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Abstract

Syntacticians must keep track of the empiri-
cal coverages and the inner workings of syn-
tactic theories, a task especially demanding
for minimalist syntacticians to perform man-
ually and mentally. We believe that the com-
putational implementation of syntactic theo-
ries is desirable in that it not only (a) facil-
itates the evaluation of their empirical cover-
ages, but also (b) forces syntacticians to specify
their inner workings. In this paper, we present
CANDS, a computational implementation of
Collins AND Stabler (2016) in the program-
ming language Rust. Specifically, CANDS con-
sists of one main library, cands, as well as two
wrapper programs for cands, derivck and
derivexp. The main library, cands, imple-
ments key definitions of fundamental concepts
in minimalist syntax from Collins and Stabler
(2016), which can be employed to evaluate and
extend specific syntactic theories. The wrapper
programs, derivck and derivexp, allow
syntacticians to check and explore syntactic
derivations through an accessible interface.1

1 Introduction

Syntax typically involves developing a new theory
or revising an existing theory in order to explain
certain data. A syntactician needs to be able to
compare the theories in terms of their empirical
coverage and understand all the details of these
theories. These are challenging prerequisites to at-
tain for minimalist syntacticians (Chomsky, 1995).
This is partly due to the lack of consensus on the
exact mechanism of minimalist syntactic theory,
despite many efforts to formalize it (e.g., Veenstra
1998; Kracht 1999, 2001, 2008; Frampton 2004;
Collins and Stabler 2016), and partly due to the
constant source of subtle revisions to this theory.

We believe that the computational implementa-
tion of syntactic theories would help minimalist

1Our software is available at https://github.com/
osekilab/CANDS.

syntacticians understand their empirical coverages
and inner workings. This idea has been explored
in the LFG and HPSG literature with their rich
histories of grammar engineering (e.g., Bierwisch
1963; Zwicky et al. 1965; Müller 1999; Butt 1999;
Bender et al. 2002, 2008, 2010; Fokkens 2014;
Müller 2015; Zamaraeva 2021; Zamaraeva et al.
2022). In comparison, there is less effort on the
computational implementation of syntactic theories
in the minimalist literature, with some exceptions
(e.g., Fong and Ginsburg, 2019). In this paper, we
present CANDS (pronounced /kændz/), a compu-
tational implementation of Collins AND Stabler
(2016) (henceforth C&S) in the programming lan-
guage Rust. The main library, cands, implements
key definitions of fundamental concepts in minimal-
ist syntax from Collins and Stabler (2016), which
itself is a formalization of minimalist syntax. We
hope that cands can be employed to evaluate and
extend specific syntactic theories.

In addition, to make cands accessible to mini-
malist syntacticians who are not familiar with Rust,
we also provide two wrapper programs for cands
which allow syntacticians to check and explore syn-
tactic derivations through an accessible interface:
the derivation checker derivck, and the deriva-
tion explorer derivexp.

This paper is organized as follows. In Sec-
tion 2, we review key definitions of fundamen-
tal concepts in minimalist syntax from C&S. In
Section 3, we introduce the main library, cands,
as well as two wrapper programs, derivck and
derivexp, illustrating their usage with example
codes and screenshots. In Section 4, we demon-
strate how cands can be employed to evaluate
syntactic theories with two particular formulations
of the Subject Condition. In Section 5, we show
how cands can be used to extend syntactic the-
ories with two particular implementations of the
syntactic operation Agree. We discuss future work
in Section 6 and conclude the paper in Section 7.
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2 Collins and Stabler (2016)

Collins and Stabler (2016) provide a precise for-
mulation of minimalist syntax. In this section, we
review some key definitions in their work.

Universal Grammar (UG) is a 6-tuple
⟨PHON-F,SYN-F, SEM-F, Select,Merge,
Transfer⟩, where the first three elements specify
the universal sets of phonological, syntactic and
semantic features respectively, and the last three
elements are syntactic operations.

An I-language is as a 2-tuple ⟨Lex,UG⟩ where
Lex is a lexicon, i.e., a finite set of lexical items,
and UG is some Universal Grammar.

A lexical item (LI) is a 3-tuple
⟨SEM, SYN,PHON⟩, where SEM ⊆ SEM-F,
SYN ⊆ SYN-F and PHON ∈ PHON-F∗. 2

A lexical item token (LIT) is a 2-tuple ⟨LI, k⟩,
where LI is a LI and k an index. This index is used
to distinguish between multiple occurrences of the
same LI related by movement.

Syntactic objects (SO) are inductively defined. A
SO is one of three things: (a) a LIT, (b) the result of
the syntactic operation Cyclic-Transfer(SO) for
some syntactic object SO, or (c) a set of SOs.

A lexical array (LA) is a set of LITs, and a
workspace W is a set of SOs. A stage is a 2-tuple
⟨LA,W ⟩ of lexical array LA and workspace W .

The syntactic operations Select, Merge and
Transfer are defined as functions. For example,
for some stage S = ⟨LA,W ⟩ and LIT A ∈ LA,

Select(A,S) = ⟨LA \ {A},W ∪ {A}⟩.

Cyclic-Transfer, which was used in the above def-
inition of SOs, is a special unary case of Transfer,
which is a binary operation.

The central definition in C&S is that of a deriva-
tion. A sequence of stages S1, · · · , Sn with each
Si = ⟨LAi,Wi⟩ is a derivation from lexicon L if
(a) all LIs from the initial lexical array LA1 come
from L, (b) the initial workspace W1 is empty, and
(c) each subsequent stage Si+1 is derived from the
previous stage Si by an appropriate application of
some syntactic operation. The conditions involved
in (c) limit the generative capacity of the theory.
For example, the conditions on Merge enforce that,
if Si+1 is derived from Si by Merge(A,B), then
A ∈ Wi, and either A contains B or B ∈ Wi. The
first disjunct “A contains B” allows internal Merge,

2PHON-F∗ is the set of (potentially empty) sequences
whose elements come from PHON-F, i.e.,

⋃∞
k=0 PHON-Fk.

and the second disjunct “B ∈ Wi” allows external
Merge. Certain patterns of Merge, such as sideward
Merge, are disallowed in this formulation.

3 CANDS

CANDS consists of the main library, cands, and
two wrapper programs for cands, derivck and
derivexp. They are all developed in the pro-
gramming language Rust.

3.1 cands

cands is a library that implements and exposes
most concepts defined in C&S. We provide a full
list of implemented definitions in Appendix A.

Figure 1 shows the Rust code that uses
cands to create a SO. This SO is a LIT,
with index 37 and a LI that consists of the
semantic features {[M]}, the syntactic features
{[D]}, and the phonological features ⟨[Mary]⟩.
SyntacticObject is an enum type defined
in cands, which comes in three variants: LITs,
sets and results of Cyclic-Transfer. Here, we use
SyntacticObject::LexicalItemToken
to construct a LIT variant. cands also de-
fines the struct types LexicalItemToken,
LexicalItem and Feature, each of which is
associated with a new function that constructs an
object of each type. Set and Vec are container
types defined in the Rust standard library, and
their associated from functions create sets and
vectors.3

1 SyntacticObject::LexicalItemToken(
2 LexicalItemToken::new(
3 LexicalItem::new(
4 Set::from([Feature::new("M")]),
5 Set::from([Feature::new("D")]),
6 Vec::from([Feature::new("Mary")])
7 ), 37
8 )
9 )

Figure 1: Code to create a SO.

cands defines many macros, which
help reduce boilerplate code. For example,
SyntacticObject::LexicalItemToken
(...) can be reduced to a much shorter macro
invocation so!(...). Similarly, LIs and LITs
can be created with the macros li! and lit!

3To be precise, the Rust standard library does not define a
set type called Set; rather, it defines two concrete implemen-
tations of a set type called HashSet and BTreeSet. Set
is a type alias defined in cands that refers to BTreeSet.
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respectively. Sets and vectors of features can be
created with fset! and fvec!. The same code
can be re-written more concisely as in Figure 2.

1 so!(lit!(li!(fset!( "M" );
2 fset!( "D" );
3 fvec![ "Mary" ]), 37))

Figure 2: Shorter code to create a SO.

An important feature of cands is the function
is_derivation. This function implements
the definition of derivations from C&S. It takes
two arguments: il, of type ILanguage, which
represents an I-language, and stages, of type
Vec<Stage>, which represents a sequence of
stages. is_derivation(il, stages) re-
turns true iff stages is a derivation from il ac-
cording to the definition in C&S.

We see two major usages of cands. First, it can
be used to explore predictions from C&S. For ex-
ample, one can check if a given sequence of stages
is a valid derivation. Second, it can be extended to
implement other notions and theories. C&S lacks
formalization for many concepts that are popular in
minimalist syntax, e.g., Agree, head movement and
covert movement (Collins and Stabler, 2016). The
predictions and empirical coverage of extensions
to cands can be evaluated in a similar manner to
the original cands.

3.2 Two wrapper programs for cands

Using cands requires programming in Rust, a rel-
atively unfamiliar programming language among
syntacticians. In order to make cands more acces-
sible to the general audience, we provide two wrap-
per programs for cands. They are (a) derivck,
a derivation checker that runs in the terminal, and
(b) derivexp, an interactive derivation explorer
that displays a GUI.

Figure 3 shows how the wrappers can be exe-
cuted in a shell. Both programs require the user to
provide an I-language IL and a sequence of stages
S, both specified in JSON. These files are passed
to the programs via command line arguments.

1 > derivck -i IL.json -d S.json
2 > derivexp -i IL.json -d S.json

Figure 3: Typical shell commands used to run
derivck (line 1) and derivexp (line 2). The files
specifying the I-language and the sequence of stages are
passed via command line arguments.

derivck will output whether S is a derivation
from IL. If not, derivck will display the offend-
ing stage(s) of S and a log that describes how it
determined the stage(s) to be invalid. The log ver-
bosity can be set with an environmental variable.
derivexp will first verify that S is a valid

derivation. Then, it provides an interface that vi-
sualizes S and allows the user to apply various
syntactic operations to the objects that comprise S
to further advance the derivation. Figures 4a and
4b show screenshots from a derivexp session
before and after the user has applied Merge to a
pair of SOs.

Both derivck and derivexp expect the
JSON files for the I-language and the sequence
of stages to be in a specific format that transpar-
ently reflects the Rust types for these two con-
cepts, which are ILanguage and Vec<Stage>.
This format is imposed by serde, a popular
Rust data (de)serialization framework, which is
used in cands to support human-readable JSON
(de)serialization for its data structures. Even
though we believe this format should be straight-
forward for users to follow, larger I-languages and
sequences of stages in real-life use cases can be
unwieldy to specify manually in JSON. In the near
future, we plan to develop tools that would sim-
plify the creation of these JSON files, such as a
visual interface for constructing I-languages and
sequences of stages and exporting them to JSON.
For now, we provide sample JSON files in the Git
repository for CANDS that can be used to construct
a derivation for the simple sentence Mary appeared,
as illustrated in Figure 4.4

We hope that derivck and derivexp will be
useful for syntacticians working with the C&S sys-
tem. If one already has a derivation in mind, they
can check the derivation with derivck. Other-
wise, one can use derivexp to explore the possi-
ble derivations generated by the C&S system. The
two programs should facilitate working with gram-
matical and ungrammatical examples respectively.

4 Evaluating theories with cands

An important and challenging task for syntacticians
is to keep track of the empirical coverage of the
syntactic theory at hand as one proposes changes
to the theory. Often, one proposes a revision to the
theory in order to make a correct prediction for one

4We thank one reviewer for pointing out the necessity to
address how easily these JSON files can be created.
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(a) derivexp is showing a stage S3, whose workspace W3

contains two roots: Mary2 and appeared 1. We then apply
Merge(appeared1,Mary2) to derive the next stage.

(b) We advance to the next stage S4, whose workspace
W4 contains just one root, which is the result of
Merge(appeared1,Mary2). derivexp is showing S4.

Figure 4: Screenshots from a derivexp session.

sentence, only to realize later that another sentence
correctly predicted by the old theory receives an
incorrect prediction under the new theory.

Computational implementation of syntactic the-
ories facilitates the process of examining their pre-
dictions and evaluating their empirical coverage.
Using the function is_derivation defined in
cands, it is easy to check if some derivation of
interest can be generated by the C&S system. Even
if one modifies cands in order to implement their
revisions of C&S, predictions can be studied in the
same way as long as the is_derivation func-
tion is preserved. Multiple revisions to C&S can
be evaluated in terms of their empirical coverage
by testing the corresponding modified versions of
cands on a common set of derivations.

In this section, we illustrate this evaluation pro-
cess with a simple example as a proof of concept.
We consider the sentences in (1) and provide a
derivation for each sentence. The original C&S
system generates all three derivations, which is not
ideal – we expect a good theory to only generate
the derivations for the grammatical sentences. We
will provide two attempts at positing a new con-
straint and incorporating it into C&S to correct the
predictions. We will implement the new constraints
as extensions of cands, and test these extensions
on our derivations of interest. We will see that both
attempts are inadequate in that each constraint fixes
the prediction for one sentence while breaking the
prediction for another. Our examples and analy-
ses are inspired by classic literature on PP extra-
position (Akmajian, 1975; Guéron, 1980; Wexler

and Culicover, 1980).5 For space reasons, we will
only define the constraints and discuss their predic-
tions conceptually in the main paper. We provide
pseudocode for the implementations of these con-
straints in Appendix B, and the implementations
themselves in the Git repository on the branches
theory1 and theory2.

(1) a. * A story bothered me about Mary.
b. A story appeared about Mary.
c. * I know who a story appeared about.

In (1a), PP extraposition occurs from the subject
of a transitive verb. In (1b), the extraposition occurs
from the subject of an unaccusative verb. In (1c),
the same extraposition found in (1b) occurs, as well
as wh-movement to embedded [Spec; CP].

The original C&S system allows for all three sen-
tences to be derived, with the derivations sketched
in (2), (3) and (4),6 and fully detailed in Appendix
C. To accommodate rightward extraposition in
the LCA-like linearization algorithm employed in
C&S, we use two covert heads X and Y as well as
remnant movement. For example, in (2), X first
merges with TP. The extraposed PP then moves
to [Spec; XP]. Y then merges with XP, and the
remnant TP moves to [Spec; YP]. Y contains the

5We thank Kyle Johnson for introducing us to the debate
on PP extraposition when we were in search of syntactic phe-
nomena to illustrate the usage of cands with.

6Non-final occurrences of SOs are struck out. Although
the SOs in these derivations are actually sets, which should
be denoted with comma-separated lists of elements enclosed
in braces, we use the labelled bracket notation here to save
space.
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syntactic feature [T], which allows C to merge with
YP as it would merge with a TP. In (2), the extra-
position occurs from TP, while in (3) and (4) the
extraposition occurs from VP.

Note on notations: we write A ∈+ B for “A is
contained in B”, and A ∈∗ B for “A is equal to or
contained in B”.

4.1 Theory 1: derivational constraint
Consider the pair (2) and (3). They differ in their
grammaticality as well as the source of extraposi-
tion: the subject in the former derivation and the VP
in the latter. We can predict these derivations cor-
rectly if we use a derivational flavor of the Subject
Condition, i.e., a constraint that bans movement
out of [Spec; TP]. Let us write occR(X) for the set
of all occurrences of X in R. Then, we can add the
condition (5) to the derive-by-Merge condition.

(5) Derivational Subject Condition (DSC)
For (internal) Merge(A,B) where A is the
head and B ∈+ A, then
| occA(B)| > ∑

X∈SbjsA(B) | occA(X)|,
where SbjsA(B) is the set of all [Spec;
TP]s in A that contain B.

Consider internal Merge(A,B) where B ∈+ A.
DSC holds iff there exists some occurrence BP

of B in A that is not equal to or contained in any
occurrence of some [Spec; TP] in A. Thus, DSC
holds iff this instance of Merge could be interpreted
as movement from a non-subject position.

We call the C&S system extended by DSC “The-
ory 1.” We implement and test Theory 1 against
our derivations. The results show that only (2) is
ungrammatical, so Theory 1 makes an incorrect pre-
diction for (4). The PP extraposition in (2) violates
DSC because all occurrences of the PP prior to this
extraposition are contained under some occurrence
of DP, which is at [Spec; TP]. The extrapositions
in (3) and (4) do not violate DSC because the ex-
traposition occurs before TP is even built. The
subsequent wh-movement in (4) does not violate
DSC either, due to the occurrence of who contained
in the extraposed PP at [Spec; XP].

4.2 Theory 2: representational constraint
Consider the pair (2) and (4). They are both un-
grammatical, and in both derivations there is a SO
that has one occurrence inside and another occur-
rence outside of the subject, namely the PP about
Mary/who. This suggests that perhaps the Subject
Condition should be representational after all; any

Derivations Truth Theory 1 Theory 2
(2), for (1a) * * *
(3), for (1b) ! ! *
(4), for (1c) * ! *

Table 1: Derivations, grammaticalities and predictions.

SO that has an occurrence inside some [Spec; TP]
cannot have an occurrence outside that [Spec; TP].
This condition, formally stated as (6), is enforced
at every stage of the derivation, applying to every
workspace Wi.

(6) Representational Subject Condition
(RSC)
For any root R ∈ Wi and any SOs
X,S ∈∗ R such that X ∈∗ S and S is
[Spec; TP], | occR(X)| = | occR(S)|.

If X ∈∗ S ∈∗ R, then every occurrence of
S in R is either equal to or contains some occur-
rence of X in R (Theorem 1 from C&S). Thus
X ∈∗ S ∈∗ R implies | occR(X)| ≥ | occR(S)|.
If | occR(X)| > | occR(S)|, it must be the case
that some occurrence of X is not equal to or con-
tained in any occurrence of S. This is exactly the
situation that RSC bans.

Let us call the C&S system extended by RSC
“Theory 2”. We implement and test Theory 2
against our derivations. Although Theory 2 cor-
rectly rules out (2) and (4), it incorrectly rules out
(3) as well. This is because at the final stage in all
three derivations, the PP about Mary/who has four
occurrences, while the [Spec; TP] a story about
Mary/who, which contains the PP, has three occur-
rences.

Table 1 summarizes the derivations, their de-
sired grammaticalities and the grammaticalities pre-
dicted by our theories.

5 Extending theories with cands

In the literature, minimalist syntactic theories are
usually described in text, with various degrees of
formality. As such, it can be difficult to communi-
cate the precise details of the theories to the reader.
The benefit of implementing theories in code is
that one is forced to consider and specify such de-
tails, because otherwise one would end up with an
incomplete implementation.

Since C&S is a formalization of a bare-bones
Minimallist syntactic theory, we expect that
cands will provide a good starting point for min-
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(2) a. Build TP.
[TP [DP a story [PP about Mary ]] T bothered me ]

b. Extrapose PP.
[YP [TP [DP a story [PP about Mary ]] T bothered me ] Y [XP [PP about Mary ] X TP ]]

(3) a. Build VP.
[VP appeared [DP a story [PP about Mary ]]]

b. Extrapose PP.
[YP [VP appeared [DP a story [PP about Mary ]]] Y [XP [PP about Mary ] X VP ]]

c. Build TP; move DP.
[TP [DP a story PP ] T [YP [VP appeared DP ] Y [XP [PP about Mary ] X VP ]]]

(4) a. Same with (3) up to (3c), except we have who instead of Mary.
[TP [DP a story PP ] T [YP [VP appeared DP ] Y [XP [PP about who ] X VP ]]]

b. Build CP; move who.
[CP who Q [TP [DP a story PP ] T [YP [VP appeared DP ] Y [XP [PP about who ] X VP ]]]]

imalist syntacticians to implement their own pro-
posals and theories on top of it. To illustrate this,
we implement two proposals for Agree, a syntac-
tic operation commonly assumed by minimalist
syntacticians but is undefined in C&S. Specifi-
cally, we implement two proposals, described re-
spectively in Chomsky 2001 and Collins 2017.
Our implementations can be found on the Git
repository on branches agree-chomsky-2001
and agree-collins-2017. We recognize that
there are many other proposals for Agree, such as
Pesetsky and Torrego 2007, Béjar and Rezac 2009,
Zeijlstra 2012, Preminger 2014 and Deal 2015.

5.1 Agree à la Chomsky (2001)

First, we formalize and implement Chomsky’s
(2001) proposal for Agree.

Our system distinguishes two kinds of syntactic
features: normal syntactic features, which are just
like semantic and phonological features; and valu-
able syntactic features, which are associated with
interpretability and a potential value.

(7) A syntactic feature is either normal or
valuable.

a. A normal syntactic feature is some
F ∈ SYN-F.

b. A valuable syntactic feature is some
F = ⟨i, f, v⟩ where i ∈ {i, u} is its
interpretability, f ∈ SYN-F, and either
v = _ (unvalued) or v = v′ for some
value v′ (valued). F is usually denoted
[if :v] (e.g. [uCase:_], [iPerson:3] ).

Agree is a function that takes two LITs, which
we call the probe and the goal. The probe is valued
with the features from the goal, and if the probe is
not defective, the goal is valued with the features
from the probe. Agree returns the new probe and
the new goal.

(8) For lexical item tokens

P = ⟨⟨SEMP ,SYNP ,PHONP ⟩, kP ⟩,
G = ⟨⟨SEMG, SYNG,PHONG⟩, kG⟩,

Agree(P,G) = ⟨P ′, G′⟩ where

P ′ = ⟨⟨SEMP , SYNP ′ ,PHONP ⟩, kP ⟩,
G′ = ⟨⟨SEMG,SYNG′ ,PHONG⟩, kG⟩,

where

SYNP ′ = {Value(F,SYNG) | F ∈ SYNP },
SYNG′ = SYNG if P is defective, otherwise

= {Value(F,SYNP ) | F ∈ SYNG}.

(9) For a syntactic feature F and a set of
syntactic features SYN, Value(F,SYN) =

a. F , if F is normal or valued.

b. ⟨i, f, v′⟩, if F = ⟨i, f, v⟩ with v = _,
and there is F ′ = ⟨i′, f ′, v′⟩ ∈ SYN.

We modify Clause (iii) of the C&S definition
of derivations by adding the derive-by-Agree con-
dition, which checks if a workspace Wi+1 can be
derived from the previous workspace Wi by apply-
ing Agree to an appropriate probe-goal pair.
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(10) (derive-by-Agree) Consider the ith
workspace Wi. Fix some R ∈ Wi and some
active, matching pair of lexical item tokens
P,G such that

a. P c-commands G, and
b. for any lexical item token H ∈∗ R such

that H matches P and P c-commands
H , either G = H or G c-commands H .

Let ⟨P ′, G′⟩ = Agree(P,G), and let
X = R, except all occurrences of P and G
are respectively replaced with P ′ and G′.
Then the next workspace Wi+1 is
derived-by-Agree from Wi if
Wi+1 = (W \ {R}) ∪ {R′}, where either

a. R′ = X and P doesn’t contain the
EPP-feature, or

b. R′ = Merge(X,Y ) and P contains the
EPP-feature, with some Y that satisfies
G ∈∗ Y ∈∗ X determined by
pied-piping.

Derivation by Agree necessarily changes SOs in
place, thereby violating the No-Tampering Condi-
tion (NTC; Chomsky 2007). As a result, upon find-
ing an appropriate probe-goal pair, our implemen-
tation of derive-by-Agree visits the entire structure
of R in order to construct X from R by replacing
the old probe and goals with new ones.

During the construction of X , it is necessary
to replace all occurrences of the goal G with the
new goal G′, rather than just replacing the high-
est occurrence. This is common practice in a
multidominance-based theory like C&S. Otherwise,
the highest occurrence of the post-Agree goal will
no longer be considered as the same SO as the re-
maining occurrences, which has consequences in
linearization.

We illustrate our implementation with (11), a
derivation for the sentence The man falls.7 The full
derivation is in Appendix D.

5.2 Agree à la Collins (2017)
Next, we formalize and implement Collins’ (2017)
proposal for Agree. This proposal differs from
Chomsky 2001 in two important ways: (a) Agree
is not its own syntactic operation, but rather a spe-
cial case of Merge, and (b) derivation by “Agree”
complies with the NTC and does not modify SOs
in-place; rather, features are Merged to feature-
checking positions.

7π is Person, # is Number and C is Case.

As with our implementation of Chomsky 2001,
we split syntactic features into normal syntactic
features and valuable syntactic features. In this
implementation, however, the value of valuable
syntactic feature is required. Unlike Chomsky’s
feature valuation system, Collins’s feature check-
ing system does not allow features to be unvalued.

(13) A syntactic feature is either normal or
valuable.

a. A normal syntactic feature is some
F ∈ SYN-F.

b. A valuable syntactic feature is some
F = ⟨i, f, v⟩ where i ∈ {i, u} is its
interpretability, f ∈ SYN-F, and v is
some value.

We redefine SOs so that they can be created by
Merging a SO and a syntactic feature.8

(14) X is a syntactic object iff

a. X is a lexical item token, or

b. X = Cyclic-Transfer(SO) for some
syntactic object SO, or

c. X is a set of syntactic objects, or

d. X = {SO, F} for some syntactic
object SO and syntactic feature F .

As we redefine SOs, we must also change many
definitions that depend on SOs. A crucial example
is Triggers; just as some Triggers function T is
able to check a feature off a SO if it is Merged with
another approriate SO, T should able to check an
uninterpretable feature off a SO if it is Merged with
an appropriate syntactic feature. We change Clause
(ii) in the definition of Triggers that handles SOs
of the type {SO, F}:

(15) (ii) If A = {B,F} where B is a SO, F is a
syntactic feature and Triggers(B) ̸= ∅,
then Triggers(A) = Triggers(B) \ {uF}
for some uninterpretable syntactic feature
uF ∈ Triggers(B).

There are two cases of Merge we must con-
sider: Merge(A,B) where A,B are both SOs, and
Merge(A,F ) where A is an SO and F is a syntac-
tic feature. The first case is the old Merge, which
we call MergeSO from now on. The second case is
MergeF, which we define as follows:

8An alternative we do not explore in this paper is to allow
syntactic features themselves be SOs.

53



(11) a. Build TP.
PRES has SYN = { [T], [=v], [EPP], [uπ:_], [u#:_], [iC:nom] }.
man has SYN = { [N], [iπ:3], [i#:sg], [uC:_] }.
Wi = {{ PRES, { v, { falls, { the, man }}}}}

b. Agree applies, with PRES as the probe and man as the goal. They are replaced with PRES′ and
man ′. Since PRES has EPP, the DP the man′ is pied-piped to [Spec; TP].
PRES′ has SYN = { [T], [=v], [EPP], [uπ:3], [u#:sg], [iC:nom] }.
man ′ has SYN = { [N], [iπ:3], [i#:sg], [uC:nom] }.
Wj = { { the, man′ }, { PRES′, { v, { falls, { the, man′ }}}}}}

(12) a. Select PRES and man.
PRES has SYN = { [T], [=v], [EPP], [uπ:3], [u#:sg], [iC:nom] }.
man has SYN = { [N], [iπ:3], [i#:sg], [uC:nom] }.
Wi = {PRES,man}

b. Merge man with [iC:nom] from PRES.
Wj = {PRES, { man, [iC:nom] }}

c. Build TP, up to and including movement of the man to [Spec; TP]. Call the result TPk.
Wk = {{ { the, { man, [iC:nom] }}, { PRES, { v, { falls, { the, { man, [iC:nom] }}}}}}︸ ︷︷ ︸

TPk

}

d. Merge TPk with [iπ:3], then with [i#:sg], both from man.
Wℓ = {{ [i#:sg], { [iπ:3], TPk }}}

(16) Given any syntactic object X and syntactic
feature F , where Triggers(X) ̸= ∅,
MergeF(X,F ) = {X,F}.

Finally, we modify Clause (iii) from the defi-
nition of derivations. The derive-by-Merge con-
dition must be split in two cases: derive-by-
MergeSO, which is the old derive-by-Merge, and
derive-by-MergeF, which handles derivation by
MergeF(A,F ) for some SO A and syntactic fea-
ture F . Derive-by-MergeF requires F to be part of
some LIT contained in the workspace, but not nec-
essarily contained in A. In other words, sideward
Merge is allowed only for MergeF.

(17) (derive-by-MergeF) LAi = LAi+1 and the
following conditions hold for some A,F :

a. A ∈ Wi,
b. There exists some lexical item token

X ∈+ Wi such that
X = ⟨⟨SEM,SYN,PHON⟩, k⟩ where
F ∈ SYN, and

c. Wi+1 = (Wi\{A})∪{MergeF(A,F )}.

We illustrate our implementation with (12), a
derivation for the sentence The man falls. This
derivation is based on Derivation (27) in Collins
2017, where the T head PRES Merges with the ϕ-
features from man to form the complex T { PRES,

[iϕ] } before Merging with vP. This is problematic,
as TransferPF cannot linearize the TP { { PRES,
[iϕ] }, vP} because vP is neither a complement, as
the complex T is not a LIT; nor is vP a specifier,
as the complex T is not a set of SOs either. In
our derivation (12), we let PRES Merge with its vP
complement before Merging with the ϕ-features,
avoiding the TransferPF problem. The full deriva-
tion is in Appendix D.

6 Future work

In Section 4, we showed how extensions of cands
can be evaluated against a common set of deriva-
tions, offering a quantitative comparison of their
empirical coverages. Our evaluation setup can be
scaled up quite easily, by curating a large-scale
test set of derivations, which can then be used to
evaluate cands-based implementations of many
different theories. This kind of evaluation is famil-
iar in the parsing literature, where parsers are eval-
uated on large datasets of syntactically annotated
sentences known as treebanks, such as the Penn
Treebank (Marcus et al., 1993), CCGbank (Hock-
enmaier and Steedman, 2002), the Redwoods tree-
bank (Flickinger, 2011; Oepen et al., 2002, 2004),
MGbank (Torr, 2017, 2018), among others.
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While cands can check if C&S generates a
given derivation, it cannot check if C&S gener-
ates some derivation that linearizes to a given PF.
Obviously, syntacticians are equally if not more in-
terested in problems of the latter type. For example,
one might wish to check if a theory overgenerates,
i.e., if it derives an ungrammatical sentence, or if it
derives a grammatical sentence with an undesirable
derivation. Solving this type of problems requires
us to develop an algorithm that automatically ex-
plores the predictions from C&S, which is essen-
tially a parser. There is a recent line of work on neu-
ral transition-based parsers, i.e. neural classifiers
that take parser states as input and output parser
transitions as output (Dyer et al., 2016; Yoshida
and Oseki, 2022; Sartran et al., 2022). While these
parsers are typically implemented with state-of-the-
art neural architectures, they usually only support
parsing for primitive grammars, such as PCFGs.
As such, we hope to explore if neural transition-
based parsers can be developed for more complex
grammars, such as Minimalist Grammars (Stabler,
1997) and C&S. An even more challenging task is
to develop methods to (semi)automatically derive
a parser for an arbitrary extension of C&S.

Finally, cands brings us closer to the quantita-
tive evaluation of the parsimony of C&S and rel-
evant theories. For example, any cands-based
implementation of some theory provides an upper
bound for the minimum description length (MDL)
of that theory. MDL can in turn be used to define
a prior distribution over theories in a probabilistic
setup (Berwick, 2015).

7 Conclusion

We present CANDS, a Rust implementation of
Collins and Stabler’s (2016; C&S) formalization of
a minimalist syntactic theory. The core of CANDS
is cands, a library. cands by itself can be used
to explore predictions from the C&S system, and
it can also be extended to implement other theo-
retical notions. We also present derivck and
derivexp, two wrapper programs that allows the
user to check and explore derivations with cands
without having to program in Rust.

Computational implementation of syntactic the-
ories greatly facilitates the evaluation of their em-
pirical coverages, and forces the programmer to
attend to the details and edge cases of the theories,
which can be easily miscommunicated in textual
descriptions of minimalist syntactic theory. In this

paper, we show how CANDS can be integrated
into a minimalist syntactician’s typical workflow.
We hope our work will benefit the minimalist syn-
tax community, and we welcome suggestions and
contributions, as our work is still under much de-
velopment.
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A List of C&S definitions that are
implemented in cands

Table 2 contains a list of all definitions in C&S.
For each definition, we indicate whether it is imple-
mented in cands.

We left four groups of definitions from C&S
unimplemented. The first group consists of tenta-
tive definitions; they are presented in earlier parts
of the C&S paper, and eventually replaced by more
complete definitions later in the paper. Specifically,
this group consists of Definitions 8 (SO) and 14
(derivation), which are replaced by Definitions 37
and 38. We implement the latter definitions instead
of the former ones.

The second group of unimplemented definitions
simply cannot be implemented. This applies to
Definitions 15, 15′ and 23. These define the con-
cept of the derivability of a given SO or workspace.
Derivability itself is a binary value, either true or
false – it is a trivial definition that does not need an
implementation. Presumably, it is more interesting
to implement a function that would compute the
derivability from a given SO or workspace. To im-
plement such a function, we need to create a parser
for the C&S system. This is beyond the scope of
our paper.

The third group of unimplemented definitions
are unnecessary to implement. This applies to Def-
inition 25, which defines trigger features. Trigger
features are just a special name to designate a cer-
tain group of features for a particular Triggers im-
plementation. As the concept is purely expository,
it has no place in our implementation of C&S.

The last group of unimplemented definitions con-
cern occurrences (Definitions 16, 17, 18, 20, 22)
and chain-based SOs (Definitions 16′, 7′, 13′, 14′,
15′), which are only partially explored in C&S as a
digression from their full formalization of a theory
of token-based SOs. We leave their implementa-
tions to future work.
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No. Definition In cands?
Section 2: Preliminary definitions
1 Universal Grammar Yes
2 Lexical item Yes
3 Lexicon Yes
4 I-language Yes
5 Lexical item token Yes
6 Lexical array Yes
7 Syntactic object (old) No
8 Immediate containment (SO) Yes
9 Containment Yes

Section 3: Workspaces, Select, and Merge
10 Stage Yes

Workspace Yes
11 Roothood Yes
12 Select Yes
13 Merge Yes
14 Derivation (old) No
15 Derivability from lexicon No
Section 4: Occurrences
16 Position No
17 Occurrence No
18 Immediate containment (occurrence) No
19 Sisterhood (SO) Yes
20 Sisterhood (occurrence) No
21 C-command (SO) Yes

Asymmetric c-command (SO) Yes
22 C-command (occurrence) No
Section 5: Digression
16′ Path (chain-based) No
7′ SO (chain-based) No
13′ Merge (chain-based) No
14′ Derivation (chain-based) No
15′ Derivability from lexicon (chain-

based)
No

No. Definition In cands?
Section 6: General Properties of Derivations
23 Derivability No
24 Binary branching Yes
Section 7: Labels
25 Trigger feature No
26 Triggers Yes
27 Triggered Merge Yes
28 Label Yes
29 Maximal projection Yes
30 Minimal projection Yes
31 Intermediate projection Yes
32 Complement Yes
33 Specifier Yes
Section 8: Transfer
34 Transfer Yes
35 Strong phasehood Yes
36 Cyclic-Transfer Yes
37 Syntactic object (new) Yes
38 Derivation (new) Yes
Section 9: TransferLF

39 TransferLF Yes
Section 10: TransferPF

40 Finality Yes
41 TransferPF Yes
Section 13: Convergence
42 Convergence and crash at the CI in-

terface
Yes

43 Convergence and crash at the SM in-
terface

Yes

44 Convergence and crash Yes

Table 2: List of definitions in C&S. For each definition, we indicate whether it is implemented in cands.
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B Implementing the extensions of cands
for PP extraposition

In Section 4, we described two extensions of C&S,
where each extension is created by adding one con-
straint into the C&S system. In this section, we
describe our implementation of these extensions in
more detail.

B.1 Theory 1
Theory 1 is the extension of C&S by the Deriva-
tional Subject Condition (DSC), defined in (5).
DSC further constricts the derive-by-Merge condi-
tion, specifically the internal Merge case.

The derive-by-Merge condition is checked by
the derive_by_merge function, which is used
by the is_derivation to check if each non-
initial stage is derived from its previous stage by
an appropriate application of a syntactic operation,
including Merge. We implement DSC inside the
derive_by_merge function. The pseudocode
for derive_by_merge as well as the DSC is
provided in Algorithm 1. The for-loop starting
on line 6 checks for internal Merge, and the for-
loop starting on line 13 checks for external Merge.
Once an appropriate pair of SOs A,B is found
in either for-loop, the function returns true from
within that loop. The DSC is thus implemented in
the for-loop for internal Merge. At line 9, we check
the negation of DSC; if the DSC is violated, the
if-statement is executed, and the current iteration
of the for-loop will be skipped (also known as a
continue-statement). As such, the return-statement
on line 12 is unreachable in the current iteration.
This implements the DSC.

B.2 Theory 2
Theory 2 is the extension of C&S by the Represen-
tational Subject Condition (RSC), defined in (6).
RSC is checked for every stage in the derivation.

We implement RSC is the is_derivation
function, whose pseudocode is provided in Algo-
rithm 2. The for-loop starting on line 7 checks
whether each pair of consecutive stages is derived-
by-Select, Merge or Transfer. The if-statement on
line 8 checks if neither of these three syntactic op-
erations derive the second stage from the first, in
which case the function returns false. RSC further
constraints this check. If RSC is violated, the if-
statement on line 15 will execute, and the function
returns false.
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Input: Two stages S1 = ⟨LA1,W1⟩ and S2 = ⟨LA2,W2⟩
Output: true iff S2 is derived-by-Merge from S1

1 if LA1 ̸= LA2 then
2 return false;

3 if W1 is empty then
4 return false;

5 foreach A ∈∗ W1 do
6 foreach B such that B ∈∗ A do

/* ===== DSC begins ===== */
7 Calculate | occA(B)| ;
8 Calculate

∑
X | occA(X)|, the sum of | occA(X)| for all [Spec; TP] X ∈∗ A such that

B ∈∗ X ;
9 if | occA(B)| ≤ ∑

X | occA(X)| then
10 Skip to the next pair of A,B;

/* ====== DSC ends ====== */
11 if W2 = W1 \ {A,B} ∪ {Merge(A,B)} then
12 return true;

13 foreach B such that B ∈ W1 do
14 if W2 = W1 \ {A,B} ∪ {Merge(A,B)} then
15 return true;

16 return false;
Algorithm 1: Pseudocode for the derive_by_merge function. The implementation of DSC is
between lines 7–10, inclusive on both ends.
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Input: an I-language IL = ⟨Lex,UG⟩, and a sequence of stages S = ⟨S1, · · · , Sn⟩, with
Si = ⟨LAi,Wi⟩ for each i ∈ [n]

Output: true iff S is a derivation from IL

1 if S is empty then
2 return false;

3 if there is some LIT X ∈ LA1 that is not contained in Lex then
4 return false;

5 if W1 is not empty then
6 return false;

7 foreach i < n do
8 if Si+1 is not derived-by-Select from Si and Si+1 is not derived-by-Merge from Si and Si+1 is

not derived-by-Transfer from Si then
9 return false;

/* ===== RSC begins ===== */
10 foreach R ∈ Wi+1 do
11 let S = the set of all S ∈∗ R such that S is [Spec; TP];
12 let X = the set of all X ∈∗ S for some S ∈ S;
13 Calculate | occR(S)| for each S ∈ S ;
14 Calculate | occR(X)| for each X ∈ X ;
15 if | occR(X)| ≠ | occR(S)| for any S ∈ S and any X ∈ X then
16 return false;

/* ====== RSC ends ====== */

17 return true;
Algorithm 2: Pseudocode for the is_derivation function. The implementation of RSC is
between lines 10–16, inclusive on both ends.
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C Full derivations for the extraposition
sentences

Here, we provide the full derivations for the sen-
tences (1a), (1b) and (1c) in Section 4. These
derivations were sketched in the main paper as (2),
(3) and (4).

We assume the lexicon in Table 3. The semantic,
syntactic and phonological features of our UG are
the unions of the semantic, syntactic and phono-
logical features over the LIs in our lexicon. The
syntactic features include (a) category features of
the form [α], where α is a syntactic category; (b)
selectional features of the form [=α], where α is a
syntactic category; (c) EPP-feature [EPP], and (d)
wh-features [uwh] and [iwh]. Selectional features,
EPP-feature and [uwh] are trigger features. A selec-
tional feature [=α] can be checked by Merging with
some SO whose label bears the category feature
[α]. An EPP-feature can be checked by Merging
with some SO. [uwh] can be checked by Merging
with some SO whose labels bears [iwh]. We use
two pairs of heads X and Y to handle extraposition;
we use XT,P and YT to handle PP extraposition from
TP and use XV,P and YV to handle PP extraposition
from VP.

The derivations (18), (19) and (20) are for the
sentences (1a), (1b) and (1c) respectively. For each
stage Si, we describe the syntactic operation by
which Si is derived, and we show its workspace
Wi. We omit Select for brevity. Transferred SOs
are struck out.

(18) a. Merge(bothered,me).
W1 = {{ bothered, me }︸ ︷︷ ︸

VP

}.

b. Merge(v*,VP).
W2 = {{ v*, VP }︸ ︷︷ ︸

v*P1

}.

c. Transfer(v*P1,VP).
W3 = {{ v*, VP }︸ ︷︷ ︸

v*P2

}.

d. Merge(about,Mary).
W4 = {{ about, Mary }︸ ︷︷ ︸

PP

, v*P2}.

e. Merge(story,PP).
W5 = {{ story, PP }︸ ︷︷ ︸

NP

, v*P2}.

f. Merge(a,NP).
W6 = {{ a, NP }︸ ︷︷ ︸

DP

, v*P2}.

g. Merge(v*P2,DP).
W7 = {{ DP, v*P2 }︸ ︷︷ ︸

v*P3

}.

h. Merge(PASTv*, v*P3).
W8 = {{ PASTv*, v*P3 }︸ ︷︷ ︸

TP1

}.

i. Merge(TP1,DP).
W9 = {{ DP, TP1 }︸ ︷︷ ︸

TP2

}.

j. Merge(XT,P,TP2).
W10 = {{ XT,P, TP2 }︸ ︷︷ ︸

XP1

}.

k. Merge(XP1,PP).
W11 = {{ PP, XP1 }︸ ︷︷ ︸

XP2

}.

l. Merge(YT,XP2).
W12 = {{ YT, XP2 }︸ ︷︷ ︸

YP1

}.

m. Merge(YP1,TP2).
W13 = {{ TP2, YP1 }︸ ︷︷ ︸

YP2

}.

n. Merge(C,YP2).
W14 = {{ C, YP2 }︸ ︷︷ ︸

CP

}.

o. Transfer(CP,CP).
W15 = {CP}.
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(19) a. Merge(about,Mary).
W1 = {{ about, Mary }︸ ︷︷ ︸

PP

}.

b. Merge(story,PP).
W2 = {{ story, PP }︸ ︷︷ ︸

NP

}.

c. Merge(a,NP).
W3 = {{ a, NP }︸ ︷︷ ︸

DP

}.

d. Merge(appeared,DP).
W4 = {{ appeared, DP }︸ ︷︷ ︸

VP

}.

e. Merge(XV,P,VP).
W5 = {{ XV,P, VP }︸ ︷︷ ︸

XP1

}.

f. Merge(XP1,PP).
W6 = {{ PP, XP1 }︸ ︷︷ ︸

XP2

}.

g. Merge(YV,XP2).
W7 = {{ YV, XP2 }︸ ︷︷ ︸

YP1

}.

h. Merge(YP1,VP).
W8 = {{ VP, YP1 }︸ ︷︷ ︸

YP2

}.

i. Merge(v,YP2).
W9 = {{ v, YP2 }︸ ︷︷ ︸

vP

}.

j. Merge(PASTv, vP).
W10 = {{ PASTv, vP }︸ ︷︷ ︸

TP1

}.

k. Merge(TP1,DP).
W11 = {{ DP, TP1 }︸ ︷︷ ︸

TP2

}.

l. Merge(C,TP2).
W12 = {{ C, TP2 }︸ ︷︷ ︸

CP

}.

m. Transfer(CP,CP).
W13 = {CP}.

(20) a. Same as (19) up to and including (19m),
but replace Mary with who.
W13 = {CP1}.

b. Merge(know,CP1).
W14 = {{ know, CP1 }︸ ︷︷ ︸

VP

}.

c. Merge(v*,VP).
W15 = {{ v*, VP }︸ ︷︷ ︸

v*P1

}.

d. Transfer(v*P1,VP).
W16 = {{ v*, VP }︸ ︷︷ ︸

v*P2

}.

e. Merge(v*P2,we).
W17 = {{ we, v*P2 }︸ ︷︷ ︸

v*P3

}.

f. Merge(PRESv*, v*P3).
W18 = {{ PRESv*, v*P3 }︸ ︷︷ ︸

TP1

}.

g. Merge(TP1,DP).
W19 = {{ DP, TP1 }︸ ︷︷ ︸

TP2

}.

h. Merge(C,TP2).
W20 = {{ C, TP2 }︸ ︷︷ ︸

CP2

}.

i. Transfer(CP2,CP2).
W21 = {CP2}.
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LI SEM SYN PHON

Mary {[Mary]} {[D]} ⟨[Mary]⟩
me {[me]} {[D]} ⟨[me]⟩
we {[we]} {[D]} ⟨[we]⟩
who {[who]} {[D], [iwh]} ⟨[who]⟩
about {[about]} {[P], [=D]} ⟨[about]⟩
story {[story]} {[N], [=P]} ⟨[story]⟩
a {[a]} {[D], [=N]} ⟨[a]⟩
bothered {[bothered]} {[V], [=D]} ⟨[bothered]⟩
appeared {[appeared]} {[V], [=D]} ⟨[appeared]⟩
know {[know]} {[V], [=C]} ⟨[know]⟩
v* {[v*]} {[v*], [=V], [=D]} ⟨⟩
v {[v]} {[v], [=V]} ⟨⟩
XT,P {[X]} {[X], [=T], [=P]} ⟨⟩
XV,P {[X]} {[X], [=V], [=P]} ⟨⟩
YT {[Y]} {[T], [=X], [=T]} ⟨⟩
YV {[Y]} {[V], [=X], [=V]} ⟨⟩
PRESv* {[PRES]} {[T], [=v*], [EPP]} ⟨⟩
PASTv* {[PAST]} {[T], [=v*], [EPP]} ⟨⟩
PASTv {[PAST]} {[T], [=v], [EPP]} ⟨⟩
C {[C]} {[C], [=T]} ⟨⟩
Q {[Q]} {[C], [=T], [uwh]} ⟨⟩

Table 3: Lexicon for the derivations (18), (19) and (20). For example, the LI Mary is a 3-tuple ⟨SEM,SYN,PHON⟩
where SEM = {[Mary]}, SYN = {[D]} and PHON = ⟨[Mary]⟩.
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D Full derivations for The man falls

Here, we provide the full derivations for the sen-
tence The man falls in Section 5. These derivations
were sketched in the main paper as (11) and (12).

We assume the lexicon in Table 4. Again, the se-
mantic, syntactic and phonological features of our
UG are the unions of the semantic, syntactic and
phonological features over the LIs in our lexicon.

The derivations (21) and (22) are for the sentence
The man falls in our implementations of Chomsky
(2001) and Collins (2017) respectively. We omit
most applications of Select for brevity, except at
the beginning of (22). There, it is important that
the tense head PRES be selected near the beginning
of the derivation, before any Merge takes place.
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LI SEM SYN PHON

the {[the]} {[D], [=N]} ⟨[the]⟩
falls {[falls]} {[V], [=D]} ⟨[falls]⟩
v {[v]} {[v], [=V]} ⟨⟩
C {[C]} {[C], [=T]} ⟨⟩
Unique to our Chomsky 2001 implementation:
man {[man]} {[N], [iπ:3], [i#:sg], [uC:_]} ⟨[man]⟩
man′ {[man]} {[N], [iπ:3], [i#:sg], [uC:nom]} ⟨[man]⟩
PRES {[PRES]} {[T], [=v], [EPP], [uπ:_], [u#:_], [iC:nom]} ⟨⟩
PRES′ {[PRES]} {[T], [=v], [EPP], [uπ:3], [u#:sg], [iC:nom]} ⟨⟩
Unique to our Collins 2017 implementation:
man {[man]} {[N], [iπ:3], [i#:sg], [uC:nom]} ⟨[man]⟩
PRES {[PRES]} {[T], [=v], [EPP], [uπ:3], [u#:sg], [iC:nom]} ⟨⟩

Table 4: Lexicon for the derivations (21) and (22).

(21) a. Merge(the,man).
W1 = {{ the, man }︸ ︷︷ ︸

DP

}.

b. Merge(falls,DP).
W2 = {{ falls, { the, man } }︸ ︷︷ ︸

VP

}.

c. Merge(v,VP).
W3 = {{ v, { falls, { the, man } } }︸ ︷︷ ︸

vP

}.

d. Merge(PRES, vP).
W4 = {{ PRES, { v, { falls, { the, man } } } }︸ ︷︷ ︸

TP1

}.

e. Agree(PRES,man).
W5 = {{ { the, man′ }, { PRES′, { v, { falls, { the, man′ } } } } }︸ ︷︷ ︸

TP2

}.

f. Merge(C,TP2).
W6 = {{ C, { { the, man′ }, { PRES′, { v, { falls, { the, man′ } } } } } }︸ ︷︷ ︸

CP

}.

g. Transfer(CP,CP).
W7 = {CP}.
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(22) a. Select(man).
W1 = {man}.

b. Select(PRES).
W2 = {man, PRES}.

c. Merge(man, [iC:nom]). [iC:nom] is in the SYN of PRES.
W3 = {{ man, [iC:nom] }︸ ︷︷ ︸

N

, PRES}.

d. Merge(the,N).
W4 = {{ the, { man, [iC:nom] } }︸ ︷︷ ︸

DP

, PRES}.

e. Merge(falls,DP).
W5 = {{ falls, { the, { man, [iC:nom] } } }︸ ︷︷ ︸

VP

, PRES}.

f. Merge(v,VP).
W6 = {{ v, { falls, { the, { man, [iC:nom] } } } }︸ ︷︷ ︸

vP

, PRES}.

g. Merge(PRES, vP).
W7 = {{ PRES, { v, { falls, { the, { man, [iC:nom] } } } } }︸ ︷︷ ︸

TP1

}.

h. Merge(TP1,DP).
W8 = {{ { the, { man, [iC:nom] } }, { PRES, { v, { falls, { the, { man, [iC:nom] } } } } } }︸ ︷︷ ︸

TP2

}.

i. Merge(TP2, [iπ:3]). [iπ:3] is in the SYN of man.
W9 = {{ [iπ:3], { DP, { PRES, vP } } }︸ ︷︷ ︸

TP3

}.

j. Merge(TP3, [i#:sg]). [i#:sg] is in the SYN of man.
W10 = {{ [i#:sg], { [iπ:3], { DP, { PRES, vP } } } }︸ ︷︷ ︸

TP4

}.

k. Merge(C,TP4).
W11 = {{ C, { [i#:sg], { [iπ:3], { DP, { PRES, vP } } } } }︸ ︷︷ ︸

CP

}.

l. Transfer(CP,CP).
W12 = {CP}.
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