics, il-
lustrating a more congruent alignment of rein-
forcement learning techniques with SentRev.
Simultaneously, this research exposes the lim-
itations of SentRev in acquiring sentence-level
knowledge, which constrains its ability to cap-
ture the contextual nuances within paragraphs
of a text, thus manifesting pronounced limita-
tions in enhancing the fluency of English text.
Despite these considerable challenges, we con-
template an attempt at paragraph-level rewrit-
ing in future works, enhancing the fluency of
English writing at a higher dimensional level.
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