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Abstract

Models of phonotactics include subsegmen-
tal representations in order to generalize to
unattested sequences. These representations
can be encoded in at least two ways: as dis-
crete, phonetically-based features, or as con-
tinuous, distribution-based representations in-
duced from the statistical patterning of sounds.
Because phonological theory typically assumes
that representations are discrete, past work has
reduced continuous representations to discrete
ones, which eliminates potentially relevant in-
formation. In this paper we present a model
of phonotactics that can use continuous repre-
sentations directly, and show that this approach
yields competitive performance on modeling
experimental judgments of English sonority se-
quencing. The proposed model broadens the
space of possible phonotactic models by remov-
ing requirements for discrete features, and is
a step towards an integrated picture of phono-
tactic learning based on distributional statistics
and continuous representations.

1 Introduction

Phonotactics refers to restrictions on how sounds
can be sequenced in a language. For example, al-
though neither blick [blIk] nor bnick [bnIk] are
real English words, native speakers feel that blick
could be an English word, while bnick could not
because it begins with the prohibited onset *[bn]
(Chomsky and Halle, 1965). Phonotactic restric-
tions vary between languages, meaning that they
must be learned. For example, steek [stik] is a
possible word in English but not in Spanish, be-
cause the latter has a phonotactic restriction on
syllables beginning with [st]. As learners acquire a
language, they become sensitive to the frequencies
of different sequences. This phonotactic knowl-
edge underlies speakers’ intuitions about possible
words in their language.

Experimental studies involving acceptability
judgments have found that speakers have gradient
intuitions about phonotactic well-formedness (e.g.,
Coleman and Pierrehumbert, 1997; Albright, 2009;
Hayes et al., 2009; Daland et al., 2011). For exam-
ple, when considering the nonce words blick [blIk],
bnick [bnIk], and bwick [bwIk], English speakers
typically find blick to be acceptable, bnick to be
poor, and bwick to be intermediate between the two
(Albright, 2009). This has led to the development
of probabilistic models of phonotactics, which
assign a continuous score to words that reflects
their gradient well-formedness (Hayes and Wilson,
2008; Futrell et al., 2017; Wilson and Gallagher,
2018; Gouskova and Gallagher, 2020; Mayer and
Nelson, 2020). Phonotactics is also commonly
treated as probabilistic in models of higher-level lin-
guistic tasks, such as speech perception and word
segmentation (see discussion in Daland, 2015).

1.1 Feature-based generalizations

An additional difficulty for phonotactic models
is the problem of accidental gaps: sequences of
sounds that do not appear in the lexicon but are
judged to be acceptable. Humans do not treat unat-
tested sequences uniformly: in the example in the
previous section, both [bw] and [bn] are unattested
onsets in English, but the former is preferred to
the latter. Phonotactic models thus need to be able
to generalize to unseen sequences in a way that is
consistent with human behavior.

The standard solution is to have models operate
on featural representations, which decompose
segments into sets of feature-value pairs (or, al-
ternatively, a vector of values whose dimensions
are the features). Features allow models to refer
to classes of segments based on shared proper-
ties. In English, for example, the feature vector
[−continuant] characterizes the set of stops and
affricates, [−sonorant] picks out the set of obstru-
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ents, and [−continuant, −sonorant] picks out the
set of obstruent stops/affricates (excluding the nasal
stops). Returning to the example above, although
[bw] and [bn] are both unattested onsets, there
are many onsets that are featurally similar to [bw],
consisting of b[+approximant] sequences like [bj],
[bl], [bô]. There are none that are similar to [bn],
consisting of b[−continuant]. Features allow these
kinds of generalizations to be modeled.

1.2 Whence features?

Phonological features are typically defined with
respect to phonetic properties (e.g., Chomsky and
Halle, 1965). This reflects the strong typological
tendency that sounds with similar phonetic proper-
ties tend to pattern similarly.

More recent research has proposed that features
may be emergent, reflecting shared, language-
specific distributional properties in addition to pho-
netic properties (e.g., Mielke, 2008; Archangeli and
Pulleyblank, 2018; Gallagher, 2019; Archangeli
and Pulleyblank, 2022). There are several motiva-
tions for this perspective.

First, a central desideratum in designing feature
systems is to allow them to reference all and only
the classes of sounds that pattern together cross-
linguistically: namely, those that share some sub-
set of phonetic properties encoded by the feature
system. However, linguists have discovered a sub-
stantial number of phonological classes across lan-
guages that cannot be referenced under standard
feature systems (Mielke, 2008). An example of
one such class is the segments that participate in
a nasalization process in Evenki (Tungusic; Ned-
jalkov, 1997; Mielke, 2008): the sounds /v s g/
become nasalized following a nasal consonant, but
similar sounds such as /b d x/ do not. It is not
possible to provide a set of feature/value pairs that
picks out the class /v s g/ to the exclusion of all
other sounds in the language, which predicts that it
should not pattern cohesively. In similar cases, re-
searchers have proposed modifications to existing
feature systems to account for unexpected classes
(though perhaps not modifications so extreme as
to capture /v s g/; e.g., Rice and Avery, 1989; Mc-
Carthy, 1991; Paradis and LaCharité, 2001).

Emergent feature theory instead proposes that
features may be learned in part from the distribu-
tional patterning of sounds, which means a shared
representation could be learned for irregular classes
like /v s g/ if the language data supported it. This

also turns the focus away from enumerating all of
the features motivated by natural language phonol-
ogy, focusing instead on how features might be
learned from the phonetic and distributional prop-
erties of sounds.

A second, related, motivation for emergent fea-
tures is the variable patterning of the same segment
across different languages. For example, Mielke
(2008) notes that some languages treat /l/ as [+con-
tinuant], and others treat it as [−continuant]. Both
are sensible from the perspective of phonetic sub-
stance, since /l/ is [-continuant] mid-sagittally but
[+continuant] off mid-line. Rather than trying to
determine the “correct” value of [continuant] for
/l/, or perhaps to split [continuant] into a pair of
features corresponding to on and off the mid-line,
emergent feature theory suggests that the featural
representation of /l/ can vary depending on whether
it patterns with [+continuant] or [−continuant]
sounds in a language.

Several computational models have been pro-
posed to test the plausibility of distributional learn-
ing of phonological classes/features (e.g., Gold-
smith and Xanthos, 2009; Mayer, 2020; Nelson,
2022). These papers have tested phonological class
learning under the extreme assumption that the
learner has no access to the substantive phonetic
properties of segments, but only their statistical
patterning. Representations learned from distribu-
tion alone have been shown to capture non-trivial
phonetic distinctions as well as distribution-specific
information (Goldsmith and Xanthos, 2009; Mayer,
2020) and to perform comparably to phonetic fea-
tures in downstream tasks (Nelson, 2022).

The segmental representations in such models
are learned using similar techniques to distribu-
tional word embeddings (Mikolov et al., 2013;
Levy and Goldberg, 2014), which produce real-
valued vector representations. In phonological the-
ory, features serve as an extensional description of
phonological classes, and most models of phono-
tactics assume discrete features accordingly. A
common feature of the models above is that they
use clustering techniques to convert these contin-
uous representations into discrete classes. These
classes can then be converted into discrete featural
representations (Mayer and Daland, 2020).

Although the process of converting continuous
representations to discrete ones aligns with the stan-
dard theoretical treatment, it discards information
and introduces additional degrees of freedom into
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the learning process, in the sense that choices must
be made about how clustering is done and how
features are derived from classes. Several neural
models of phonotactics have used continuous rep-
resentations directly (Mirea and Bicknell, 2019;
Mayer and Nelson, 2020). These recurrent neural
network models perform well but are difficult to
interpret in a theoretically-satisfying way because
they involve many nonlinear transformations of the
input features.

1.3 Overview of this paper

This paper presents a computational model1 that
bridges the gap between distributional learning
techniques and phonotactic models by incorporat-
ing the induction of continuous distributional rep-
resentations into the overall framework of phono-
tactic learning. More specifically, we will show
that (a) the proposed model is flexible enough to
make use of a range of different featural represen-
tations, including the continuous features typically
produced by distributional learning techniques; (b)
the model performs comparably to other models
in the field; and (c) the continuous distributional
representations result in better generalization to
new data than their discretized counterparts, and
outperform phonetic features in some respects.

Sections 2 and 3 describe the proposed model
and three types of featural representation that will
be used to test the model. Section 4 presents a
simple toy example to illustrate the performance of
the model, and Sections 5 and 6 compare the per-
formance of the model on English onsets against
several other models of phonotactic learning. Sec-
tion 7 offers a brief discussion.

2 Model description

Our goal is to develop a model for the probability
of a form in terms of the conditional probability
of a symbol x given its preceding context c, in a
way that leverages potentially real-valued featural
representations of x and c, such as those resulting
from distributional analysis, without needing to
reduce these continuous representations into hard
categories or clusters. To these ends, we adopt
log-bilinear probability models, a generalization
of the widely used log-linear model. Below, we
first describe log-linear models and their relation

1The code and data used in this paper can be found
at https://github.com/hutengdai/vector_
bilinear.

to existing models of phonotactics, then their gen-
eralization to log-bilinear models.

2.1 Log-linear models
In a log-linear model, a form is assigned a proba-
bility as a function of weighted features.2 One ex-
ample is the Maximum Entropy phonotactic model
proposed by Hayes and Wilson (2008), in which
a wordform x is described in terms of a constraint
violation profile: a vector ϕ(x) whose values are
the number of times the wordform violates each
constraint. The probability of x under the model is
then

p(x) ∝ exp
{
w⊤ϕ(x)

}
, (1)

where the weight vector w represents the weight
of each constraint. The vector w is found by op-
timization to maximize the likelihood of a given
dataset of forms.

Such models are called log-linear because the
function in Eq. 1 is linear after taking a logarithm.
In the context of phonotactics, the linear compo-
nent of this model is a Harmonic Grammar model
(Smolensky and Legendre, 2006; Pater, 2009) that
uses numerical constraint weights and assigns each
word a numerical score based on its violation pro-
file. Log-linear models are one way of using these
scores to compute a probability distribution over
words (cf. Boersma and Pater, 2016).

Log-linear models are ubiquitous not only in
computational learning models but also in natural
language processing (e.g., Berger et al., 1996; Della
Pietra et al., 1997). Before the modern renaissance
of neural networks, the dominant paradigm for any
supervised classification task in NLP (for example,
the task of reading in a movie review and then out-
putting the probability that the review is positive)
was to use a hand-crafted featural representation
ϕ(x) of the text input x and to learn optimized
weights w to maximize the likelihood of labels in
training data (Jurafsky and Martin, 2023).

2.2 The current proposal: log-bilinear model
The log-bilinear model extends the log-linear
model to make the weights conditional on the fea-
tures of the context. Instead of finding an optimal
weight vector, in a log-bilinear model one finds
an optimal weight matrix that relates the represen-
tations of the context to the representations of the
outcome. Such models were initially developed in a

2Features in this context refer to properties of the form in
general, not necessarily phonological features.
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language modeling context to predict words given
previous words (Mnih and Hinton, 2007, 2008;
Mikolov et al., 2013; Futrell, 2022).

We apply a log-bilinear model in the setting of
calculating the conditional probability of an indi-
vidual segment x conditional on a context c, given
vector representations of the segment ϕ(x) ∈ RK

and of the context ψ(x) ∈ RL . The model is
defined as

p(x | c) ∝ exp
{
ψ(c)⊤Aϕ(x)

}
, (2)

where A ∈ RK×L is an interaction matrix that
defines how the features of the context ψ(c) relate
to the features of the result ϕ(x). The entry Akl in
the interaction matrix is an association weight for
the kth feature of the context and the lth feature of
the next segment; a high value of Akl means (all
else being equal) that a segment with a high value
of the lth feature is likely to follow in a context
with a high value of the kth feature.

The interaction matrix A is found to maximize
the likelihood of a training dataset consisting of N
context–outcome pairs {⟨cn, xn⟩}Nn=1:

A = argmax
A

N∑

n=1

log p(xn | cn). (3)

The implemented learning algorithm discovers the
interaction matrix using the Adam optimization
algorithm (Kingma and Ba, 2015), starting from a
randomly-initialized A whose entries are all drawn
from a standard Normal distribution.

We model the likelihood of a wordform in terms
of features of segmental bigrams. That is, the
weights learned by the model correspond to the
strength of bigram constraints on the features of
two adjacent segments. The probability for a form
σ1, . . . , σT is then

p(σ1, . . . , σT ) =
T∏

t=1

p(σt | σt−1), (4)

where p(· | ·) is a log-bilinear model with the same
featurization ϕ(·) for the current segment σt and
the context σt−1. This restriction to featural bi-
gram constraints is an implementation detail; the
log-bilinear model works with any vector represen-
tation of context and target. In particular, context
and target representations do not need to be the
same size; the context representation can include
information about multiple segments by increasing
the dimension of ψ(c) and A accordingly.

3 Featurizations

We will illustrate the performance of the log-
bilinear model described above using three types
of featurizations that have been used in the liter-
ature on phonotactic learning: discrete phonetic
features, continuous distributional features, and
discrete distributional features. The purpose of
these comparisons is to (a) demonstrate the flex-
ibility of the model in terms of representational
choices; and (b) show that the continuous distribu-
tional representations contain useful, fine-grained
information that is lost when these representations
are discretized.

3.1 Discrete phonetic features
An obvious choice for the featurization of a seg-
ment σ is the discrete phonetic features that are
commonly used in phonological theory. We adopt
the featurization system from Hayes (2009).

For models where featural representations are
treated as numerical vectors, such as the log-
bilinear model, we adopt a binary featurization
that identifies each dimension of ϕ(σ) with a
phonological feature and its possible values. So
for example, there would be a separate dimen-
sion for the feature-value pairs [+continuous] and
[−continuous] with value 1 if that feature-value
pair applies to the segment σ and 0 otherwise. For
example, the segment [k] would receive the vector
representation

ϕ(k) =







1 +dorsal
0 −dorsal
0 +continuous
1 −continuous
1 +consonantal
0 −consonantal
...

...

. (5)

This leads to a more expressive featurization
than encoding negative values as −1. This would
force the effect of a negative feature value to be
the inverse of the effect of a positive feature value,
whereas the binary featurization allows positive
and negative values to have independent effects.

3.2 Continuous distributional representations
We induce continuous representations based on
their statistical distributions in the training data
by calculating probabilities of segments in dif-
ferent contexts and then converting these into

262



Pointwise Mutual Information (PMI; Church and
Hanks, 1990). PMI is an information-theoretic
measurement that compares the joint probability
of two events against the product of their individ-
ual probabilities. PMI and the related Positive
PMI have been used in previous models of dis-
tributional phonotactic learning (Silfverberg et al.,
2018; Mayer, 2020; Nelson, 2022).

PMI is defined as follows:

PMI(x, y) = log2
p(x, y)

p(x)p(y)
. (6)

If p(x) and p(y) are independent this value will be
close to zero, while if they occur together more/less
frequently than chance, it will be positive/negative.
Here we define p(x, y) to be the joint probability
of segment x followed by segment y. We compute
the probabilities using a bigram language model
with Kneser-Ney smoothing (Chen and Goodman,
1999), implemented using the lm module from
the nltk Python library (Bird et al., 2009). This
model produces conditional probabilities of the
form p(y|x), which we convert to joint probabili-
ties p(x, y).

The dimensions of these representations are the
PMI values of the segment in each context in the
training data. Following Mayer (2020), we con-
sider both preceding and following context by run-
ning a pair of language models: one that runs for-
ward to calculate PMI values based on preceding
context, and one that runs backwards to calculate
PMI values based on following context. These
two vectors are concatenated to produce the full
representation.

3.3 Discrete distributional features

We also include discrete distributional featuriza-
tions derived from the continuous representations
in the previous section. This discretization step
allows the distributional representations to be used
in models that assume discrete features.

Converting continuous features to discrete ones
involves two steps: a clustering step where classes
of segments are identified based on similarities
in their continuous representations, and a feature
assignment step where a feature system is derived
from these classes.

We include two clustering strategies: the recur-
sive clustering algorithm described in Mayer (2020)
and the SC COV algorithm from Nelson (2022).
Both of these involve using the continuous embed-

dings to compute graph structures that reflect dis-
tributional similarity between segments, and then
applying graph partitioning techniques to derive
classes of segments. For reasons of space we refer
the reader to the respective papers.

We follow Nelson (2022) in using the inferential
complementary algorithm from Mayer and Daland
(2020) for feature assignment. Mayer and Daland
(2020) presents a suite of algorithms that derive a
feature system from a set of input classes based
on subset/superset relationships between them, dif-
fering in what values are permitted and whether
complement classes of the input classes are in-
ferred. The inferential complementary algorithm
adds complement classes of the input classes with
respect to their parents and assigns both + and −
feature values.3

4 A toy example of the log-bilinear model

We present a simple toy example below to illustrate
the performance of the log-bilinear model using
the continuous distributional features described in
Section 3.2. We define a language over the al-
phabet {C, V, #}, where # is a word boundary.
The language has a restriction on adjacent CC se-
quences, and the training data is {VCV, CVC, CVV,
VVC, VVV} (word boundaries are omitted for clar-
ity). The continuous distributional featurization of
each segment calculated from the training data is
shown in Table 1. Sequences that are unattested
in the training data, such as ## or CC, have large
negative scores, while more commonly observed
contexts have positive scores.

# C V

# -2.492 0.504 0.232
C 0.517 -3.256 0.251
V 0.111 0.118 -0.278

Table 1: Continuous distributional representations of
the segments in the toy language. Each row is a repre-
sentation of a segment, and the columns are the PMI
values of that segment in the context indicated by the
column label. For simplicity’s sake we only present
preceding contexts here, but the full model also includes
dimensions corresponding to following context.

3Nelson (2022) in fact uses a slightly simplified version of
this algorithm: the original algorithm recursively adds com-
plement classes until there are no more to add, while the al-
gorithm in Nelson (2022) adds complement classes once and
then terminates. This potentially reduces the expressivity of
the feature system, but the two approaches are similar enough
that we treat them as a single feature assignment strategy.
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Table 2 shows the scores assigned by the log-
bilinear model to a set of nonce words after it was
fitted to the training data using the representations
in Table 1. The model successfully assigns a lower
probability to words containing a CC sequence.

Word Score

C V C V 5.397
V C V V 5.980
V V V V 6.393
C C C V 8.825
V C C C 8.933
C C C C 10.272

Table 2: Scores assigned by the trained model to nonce
forms. The scores here are negative log probabilities.

5 Model comparison

We evaluate the performance of the log-bilinear
model against several existing models of phonotac-
tics. These models take as input a set of training
data and, in most cases, a set of featural representa-
tions for the segments in the training data. Fitted
models assign scores to word forms that reflect
their probabilities.

The purpose of this comparison is to demon-
strate that the log-bilinear model performs favor-
ably against existing phonotactic models.

5.1 Hayes and Wilson learner
The Hayes and Wilson learner (Hayes and Wilson,
2008) is a Maximum Entropy model of phonotac-
tics. We refer the reader back to Section 2.1 for
a description of how word probabilities are com-
puted based on input constraint violation profiles
and a set of learned weights.

In addition to fitting weights, the Hayes and
Wilson learner also simultaneously learns the con-
straints themselves from the data, up to an up-
per bound specified by the user. Constraints are
implemented as featural n-gram constraints (e.g.,
*[−voi, −son][+voi, −son]). Constraints are dis-
covered by comparing observed vs. expected
counts in the training data and selecting constraints
that penalize structures with unexpectedly low
counts. There is a bias towards constraints that
include fewer features, but more complex interac-
tions are learned when the data support them.

The scores assigned by this model are harmony
values, which are unnormalized log probabilities
(the linear component of the log-linear model).

5.2 MaxEntGrams
MaxEntGrams4 is a variant of the Hayes and Wil-
son learner that offers time and space improve-
ments over the original algorithm by training on an
n-gram model of the training data rather than the
data itself. For a more detailed comparison of the
two models, see Nelson (2022). This model also
produces unnormalized log probabilities.

5.3 Smoothed bigram model
This model is included as a baseline. It defines the
probability of a word as in Eq. 4, but with con-
ditional probabilities estimated from counts with
additive smoothing:

p(σt|σt−1) =
C(σt−1, σt) + 1

C(σt−1) + d
, (7)

where C(σt−1, σt) is the count of the sequence
σt−1σt in the training data, C(σt−1) the count of
σt−1, and d the number of distinct segments. This
score is reported as a log probability.

This model operates on segmental representa-
tions, and thus cannot generalize along featural di-
mensions. Additive smoothing mitigates this some-
what by assigning every segmental bigram an initial
pseudo-count of 1. This ensures that forms con-
taining bigrams that are not in the training data are
assigned low, rather than zero, probabilities.

5.4 Summary of models
We do not consider every possible permutation of
the models and featurizations above, but present
the set shown in Table 3. In particular, we report
only a single combination of the models presented
in Nelson (2022). In addition to comparing the
models themselves, we also focus our analysis on
the dimensions of continuous vs. discrete features
and phonetic vs. distributional features.

6 Model comparison on English onset
sequences

We compare the performance of the log-bilinear
model against the models above on the problem
of learning restrictions on onset clusters in En-
glish. This problem has been extensively studied
in the context of the Sonority Sequencing Princi-
ple (SSP): the cross-linguistic preference for sylla-
ble onsets that monotonically increase in sonority
and codas that monotonically decrease in sonority

4https://github.com/MaxAndrewNelson/
PhoneGraphs
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Model Featurization

Smoothed bigram N/A
Hayes & Wilson Discrete phonetic
Hayes & Wilson Discrete distributional (Mayer)

Bilinear Continuous distributional (PMI)

Bilinear Discrete phonetic
Bilinear Discrete distributional (Mayer)

MaxEntGrams Discrete distributional (SC COV)

Table 3: Models to be tested

(Selkirk, 1984). Sensitivity to the SSP has been
found in many experimental studies, and it has
been argued that it constitutes an innate phonologi-
cal bias (Berent et al., 2008, 2011). Computational
studies have shown that phonotactic learning mod-
els operating on lexical statistics can learn gen-
eralizations about the SSP that align with human
behavior, despite having no biases towards SSP-
conforming onsets (Daland et al., 2011; Mayer and
Nelson, 2020; Nelson, 2022). However, models
that incorporate both prior bias and statistical learn-
ing have been shown to account better for SSP
judgments than either does individually, suggesting
a role for both bias and experience (Jarosz and Rys-
ling, 2017; Jarosz, 2017/8). We do not employ this
dataset here to make any strong claims about the in-
nateness of the SSP, but rather because it has been
used to compare the performance of phonotactic
models in previous work.

The training data for all models was the
English onset corpus from Hayes and Wilson
(2008). This consists of all word-initial onsets
from the CMU Pronouncing Dictionary (Weide
et al., 1998, http://www.speech.cs.cmu.edu/

cgi-bin/cmudict): thus each word type in the
dictionary contributes a single token to the corpus.
Hayes and Wilson sanitize the corpus by removing
“exotic” onsets such as [zw], [sf], and [pw] that are
unlikely to be encountered by language learners,
and by assuming that [j] off-glides are part of the
nucleus. We used this dataset to construct the dis-
tributional embeddings and to fit the parameters of
each model. Following Nelson (2022), the distribu-
tional embeddings were calculated over the set of
unique onsets (or onset types).

We did a hyperparameter search using
cross-validation to determine the learning
rate and batch size used to train the log-
bilinear model. We considered the values

[32, 64, 128, 256, 512, 1024, 2048, 4096] for batch
size and [0.1, 0.01, 0.001, 0.0001] for the learning
rate. A batch size of 64 and learning rate of 0.001
led to the optimal fit.

We restricted the H&W learner to bigram con-
straints, allowed it to learn a maximum of 300
constraints, and used the default maximum Ob-
served/Expected threshold of 0.3.

The models were tested on the experimental data
from Daland et al. (2011). These data consist of
Likert ratings given by 48 participants to a set of
96 nonce words beginning with 48 different onsets.
Daland et al. (2011) group the onsets into three
different classes: attested onsets, which are com-
mon in English, marginal onsets, which are attested
but uncommon, and unattested onsets. Following
Nelson (2022), we train and test on the onsets in
isolation (i.e., the data consist of forms like “sm”,
“pl”, etc.). Each onset is represented by two data
points corresponding to two tails the onset was at-
tached to in the Daland et al. study. The onsets are
shown in Table 4.

Attested Marginal Unattested
tw tr sw gw Sl pw zr mr
Sr pr pl vw Sw tl dn km
kw kr kl Sn Sm fn ml nl
gr gl fr vl bw dg pk lm
fl dr br dw fw ln rl lt
bl sn sm vr Tw rn rd rg

Table 4: Onsets from Daland et al. (2011).

The trained models assigned scores to the test
data according to their onsets. We evaluated model
performance by looking at the correlation of scores
assigned by each model to the Likert ratings pro-
vided by human participants. Following Daland
et al. (2011), we look at correlations within the
attested/marginal/unattested onset groups, as well
as overall correlation. We report both Pearson’s
r, which captures relative differences in well-
formedness but is sensitive to non-linearity be-
tween model scores and human judgments, and
Kendall’s τ , which is not sensitive to non-linearity
but only considers the rank ordering of points (see
Albright, 2009).

The results are shown in Table 5. The two
most successful models are the Hayes & Wilson
learner with discrete phonetic features, and the log-
bilinear model with continuous distributional fea-
tures: these have the two highest overall τ correla-
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Model Featurization
Overall Attested Marginal Unattested

r τ r τ r τ r τ

Smoothed bigram segments 0.877 0.669 0.509 0.244 0.274 -0.004 0.470 0.280

MaxEntGrams discrete dist. 0.753 0.610 0.424 0.282 0.212 0.171 0.583 0.417

H&W discrete phon. 0.740 0.674 0.533 0.261 0.422 0.301 0.459 0.374
discrete dist. 0.818 0.634 0.540 0.244 -0.012 -0.049 0.547 0.421

Bilinear discrete phon. 0.785 0.646 0.446 0.215 0.367 0.247 0.525 0.377
discrete dist. 0.757 0.572 0.520 0.296 0.021 0.067 0.523 0.309
continuous dist. 0.699 0.694 0.611 0.332 0.247 0.201 0.562 0.465

Table 5: Model comparison using Pearson’s r and Kendall’s τ to correlate model scores with acceptability ratings
for English onsets. The correlation value for the top performing model in each category is bolded.

tions and achieve the highest τ correlations in each
of the four categories. Fig. 1 shows the relationship
between model scores and human Likert ratings.

The high performance of the bilinear model with
continuous distributional features when compared
against the same model with discretized distribu-
tional features shows that the continuous features
contain phonotactically relevant information which
is lost under discretization.

It is also interesting to note that the distributional
models achieve the highest correlations for all but
the marginal forms, which are best captured by
models with phonetic features. This may suggest
that the relative importance of distributional vs.
phonetic information varies in different contexts,
but more research will be needed to see if this
observation is borne out more generally.5

7 Conclusion

This paper has presented a log-bilinear model of
phonotactics that can incorporate continuous rep-
resentations of phonological information, bypass-
ing the discretization steps used in previous work.
The results of a modeling study showed that this
model achieves competitive performance in pre-
dicting experimental judgments of English onsets.
This model opens up the space of possibilities for
phonotactic modeling by removing requirements
for discrete representations, allowing greater com-
patibility with standard distributional learning tech-
niques.

5The high performance of the smoothed bigram model
on the overall Pearson’s correlation is likely due to a strong
numerical match with the acceptability ratings of the attested
forms, as noted by Daland et al. (2011): performance on
unattested and marginal categories, and using Kendall’s τ , is
substantially worse.

Figure 1: Comparison of the predictions of the two most
successful models against human Likert ratings.

The log-bilinear model is also compatible with
continuous representations proposed in other con-
texts, such as on the basis of phonetic measure-
ments (Mielke, 2012). The model could be used
to implement a model of phonotactics that oper-
ates directly on these representations, providing
insight into the role of fine-grained phonetic detail
in phonotactic judgments. More generally, differ-
ent feature systems may be compared within the
log-bilinear framework, and the log-bilinear model
itself can be used to generate optimized distribu-
tional vector representations of segments: this is
the method used to create word2vec vectors when
applied to text data (Mikolov et al., 2013; Goldberg
and Levy, 2014).

Finally, the log-bilinear model can be straight-
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forwardly applied to larger contexts than bigram
windows, including autosegmental or tier-based
contexts (Goldsmith, 1976; Heinz et al., 2011), by
appropriately defining the context representation.
The flexibility, relative simplicity, and performance
of this model make it a promising framework for
studying phonotactic learning and representations.
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