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Abstract

The current study investigates whether a Long
Short-Term Memory (LSTM) network can
learn the wh-island constraint in Dutch in a way
comparable to human native speakers. After
establishing with an acceptability judgement
task that native speakers demonstrate a clear
sensitivity to wh-island violations, the LSTM
network was tested on the same sentences. Con-
trary to the results of the native speakers, the
network was not able to recognize wh-islands
and to block gap expectancies within them.
This suggests that input and the network’s in-
ductive biases alone might not be enough to
learn about syntactic island constraints, and
that built-in language knowledge or abilities
might be necessary.

1 Introduction

In the past decade, artificial neural networks
(ANNs) have commonly been used for tasks within
the research area of Natural Language Processing,
such as machine translation and reading compre-
hension. This is a remarkable fact for many the-
oretical linguists, because these networks do not
possess the traits considered necessary for language
acquisition, such as built-in linguistic knowledge
(Chomsky, 1986). Still, recent research has shown
that ANNs are able to accurately learn about, for
example, number agreement (i.a., Goldberg, 2019;
Gulordava et al., 2018), and garden paths (i.a.,
Frank and Hoeks, 2019; Futrell et al., 2019; van
Schijndel and Linzen, 2021). However, not all syn-
tactic phenomena can be learned successfully yet,
such as different forms of long-distance dependen-
cies and constraints on these dependencies (Futrell
et al., 2019; Wilcox et al., 2022).

One of the first computational investigations on
the learnability of long-distance dependencies con-
cerned subject-verb agreement (Gulordava et al.,
2018; Linzen et al., 2016). These successful in-
vestigations showed that, when Recurrent Neural

Networks (RNNs) are presented with the sequence
‘The key to the cabinets. . . ’, they assign a higher
probability to the correct singular verb form ‘is’
than to the incorrect plural verb form ‘are’. Subject-
verb agreement is a syntactic phenomenon that fre-
quently occurs in the set of sentences the network
is trained on. This makes it easy for the RNN to
learn this phenomenon from only the input in com-
bination with its inductive biases, i.e., without any
built-in syntactic knowledge necessary. However,
to strengthen the claim that RNNs can acquire dif-
ferent long-distance dependencies in this manner,
it is important to also investigate dependencies not
often seen in the training data set. On the one
hand, if these dependencies cannot be learned by
the RNN, this suggests that some built-in syntac-
tic knowledge is necessary to learn about these
long-distance dependencies. On the other hand, if
the RNN can learn these dependencies, it demon-
strates that the input and the network’s inductive
biases suffice, even if the phenomenon itself only
infrequently occurs in the input. Island constraints
provide an example of such an infrequent long-
distance dependency and are central to the current
study.

1.1 Island constraints
Filler-gap dependencies are constrained by the type
of structure that can contain a gap. Previous re-
search has shown that the filler-gap dependency in
(1b) is perceived as unacceptable by most native
English speakers in contrast to (1a) (Hofmeister
and Sag, 2010).1

(1) a. Whati did John buy _i?
b. *Whati do you wonder [wh-phrase

whether John bought _i]?

1Gaps are represented by underscores and the wh-filler and
gap are coindexed with i. Moreover, unacceptability is marked
by an asterisk (*).
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Numerous structures (e.g., the wh-phrase in
(1b), but also subjects, adjuncts and complex
noun phrases) therefore seem to be gap-resistant
(Sprouse and Hornstein, 2013; Sprouse et al., 2012).
In the literature, these are referred to as islands
(Ross, 1967), and the unacceptability caused by a
filler-gap dependency in an island configuration is
called an island effect. The current paper will focus
on wh-islands.

There have been various investigations into the
sensitivity of ANNs to the (wh-)island constraint,
but most, if not all, focused on English. This is
a problem because recent literature suggests that
recurrent neural networks may have a performance
advantage for English-like structural input (e.g.,
Dyer et al., 2019; Davis and van Schijndel, 2020),
while the language learning system must be univer-
sal. Therefore, it is important to find out whether
these neural networks can successfully learn about
grammatical constraints such as islands in other
languages as well (e.g., Kobzeva et al., 2023).

The possible performance bias for English-like
structural input suggests that performance of the
network will be inflated in right-branching lan-
guages such as English (i.e., with a basic word
order of SVO), but undermined in left-branching
and possibly mixed-branching languages (i.e., with
a basic word order of SOV; Li et al., 2020).

Dutch employs mixed-branching, which means
that a Dutch sentence with a matrix and an em-
bedded clause makes use of two different branch-
ing directions; the basic and left-branching word
order SOV in the embedded clause and the right-
branching word order SVO in the matrix clause
(due to V2; Koster, 1975). Crucially, in Dutch, the
gap precedes the verb in the embedded clause, as in
(2), whereas it follows the verb in English. This dif-
ference in word order due to different branching di-
rections makes it interesting to investigate whether
neural networks can learn grammatical constraints
in Dutch. The current research thus focusses on
Dutch as this language is typologically different
from English in its word order, but shares many
features as well (e.g., morphological complexity).

While there have not yet been any investigations
about the performance of neural networks on island
constraints in Dutch, there has been some work on
the sensitivity of native speakers of Dutch to the
wh-island constraint. Beljon et al. (2021) showed
with an acceptability task that Dutch native speak-
ers are indeed sensitive to the wh-island constraint.

However, as this is one of only few studies to gather
data on islands in Dutch, the current study will try
to replicate these findings in a new acceptability
judgement task. In addition, to find out whether
a neural network performs comparably, a Long
Short-Term Memory (LSTM) network is tested on
the same sentences the speakers had to judge. The
design of the test sentences was largely based on
previous computational research examining island
constraints in English, which we discuss below.

1.2 Island constraints and neural networks

Different computational investigations have been
performed to examine whether neural networks can
learn to be sensitive to island constraints. While
Chowdhury and Zamparelli (2018) suggest that the
networks are affected by processing factors, e.g.,
the syntactic complexity of islands and the position
of this complex structure, Wilcox et al. (2018) ar-
gued that LSTMs can correctly learn the syntactic
wh-, adjunct and complex noun phrase (CNP) is-
land constraints. Wilcox et al. (2019) designed a
control study to test whether a processing expla-
nation could explain the results of Wilcox et al.
(2018), and showed that LSTMs are able to learn
syntactic constraints on filler-gap dependencies in-
stead of simply being sensitive to their complexity.
However, they also suggest that the networks are
not completely human-like and that they are not
able to learn all constraints successfully yet.

Wilcox et al. (2022) decided to combine all the
knowledge gathered in these previous studies into
the largest investigation to date on the network’s
learning ability of filler-gap dependencies and is-
land constraints. This investigation used the same
experimental design as Wilcox et al. (2018) and the
control study introduced by Wilcox et al. (2019)
to control for any complexity effects; we used the
same design and control in the current research and
will discuss them in section 2. Wilcox et al. (2022)
showed that wh-, adjunct, CNP, left branch, and
coordinate structure islands could all successfully
be learned by different types of neural networks.
Important to note is that these results could not be
due to processing factors, as the control study used
ruled out this option.

In sum, previous investigations show different
results. A general agreement about whether neu-
ral networks are able to learn island constraints
does thus not exist (yet), and it seems that island
constraints are one of the hardest phenomena to
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learn for neural networks (Warstadt et al., 2019).
This makes it important to investigate why some
island constraints (e.g., subject islands) are not suc-
cessfully learned yet. Moreover, for the island
constraints that are already successfully learned
in English, it is necessary to investigate whether
they can also be successfully learned in other lan-
guages. The wh-island constraint is, for example,
successfully learned in various studies in English
(e.g., Wilcox et al., 2022, 2019, 2018), making it
interesting to see whether this success is limited to
the English language only or whether it can also
be achieved in other languages. Therefore, the cur-
rent research specifically focused on the wh-island
constraint in Dutch.

2 Methods

To investigate the performance of the native speak-
ers and the LSTM network on the wh-island con-
straint, we constructed experimental and control
items that the speakers judged in an acceptability
judgement task and that the network assigned sur-
prisal values to.2 Both the speakers and the network
were presented with exactly the same sentences to
optimize the comparison.

2.1 Experimental design
The experimental design in the current study was
largely based on the interaction design introduced
in Wilcox et al. (2018). This interaction design
is based on two predictions assumed to be made
by the grammar: (1) gaps require fillers, and (2)
fillers require gaps. Consequently, the independent
variables PRESENCE OF GAP and PRESENCE OF

FILLER were crossed, for example in (2) for regular
filler-gap dependencies.

(2) Ik
I

weet
know

(wat/dat)
(what/that)

jij
you

zag
saw

dat
that

de
the

bakker
baker

(koekjes/_)
(cookies/GAP)

maakte
made

in
in

de
the

bakkerij.
bakery

‘I know (what/that) you saw that the baker
made (cookies/_) in the bakery.’

If Dutch speakers indeed assume that fillers require
gaps, filled argument positions (koekjes ‘cookies’
in (2)) should be less acceptable and more surpris-
ing when a wh-filler (wat ‘what’ in (2)) is present.
Moreover, if Dutch speakers assume that gaps re-
quire fillers, gaps should be less acceptable and

2The acceptability judgement task was preregistered. The
preregistration can be accessed via https://doi.org/
10.17605/OSF.IO/23TEQ

more surprising when no wh-filler (dat ‘that’ in (2))
is present.

Not only regular filler-gap dependencies were
investigated, but also sentences with wh-island con-
figurations. Therefore, the factor PRESENCE OF

ISLAND was added into the interaction design as
well, resulting in the four additional wh-island con-
ditions illustrated in (3). The square brackets in (3)
indicate the wh-island.

(3) Ik
I

weet
know

(wat/dat)
(what/that)

jij
you

je
REF

afvraagt
wonder

[of
whether

de
the

bakker
baker

(koekjes/_)
(cookies/GAP)

maakte
made

in
in

de
the

bakkerij].
bakery

‘I know (what/that) you wonder whether the
baker made (cookies/_) in the bakery.’

When the gaps and fillers appear in island config-
urations, the predictions change. First of all, a
gap inside an island configuration should never be
acceptable and it should be surprising for the net-
work. Second, adding to the predictions made by
Wilcox et al. (2018), the presence of a filler will
increase the surprisal even more; a gap should not
be expected within an island, but coming across
a wh-filler at the start of the sentence should give
rise to the expectation of a gap somewhere else.
When this expectation is violated by not encoun-
tering a gap somewhere outside of the island, the
filler cannot be linked back to a gap, causing the
acceptability rating of that sentence to decrease and
the surprisal value to increase. This effect should
occur in sentences with and without gaps inside the
island.

In total, 32 of these experimental item sets were
made. The neural network saw all the conditions
of each item set (and thus 256 experimental items
in total), but each human participant saw only one
condition per item set (and thus 32 experimental
items in total).

2.2 Control items

As it is argued that humans and neural net-
works may simply not be able to thread infor-
mation through syntactically complex construc-
tions (i.e., islands; Keshev and Meltzer-Asscher,
2018; Wilcox et al., 2022, 2019), expectations for
gendered pronouns were used to investigate this
possibility (similar to the control study designed
by Wilcox et al., 2019). To this end, the factors
GENDER MATCH and PRESENCE OF ISLAND were
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crossed, which resulted in four conditions: a match
and mismatch condition for non-islands as in (4a)
and for wh-islands as in (4b).

(4) a. Ik
I

weet
know

dat
that

de
the

(meester/juffrouw)
(teacher.MASC/teacher.FEM)

denkt
thinks

dat
that

de
the

leerlingen
students

hem
him

begrijpen.
understand

‘I know that the (male teacher/female
teacher) thinks that the students under-
stand him.’

b. Ik
I

weet
know

dat
that

de
the

(meester/juffrouw)
(teacher.MASC/teacher.FEM)

zich
REF

afvraagt
wonders

[of
whether

de
the

leerlingen
students

hem
him

begrijpen].
understand
‘I know that the (male teacher/female
teacher) wonders whether the students
understand him.’

It is predicted that the sentences in which the se-
mantic gender of the noun phrase (e.g., meester
(MASC) or juffrouw (FEM) ‘teacher’) matches the
gender of the pronoun (hem ‘him’ or haar ‘her’)
will be judged as more acceptable and will be less
surprising than sentences in which these do not
match. However, if there is any trouble in threading
information through island configurations, an inter-
action is expected between GENDER MATCH and
PRESENCE OF ISLAND; the gendered expectation
effect, i.e., the difference between the sentences
with matching and non-matching genders, will be
reduced within island configurations. On the other
hand, if the native speakers and neural network can
work within complex structures, no interaction ef-
fect is expected to arise, meaning that the gendered
expectation effect will arise in all configurations.

In total, 32 of these control item sets were made.
The neural network saw all the conditions of each
item set (and thus 128 control items in total), but
each human participant saw only one condition per
item set (and thus 32 control items in total).

2.3 Filler items

In addition to the experimental and control items,
the human participants were also presented with 64
filler items covering the full range of acceptability;
21 acceptable (e.g., regular declarative statements),
22 moderately acceptable (e.g., anglicisms), and 21

unacceptable filler items (e.g., subject-verb agree-
ment errors and word salads). The items and accept-
ability category (acceptable, moderately acceptable
and unacceptable) were based on the filler items
used in Beljon et al. (2021) and Kovač and Schoen-
makers (2023). The unacceptable filler items were
used in the current research to identify participants
who appear not to perform the acceptability judge-
ment task faithfully.

2.4 Acceptability judgement task

Participants were presented with 128 sentences (32
experimental, 32 control and 64 filler items) one
at a time and were instructed to imagine that these
were produced by a native speaker of Dutch that
they know well, e.g., a close friend. They were
then told to judge these sentences on how good
they sound in Dutch (specifically hoe goed vindt
u de zin klinken? ‘how good do you think the
sentence sounds?’) on a scale ranging from 1 (Erg
slecht ‘very bad’) to 7 (Erg goed ‘very good’), and
to base their judgement on their first intuition. Each
participant started with 3 filler items to familiarize
them with the task. The experiment lasted 15 to 20
minutes and each participant received £3.00.

Ninety-three native speakers of Dutch, recruited
from Prolific, entered the online experiment in
Qualtrics. However, 29 were excluded from anal-
yses; 6 because they did not complete the experi-
ment and 23 because they rated more than 2 agree-
ment errors and/or word salads with a rating of 4 or
higher on the 7-point scale. The data of the remain-
ing 64 participants (Mage(SD) = 31.78(9.26);
range: 20-55; 27 females and 34 males) were anal-
ysed.3

2.5 The neural network

One LSTM network was trained on a set of sen-
tences extracted from the NLCOW2014 corpus,
which comprises individual sentences of Dutch
texts collected from the World Wide Web (Schäfer,
2015). Only the first slice, with approximately 37
million sentences, was used in the current research.
First, a vocabulary was created by extracting the
20,000 most frequent words of the first slice and
adding the set of word types used in the experimen-
tal, control and filler items of the current experi-

3This specific number of participants, 64, was
based on a power analysis performed on unpublished
data from a master’s thesis. The thesis can be ac-
cessed via https://theses.ubn.ru.nl/items/
a17d0411-2ed1-49b7-89cc-043540f94e00
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ment, if these were not already in the most frequent
word list. This resulted in a vocabulary consist-
ing of 20,194 word types. Subsequently, only and
all corpus sentences with only words from the vo-
cabulary were selected from the first slice, and
these served as training sentences.4 The total set of
training sentences comprised 8,940,314 sentences
(144,196,081 tokens).

The LSTM network employed by Frank and
Hoeks (2019) was used in the current study without
any optimization of the architecture. It was trained
on next-word prediction for 5 epochs. First, the
words in the vocabulary went through a 300-unit
word embedding layer. The word vectors were then
passed to a 600-unit recurrent layer and a 300-unit
non-recurrent layer. Last, the vectors were passed
to the softmax output layer.

To check if the network was well-trained, 2 addi-
tional syntactic tests were performed. These tests
explored whether the network learned correctly
about (a) subject-verb agreement and (b) object-
verb order in the embedded clause, a distinctive
feature of Dutch (cf. section 1.1). Both are neces-
sary syntactic skills for the network to be able to
process a Dutch embedded sentence and any depen-
dencies in it. These tests showed that the network
learned both correctly. A more detailed discussion
of the items used and the results can be found in
Appendix A.

To evaluate the LSTM’s performance, the sur-
prisal values were collected that the network as-
signed to the words in the experimental and control
sentences. For the experimental items, surprisal
was measured at (a) the verb immediately follow-
ing the gap or at the filled argument position, e.g.,
maakt ‘makes’ for sentences with a gap and koekjes
‘cookies’ for sentences without a gap in (2) and (3)
(i.e., single-word surprisal values), and (b) summed
over all words immediately following the gap or
including the filled argument position, e.g., maakt
in de bakkerij ‘makes in the bakery’ for sentences
with a gap and koekjes maakt in de bakkerij ‘made
cookies in the bakery’ for sentences without a gap
in (2) and (3) (i.e., summed surprisal values). For
the control items, following Wilcox et al. (2019),
surprisal was measured summed over the entire
sentence, and additionally at the critical pronoun
hem ‘him’ or haar ‘her’.

4Sentences with only one word or with more than 50 words,
and sentences with a punctuation token that was not a period,
comma, exclamation mark or question mark were excluded.

2.6 Data analysis

To compare the performance of Dutch native speak-
ers and the LSTM network, surprisal values are
compared to acceptability judgements following
the suggestion in Pearl and Sprouse (2015); less
probable words and sentences, and thus higher sur-
prisal values, correspond to lower acceptability.

Before the statistical analysis, the raw acceptabil-
ity judgement scores were converted to z-scores per
participant using all items, to correct for individual
differences in scale use. Additionally, all indepen-
dent variables were coded using sum contrast cod-
ing, and a box-cox transformation was performed
on the standardized judgement scores and the sur-
prisal values so that the transformed data was as
close to normally distributed as possible.

For both the analysis of the standardized scores
and the (single-word and summed) surprisal values,
two linear mixed-effects (LME) models were fitted;
one for the experimental items and one for the con-
trol items. First, for the experimental items, one
LME model was fitted to the standardized scores,
one to the summed surprisal values and one to the
single-word surprisal values with PRESENCE OF

GAP, PRESENCE OF FILLER, PRESENCE OF IS-
LAND, and their interactions as fixed effects, us-
ing the lmer function from the lmerTest package
(Kuznetsova et al., 2017) in R. Second, for the
control items, one LME model was fitted to the
standardized scores, one to the summed surprisal
values and one to the single-word surprisal values
with GENDER MATCH, PRESENCE OF ISLAND, and
their interaction as fixed effects. The random effect
structure for all models was based on the minimal
Akaike Information Criterion (AIC). Significance
values for the coefficients from all models were cal-
culated using the Satterthwaite approximation in
lmerTest (Kuznetsova et al., 2017). The interaction
effects were further examined using contrasts from
the emmeans package (Lenth, 2022) in R.

3 Results

3.1 Wh-island violations

The final model for the judgements included ran-
dom intercepts for items and participants. The final
model for the single-word surprisal included a ran-
dom intercept and slope for the interaction between
PRESENCE OF GAP and PRESENCE OF FILLER for
items, and the final model for the summed surprisal
only a random intercept for items.

325



Figure 1: Mean standardized acceptability judgements
(left) and mean single-word negative surprisal values
(right) for every combination of PRESENCE OF GAP and
PRESENCE OF FILLER for non-islands (top) and wh-
islands (bottom). Dashed lines in the acceptability plot
(left) represent the mean acceptability of the acceptable
(top line; AF) and unacceptable (bottom line; UF) filler
items. Error bars represent standard errors.

The results of the acceptability judgement task
(left) and the LSTM network (right) are shown in
Figure 1. On the y-axis of the surprisal plot, the
negative surprisal values are used to facilitate the
comparison with the judgement plot.

In the acceptability judgement task, a three-way
interaction effect was found between PRESENCE OF

GAP, PRESENCE OF FILLER, and PRESENCE OF IS-
LAND (β = −.01, SEβ = .00, p < 001). For both
regular filler-gap dependencies and wh-islands, ac-
ceptability decreased in sentences with a filled
gap when a filler was present (Mnon-island(SD) =
−.61(.65), Misland(SD) = −.60(.69)) as opposed
to when it was not (Mnon-island(SD) = .56(.63),
Misland(SD) = .65(.62)) (pnon-island < .001,
pisland < .001). However, the acceptability of
regular filler-gap dependencies and wh-islands
differed when there was a gap. In sentences
with a gap, the presence of a filler increased
acceptability for regular filler-gap dependencies
(Mfiller(SD) = −.47(.70), Mno filler(SD) =
−.75(.57)), but decreased it in a wh-island config-
uration (Mfiller(SD) = −.92(.45), Mno filler(SD) =
−.67(.66)) (pnon-island < .001, pisland < .001).

For the LSTM network, no three-way interac-
tion effect was found between PRESENCE OF GAP,

Figure 2: Mean standardized acceptability judgements
(left) and mean single-word negative surprisal val-
ues (right) in non-islands and wh-islands with gender
matches and gender mismatches. The dashed line in
the acceptability plot (left) represents the mean accept-
ability of the acceptable filler items (AF). Error bars
represent standard errors.

PRESENCE OF FILLER, and PRESENCE OF ISLAND

(psingle-word = .521, psummed = .634), but only a
two-way interaction between PRESENCE OF GAP

and PRESENCE OF FILLER (single-word model:
β = −.16, SEβ = .02, p < .001; summed
model: β = −.05, SEβ = .01, p = .002).
This means that the same patterns in surprisal
were found for the regular filler-gap dependencies
and wh-islands.5 Specifically, surprisal increased
in sentences with a filled gap when a filler was
present as opposed to when it was not (non-island:
Mfiller(SD) = 13.21(2.64), Mno filler(SD) =
12.82(2.46); island: Mfiller(SD) = 13.63(2.27),
Mno filler(SD) = 13.16(2.21)) (pnon-island = .138,
pisland = .035), and surprisal decreased in sen-
tences with a gap when a filler was present
as opposed to when it was not (non-island:
Mfiller(SD) = 12.13(2.96), Mno filler(SD) =
12.92(2.34); island: Mfiller(SD) = 12.78(2.53),
Mno filler(SD) = 13.34(2.06)) (pnon-island < .001,
pisland = .024).

3.2 Gendered expectation control
The final model for the judgements included a ran-
dom intercept and slope for GENDER MATCH for

5Only the means and standard deviations of the single-
word surprisal are reported as these showed the strongest
effects.
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items and a random intercept for participants, and
the final models for surprisal included a random
intercept and slope for PRESENCE OF ISLAND for
items.

The results of the participants and the LSTM net-
work on the control items are illustrated in Figure
2. The negative surprisal values were used in the
surprisal plot.

For the control items, the native speakers and
the LSTM showed the same results. A main effect
was found of GENDER MATCH on the standardized
acceptability judgements (β = 1.65, SEβ = .20,
p < .001) and on the summed and single-word sur-
prisal values (single-word: β = −.23, SEβ = .02,
p < .001; summed: β = −.05, SEβ = .02,
p = .009), but no interaction effect between GEN-
DER MATCH and PRESENCE OF ISLAND was found
on the standardized acceptability judgements (p =
.340) or the surprisal values (psingle-word = .597,
psummed = .691). Figure 2 shows that the sentences
with a match in gender were more acceptable and
less surprising than the sentences with a gender
mismatch, and that this effect was the same for
non-islands and islands.

4 Discussion

The current research investigated whether an
LSTM network showed a similar sensitivity to wh-
island violations in Dutch as native speakers do.
After establishing whether the wh-island constraint
exists in Dutch in an acceptability judgement task,
an LSTM network was tested on the same mate-
rials and within the same experimental design to
examine whether it showed similar results.

The acceptability judgement task showed that
the wh-island constraint exists in Dutch, in line with
the results by Beljon et al. (2021). Native speakers
correctly showed for regular filler-gap dependen-
cies that gaps require fillers and that fillers require
gaps, and showed to be sensitive to wh-island vio-
lations; island configurations were only acceptable
without any gaps or fillers present. These findings
cannot be explained by islands being too hard to
process as the control experiment showed that gen-
der expectations could be maintained within these
structures.

The network showed similar results for the reg-
ular filler-gap dependencies; it learned that gaps
require fillers and that fillers require gaps. Remark-
ably, however, the same pattern was found within
the wh-island configuration, contrary to the native

speakers; fillers still required gaps, even when that
gap then occurs within an island configuration. An
LSTM network, trained on nearly 9 million Dutch
sentences, does thus not seem to recognize the wh-
island configuration in Dutch. These findings can-
not be explained through processing effects, as the
network could maintain gender expectations within
island configurations.

While the discrepancy between human judge-
ments and network predictions could be explained
by certain design choices of the current research
(e.g., the use of judgements and of complex sen-
tences with three sentence-embedding layers), the
results could also have been influenced by the ar-
chitecture of the network, the training procedure,
or the word order of Dutch. These factors will be
discussed in turn below.

4.1 Acceptability judgements vs. surprisal
While previous research has shown that surprisal is
indicative of real-time human language processing
(Smith and Levy, 2013), and can thus be compared
with human reading times, not much research has
compared surprisal values with acceptability judge-
ments yet, giving rise to the concern as to whether
this is even possible. Acceptability judgements
have been shown to be gradient (see Francis, 2021
for a discussion), which suggests that the knowl-
edge underlying these judgements is probabilistic
in nature instead of categorical (Lau et al., 2016).
Moreover, multiple previous investigations have
argued that acceptability is a concept comparable
to probability, as mentioned in section 2.6 (Pearl
and Sprouse, 2015; Wilcox et al., 2022). Based on
this previous literature, there should be no reason
to assume that the judgements and the surprisal
values in the current research are not comparable.

4.2 The architecture of the network
The discrepancy between human judgements and
network predictions in the current research could
be explained by the specific network architecture
used. While the current LSTM network does not
seem successful in Dutch, other LSTM architec-
tures have been shown to be successful in English;
Wilcox et al. (2022) show that two LSTM networks
can learn different island constraints successfully
in English. The two LSTM networks used were the
JRNN as presented in Jozefowicz et al. (2016) and
the GRNN as presented in Gulordava et al. (2018).
In the JRNN, the input and softmax embeddings
are replaced by character convolutional neural net-
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works (CNN), making it difficult to compare with
the current LSTM. Moreover, the GRNN does not
seem comparable either as it differs from the cur-
rent LSTM in the number of hidden layers. These
architectural differences could explain the results
obtained for Dutch. For future research, we will
thus investigate whether (a) a network more com-
parable to those used in Wilcox et al. (2022) for
English can be successful in Dutch, and (b) the
current LSTM would be successful in English.

4.3 Quantity and quality of the training data
set

The difference between the human and network’s
results can also be due to (the size of) the data set
the network is trained on. Wilcox et al. (2022)
trained the GRNN on 90 million tokens and the
JRNN on roughly 1 billion tokens. The current
training data set comprised approximately 114 mil-
lion tokens. The networks used in Wilcox et al.
(2022) did not show any qualitative differences in
learning success, which seems to suggest that there
is no reason to believe that the size of the current
data set influenced the network’s learning success.
While the quantity of the current training data set
should thus not be of concern, the quality of the
data set could have had an effect.

If the training data sets of the GRNN and the cur-
rent LSTM are compared, we can identify a differ-
ence in syntactic complexity. The GRNN in Wilcox
et al. (2022) was trained on English Wikipedia text,
while the current training data set comprised sen-
tences extracted from the World Wide Web. It is
a well-known fact that Wikipedia text is syntacti-
cally quite complex with long and deeply embed-
ded sentences (Yasseri et al., 2012). The current
data set seems to have fewer complex sentences
as, for example, more coordination conjunction
is found in the longer sentences (with more than
45 words) instead of subordinating conjunction.
This might mean that the number of complex sen-
tences is smaller in the current data set than in
Wikipedia text. This feature could have influenced
the network’s performance on the experimental
items. We followed Wilcox et al. (2022) in the
design of the items by using three embedding lay-
ers, which might suit Wikipedia text better in syn-
tactic complexity. However, Wikipedia text seems
less natural than the current data set, which raises
the question to what extent it can be considered
natural language input. Future research could use

less complex experimental sentences to evaluate
the network trained on the current data set, or use
a data set more comparable to the one by Wilcox
et al. (2022) to train the current model.

Rather than the syntactic complexity of the train-
ing data set, it could also be the case that the in-
formation in the input (training) data might just
not have been good enough to learn about the wh-
island constraint, as many syntacticians have sug-
gested before (Chomsky, 1965; Pearl and Sprouse,
2013). This could suggest that something else is
needed than just external input to learn about the
wh-island constraint, for example some built-in lan-
guage knowledge or abilities. While more research
is necessary before we can say anything about
the need for built-in language knowledge or abili-
ties, our results do suggest that the domain-general
learner used in the current study (i.e., the LSTM
network trained on nearly 9 million Dutch sen-
tences) is not able to recognize the wh-island con-
figuration. Moreover, this domain-general learner
has been shown to perform differently than the hu-
man speakers, who have been argued to have innate
domain-specific knowledge about grammatical con-
straints (e.g., Chomsky, 1986).

4.4 The Dutch word order
The last factor that could have influenced the re-
sults of the current study is word order. The pos-
sible performance bias for English-like structural
input could mean that performance can be inflated
in right-branching languages such as English, but
undermined in left-branching and possibly mixed-
branching languages such as Dutch (Li et al., 2020).
In the current research, combinations of Dutch ma-
trix and embedded clauses were used, and thus a
combination of left- and right-branching directions.
Crucially, in Dutch, the gap precedes the verb in the
embedded clause, which is the other way around
in English. This word order difference caused by
the difference in branching direction used could
have affected the network’s results. The current
research, however, did not test this hypothesis di-
rectly. By replicating the English study by Wilcox
et al. (2022), we will be able to compare the net-
work’s performance in Dutch and English directly.
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In conclusion, in the current research it was shown
that an LSTM network does not seem able to rec-
ognize the wh-island configuration in Dutch and to
block gap expectancies within this configuration,
unlike native speakers of Dutch. This suggests
that input alone might not be enough to learn about
island constraints, and that built-in language knowl-
edge or abilities might be necessary. Moreover, it
could also suggest that the mixed-branching lan-
guage Dutch is, in contrast to the right-branching
language English, more difficult to grasp for a neu-
ral network. Future research is needed to explore
the different explanations for the current results.

The data and code can be accessed via https:
//doi.org/10.17605/OSF.IO/KT3HE.

5 Abbreviations
REF referential pronoun
MASC masculine
FEM feminine
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A Appendix

To investigate the performance of the LSTM net-
work on the two additional tests, 15 item sets per
phenomenon were created largely based on the item
sets used in the main experiment. Each item set
consisted of an acceptable and an unacceptable sen-
tence. An example minimal pair for subject-verb
agreement can be found in (5) and for object-verb
order in (6).

(5) a. Hij
he

weet
knows

dat
that

de
the

mevrouw
lady

dacht
thought

dat
that

de
the

jager
hunter

herten
deer

doodt
kills

tijdens
during

de
the

jacht.
hunt
‘He knows that the lady thought that
the hunter kills deer during the hunt.’

b. *Hij
he

weet
knows

dat
that

de
the

mevrouw
lady

dacht
thought

dat
that

de
the

jagers
hunters

herten
deer

doodt
kills

tijdens
during

de
the

jacht.
hunt
*‘He knows that the lady thought that
the hunters kills deer during the hunt.’

(6) a. Ik
I

weet
know

dat
that

jij
you

denkt
think

dat
that

de
the

bakker
baker

koekjes
cookies

maakt
makes

in
in

de
the

bakkerij.
bakery

‘I know that you think that the baker
makes cookies in the bakery.’

b. *Ik
I

weet
know

dat
that

jij
you

denkt
think

dat
that

de
the

bakker
baker

maakt
makes

koekjes
cookies

in
in

de
the

bakkerij.
bakery

*‘I know that you think that the baker
makes cookies in the bakery.’

First, for subject-verb agreement, it was predicted
that the network would assign higher surprisal val-
ues to the singular verb (doodt ’kills’ in (5)) when it
followed a plural subject (jagers ’hunters’ in (5b))
than when it followed a singular subject (jager
’hunter’ in (5a)). Second, for object-verb order, the
network should assign higher surprisal values to the
object-verb combination (koekjes maakt ’cookies
makes’ in (6)) when the verb incorrectly precedes
the object.

For each phenomenon, an LME model was fit-
ted to the surprisal values with ACCEPTABILITY
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as fixed effect using the lmer function from the
lmerTest package (Kuznetsova et al., 2017) in R.
The random effect structure for both models was
based on the minimal Akaike Information Crite-
rion (AIC). Significance values for the coefficients
from the models were calculated using the Satterth-
waite approximation in lmerTest (Kuznetsova et al.,
2017). The final models ultimately included a ran-
dom intercept for items.

For both phenomena, a main effect of ACCEPT-
ABILITY was found (agreement: β = 1.20, SEβ =
.10, p < .001; order: β = 1.47, SEβ = .25,
p < .001); the acceptable conditions (agreement:
M = 9.22, SD = 2.07; order: M = 22.57,
SD = 4.65) were assigned lower surprisal val-
ues than the unacceptable conditions (agreement:
M = 11.61, SD = 1.95; order: M = 25.52,
SD = 3.60).
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