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Abstract

Both syntax and prosody seem to require struc-
tures with unbounded branching, something
that is not immediately provided by multiple
context free grammars or other equivalently ex-
pressive formalisms. That extension is easy,
and does not disrupt an appealing model of
prosody/syntax interaction. Rather than com-
puting prosodic and syntactic structures inde-
pendently and then selecting optimally cor-
responding pairs, prosodic structures can be
computed directly from the syntax, eliminat-
ing alignment issues and the need for bracket-
insertion or other ad hoc devices. To illustrate,
a simple model of prosodically-defined Irish
pronoun displacement is briefly compared to
previous proposals.

Since phonological structures do not show a prin-
cipled bound on length, those structures must allow
unbounded branching or unbounded depth or both.
There is significant controversy about how the bal-
ance is struck (Selkirk, 1996, 2011; Ito and Mester,
2012). Idsardi (2018) suggests that the issue can
be largely set aside if the appearance of phono-
logical structure derives entirely from the syntax,
with a transduction that concatenates segmental
material and inserts ‘boundary symbols’. But Yu
(2021) points out that boundary symbol insertion
should not be accidental, stipulated; if there are no
prosodic constituents, then we need another expla-
nation of ‘boundary’ distribution. Rigorous studies
of these matters are often based on grammars and
automata that do not provide mechanisms for un-
bounded branching. This absence may obscure part
of our picture of the syntax-prosody interface.

For syntax, Chomsky (1961, 1963, 2018) ob-
serves that standard rewrite grammars do not pro-
vide unbounded branching:

The failure of strong generative capacity of
[phrase structure grammar] . . . is a failure of
principle, as shown by unstructured coordina-
tion: e.g., “the man was old, tired, tall,. . . , but

friendly”. Even unrestricted rewriting systems
fail to provide such structures, which would
require an infinite number of rules. The more
serious failure, however, is in terms of ex-
planatory adequacy. (Chomsky, 2018, p.132)

Chomsky’s remarks about this are discussed in Las-
nik (2011) and Lasnik and Uriagereka (2022, pp.15-
20). Lasnik (2011) notes that Chomsky and Miller
(1963, p. 298) actually consider this context free
rule for adjective coordination:

Predicate→ Adjn and Adj (n ≥ 1).
However, as Lasnik notes:

Chomsky and Miller indicate that there are
“many difficulties involved in formulating this
notion so that descriptive adequacy can be
maintained. . . ”. But they do not elaborate on
this point. It would surely be interesting to
explore this. . . (Lasnik, 2011, p.361)

That option is explored here.
Inspired by Kleene (1956), unbounded branch-

ing can be added to phrase structure rewrite gram-
mars by allowing the Kleene star * on the right
side of any rule.1 Yu (2022), reviewed in §1, pro-
poses that prosodic constituency and dependencies
can be specified by multi bottom up tree transduc-
ers or, equivalently, multiple context free gram-
mars. These can also be extended with * on the
right side of any rule, accommodating unbounded
prosodic branching. In recent syntax too, the evi-
dence supports unbounded branching. Neeleman
et al. (2023) defends unbounded branching for co-
ordination, and briefly reviews the long history of
such proposals. McInnerney (2022b) argues for
unbounded branching in adjunction. And Chom-
sky (2021, p.20) recently proposes a *-extension
of merge, in his rule ‘D’.

1This idea is used in finite state toolkits (Beesley and Kart-
tunen, 2003; Hulden, 2009; Gorman and Sproat, 2021), and
*-extended context free grammars are commonly used to de-
fine programming languages (Wirth, 1977; Albert et al., 2001;
Martens and Niehren, 2005; Jim and Mandelbaum, 2010; Bor-
sotti et al., 2023). Pattis (1994) argues that context free gram-
mars with unbounded branching should be taught on the first
day of your first class in Computer Science.
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ι(xy)← ω(x) φ(y)
φ(xy)← ω(x) φ(y)
φ(xy)← φ(x) φ(y)
φ(x)← ω(x)
ω(xy)← σ(x) ω(y)
ω(is)←
ω(cuma)←
ω(é)←
ω(’na)←
ω(shamhradh)←
ω(gheimhreadh)←
ω(nó)←
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a. MCF grammar b. Derivation from grammar a c. Derivation with ι(~x)← φ+(~x) and pitch accents

Figure 1: *-MCF prosody for (1)

A *-extension of minimalist grammar is pro-
posed in §2, providing an analog of Chomsky’s
rule D. And since the primary causal influences in
prosody and syntax differ, it is natural to define
them separately. But this creates a puzzle about
how the respective influences interact in linguistic
performance. A syntax-prosody interface inspired
by Bennett et al. (2016) is proposed, one that al-
lows prosodically conditioned pronoun postposing
of weak pronouns in Irish. These pronouns can
appear middle of a coordinate structure, suggest-
ing a non-syntactic placement. With a syntax for
Irish coordination that allows unbounded branch-
ing, postposing of these weak elements can occur
in the generation of prosodic structure.

1 *-Prosodic structure

Yu (2021) points out that many phonologists ar-
gue for structures with branching constituencies
that finite state automata do not provide. And Yu
(2022) observes that certain multiple dependen-
cies, sometimes marked with arcs in representa-
tions of phonological structure (Pierrehumbert and
Beckman, 1988), can be captured and made ex-
plicit in ‘finite state multi bottom up tree transduc-
ers’ (MBOTs) or, equivalently, in ‘multiple context
free grammars’ (MCFGs). A simple MCFG is pre-
sented in Figure 1a using the logic-based notation
of Kanazawa et al. (2011). Each rule is a condi-
tional, with the back arrow ← pronounced “if”,
and with variables over strings on the right that get
concatenated on the left side of each rule. The first
rule Figure 1a says “xy is an ι if x is a ω and y is a
φ”. The last says “the string nó is an ω”.

Here, we also extend MCFGs with the Kleene
star and plus. Any category C on the right side of a
rule can be starred, C∗, meaning that it may occur
0 or more times, where the strings of this sequence
are adjacent in the sequence ~x. We also allow C+

which is the same as C followed by C∗. So the rule

ι(~x)← φ+(~x)

says “the strings of ~x, concatenated, are an ι if they
are the strings of one or more occurrences of φ”.
An instance of that rule is applied at the root of
Figure 1c. And the rule from Chomsky, mentioned
in the introduction, is:

Predicate(~x and y)→ Adj+(~x) Adj(y).

That says “~x, concatenated with and, concatenated
with string y, is a Predicate if ~x are the strings of
1 or more Adj, and y is also an Adj”. We will
also write LH(é) to indicate that é has the pitch
accent LH, and similarly for HL. These extensions
do not change MCFG expressive power (Appendix
A). MCFGs are ‘multi’ in allowing categories to
classify multiple strings – relevant in §3.

Example. Consider the Irish (1) from Bennett
et al. (2016), in which we added syntactic bracket-
ing for the coordinate structure:

(1) is
COP.PRES

cuma
no.matter

[é
it

[‘na
PRED

shamhradh]
summer

[nó
or

[‘na
PRED

gheimhreadh]]]
winter
‘It doesn’t matter if it’s summer or winter’

Assuming the syntactic structure in Figure 4 (ex-
cluding the conjunct ‘na fhómar), the prosodic
structure expected following the syntax-prosody
mapping principles of Match Theory (Selkirk,
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2011; Elfner, 2012) is shown in Figure 1b. In brief,
optimality-theoretic MATCH constraints enforce
that clausal projections correspond to intonational
phrases (ι), maximal projections to phonological
phrases (φ), and heads to prosodic words (ω). How-
ever, Bennett et al. (2016, (104)) propose that the
prosodic structure in fact phrases pronoun é to-
gether with the first conjunct ‘na shamhradh in a
single φ, like in Figure 1c.

Briefly, to explain this, they propose that
prosodic markedness constraints are ranked above
MATCH constraints, following Elfner (2012, §4.2).
The key prosodic markedness constraints are:
(i) EQUALSISTERS (Bennett et al., 2016, (48)),
which assigns a violation when sisters are not of
the same prosodic category (Myrberg, 2013), (ii)
STRONGSTART (Bennett et al., 2016, (55)), which
penalizes φ- and ι-phrases with leftmost daughters
that are “prosodically dependent”, i.e., syllables
(σ), and (iii) BINARITY, which penalizes nodes
that are not binary branching. Here we assume that
BINARITY is applicable only to φ-nodes, following
Elfner (2012, §4.2), and that EQUALSISTERS is
applicable only to nodes above the prosodic word
(since Myrberg (2013) and Bennett et al. (2016)
consider only above the level of the prosodic word).
In addition, Bennett et al. (2016, p. 198) assume
that a prosodic word must contain a stressed sylla-
ble, which we can encode as an inviolable CULMI-
NATIVITY constraint.

While the tree in Figure 1b incurs no MATCH

constraint violations, it incurs five EQUALSISTERS

violations due to 〈ω, φ〉 daughter pairs, as well as
three BINARITY violations due to unary branches
to é, shamhradh, and gheimhreadh; moreover, is
and ‘na (but crucially, not é) are stressless cli-
tics and thus incur violations of CULMINATIV-
ITY. In contrast, the prosodic tree in Figure 1c
incurs a number of MATCH violations, but no BI-
NARITY violations and only single STRONGSTART

and EQUALSISTER violations due to the phras-
ing of the daughters is and cuma. The structure
in Figure 1c with pronoun é linearized preceding
the conjuncts is only optimal when é occurs in its
strong, stressed form. When é occurs in its weak,
unstressed form, it cannot form a prosodic word on
its own—only a syllable. If the ω node over é in
Figure 1b was deleted, leaving just a σ, violations
of EQUALSISTERS and STRONGSTART would be
incurred.

2 *-Minimalist grammar

Minimalist grammars (MGs) are weakly equivalent
and closely related to MCFGs (Harkema, 2001a;
Michaelis, 2001) and can be similarly extended
to unbounded branching, leaving weak expressive
power unchanged (Appendix A). Here we adapt the
version of MG in Kobele (2021), which has only
positive and negative feature occurrences, where
expressions are formed by merging expressions in
which each negative occurrence is ‘mated’ with a
positive occurrence.

We use only one polarity relation following Ko-
bele (2021) and others.2 Initially, let a minimalist
grammar (MG) be a finite set of lexical items that
associate phonological forms with feature-based
formulas as follows:

feature ::= V |D |A |C |wh | . . .
| feature+ |feature∗ |X

non-empty-conj ::= feature | feature . non-empty-conj
conj ::= ε | non-empty-conj

formula ::= conj ( non-empty-conj
lexical-item ::= phonological-form : formula

In any formula, features in the antecedent conjunc-
tion on the left are are negative; those in conse-
quents positive. When an antecedent is empty, in-
stead of ε( a.b or ( a.b, we often write a.b.

*-Merge. We extend the usual definition of bi-
nary merge to to allow any number of constituents
to be combined in one step:

M(A,B,C1, . . . , Cn) = {A,B,C1 . . . , Cn}.

At least 2 constituents are required, so it
is sometimes convenient to write A,B, ~C for
A,B,C1, . . . , Cn (n ≥ 0). Sets are unordered, of
course, but order would be redundant since, as will
become clear, heads and subcategorized elements
are distinguishable by their labels.

Labels. Derivations begin with numerations,
which are defined here as finite sequences of lexical
and derived elements. Merge applies to numeration
elements, replacing them. And the merge steps of
a successful derivation produce complexes which
can be assigned a label by function `. A lexical or
derived structure A whose first unmated feature is

2MGs often use 2 canceling pairs (=x selects x, and +x
licenses -x), but here we use 1. A head (negative occurrence
of x) ‘mates’ or ‘cancels’ a non-head (positive occurrence of
x). Eliminating the move/merge distinction arguably makes
scope reconstruction less surprising (Sportiche, 2017; Chom-
sky, 1995, §3.5). Cf. CMGs (Stabler, 2011), e-MGs (Chesi,
2021), and Horn linear logic (Kanovich, 2015).
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Labels are defined with 3 cases (lexical items, internal merge, and external merge, respectively):

`(A) =





A : {α( β} if A is a lexical item w : α( β

A : γ if A = {B,C, ~D}, C : F ∈ `(B), γ = m(`(B), {C : F}) is defined, and &(`(C), ~D)

A : γ otherwise, if A = {B,C, ~D}, γ = m(`(B), `(C)) is defined, and &(`(C), ~D)

Tentatively, &(α, ~D) iff every element of ~D has label α.
And the ‘mating’ function calculates the labels of complexes, for the third case of `:

m(S[f.α( β], T [B : {f.γ}]) =
{
{α( β} ∪ S ∪ T if γ = ε and smc(S ∪ T )
{α( β,B : γ} ∪ S ∪ T if γ 6= ε and smc({B : γ} ∪ S ∪ T ),

where X[α] is a set X containing formula α and then X is the result of removing that element, and where smc(X) iff
no two formulas in X have the same first unmated feature.

Figure 2: MG label checking

ε:TM(C

ε:V(TM

is:A(V

cuma:pred(A

é:D

ε:Pred.D(pred

‘na:D(Pred shamhradh:D ‘na:D(Pred fhómar:D nó:X X+(X

‘na:D(Pred gheimhreadh:D

Figure 3: Left, structure for (2): a set in which leaves are lexical items, internal nodes are sets, arcs are ∈ relations.
A dotted arc is added to indicate PF head movement, independent of syntax-derived set. Right, the corresponding
dependency tree (with feature-checking arcs).
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Figure 4: X-bar tree for derivation of Figure 3.

negative f can mate with a lexical or derived struc-
ture B whose first unmated feature is positive f .
Labeling maps a lexical item or derived set A to a
pair A : F , where F is the set that contains the for-
mula of the head, but with mated feature removed,
together with the pairs ~B : ~G of subconstituents
~B with unmated positive features ~G, as detailed in
Figure 2.

As in previous MGs, ` requires embedded pos-
itive elements to satisfy the ‘shortest move con-
straint’ (smc): `(A,B) is undefined if A,B have
any first positive feature in common. The mating
m then applies to the labels. Writing N [A,B, ~C]
when A and ~C are in numeration N and either (i)
~B ∈ N or (ii) B ∈ `(A), let N [M(A,B, ~C)] be
the result of letting {A,B, ~C} replace A,B and ~C
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in N .3 We call steps using labeling condition (i)
external merge and steps using (ii) internal merge
or move. Note that a move-over-merge condition
is imposed in the definition of the labeling ` in
Figure 2 – it’s the last, ‘otherwise’ case.4

The labeling of pairs A,B is extended to the
labels of A,B, ~C by requiring each element of C
to have the same label as B, and assigning the
complex the same label it would have if ~C were
empty. In lexical entries, f+ is a special feature
that allows labeling of ~C, with 1 or more elements
with first negative feature f. For convenience, in
any lexical item, we also allow variable X to be
instantiated with any single feature.

Derivations. Now a rule R, building syntactic
structures from elements of a numeration, can be
formulated like this:

N [A,B, ~C]

N [M(A,B, ~C)]
(R) if `(M(A,B, ~C)) is defined.

A structure is complete when it has exactly one
unmated feature, that feature is on its head, and
it is positive. And a derivation from numeration
is complete when we have derived a single com-
plete structure. The grammar defines the set of
complete structures derived from numerations of
its elements. For any feature c, let Lc be the set of
sets of non-empty phonological forms at the leaves
of completed structures with that feature.

Linearization. Unlike rule R, parsers construct
derivations from numerations of zero or more non-
empty and often ambiguous phonological forms,
and linear order matters. For any grammarG define

G(x) =

{
{A ∈ G| A = x : F} if x is phonological
{x} otherwise.

Tentatively, let’s adopt the Kayne-like idea that
first-mated elements are pronounced to the right
of the head later-mated elements on the left, with
elements pronounced only in their derivationally
latest positions.5

3Appendix C has a complete implementation of R. With
compilers that avoid ‘destructive’ operations, ‘replacement’
of A,B, ~C by {A,B, ~C} need involve no deletion, but rather
a change in how the elements are accessed (Wadler, 1992).

4Following Kobele (2021). Sometimes merge-over-move
is assumed (Epstein et al., 2012; Chomsky, 2000, p.106), but
that has been challenged on empirical grounds (Shima, 2000;
Castillo et al., 2009; Abels, 2012, §4.3.1). Careful discussion
of the these alternatives, and their interaction with the smc and
island constraints, is beyond the scope of this brief study.

5See e.g. Kayne (2020, 1994); Collins and Kayne (2020);
Johnson (2017); Biberauer et al. (2014); Nunes (1999).

Order is further complicated by ‘head move-
ment’, which we assume is non-syntactic,
morphologically-driven (Harizanov and Gribanova,
2019; Chomsky, 2021, i.a.). A morphological fea-
ture of a selecting head can attract the head of a
selected complement to its left.

Let’s call this rule K:

N [x, y, ~z]

N [M(A,B, ~C)]
(K) if

A ∈ G(x), B ∈ G(y), ~C ∈ G(~z),

`(M(A,B, ~C)) is defined, and
if this is B’s last mating, then

( if this is A’s first mating,
then A,B, ~C are adjacent in N ;
else, ~C,B,A are adjacent ), and

a morphological feature of A can attract
the phonetic head of first merged B.

A simple model of rule K is implemented by the
minimalist grammar mechanisms of Stabler (2001)
and Stanojević (2019).6

In the long tradition of generalizations about lin-
ear precedence, this idea is among the simplest.7

MGs adopting this idea are very expressive, defin-
ing a mildly context sensitive class of languages
(Michaelis, 2001; Harkema, 2001b).

Example, continued. Consider this 3-coordinate
elaboration of the previous example:
(2) is

COP.PRES
cuma
no.matter

é
it

‘na
PRED

shamhradh,
summer,

‘na
PRED

fhómhar
autumn,

nó
or

‘na
PRED

gheimhreadh
winter

‘It doesn’t matter if it’s summer, autumn or winter’

We assume that the head movement shifts the cop-
ula from V to a tense-modality position TM below
the complementizer C (McCloskey, 2022). And we
assume that a predP small clause is the complement
of the adjective. Then a structure similar to the one
proposed by Bennett et al. can be defined by this
lexicon, indicating the morphological feature of the
empty head-raising TM by underlining it:
ε: TM ( C ε: V ( TM is: A ( V
cuma: pred ( A ε:Pred.D ( pred
‘na: D ( Pred nó: X X+( X
shamhradh: D fhómar: D gheimhreah: D

6A further extension is proposed for coordinate structures
by Torr and Stabler (2016): when all coordinates have the
same head, they can all be ‘adjacent’ to the selecting head
in the sense required for head movement in (K). And note
that Figure 2’s requirement that coordinates have identical
types is too strong. Relaxing that condition to handle ellipsis,
etc., the higher order structures of type logics are valuable
(Kubota and Levine, 2021, and references cited there). Even
in that powerful system, it is not yet clear how to avoid lexical
redundancies and other issues (Morrill and Valentín, 2017).
Kobele (2019) extends a minimalist grammar with similarly
higher-order structures, but further exploration of these issues
is left for future work.

7Cf. e.g. Shieber (1984); Daniels and Meurers (2004);
Abels and Neeleman (2012); Cinque (2017); Kusmer (2020);
Stanojević and Steedman (2021); Roberts (2021).
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From any numeration that contains exactly 1 oc-
currence of each of these elements, we can derive
the complete structure depicted by Figure 3 left,
where internal nodes are sets with downward arcs
to their respective elements. Figure 3 also shows
the corresponding dependency graph, and Figure 4
an X-bar structure.8 Clearly, with numerations of
elements from this 10 element lexicon, we can de-
rive not only (2) but also (1) and an infinite number
of other structures of category C, with any number
of coordinates.

3 The meeting point

Bennett et al. (2016) note that there are variants
of (1) in which pronoun é is prosodically weak
and postposed, with prosodic structures shown in
Figure 5: 9

(3) is
COP.PRES

cuma
no.matter

‘na
PRED

shamhradh
summer

é
it

nó
or

‘na
PRED

gheimhreadh
winter

(4) is
COP.PRES

cuma
no.matter

‘na
PRED

shamhradh
summer

nó
or

‘na
PRED

gheimhreadh
winter

é
it

For a syntactician, (3) is a puzzle. Why and how
could a pronoun be displaced into the middle of
a coordinate structure? Bennett et al. suggest that
this happens for reasons that were already needed
in the account of (1). Because the pronoun é is
prosodically weak, it doesn’t adjoin at the left edge
of the first conjunct in (1) like in Figure 1c, where
it would incur both STRONGSTART and EQUAL-
SISTER violations. Instead, it avoids violating
STRONGSTART via postposing. In fact, the Ben-
nett et al. OT account of (1) extends almost imme-
diately to (3) and (4) once we allow the prosody to
consider candidates with displacement. Here we
show that proposal has a transparent and efficient
computational implementation.

A common idea is that the relation GEN pairs
each syntactic structure input with all possible
prosodic trees, or all prosodic trees that yield the

8Standard sets related by membership are multidominance
structures, but they are simpler than some multidominance
structures of earlier proposals (Gärtner, 2002, 2014; Citko,
2011). MG dependency graphs are used by Kobele (2021),
Salvati (2011), Stabler (1999), inspired by proof nets (Moot
and Retoré, 2012; Moot, 2002; Girard, 1987). And for com-
puting X-bar structure, see e.g. Stabler (2013, App.B).

9Cf. Chung and McCloskey (1987); McCloskey (1999);
Duffield (1995); Adger (1997, 2007); Mulkern (2003, 2009);
Elfner (2012); Bennett et al. (2016); Windsor et al. (2018);
Kusmer (2020).

same string of pronounced elements. Then MATCH

can require that each syntactic XP correspond to
a φ in the prosodic structure. But the number of
possible trees can be very large, and how are corre-
sponding (XP,φ) pairs found? Counting each XP
and requiring a corresponding number of φ is un-
necessarily nonlocal and inefficent. Requiring that
each XP have an φ dominating the same words is
worse – many XPs can have the same words, so
how do we keep track of them?

A natural idea is to represent the set of candi-
dates for any input with a finite state transducer. A
tree transducer is simply a device that traverses an
input tree, going into one of finitely many states
at each point. Bottom-up transducers traverse the
input from the leaves up to the root. Traversing the
input, the output tree is extended in each step by
rules that depend on the current state and the next
symbol of the input tree. A transducer that is ‘multi’
has states that can have several output subtrees at
once, allowing it to move things up through the
tree, to be assembled into the structure later. We
also allow our transducers to be ‘extended’, which
means that a rule can look at more than just one
symbol of the input at a time, allowing simpler
rules. So we use XMBOTs, finite state extended
multi bottom up tree transducers (Engelfriet et al.,
2009).

In a transduction from an input to an output tree,
an alignment is established by the operation of
the transduction itself. Traversing an input XP, the
transducer will either output the corresponding φ or
not, and the latter case can be penalized. And more
generally, when all the constraints are themselves
definable by finite state transducers, an important
result from string-based OT carries over to the set-
ting: a guarantee that optimal structures can be
computed efficiently (Ellison, 1994; Eisner, 1997;
Albro, 1997; Heinz et al., 2009).10 In this setting,
instead of considering each candidate one-by-one,
we apply constraints to the finite state grammar that
generates all the candidates. Large candidate sets
are then unproblematic, so we can allow candidates
with displacement, and candidates that skip levels
in the prosodic hierarchy.11

10See Daland (2014) and Heinz and Idsardi (2017) for brief
comparison of this computational model with others promi-
nent in phonology.

11This tree-based strategy, expressing GEN and constraints
with composable finite state transducers, was suggested by
Graf (2012a,b), and is the natural option here. In contrast,
Kalivoda (2018, (179)), Bellik and Kalivoda (2017, Appendix)
and Kalivoda and Bellik (2020, §4) define GEN as a set of
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Figure 5: Prosody for (1), (3), (4): attaching é left of sister’s 1st daughter, right of that daughter, and right of sister

Engelfriet et al. (2009) point out that MCFGs
are just MBOTs that compute string yields, and
so the *-extension of XMBOTs is similar. And
for any two linear XMBOTs, we can construct a
single XMBOT that computes their composition.
When GEN is an XMBOT, and each constraint is an
XMBOT that marks some structures every time the
constraint is violated, then we can compose GEN

with the top-ranked constraint for an XMBOT that
still generates all candidates but with additional
marks on the steps that violate constraints. Then,
using Dijkstra’s algorithm, paths that produce more
constraint violations than necessary can be pruned
to generate only structures that are optimal with
respect to that first constraint. Iterating this step
to apply constraints from the most highly ranked
to the lowest, pruning suboptimal paths in each
result, the algorithm stops when there is only one
remaining candidate or when all constraints have
been evaluated. This exactly simulates a tableau
evaluation, and is guaranteed to be efficient even
when the candidate sets are large or infinite.12

For illustration, let’s take a few steps in the

pairs. They require that the order of pronounced elements in
the input and output are the same, so prosodic displacements
are not among the candidates. Bellik et al. (2021, fn3) clarifies
that their trees also do not include level-skipping, apparently
disallowing e.g. φ parents of σ in Figure 1b,c. Kusmer (2020,
§6.1) defines GEN to allow the (much larger) set of pairs in
which all orders of pronounced elements appear among the
output candidates, and does not confront the computational
problem. Dolatian et al. (2021) does propose using a trans-
ducer to map from syntax to prosody, but does not use OT.

12Frank and Satta (1998) credit Paul Smolensky with noting
that this kind of approach, with a pruning step that does not
require any finite bound on violations, can be non-finite-state,
unlike e.g. ‘lenient composition’ (Karttunen, 1998). A referee
conjectures that our constraints are ‘global’ (Jäger, 2002),
guaranteeing finite-stateness. And other regular versions of
OT might extend naturally to prosodic trees, e.g. Lamont
(2022). We leave these broader issues for later work.

derivation of a prosodic structure, beginning with
the familiar X-bar structure in Figure 4, except, as
in §1, we leave out indices and the middle coordi-
nate. For this example, we use 4 states qω, qφ, qι, qε,
with qι the final state. For nonempty head category
X (that is, for V,A,Pred,&) with phonetic content P,
we have the rule:

X

P

→
qω

ω

P

For phrasal category XP with phonetic content P:

XP

P

→

qφ

φ

ω

P

For any category X:

X

ε

→ qε

That set of rules, applied bottom up, replaces all
the terminal elements of Figure 4 by states with
subtrees.

For internal nodes, variables x0, x1 range over
subtrees. For non-head categories X ,

X

qω

x0

qφ

x1

→
qφ

φ

x0 x1

X

qφ

x0

qφ

x1

→
qφ

φ

x0 x1

And for any category X

X

x0 qε

→ x0

X

qε x0

→ x0

X

x0

→ x0
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Finally, we add a 9th rule:

X

qω

x0

qφ

x1

→
qι

ι

x0 x1

These rules suffice to map the X-bar tree to the
prosodic structure in Figure 1a, along with many
other candidate structures. (See Appendix C.)

To guarantee closure under composition, note
that these rules are linear in the sense that each
variable on the left appears at most once on the
right. And note that the rules are nondeterministic,
because the left side of the last rule – a rule for ι
– is identical to the left side of one of the rules for
φ. Among the properties of these rules that are lin-
guistically important: phonetically empty structure
is discarded; and MATCH-governed alignments are
completely transparent. That is, rules that process
heads but do not introduce an ω are violating, as
are rules processing XP without introducing a φ,
and rules that process clauses without introducing
ι. And of course we can track alignments in more
complex rule sets where the alignments are not
quite so transparent.

Figure 1b is good for MATCH, but violates other
constraints that may be ranked more highly, like
BINARITY. We can easily see which rules create
non-binary structures. So if, for a given input, it is
possible to avoid those rules, we can throw them
out – the algorithm informally described above au-
tomates the discovery of such non-optimal offend-
ers. More importantly, XMBOTs, because they are
‘multi’, can move also things around. That is, in
effect, they can delay the construction of the φ dom-
inating the conjuncts in the structures of Figure 5
until the pronoun comes into view. This allows the
more optimal, displaced alternatives in the middle
and right trees of Figure 5 to be constructed when
é is weak, since these alternatives are available.

All the constraints mentioned in the §1 sketch of
the Bennett et al. (2016) proposal can be defined
as XMBOTs. So efficient computation of optimal
prosody from *-MG derivations is guaranteed.13

13Dolatian et al. (2021) points out that the stress rule pro-
posed for coordinate structures by Wagner (2010) is not com-
puted by any XMBOT. The empirical basis of Wagner’s pro-
posal could be challenged, or, as Dolation et al. speculate,
Wagner’s stress rule could be implemented by allowing a very
restricted copying. We leave this for future work.

4 Parsing and future work

Seki et al. (1991) present an MCFG parsing al-
gorithm that is succinctly reviewed by Kallmeyer
(2010, §7.1), who says “The idea is that once all
the predicates in the right side of a rule have been
found, we can complete a left side”. To allow star
and plus categories C∗, C+ on the right side, there
are two cases. Non-empty categories are expand
as possible in the chart, exactly as if there were
rules with any number of Cs. Empty categories, on
the other hand, can introduce cycles in the chart of
completed constituents, just as right recursion over
empty categories does.

*-MGs with Rule K can also be parsed directly.
In the bottom-up MG parsing of Harkema (2001b,
§4.4), for example, the required adjustment is al-
most identical to the one for Seki’s MCFG parser.
Instead of arbitrarily many MCFG rules, Harkema
has merge, treated in 5 cases, but the complete rules
are essentially the same. So for starred features in a
merge rule, any number of constituents is allowed
to match. An implementation is linked in fn. 17.

For any MG structure, we compute optimal
prosodic structure by *-extended transductions,
with ‘unranked’ trees. There are already tree trans-
ducer libraries (Bahr, 2012; May and Knight, 2006;
Genet and Tong, 2001; Rival and Goubault-Larrecq,
2001), but an up-to-date tree-based toolkit designed
specifically for linguists would be useful, analo-
gous to the finite state string toolkits mentioned
in fn. 1. This would provide an efficient way
to explore a large range of proposals about syn-
tax/phonology interaction, even in cases where
large or infinite candidate sets need to be assessed.

Looking at unbounded coordination in Irish also
raises linguistic issues that are left for future work.
Consulting Irish linguists, it seems, at least to some,
that the pronoun in the 3 coordinate case can be ini-
tial or final, but nowhere inside the coordinate struc-
ture.14 It seems unlikely that BINARITY should
hold in this and longer, list-like coordinations.

More generally, it is not clear that this is the right
way for syntax to meet prosody, but the formal
model perhaps makes some aspects of the situation
clearer. And the *-extension of MG syntax should
be unified with previous ideas about ‘persistent’
features (Stabler, 2011; Graf and Kostyszyn, 2021),
and with the broader TSL program (Heinz et al.,
2011; Graf, 2022).

14We are grateful for advice, judgements and references
from James McCloskey, Dónall Ó Baoill, and Ryan Bennett.
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A Weak equivalence of *-extensions:
Sketch

Since *-MG extends MG, it is trivially true
that L(* − MG) ⊇ L(MG), and similarly
for *-L(MCFG). Since L(MG) = L(MCFG)
(Harkema, 2001a; Michaelis, 2001), L(*−MG) ⊆
L(MCFG) can be established by showing L(*−
MG) ⊆ L(MCFG). When labeling allows un-
bounded branching in the MG, a corresponding
*-MCFG rule can be formulated. To construct a
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Figure 6: A set (leaves are lexical items, internal nodes
are sets, arcs are ∈ relations, with a dotted arc for
head movement), dependency tree (with solid feature-
checking arcs and dotted adjunct arc), and X-bar tree
(for linguists) for (5a).

weakly equivalent MCFG, we simply replace un-
bounded branching with corresponding right recur-
sive rules and prove the language is unchanged.

B Adjuncts and wh-movement

The approach used for coordination in the text is
easily adapted to McInnerney (2022b)’s proposal,
mentioned in the introduction, that unboundedly
many adjuncts can be merged as sisters of the head
they modify. His analysis is motivated in large part
by a labeling theory that aims to reduce stipulated
features, but as a place-holder for that kind of re-
vision, here we simply extend our feature-based
labeling to adjuncts.15 It suffices to extend the
definition of &(γ, ~C) in Figure 2 with one that is
true whenever each element of C has a label of an
admissible adjunct of γ.

In some dialects of Irish, when there is an Ā-
extraction, as in the relative clause of (5a) from
McCloskey (2002, (9)), the complementizer is pro-
nounced differently than when there is resumption
instead of extraction, as in (5b):16

(5) a. an
the

ghirseach
girl

a
aL

ghoid
stole

na
the

síogaí
fairies

‘the girl that the fairies stole away’

b. an
the

ghirseach
girl

a-r
aN-[PAST]

ghoid
stole

na
the

síogaí
fairies

í
her

‘the girl that the fairies stole away’

As a step towards MG implementation, let the
relevant EPP/operator feature of aN be Op, in a
relative clause adjoined as sister to the head N, in
the structure for (5a) of Figure 6. Any number of
additional adjuncts could occur as sister to the noun
and relative clause.

C Implementation

Implementations of nondeterminism can be
easy in programming languages like SWI
Prolog that provide backtracking search.
Represent {A,B} with the term [A,B] and
phon : a1 . . . ai ( ai+1 . . . ai+j with
[phon]-[a1,...,ai]-[ai+1,...,ai+j].
Then this 10 clause prolog implementation of R

15See McInnerney (2022b,a) on binding phenomena and
other considerations that motivated the more common hierar-
chical analyses of adjunction. Cf. also Milway (2022); Graf
(2018); Hunter (2015, 2011); Fowlie (2014).

16See McCloskey (2002, 2017); Oda (2012) and references
cited there for careful discussion. Agreement and other rele-
vant considerations are beyond the scope of this brief paper;
see e.g. Ermolaeva and Kobele (2021) on agreement in an
MG-based framework, Vu et al. (2019) on case.
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calls itself recursively until complete structure A is
generated from numeration X0, if possible:17

r([A], A) :- l(A, []-[_]-[]).
r(X0, X) :- select(A, X0, X1), l(A, [F0|AN]-AP-AC0),

( nonvar(F0), F0=p(F) -> P=true ; F0=F, P=fail),
( select([F|BP]-B, AC0, AC) -> X2 = X1, BC = []
; select(B, X1, X2), l(B, []-[F|BP]-BC), AC=AC0
), m(B, [F|AN]-AP-AC, []-[F|BP]-BC, ABF),
’&’(P, F, X2, X3, Cs), mrg(A, B, Cs, ABCs),
r([ABCs|X3], X).

mrg(A, B, Cs, [A,B|Cs]).
l(_-A-B, A-B-[]).
l([A,B], D) :- l(A, AF), l(B, BF), m(B, AF, BF, D).
m(B, [F0|AN]-AP-AC, BF, AN-AP-ABC) :-
(nonvar(F0), F0=p(F) -> true ; F0=F),
(select([F|BP]-B0, AC, AC1) -> B0=B,
(BP = [] -> AC1 = ABC ;
BP = [G|BP1], smc([[G|BP1]-B0|AC1], [], ABC, []))

; BF = []-[F]-BC, smc(AC, BC, ABC, [])
; BF = []-[F,G|BP]-BC, smc([[G|BP]-B|AC], BC, ABC, [])).
’&’(_,_,X,X,[]).
’&’(true,F,X0,X,[C|Cs]) :-
select(C,X0,X1), l(C,[]-[F]-[]), ’&’(true,F,X1,X,Cs).
smc([], D, D, _).
smc([[F|C]-A|L], M, [[F|C]-A|N], Fs) :-

\+member(F, Fs), smc(L, M, N, [F|Fs]).

Derived structures here are lists not sets, but order
of elements is irrelevant except for for identifica-
tion of the head, and that is always determined by
features alone. All syntactic structures in the text
can be computed by this implementation. For ex-
ample, this session computes the structure shown
in Figure 3:

?- r([[]-[tm]-[c],[]-[v]-[tm],[is]-[a]-[v],
[cuma]-[lpred]-[a],[]-[pred,d]-[lpred],
[na]-[d]-[pred],[shamhradh]-[]-[d],
[na]-[d]-[pred],[fhomar]-[]-[d],
[na]-[d]-[pred],[gheimhreadh]-[]-[d],
[no]-[X,p(X)]-[X],[e]-[]-[d]],A).

A = [
[]-[tm]-[c],
[

[]-[v]-[tm],
[
[is]-[a]-[v],
[

[cuma]-[lpred]-[a],
[

[
[]-[pred,d]-[lpred],
[

[
[no]-[pred,p(pred)]-[pred],
[

[na]-[d]-[pred],
[gheimhreadh]-[]-[d] ] ],

[
[na]-[d]-[pred],
[fhomar]-[]-[d] ],

[
[na]-[d]-[pred],
[shamhradh]-[]-[d] ] ] ],

[e]-[]-[d] ] ] ] ] ].

As discussed in §4, efficiently implementing rule
K, for parsing, requires more bookkeeping. In the
deductive format of Stabler (2011, §A), for rule K,
the feature checking rules for external merge (EM)

17This code (with some explanatory comments!) is avail-
able at https://github.com/epstabler/star, along with display
tools, a parser for rule K (in python), and tree transducers.

with f+ where t is smc-respecting union:

s::f+α(β,γ1 t·f,γ2
st:α(β,γ1tγ2

(EM1+)

s::f+α(β,γ1 t·f,γ2
st:f+α(β,γ1tγ2

(EM1++) if t 6= ε

s:f+α(β,γ1 t·f,γ2
ts:α(β,γ1tγ2

(EM2+)

s:f+α(β,γ1 t·f,γ2
ts:f+α(β,γ1tγ2

(EM2++) if t 6= ε

s·f+α(β,γ1 t·fδ,γ2
s:α(β,γ1tγ2t{t:δ}

(EM3+) if δ 6= ε.

Note that the Kleene + introduces indeterminacy,
reflected here by the two rules for each of EM1
and EM2. The second case for external merge of a
‘mover’, EM3, and movement rules for these cases
require a treatment of ATB movement – left for
future work. The rules for f∗ are the same, except
that f∗ is also ‘checked’ by 0 positive occurrences.
See link in fn 17 for a working implementation.

The extension to rules for head movement can
follow Stabler (2001); Stanojević (2019). The ex-
amples in the paper and the rules shown here only
consider negative occurrences of f+ and f∗. Posi-
tive occurrences may subsume previous proposals
about ‘persistent features’, relevant for successive
cyclic movement – left for future work.

The first steps toward a GEN transduction for
prosody, discussed in §3, are also easily imple-
mented. Represent a tree with root A and daugh-
ters B,C,D by the prolog term A/[B,C,D]. Then
a relation that pairs the X-bar structure in Figure 4
– without coindexing and without the second coor-
dinate – with the prosodic structure in Figure 1b, is
computed by the following implementation:

head(X) :- member(X, [c,tm,v,a,lpred,pred,b]).
phrase(XP) :- atom_chars(XP, L), last(L, p).
gen(T, Out) :- rule(T, Out).
gen(X/L,T) :- maplist(gen,L,S), rule(X/S,T).
rule(_/[qw/[X0], qphi/[X1]], qi/[i/[X0, X1]]).
rule(X/[Ph/[]], qw/[w/[Ph/[]]]) :- head(X).
rule(X/[Ph/[]], qphi/[phi/[w/[Ph/[]]]]) :- phrase(X).
rule(_/[], qe).
rule(_/[qw/[X0], qphi/[X1]], qphi/[phi/[X0,X1]]).
rule(_/[qphi/[X0], qphi/[X1]], qphi/[phi/[X0,X1]]).
rule(_/[qe, X0], X0).
rule(_/[X0, qe], X0).
rule(_/[X0], X0).

Representing the reduced Figure 4 by a prolog term,
as the first argument to gen, this code computes
the prolog term for Figure 1b as the first of many
candidate structures.
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