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Abstract

I propose a new structure-building operation
for Minimalist Grammars (Stabler 1997) which
allows the grammar formalism to grow trees
with more than one root. I demonstrate that to-
gether with the assumption that this new long-
distance dependency holds between nominal
arguments and their selectors, one can gener-
ate Horn amalgams and parasitic gaps with a
number of desired properties.

1 Introduction

I propose a new structure-building operation 3rd-
merge, formalized within the framework of Mini-
malist Grammars (Stabler 1997), that makes it pos-
sible to generate tree structures with more than one
root where the two roots are structurally indepen-
dent except at a single connecting phrase, the pivot.
Within minimalist syntax, a number of proposals
exists to extend the formalism beyond the oper-
ations merge and move, most notably sidewards
movement (Nunes 1995), parallel merge (Citko
2005) and grafts (van Riemsdijk 2006, van Riems-
dijk 2010). The effect of 3rd-merge is to allow
the selector to long-distance select its argument
out of an otherwise structurally independent root
(I discuss similarities and differences to the above-
mentioned extensions below). I propose that this
new long-distance dependency underlies the phe-
nomena of Horn amalgams and parasitic gaps.

Horn amalgams are constructions where two ap-
parently independent clauses share a common ele-
ment (Lakoff 1974):

(1) Joscha adores [I think it was cats].

cats appears to be both the argument of adore and
was. The clause containing the latter verb is struc-
turally independent from the matrix clause; adore
does not select for the parenthesis-like clause but
the noun cats. Neither of those clauses c-command
the other. Evidence for this comes e.g. from the

fact that binding (or any other syntactic operation)
between elements from each clause is impossible
(see Kluck 2011, ch.3 for an overview). The so-
called pivot cats is therefore shared by two other-
wise independent clauses and is the only element
accessible to both clauses.

In parasitic gaps, an otherwise ungrammatical
long-distance dependency (here: extraction out of
an adjunct) becomes grammatical in certain con-
figurations in the presence of a licit long-distance
dependency (Engdahl 1983 i.a.):

(2) [Which article]1 did you file t1 [without
reading pg1]?

Both ‘real’ and parasitic gap refer to the same ele-
ment. I argue that the matrix clause and the adjunct
share the single element which article in the same
manner as amalgams; the crucial difference is that
the adjunct as additional root is reintroduced into
the matrix root. When the pivot is moved, this
creates the appearance of two gaps.

The structure of this article is as follows: I
present the algebraic definition of Minimalist
Grammars from Stabler and Keenan (2003) (Sec-
tion 2). I then introduce the new operation and
the rules describing its behaviour (Section 3), to-
gether with an application to the phenomena they
are supposed to derive. Section 4 concludes with a
comparison with other operations and a discussion
of open issues.

2 Minimalist Grammars

Stabler and Keenan (2003) provide an algebraic
definition of Minimalist Grammars (MGs). A Min-
imalist Grammar G = ⟨Σ, F, Types, Lex,F ⟩,
with a non-empty alphabet Σ, the set of Features F
consisting of base features (n,v,c,...), the respective
selection features, as well as licensor and licensee
features for movement, i.e. F = base ∪ {=f |f ∈
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base} ∪ {+f |f ∈ base} ∪ {−f |f ∈ base}1, the
Types = {::, :}, with · ∈ {::, :} as shorthand.
They call Chains C = Σ∗ × Types× F ∗, and Ex-
pressions E = C+, with the lexicon Lex ⊆ C+ as
a finite subset of Σ∗×{::}×F ∗. There are two op-
erations F = {merge,move}, defined as partial
functions as in Figure 1. I use s, t, u, v, w ∈ Σ∗;
β, γ ∈ F ∗; δ, ε, ζ ∈ F+, chains α1, ..., αk or
ι1, ..., ιℓ or µ1, ..., µm with k, l,m ≥ 0.
merge : (E × E) → E consists of three sub-

cases, defining merge into complement position
(merge1) and specifier position (merge2) and merge
of a moving element (merge3). move : E → E
is described by two functions for which the Short-
est Move Constraint (SMC) holds: no member of
α1, ..., αi−1, αi+1, ..., αk has −f as first feature.
There is either movement to a final (move1) or non-
final (move2) landing site.

3 A new operation

The core intuition behind the new operation is to
create a new type of long-distance dependency be-
tween nominal arguments and their selectors such
as verbs that allows verbs to select an element
from within an independent root. Crucially, the
secondary root remains structurally independent ex-
cept at the selected phrase. A possible visualization
would be that of a form of ‘long-distance’ in-situ
merge. I introduce a new type of positive/negative
feature pair for the new operation 3rd-merge: #f
and }f2. By assumption, there is only a single fea-
ture of this type in a language (}n or }d, depending
on what the assumed highest projection in the nom-
inal domain of that language is). This restriction
is driven purely by empirical considerations, to re-
strict the phenomena of amalgams and parasitic
gaps to nominals (for now).

In addition to the symbols in the standard MG
definition, I use ψ ∈ F 3 where F 3 = {}f |f ∈
base}; ω is of the form [t : ψγ, µ1, ..., µm] and
ς ∈ {n, c}. For the present purposes, I restrict
the structure of potential lexical items as follows:
{=f,#f}∗.f.(}f.)−f∗, i.e. there is at most one
}f directly after the category symbol of any given
lexical item; #f behaves like selector features. Fig-
ure 2 provides an overview of all rules.

Let us assume that the highest projection in the
nominal domain is n, and that all nouns have both n

1Note that there is some redundancy in this definition since
there are no base movement features as categories.

2‘plus-equals’ and ‘minus-equals’, for lack of better terms.

and }n in their feature string (cat :: n.}n). A con-
sequence is that additional roots can only grow on
top of nominals. The assumption is that nominals
are always merged via an application of 3rd-merge.
Phrases with feature string f.}f are 3rd-merged
into complement or specifier position (3merge-1/2)
or as moving item (3merge-3). Nominals are there-
fore treated as a trivial case of an independent
root, namely one where no additional structure has
grown on top of it. The category of this trivial root
n is treated as syntactically inert after the applica-
tion of 3rd-merge.

The system also allows a non-trivial root to grow
on top of a nominal before it is 3rd-merged. I call
such a root the secondary root3 (e.g. the bracketed
‘I think it was’ in (1)) since 3rd-merge creates an
asymmetry between the roots, as will be discussed
below.

The rule merge4 governs the special case where
growth of a non-trivial secondary root is initiated
on top of a nominal. A head selects for a cate-
gory feature of an expression that is followed by
}f . The merge features of the argument are erased
but it becomes part of the chains of the selector,
akin to merging moving expressions, and becomes
inaccessible for the rest of the derivation within the
secondary root until it is selected via an application
of 3rd-merge out of a different root. The inaccessi-
ble pivot is indicated by square brackets. I denote
bracketed elements of the form [t : ψγ, µ1, ..., µm]
as ω. Note that so far this operation is only defined
to apply in complement position. Example deriva-
tions for an amalgam and a parasitic gap can be
found in Figure 3. ‘I think it was’ and ‘without
reading’ are treated as such secondary roots, and
the first steps in both derivations (selection by was
or reading) exemplifies an application of merge4.

The introduction of ω by merge4 now requires
an update to the former merge and move rules so
that an expression can contain 0 or 1 ω (‘ω’ ab-
breviates ‘0 or 1 ω’ for readability). merge1 and
merge2 remain unaffected save a potential presence
of an inert ω. The argument in merge1 and the func-
tion in merge2 can contain ω. Note that, similar
to the complement-only restriction for merge4, I
disallow merging an expression into specifier posi-
tion that contains ω. This would allow a potentially
unbounded number of ω in an expression, with po-
tentially non-trivial nesting, something I want to

3I use ‘root’ here as pars pro toto for the whole single-
rooted subtree in a multi-rooted tree.
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s :: =fδ t · f, α1, ..., αk merge1
st : δ, α1, ..., αk

s : =fδ, α1, ..., αk t · f, ι1, ..., ιℓ merge2
ts : δ, α1, ..., αk, ι1, ..., ιℓ

s ·=fδ, α1, ..., αk t · fε, ι1, ..., ιℓ merge3
s : δ, α1, ..., αk, t : ε, ι1, ..., ιℓ

s : +fδ, α1, ..., αi−1, t : −f, αi+1, ..., αk move1
ts : δ, α1, ..., αi−1, αi+1, ..., αk

s : +fδ, α1, ..., αi−1, t : −fε, αi+1, ..., αk move2
s : δ, α1, ..., αi−1, t : ε, αi+1, ..., αk

Figure 1: Standard MG rules

s :: =fδ t · f, ω, α1, ..., αk merge1
st : δ, ω, α1, ..., αk

s : =fδ, ω, α1, ..., αk t · f, ι1, ..., ιℓ merge2
ts : δ, ω, α1, ..., αk, ι1, ..., ιℓ

s : =fδ, ω, α1, ..., αk t · fε, µ1, ..., µm merge3 spec
s : δ, ω, α1, ..., αk, t : ε, µ1, ..., µm

s :: =fδ t · fψγ, α1, ..., αk merge4
s : δ, [t : ψγ, α1, ..., αk]

s : +fδ, ω, α1, ..., αi−1, u : −f, αi+1, ..., αk move1
us : δ, ω, α1, ..., αi−1, αi+1, ..., αk

s : +fδ, ω, α1, ..., αi−1, u : −fε, αi+1, ..., αk move2
s : δ, ω, α1, ..., αi−1, u : ε, αi+1, ..., αk

s :: #fδ t · f.}f, α1, ..., αk 3merge-1
st : δ, α1, ..., αk

s : #fδ, ω, α1, ..., αk t · f.}f, ι1, ..., ιℓ 3merge-2
ts : δ, ω, α1, ..., αk, ι1, ..., ιℓ

s ·#fδ, ω, α1, ..., αk t · f.}fε, ι1, ..., ιℓ 3merge-3
s : δ, ω, α1, ..., αk, t : ε, ι1, ..., ιℓ

s :: #fδ t : c, [u : }f, α1, ..., αk] 3merge-1’
stu : δ, α1, ..., αk

s : #fδ, ω, α1, ..., αk t : c, [u : }f, ι1, ..., ιℓ] 3merge-2’
tus : δ, ω, α1, ..., αk, ι1, ..., ιℓ

s ·#fδ, ω, α1, ..., αk t : ςγ, [u : }fε, ι1, ..., ιℓ] 3merge-4
s : δ, ω, [t : ςγ, u : ε], ι1, ..., ιℓ, α1, ..., αk

s : =ςδ, ω, [t : ς, u : ε], α1, ..., αk chain-merge1
ts : δ, ω, α1, ..., αk, u : ε

s : =ςδ, ω, [t : ςε, u : ζ], α1, ..., αk chain-merge2
s : δ, ω, α1, ..., αk, t : ε, u : ζ

s : +fδ, ω, α1, ..., αi−1, [t : ςγ, u : −fε], αi+1, ..., αk
move3

s : δ, ω, α1, ..., αi−1, [t : ςγ, u : ε], αi+1, ..., αk

Figure 2: MGs with 3rd-merge
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exclude. There is thus a ban on }f in specifiers.
The original merge3 is joined by the additional

merge3 spec that allows for the possibility of a se-
lector containing ω when merging into specifier
position. A selector cannot contain ω when merg-
ing its complement, but I also exclude the option
that its argument contains ω in this case. Such a
rule would be ‘unphysical’ in that it would lead
to ‘root-distributed remnant movement’. An ex-
ample would be VP-movement inside an amalgam
minus its inert object as ω which appears in its in-
situ position in the matrix root. To the best of my
knowledge there is no such phenomenon. Previ-
ous move rules, however, are updated trivially to
allow for the presence of inaccessible ω. In sum,
merge4 initiates growth of a secondary root, but
previous merge and move rules continue to build
structure in the familiar way, largely unaffected by
the presence/absence of a pivot.

3.1 Amalgams
We now turn to the cases where 3rd-merge selects
an argument from within a non-trivial secondary
root, as in Horn amalgams such as (1) where ‘I
think it was cats’ grows on top of the cordoned off
NP cats with a }n feature. This clause, and the
clause headed by adore are structurally indepen-
dent. As mentioned, no element from either clause
can bind an element from the other, i.e. there is
no c-command relationship between these clauses4.
Only the pivot is accessible for both clauses. In
3merge-1’/2’, the selector selects (and therefore c-
commands) only the element carrying }f from the
bracketed chain, but does not establish any syntac-
tic relationship with the rest of the expression. This
property of the rule effectively introduces multiply-
rooted trees since there is an undominated complete
root tree with a single position inside where it can
‘dock’ with another root.

The rule enforces that the expression from which
the argument of the selector originates is a com-
plete CP which has no features unchecked besides
the pivot in the bracketed part. The c on the head
of the secondary root is not selected and remains
unchecked but vanishes in the resulting expression.
This implements the idea that a syntactic object is
complete if the only unchecked features in all its
roots are of start category c. Another effect that this
rule enforces is a derivational ‘timing’ in that sec-

4For this reason, the idea, as suggested by a reviewer, to
let adore select the cleft-structure and then select for cats via
a step of covert movement leads to wrong predictions.

ondary roots can only be connected with a primary
root (by definition the root whose head carries #f )
after they are built completely, but not in an inter-
mediate stage. This would yield an expression with
multiple heads that need to check their features,
with often non-trivial bracketing. The rules above
avoid this complication.

In the result of the rule, amalgam plus pivot are
linearized as a single unit with respect to the verb,
yielding the correct adores I think it was cats. This
step is also illustrated in Figure 3. Also note that I
do allow completed amalgams in specifier position
(3merge-2’), it is only unchecked }f -features that
are disallowed, for the reasons discussed above.

As a last note, the rules allow for subextraction
from pivots into the matrix root, as indicated by the
presence of chains. This is empirically justified:

(3) Of which person does Daniel have [I think
it was a painting t]?

There is also empirical justification for isolating
from the secondary root not only the }f -carrying
element but also its moving subparts, i.e. disallow
subextraction into the secondary root. The out-
come of such an extraction is ungrammatical. This
is another way in which the asymmetry between
selector and selectee in a 3rd-merge dependency
manifests itself.

(4) a. *Ville has [of his daughter, I think it
was a painting t]

b. *Ørjan has [of which daughter, do I
think it was a painting t].

I turn now to cases where there is additional struc-
ture on top of the pivot, but the pivot NP itself has
a movement feature. I want to exclude movement
of the pivot of amalgams. Movement of the pivot
on its own is ungrammatical and would, metaphori-
cally speaking, lead to the amalgam being a discon-
nected piece of structure; pied-piping of the whole
amalgam also appears to be quite degraded:

(5) a. *Chicago, Peter went to [I think it was t].
b. ?*[I think it was Chicago], Peter went to t.

Instead, I want to reserve such cases for a different
phenomenon. I propose the following empirical
split. With additional roots, there are two possi-
bilities: either that root remains free, which corre-
sponds to amalgams, or that root is reintroduced
into the matrix root again. I propose that this option
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only occurs when the pivot connecting both parts
of the resulting cyclic graph carries a movement
feature. This movement of the connecting element
leads - at least from a derived tree perspective - to
the breakup of the cycle. In a 1D-string, such a
movement gives rise to what appears to be two dis-
tinct gaps. The phenomenon that this corresponds
to is parasitic gaps (such a multidominance account
of parasitic gaps has been proposed in Kasai 2010).

3.2 Parasitic gaps

3merge-4 is the rule that governs the behaviour of
moving pivots5. Its effect is that of selection for the
moving pivot without erasing the category feature
of the root that hosts it - in contrast to amalgams
(this can be seen in Figure 3 where file selects which
article out of the adjunct). That root, ς , can either
be c or n/d since parasitic gaps can occur not only
in clausal elements like relative clauses or adjuncts
but also in NPs as in subject parasitic gaps. A small
difference to amalgams is that the host phrase of
the pivot can carry a movement feature. I allow
this possibility for potential movement of adjuncts
or subject movement. Other than that, there are no
unchecked features besides ω.

There are a number of side issues that this rule
addresses as well. Upon 3rd-merging the pivot,
sub-movers ι1, ..., ιℓ are ‘released’ so that they be-
come accessible parts of the chain in the outcome.
This appears to be empirically justified since e.g.
complements of nouns that are pivots in parasitic
gap constructions can be scrambled to a position
lower than the pivot (though, again, only into the
matrix root, not the secondary one):

(6) ?[Welche
which

Bücher
books

t1]2 hat
has

[über
about

Potsdam]1
potsdam

jeder
everyone

gekauft
bought

t2 ohne
without

je
ever

zu
to

lesen
read

pg2?

Which books about Potsdam did everyone
buy without ever reading?

I also disallow movement of the pivot itself within
the secondary root. Such a step appears unneces-
sary for Horn amalgams where the pivot occurs
in base position within the amalgam. This also
fits well with the observation that parasitic gaps in
subject position are usually ungrammatical (see e.g.
Mayo 1997). Under standard assumptions, subjects
move to receive case. The impossibility of moving

5The rule as it stands is an abbreviation for the specifier
and complement merge cases - in the latter case, α1, ..., αk

and ω is missing in the selector.

in the secondary root would exclude this for inde-
pendent reasons. This ties in with another property
of the pivot that I have assumed throughout the def-
initions in which they appeared: they always occur
in complement position in the secondary root. For
the it-cleft(-like) constructions in amalgams, this
appears to be correct, as well as for parasitic gap
hosts. As mentioned, subject gaps are excluded.
Indirect object gaps appear to be degraded as well:

(7)?*Which person did you send out after giving
pg1 an article?

Until a convincing need for non-complement pivots
arises, I restrict 3merge-4 to complement position.

I have allowed for the presence of ω in the se-
lector in 3merge-4 which in principle allows for
amalgams in amalgams or parasitic gaps in para-
sitic gap hosts. Whether this is empirically justified
is beyond the scope of this paper.

Let us return to the core issues. The expression
that is introduced into the chain of the selector
([t : ςγ, u : ε]) as a result of 3merge-4 differs from
ω in that it does not contain a }f -feature. There
are three rules that govern the behaviour of such a
bracketed expression. Either the pivot can move to
a non-final landing site (move3), ‘pied-piping’ the
whole expression with it. This would be the case if
A-movement precedes Ā-movement of the pivot.

The other two rules (chain-merge1/2) govern the
reintroduction of the secondary root into the main
root. This amounts to ‘chain-internal’ merge, akin
to move rules, with the difference being that the
expression carries an unchecked category feature,
not a movement feature. chain-merge1/2 describe
the point in the derivation where the parasitic gap
host (e.g. an adjunct like [without reading:c, which
book:-wh]) is merged into its position in the matrix
root (an application for chain-merge1 occurs in Fig-
ure 3 where an empty vP-adjunction head ϵ selects
for the adjunct). As a result, the parasitic gap host is
either linearized in its final position (chain-merge1)
or becomes a moving chain (chain-merge2); in both
cases, the moving element that corresponds to both
real and parasitic gap (u:ε) is released and becomes
part of the chains. From there it moves to a posi-
tion higher than the reintroduction site of its host,
deriving the anti-c-command property of parasitic
gaps. The last steps of the derivation of (2) can also
be found in Figure 36.

6I abstract away both from how adjunction works (treat-
ing it as normal merge) and the rightward dislocation of the
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3.3 Further issues and applications

So far I have assumed that only nominals carry
a }f -feature. It is considered a core property of
parasitic gaps that only NPs can correspond to them
(see e.g. Culicover 2001). NPs are also prototypical
pivots in amalgams; predicative adjectives e.g. are
degraded as pivots in Horn amalgams (Kluck 2011,
74):

(8)?*Bea is [I think it’s blond].

Note though that Engdahl 1983 cites AP parasitic
gaps as acceptable in Swedish and that amalgams in
NPs on top of attributive adjectives are acceptable
in some contexts (‘an [I think you can call it simple
solution]’, see Kluck 2011). Further research is
necessary to determine whether the restriction of
}f to nominals is correct or needs to be relaxed at
least for adjectives.

In the more restrictive system, there is only a
single category that can carry the additional nega-
tive feature, i.e. either n.}n or d.}d, depending on
one’s stance in the DP/NP-debate and/or whether
one describes a DP- or NP-language (see Bošković
2008 for such a split). With the new operation,
however, it is possible to propose a new solution
to the structure of the DP: one assumes that NPs
universally have the feature sequence n.}n and
that verbs select for }n, even in DP-languages, ex-
plaining why verbs can ‘long-distance’ select for
types of NPs even in those languages (an argument
against DP-structure by Bruening et al. 2018). DP-
languages would differ from the system presented
so far in that every DP is a ‘mini-amalgam’: they
require d to select NPs as in a merge4 application,
and it is only the resulting DP that can be the argu-
ment in a 3merge-1 rule.

s :: =n.dγ t · n.}n, α1, ..., αk DP-merge
[st : d.}n.γ, α1, ..., αk]

s :: #nδ [t · d.}n, α1, ..., αk]
3merge-1DP

st : δ, α1, ..., αk

The first d selecting n.}n thus has a special status,
and it is only further merge with that DP that leads
to amalgams proper or parasitic gap hosts.

The only purpose of 3rd-merge, then, is to con-
nect the two major spines, the nominal and the
verbal/clausal one. In such a system, the fact that
the additional root can grow further and either re-
main independent (amalgams) or get reconnected

adjunct in this example.

(parasitic gaps) is a simple consequence of the way
clausal and nominal spine are merged. The three
apparently distinct phenomena share a common
core, and the fact that parasitic gaps and amalgams
are restricted to nominals falls out as a consequence
of the assumption that 3rd-merge connects verbs
and nominals and does not need to be stipulated
separately.

Showing the full rule set for this system is be-
yond the scope of this paper, however. There are
a number of empirical and theoretical issues that
need to be considered. Possibilities like NP extrac-
tion out of DP as e.g. in German complicate the
rules. One also needs to ensure that it is the first
D selecting an NP that is turned into a bracketed
ω, not a higher one. This is easier if one assumes
that all additional material in NPs like adjectives
and numerals are adjoined by category preserving
operations and D always selects something of type
n.}n. Not all approaches assume this and would
need to be dealt with differently. I therefore leave
a full exploration of a system that unifies DP/NPs,
amalgams and parasitic gaps for future research.

As a last point, there is also the issue that when
growing amalgams or parasitic gap hosts (in a
merge4 step), the verb needs to select via =n or
=d. Thus one would need to allow optionality in
the way verbs select arguments (}n/=d) which
appears to unnecessarily bloat their lexicon entry.
However, this is independently necessary if one as-
sumes that (weak) pronouns are just a single head
d 7. A stronger but related argument for the vari-
able nature of selection comes from a number of
verbs that disallow weak pronouns, Postal’s 1994
so-called anti-pronominal contexts (9-a). Strik-
ingly, it is exactly those verbs that cannot occur
in parasitic gap hosts (9-c) even though they do al-
low wh-extraction (9-b). Both apparently unrelated
facts are derived together by the assumption that
the lexicon entries of this class of verbs lack the
=d/=n option:

(9) a. *She likes the colour black, so she
painted the door it.

b. What colour1 did she paint the door t1?
c. *What colour1 did she grow to hate t1

after painting her door pg1?

This is also yet another example of an asymmetry

7Verbs still cannot select via =d for ‘full’ DPs with lex-
ical content in matrix roots since they would then contain
unchecked }n, preventing the derivation to converge.
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between the roots since the mode of selection for
the pivot appears to differ. An in-depth investiga-
tion of the empirical facts concerning this asymme-
try is beyond the scope of this paper, however.

4 Discussion

To summarize, I introduced a new operation, 3rd-
merge, to Minimalist Grammars. By postulate, only
nominals can carry }f so the new long-distance de-
pendency holds between nominal arguments and
their selectors. The main effect of the new opera-
tion is to allow selection of an item from within an
additional root without establishing a syntactic rela-
tion to any other part of that root. Additional roots
can either remain independent, which corresponds
to the phenomenon of Horn amalgams, or they can
be reintroduced into the matrix root, which results
in parasitic gap constructions after movement of
the pivot in the resulting cyclic structure.

I want to discuss a number of commonalities
and differences between 3rd-merge and other ex-
tensions of minimalist grammars. What 3rd-merge
and sidewards movement (Nunes 1995, especially
in the formalization by Stabler 2006) have in com-
mon is the general idea of further relaxing resource
sensitivity. In the sidewards movement system in
Stabler (2006), however, a category feature e.g.
can be re-used a potentially unbounded number of
times. The system set up here does not give up
resource sensitivity completely but only allows one
further type of re-use of an expression, besides be-
ing merged and moved, thereby stipulating a third
dependency type. The third type of re-use leads to
the growth of an additional root which is distinct
from the possibilities of sidewards movement. Just
as movement is not ‘just’ a reuse of category fea-
tures but a dependency (related to but nonetheless)
distinct from merge with its own properties and
restrictions, it is important in my opinion to equally
separate this third reuse of expressions. This way
one can investigate the properties and restrictions
of this new dependency in their own right.

If resource-sensitivity needs to be relaxed further,
e.g. for multiple parasitic gap constructions, one
has more control over which features exactly are to
be changed in that way. Whether it is merge, move
or 3rd-merge features that can be reused might have
different empirical consequences.

Torr and Stabler (2016), building on Kobele
(2008), extend MGs to deal with ATB-movement
(among other things). The idea behind these ap-

proaches is the unification of the identical but dis-
tinct movers of both conjuncts. Those approaches
are then extended to cover other one-to-many de-
pendencies such as control and parasitic gaps.
Parasitic gaps, however, are markedly different
from ATB-constructions as demonstrated in Postal
(1993). They are not confined to coordinations but
are subject to a number of restrictions irrelevant
for ATB, such as a restriction to Ā-movement, a
categorial restriction to NPs, the anti-pronominal
condition shown in (9) and many others. Para-
sitic gaps are optional and their position can be
filled, contrary to ATB-patterns where all gaps are
obligatory and mutually depend on each other, i.e.
a mutual symbiosis compared to an asymmetric
parasitism. There is also the asymmetry in subex-
traction (see (6)) that is non-trivial in a system that
treats the origin of unified movers on equal footing.
For these reasons I treat the asymmetries of para-
sitic gaps as a different phenomenon, not a subtype
of ATB-movement.

The properties of amalgams are another central
reason to adopt a system as presented here. There
is convincing evidence that amalgams contain an
undominated, independent secondary root (Kluck
2011, ch.3), a structure the above approaches can-
not currently generate. In the present approach,
a head can select for an element from within a
different root without, however, connecting with
the rest of the root. Amalgams also exhibit re-
strictions and asymmetries that are shared by para-
sitic gaps, such as a putative categorial restriction
to NPs and (sub)extraction asymmetries (see (4)).
Since these phenomena pattern together and they
can both be derived by a system that allows multi-
ple roots, it is useful to derive them with the same
mechanism while treating the more symmetrical
ATB-phenomenon as distinct.

What distinguishes 3rd-merge from parallel
merge (Citko 2005, Citko 2011), apart from a for-
mal implementation, is that it is not ‘parallel’ or
symmetric. In parallel merge, a head A and a
head C that merge with phrase B both stand on
equal footing. 3rd-merge introduces an asymme-
try between selector and selectee. This property is
shared by grafts (van Riemsdijk 2006, van Riems-
dijk 2010), the operation that is its closest match.
van Riemsdijk uses this operation mainly to derive
properties of free relatives and transparent free rela-
tives (‘She ate what she called egg fried rice.’) but
also Horn amalgams. van Riemsdijk notes empir-
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ical asymmetries but remains agnostic as to how
they come about (see e.g. van Riemsdijk 2006, fn.8,
‘all trees are equal’). For 3rd-merge, the asymme-
try is built into the definition of the operation: the
selector is always part of the matrix root while
additional structure on top of the NP is always a
secondary root that is integrated into the main struc-
ture. Further asymmetries are part of the definition,
such as the impossibility of extraction and subex-
traction of the pivot into the secondary root. Graft
can apply at any stage but must do so long before
the whole clause is built for phase considerations
(van Riemsdijk 2006, ch. 4.3). I proposed the oppo-
site for 3rd-merge since merge of an intermediate
stage of a secondary root would lead to a prolifera-
tion of unchecked features that are difficult to track
in the algebraic definition presented here.

Before closing this article, I want to mention
two further issues that need to be addressed. One is
the linearization of amalgams. Not only were the
pivots considered so far the most deeply embedded
complement, they were also the most rightward
element in the string. This would be different in
SOV amalgams or with extraposed adverbials:

(10) ?Peter
Peter

hat
has

[ich
I

glaub
think

es
it

war
was

die
the

Katze
cat

gewesen]
been

gestreichelt.
petted.
Peter petted I think it was the cat.

This cannot be derived in the system set up so far.
One reason for this is that the algebraic definition
used here does two things at once: regulate the
feature calculus and linearize the string. A more
fine-grained approach should be able to treat those
matters separately.

The last question concerns the expressive power
of the grammar presented so far. Though I as-
sume it to be the case, showing the equivalence to
MCFGs would be reassuring. Apart from empirical
considerations, it might be relevant for that purpose
to determine whether to allow ω in 3merge-2’/4,
i.e. whether it is safe to allow unbounded nested
amalgams/parasitic gaps. The same goes for the
question whether there should be an SMC equiva-
lent for the structure [t : ςγ, u : ε]. Occurrence of
more than one such element in an expression might
lead to unwanted indeterminacies. As a last point,
it would be of interest to know whether MGs with
3rd-merge but without (remnant) movement allow
generation of non-context free patterns.
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Abstract

Recent work in subregular syntax has revealed
deep parallels among syntactic phenomena,
many of which fall under the computational
class TSL (Graf, 2018, 2022). Vu et al. (2019)
argue that case dependencies are yet another
member of this class. But their analysis fo-
cuses mainly on English, which is famously
case-poor. In this paper I present a TSL anal-
ysis of Japanese, which features a much wider
range of case-marking patterns, adding support
to the claim that case dependencies, and by
extension syntactic dependencies, are TSL.

1 Introduction

Work on the computational complexity of strings
has identified a rich hierarchy of subregular classes
and shown that phonological patterns are among
the simplest possible (Heinz, 2018). Local depen-
dencies fall under the class of strictly local (SL)
languages while most long-distance dependencies
fall within a superclass of SL known as tier-based
strictly local (TSL). These findings are of interest to
both computational and general linguistics as they
make strong typological predictions and inform de-
velopment of learning algorithms (Lambert et al.,
2021). A tantalizing possibility is that the tree-
based equivalents of the string classes might reveal
the same result in syntax. Graf (2018) generalizes
SL and TSL to trees, and subsequent work (Graf
and Shafiei, 2019; Vu et al., 2019; Graf, 2022, a.o.)
presents preliminary evidence that many disparate
syntactic phenomena are indeed TSL. But confirm-
ing this hypothesis requires much additional work,
because the abstractness of syntactic representa-
tions makes it difficult to claim with certainty what
structures are possible.

This paper focuses on the syntactic distribution
of morphological case, which I define to be those
heads or features realized by case morphology. In
other words, we are not interested in the raw surface
forms (which may exhibit accidental syncretism),

but in the systematic distinctions among nominals
made on the basis on their syntactic context. Vu
et al. (2019) provides a proof of concept for a TSL
analysis of case, focusing primarily on English.
This work provides an analysis of Japanese, which
features a much richer range of case patterns, in-
cluding: (1) case marking conditioned by temporal
properties of verbs, (2) lexical and structural dative
case, (3) long-distance case marking in embedded
clauses, and (4) case alternations in complex predi-
cates. In addition to strengthening the claim that the
syntactic distribution of case is TSL, the analysis
also shows that case patterns that might otherwise
be considered complex or surprising are in fact
quite simple from a computational perspective.

The remainder of this paper is structured as fol-
lows. Section 2 introduces the computational back-
ground for establishing the TSL nature of syntactic
dependencies. Section 3 provides an overview of
the basic case patterns in Japanese, and proposes
a set of descriptive generalizations. In Section 4, I
define TSL grammars which encode these general-
izations, then show how the analysis extends easily
to more complex structures. Section 5 concludes.

2 Computational background

2.1 SL and TSL string languages
A strictly local (SL) language is characterized by
a set of forbidden substrings of a fixed length k.
For example, an SL grammar enforcing strict CV
syllable structure consists of the set {$V, CC, VV,
C$}, where $ stands for beginning/end of string.
Words in this language include CV and CVCV but
not CVCCV (which contains CC) or CVC (C$).
Each forbidden substring is of length 2, making
this a strictly 2-local (SL-2) language.1

TSL is a generalization of SL in which certain
1An equivalent definition of SL utilizes sets of permissible

substrings of fixed length k, {$C, CV, VC, V$} in the case
of the present example. Under this definition, a word is well-
formed iff all of its length k substrings are well-formed.
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symbols are ignored. The remaining symbols are
projected onto a tier in which elements that were
formerly separated become adjacent, allowing a re-
stricted type of long-distance dependency: a string
is well-formed iff its tier conforms to a given SL
grammar. A simple example from phonology is
(symmetric) consonant harmony. Assuming an al-
phabet {a, m, s, S}, we project only {s, S}, and ban
the substrings {sS, Ss}. Words like ‘samaas’ (tier:
‘ss’) and ‘SaSaSa’ (SSS) are part of this language but
‘Samas’ (Ss) and ‘saSaSa’ (sSS) are not. Since the
forbidden substrings on the tier are of length 2, this
language is TSL-2.

2.2 TSL in syntax
Graf (2018) generalizes TSL from strings to trees
as follows. First, we project a tree tier which re-
tains a subset of the original nodes, preserving dom-
inance and precedence relations. The daughters of
each node on the tier are then regulated by a TSL
string language. This means that there are two op-
portunities to project a tier; we will take advantage
this in of our treatment of adjuncts in Section 4.8.

Somewhat more formally, a TSL tree language is
defined in terms of two functions: a tier projection
function specifying which nodes to retain on the
tree tier, and a daughter string language function
which determines the constraints on the daughter
string of each node.2 Each function considers a
finite local context of the argument node. I will use
only the label of the node itself—a context of size
1, with one exception as discussed in Section 4.7.

For the syntactic formalism, I follow recent work
(Graf, 2022; Graf and Shafiei, 2019) by adopting
Minimalist Grammar (MG, Stabler 1997) depen-
dency trees. These trees record the order of Merge
steps in a Minimalist derivation: the rightmost child
of a head is its complement, and other children are
specifiers. Dependency trees are more compact
than other representations while containing all nec-
essary information about the derivation.

Consider the Japanese example in (1). This is
a simple transitive sentence, in which the subject
Taroo is followed by the nominative case marker ga
and the object piano is followed by the accusative
marker o. An X′-style phrase structure tree for this
sentence is shown on the left of Figure 1. Details of
the syntactic analysis will be introduced in Section
4. For now, it suffices to note that the case marker
is the head of a K(ase) phrase, and that the subject

2See Graf and Kostyszyn (2021) for a full definition.

CP

TP

vP

KP

NP

Taroo

gaNOM

v′

VP

KP

NP

piano

oACC

hiita

v

T

C C

T

v

gaNOM

Taroo

hiita

oACC

piano

→
C

v

gaNOM oACC

Figure 1: Left: phrase structure tree. Right: dependency
tree and tier projection enforcing accusative constraint.
Nodes of category K, C, and v are projected. It is re-
quired that every o has a ga among its left sisters.

KP asymmetrically c-commands the object KP.
(1) Taroo

Taroo
ga/*o
NOM/ACC

piano
piano

o/*ga
ACC/NOM

hiita.
played

‘Taroo played the piano.’

On the right of Figure 1 is the dependency tree
corresponding to the phrase structure tree, along
with the case tier projection. Each node in the de-
pendency tree is a lexical item, taking the place
of a head and all of its projections in the phrase
structure tree. v has two daughters, correspond-
ing to its specifier (the subject, headed by the case
marker) and its complement (VP, headed by the
verb). Other nodes have only a single child, corre-
sponding to their complements. A full dependency
tree would display the features of each node; for
brevity I omit everything but the node label and
relevant features such as case, using the category
as the label of empty elements such as C/T/v.

This brings us to the tier projection. The general
approach taken in this paper will be to construct
a tier such that all nominals in some case licens-
ing domain become daughters of the domain node,
and to state the constraints on case configurations
over the daughter strings of the domain nodes. In
the present example, the relevant constraint (sim-
plified) is that the accusative marker o must be
c-commanded by nominative ga in the same clause.
To enforce this constraint, we project a tier which
includes all nodes of category v, K, and C. Since
dominance and precedence are preserved, ga and o
become daughters of v. We then require that ga be
a left sister of o.3 The TSL grammar for the daugh-
ter string language of v will thus ban substrings
such as o ga. The full analysis, which contains

3In principle it is possible for a left sister on the tier not to
be c-commander in the dependency tree. In practice this turns
out not to be an issue. See Section 4.8 for an example.
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many additional constraints over several tiers, will
be fleshed out in Section 4.

It is worth noting that in an MG dependency tree
all elements appear in the position of first merge—
when a nominal has moved, such as by passiviza-
tion or scrambling, only its base position is consid-
ered for purposes of case licensing. This assump-
tion has been adequate for all phenomena examined
in this framework to date, and it also seems to be
appropriate for case in Japanese. Scrambling, for
example, is widely understood to preserve case
marking. Even when a certain case correlates with
movement (as in some analyses of differential ob-
ject marking), it is usually possible to predict the
case of nominal based on its context and its other
features (e.g. definiteness). Since this issue does
not arise in the Japanese data, I say no more here.

3 Basic case patterns

Japanese has four core cases, marked by the suf-
fixes ga (nominative), o (accusative), ni (dative),
and no (genitive). Their prototypical functions are
similar to German and other Indo-European lan-
guages: subjects receive nominative case, direct
objects receive accusative, and indirect objects re-
ceive dative, while complements and possessors of
nouns are genitive. Examples of simple intransitive
(2a), transitive (2b), and ditransitive sentences (2c)
are given below, along with examples of a nomi-
nal complement (2d) and possessor (2e).4 All ex-
amples are presented in topic-less sentences since
topic marking masks the underlying case.5

(2) a. Taroo
Taroo

ga
NOM

hasitta.
ran

‘Taroo ran.’
b. Taroo

Taroo
ga
NOM

piano
piano

o
ACC

hiita.
played

(=1)

‘Taroo played the piano.’
c. Jin

Jin
ga
NOM

Yumi
Yumi

ni
DAT

hon
book

o
ACC

ageta.
gave

‘Jin gave Yumi a book.’
d. Taroo

Taroo
ga
NOM

[yama
mountain

no
GEN

e]
picture

o
ACC

mita.
saw

‘Taroo saw a picture of a mountain.’
e. Taroo

Taroo
no
GEN

hon
book

‘Taroo’s book’

4Data is adapted from (Miyagawa, 1989) unless noted
otherwise.

5Abbreviations: NOM = nominative, ACC = accusative,
DAT = dative, LD = lexical dative, GEN = genitive, APPL =
applicative, NPST = non-past, PASS = passive, IPASS = indirect
passive, CAUS = causative.

In general, nominative, accusative, and dative
case are available for arguments of verbs, and the
number of arguments predicts what their cases
should be: if there is one argument then it is nomi-
native; if there are two then the latter is accusative,
and if there are more than two then the middle nom-
inals are dative. This is also true for complex verbal
predicates, with some complications (discussed in
Sections 4.6 and 4.7). Conversely, arguments of
nouns are usually genitive no matter how many
there are. An example of a noun phrase multiple
genitive arguments is given in (3) below.
(3) Taroo

Taroo
no
GEN

yama
mountain

no
GEN

e
picture

‘Taroo’s picture of a mountain’

While these are the canonical patterns, several
others are possible. Some transitive verbs take a
dative object rather than the usual accusative (4a).
Additionally, stative verbs such as dekiru ‘can do’
take a nominative object, and allow dative and/or
nominative for the subject (this varies depending
on the exact verb), yielding dative-nominative (4b)
and double nominative (4c) structures. Transitive
adjectives and complex verbs formed with a stative
suffix also allow nominative objects.
(4) a. Taroo

Taroo
ga
NOM

Yumi
Yumi

ni
DAT

atta.
met

‘Taroo met Yumi.’
b. Yumi

Yumi
ni
DAT

tenisu
tennis

ga
NOM

dekiru.
can.do

‘Yumi can play tennis.’
c. Yumi

Yumi
ga
NOM

tenisu
tennis

ga
NOM

dekiru.
can.do

‘Yumi can play tennis.’

Of the four cases, nominative has the widest
distribution. As we will see later (Sections 4.5 and
4.7), it can also be replaced with another case when
a verb or adjective and its arguments are embedded
in a larger structure. Thus, it makes sense to treat
nominative as the default case, appearing when no
other condition applies.

To briefly summarize, the case that marks a nom-
inal in some domain depends primarily on (1) the
category of the domain and (2) the position of that
nominal relative to others in the domain. Addi-
tionally, certain predicates specify that one of their
arguments must be dative rather than the case that
would otherwise be expected. Specifically, we
could say that accusative and genitive are struc-
tural cases (i.e. licensed by the structural context);
some instances of dative are structural while oth-
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ers are lexical (licensed by specific lexical items);
finally, nominative is the default.

I am not aware of any work in the syntactic
literature that analyzes the entire case system of
Japanese in this manner. However, the individ-
ual patterns are well-known, and the analysis is a
direct application of ideas from dependent case the-
ory (Marantz, 2000; Baker and Vinokurova, 2010).
The primary purpose of this paper is to show that
the generalizations outlined above are easily im-
plemented using a TSL grammar, and that they
can be extended to more complex constructions
with little or no modification. As a computational
analysis, it essentially descriptive in nature, and
in principle compatible with a variety of theories
of case licensing. At the same time, most of the
patterns discussed here (or close analogues) can
also be found in other rich case-marking languages,
so there is good reason to believe that the approach
should generalize beyond Japanese.

4 Analysis

4.1 Preliminaries
In this section, I will formalize the generalizations
made in the previous section. To begin, I lay out
a few syntactic assumptions. First, clauses are as-
sumed to have the following functional hierarchy:

C > T > (PASS) > (CAUS) > v > (APPL) > V
In essence, this is a modern version of the “bi-

clausal” analysis for the passive and causative
constructions. These heads may be considered
subtypes of v, labeled separately for convenience.
Next, goals of ditransitive verbs may appear in two
positions: low goals are PP daughters of VP, while
high goals are KP daughters of an applicative head
(Miyagawa and Tsujioka, 2004). This fact will be
relevant to the analysis of passivization in Section
4.6. Finally, nominals are treated as NPs, with case
markers occupying a higher KP.6

The remainder of this section is structured as fol-
lows. First, I introduce three tree tiers correspond-
ing to structural cases licensed in the verbal do-
main, the nominal domain, and lexical case. Next,
I consider more complex constructions, including
embedded clauses, passives, and causatives, mak-
ing several small revisions. From there, I refine the
analysis to handle adjuncts, and address a potential
problem involving coordination.

6PPs take an NP complement instead of a KP. PPs may
alternatively be analyzed as KPs bearing semantic case. Such
cases do not need to be licensed syntactically.

4.2 Accusative and structural dative case
First, we define a tier to license structural cases
in the verbal domain: accusative and dative. On
this tier we project non-stative v and all K heads.
We also project C heads in order to limit the case
licensing domain to a single clause; while v in the
embedded clause will normally do this, it will not
always be present on the tier.

The constraints on the tier are, roughly: (1) the
rightmost of two or more K children of v must bear
accusative, (2) the middle of three or more K heads
must bear dative, and (3) no other K heads may
bear accusative or dative. Other K heads are un-
derspecified; if not specified as genitive or lexical
dative on the relevant tiers they become nomina-
tive by default. This includes all subjects as well
as objects of stative verbs (since stative v is not
projected).

An example for the simple transitive sentence
in (1) is given in Figure 2a. Since non-stative v is
projected, the tier is unchanged from the example
in Section 2.2. The daughter string of v satisfies the
constraints just mentioned: the accusative K is the
rightmost of two K children of v and the nominative
K meets the elsewhere criterion. Further examples
of well/ill-formed tiers are given in Figures 2b and
2c, respectively.

We must also take into account the fact that lex-
ical datives are allowed as direct objects. It turns
out that many verbs are compatible with either an
accusative or dative object, with a difference in
temporal properties (cf. Fukuda, 2007); I assume
such verbs to be optional licensors of lexical dative
case. The full tier definition is given below.7

(5) Verbal case tier (initial version)
Project categories: {v[-stat], K, C}
Daughter string languages:
v: {NOM,GEN,LD} · (DAT∗ · {ACC,LD})
K/C: {ACC,DAT}∗

For clarity, all daughter string languages are de-
fined using regular expressions. Since it may not
be immediately obviously that these languages are
TSL (or SL), I also provide grammars for the verbal
tier:

• The daughter string language of v is SL-2. The
grammar (set of forbidden substrings) is
{$ DAT, $ ACC, NOM NOM, NOM GEN, GEN

7String languages are notated using regular expressions.
NOM/ACC/etc. stand for a K head bearing said case. A dot (·)
represents concatenation. Set braces represent a choice among
alternatives. An overbar represents set complement.
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C

T

v [-stat]

gaNOM

Taroo

hiita

oACC

piano

→
C

v [-stat]

gaNOM oACC

(a) Dependency tree and verbal case tier
for a transitive sentence. The subject li-
censes the accusative object to its right.

C

v [-stat]

gaNOM

C

v [-stat]

gaNOM niDAT oACC

C

v [-stat]

noGEN oACC

C

gaNOM gaNOM

(b) Other licit verbal case tiers. From
left to right: intransitive verb, ditransitive
verb, genitive subject, stative verb.

C

v [-stat]

oACC

C

v [-stat]

gaNOM oACC oACC

C

v [-stat]

oACC gaNOM

C

v [-stat]

gaNOM gaNOM

(c) Examples of illicit verbal case tiers. In
order: lone accusative, double accusative,
accusative before nominative, non-stative
double nominative.

Figure 2: Examples of licit and illicit verbal case tiers.

NOM, GEN GEN, DAT $, DAT NOM, DAT GEN,
ACC NOM, ACC GEN, ACC DAT, ACC ACC,
ACC LD, LD NOM, LD GEN, LD LD}.

• The daughter string language of K/C is SL-1.
The grammar for this language is {ACC, DAT}.

Small modifications to the verbal case tier will
be required; the revised tier definition is given in
Section 4.7. Also, while the current daughter string
languages are SL, they will later be converted to
TSL to accommodate adjuncts (Section 4.8).

4.3 Genitives
Next, we turn to genitives, which have the simplest
distribution: as a first approximation, all KPs in the
domain of a nominal are genitive, and no others.
We construct the genitive tier as follows:
(6) Genitive case tier (initial version)

Project categories: {N, K, C}
Daughter string languages:
N: {GEN,N,C}∗
K/C: {GEN}∗

The tier projection for (2d), in which the object
nominal contains a genitive complement, is shown
in Figure 3a. There is only a single K child the
noun e ‘picture’, and it bears GEN as required, so
the tier is well-formed. There are no restrictions
on the other KPs, though they could of course be
ruled out on other tiers.

Subjects of certain embedded clauses appear in
genitive case, an apparent exception to the current
tier definition; this will require modification as dis-
cussed in Section 4.5. Another issue worth noting
is that the particle no can appear between PPs and
their head nouns, as in example (7) below. This
no is traditionally considered to be a marker of ad-
nominal modification rather than a case particle.
Fortunately, we can abstract away from this issue.
If these instances of no are case particles, then they

still adhere to the constraint as stated; if not, then
the constraint simply does not apply.
(7) otera

temple
e
to

no
NO

michi
road

‘the road to the temple’

4.4 Lexical datives
The third case tier controls the distribution of lex-
ically dative-marked nominals. While we could
reasonably leave lexical case to be handled by the
selection (i.e. subcategorization) mechanism, it is
worth demonstrating that both structural and lex-
ical case can be regulated in a unified manner if
desired. Lexical dative may be assigned to an ar-
gument of either v or V depending on the verb, but
only v appears on the verbal case tier, so a new tier
is required which projects both. On this tier, ver-
bal heads licensing a lexical dative KP must have
exactly one such daughter; lexical dative KPs may
appear nowhere else. The tier is defined as follows:
(8) Lexical case tier

Project categories: {v, V, K, C}
Daughter string languages:
v/V (LD licensor): {LD}∗ · LD · {LD}∗
v/V (non-LD licensor): {LD}∗
K/C: {LD}∗

The tier projection for (4a), in which the verb
requires a lexical dative object, is given in Figure
3b. The only KP child of V is a lexical dative, so
the tier is well-formed. If the dative licensor was v
then the subject would need to be dative instead.

While it might be desirable to use the same fea-
ture for both structural and lexical datives, this
would prevent structural datives from being ruled
out in subject and direct object position. Since
lexical datives differ in behavior from other nom-
inals (they cannot be passivized in Japanese, for
example), such a distinction seems appropriate. In
effect, we are treating structural and lexical dative
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C

T

v

gaNOM

Taroo

mita

oACC

eN

noGEN

yama

→

C

gaNOM

Taroo

oACC

eN

noGEN

yama

(a) Genitive tier for nominal complement.

C

T

v

gaNOM

Taroo

attaLD

niLD

Yumi

→

C

v

gaNOM attaLD

niLD

(b) Lexical case tier for dative object verb.

C

T

v

gaNOM

Ken

itta

toC

T

v

kuru

gaNOM

Eri

→

C

v

gaNOM toC

v

gaNOM

(c) Verbal case tier for embedded CP.

Figure 3: Example tier projections for genitive and lexical dative, and an embedded clause.

as different cases.
One question that this analysis raises is what

should happen if there are two KP children of the
same lexical dative case licensor, in particular V.
As far as I am aware, this situation never arises in
Japanese. If it does in other languages, then the
grammar must specify which KP should be dative.

Now, having defined three tiers modeling the
canonical uses of the four core cases, we will con-
sider more complex structures, and see that the
system can handle them with minimal adjustment.8

4.5 Embedded clauses
There are several types of finite embedded clauses
in Japanese. By default, these show the same case
marking as matrix clauses, but under certain cir-
cumstances the embedded subject may be marked
accusative or genitive.

We will first confirm that the analysis works
correctly for the basic pattern. Examples of two
types of finite embedded clauses are given in (9)
below. Here, to is analyzed as a complementizer,
while koto is a noun taking a CP complement.

8As noted by a reviewer, it has been suggested for phonol-
ogy that when a dependency involves multiple tiers, the tier
alphabets are either nested or disjoint, but never incomparable
(Aksënova and Deshmukh, 2018). Since lexical dative is al-
ways assigned locally the tier projection could be expanded
to all categories (in effect, an SL tree grammar), making it a
superset of the others. It may also be possible to combine the
verbal and genitive case tiers into a single tier, in which case
the generalization would be upheld. But generally speaking
we when we look at the whole system (not just case licensing)
we expect overlapping tiers (Thomas Graf, p.c.).

(9) a. Ken
Ken

ga
NOM

[Eri
Eri

ga
NOM

kuru
come

to]
C

itta.
said

‘Ken said that Eri will come.’
b. Eri

Eri
ga
NOM

[Ken
Ken

ga
NOM

tegami
tegami

o
ACC

okutta
sent

∅]
C

koto
thing

o
ACC

sitteiru.
know

‘Eri knows that Ken sent the letter.’

Since we project C on the tier, a new case domain
is created for each embedded clause, resulting in
the same case configuration as in a matrix clause.
As an example, the tier projection for sentence (9a)
is shown in Figure 3c. While projecting C may
seem redundant, it is necessary because v is not
projected on the verbal tier when it is stative. It also
provides the basis for the analysis of the alternative
case marking patterns, which we now turn to.

In the Japanese ECM construction, the embed-
ded subject appears to take accusative case (10).
If this nominal was a matrix object binding a pro
subject in the embedded clause (a prolepsis anal-
ysis) then there would be nothing to explain, but
Kishimoto (2018) argues that at least some ECM
subjects are genuine. Similarly, in ga-no conver-
sion the subject of a nominal clause takes genitive
case (11). Both structures are also grammatical
with a nominative embedded subject.
(10) Finite ECM (Kishimoto 2018)

Ken
Ken

ga
NOM

[Eri
Eri

{ga/o}
{NOM/ACC}

kawaii
be.cute

to]
C

omotteiru.
think

‘Ken thinks that Eri is cute.’
(11) Ga-no conversion (Maki and Uchibori 2008)

Eri
Eri

ga
NOM

[Ken
Ken

{ga/no}
{NOM/GEN}

kita
came

∅]
C

riyuu
reason

o
ACC

sitteiru.
know

‘Eri knows the reason that Ken came.’

This variable cross-clausal case marking may
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C[–ECM]

T

v

gaNOM

Ken

omotteiru

toC[±ECM]

T

kawaii

oACC

Eri

↗

↘

C[–ECM]

v

gaNOM toC[–ECM]

gaNOM

C[–ECM]

v

gaNOM oACC

Figure 4: Verb case tier for embedded clause with and
without ECM. C[+ECM] is not projected, so the embed-
ded subject becomes part of the higher case domain.

seem mysterious, but in fact all that is needed to
derive the patterns is to selectively ignore the em-
bedded C head. The easiest way to do this is to
posit that the relevant lexical predicates may select
a C head with a special feature, call it [ECM]. Such
C heads are not projected, similar to our treatment
of stative verbs. This approach also has precedent
in work which attributes variation in cross-clausal
dependencies to the feature composition of the com-
plementizer (cf. Lohninger et al., 2022). Indeed,
Hiraiwa (2001) claims that ga-no conversion in-
volves a special complementizer.

Example tier projections for (10) are shown in
Figure 4 (the treatment of (11) is exactly parallel).
Revised tier definitions are provided in Section 4.7.
For simplicity, I treat the subject of an adjective
as its complement, and ignore the aspectual mor-
phology of omotteiru. All said, the facts about
embedded clauses are handled quite well under the
TSL perspective.

4.6 Passives
Next, we examine complex predicates within a sin-
gle clause, formed with the passive suffix -rare
and the causative suffix -sase. The passive suffix
itself has at least two functions: the direct passive,
which decreases the valency of a transitive verb
by eliminating the agent, and the indirect passive,
which increases valency. The literature disagrees
on exactly how many distinct lexical items exist
(see Ishizuka 2017 for an overview). I assume two
homophonous passive suffixes corresponding to
the two major functions. Recall also that I assume
these suffixes to realize distinct functional heads,
though the analysis could also work with verbs
bearing ‘passive’ and ‘causative’ features.

The direct passive will be the focus on this sec-

tion; the indirect passive will be discussed together
with causatives. An example is given in (12).
(12) Active/passive transitive verb

a. Sensei
teacher

ga
NOM

gakusei
student

o
ACC

hometa.
praised

‘The teacher praised the student.’
b. Gakusei

student
ga
NOM

(sensei
teacher

ni)
by

homerareta.
praised.PASS

‘The student was praised (by the teacher).’

The object of a passivized transitive verb is pro-
moted to the subject, and receives nominative case.
These facts are straightforwardly understood under
the common assumption that agent is not projected
in Spec-vP in passives, and that the optional by-
phrase is an adjunct PP. Miyagawa (1989) argues
that this is indeed the case in Japanese.

For ditransitive verbs, there are two possibili-
ties: either the (higher) goal is promoted, or the
(lower) theme is promoted. Example (13) shows an
active ditransitive verb along with the correspond-
ing goal (13b) and theme (13c) passives (optional
by-phrases are omitted).
(13) Active/passive ditransitive verb

a. Mari
Mari

ga
NOM

kodomo
child

ni
DAT

okasi
candy

o
ACC

ataeta.
gave

‘Mari gave the child candy.’
b. Kodoma

child
ga
NOM

okasi
candy

o
ACC

ataerareta.
gave.PASS

‘The child was given candy.’
c. Okasi

candy
ga
NOM

kodomo
child

ni
DAT

ataerareta.
gave.PASS

‘The candy was given to the child.’

The goal passive (13b) requires no special expla-
nation assuming that dative case here is structural.
Once the agent is eliminated, there are only two
arguments, effectively creating a transitive verb.
There is an elegant solution for the theme passive as
well. Recall that the goal of a ditransitive verb may
occupy one of two positions, and that the higher po-
sition is a KP while the lower position is a PP. Thus,
it should be possible to target the direct object for
promotion by selecting the low goal structure. So
we see that the facts about passives fall out natu-
rally in this analysis. Dependency trees and verbal
case tiers for the ditransitive goal passive and theme
passive are shown in Figure 5.

4.7 Causatives
As our final case study, we consider the causative
construction. The causative morpheme sase is com-
patible with verbs of any valency. Causative equiv-
alents of the examples in (2) are given in (14) be-
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C

T

rare

v

VAppl

gaNOM

kodomo

V

oACC

okasi

→
C

v

gaNOM oACC

C

T

rare

v

V

niP

kodomo

gaNOM

okasi

→
C

v

gaNOM

Figure 5: Verbal case tiers for passives of ditransitive.
Left: goal passive (goal is a KP). Right: theme passive
(goal is a PP).

low. The causee of an intransitive verb may be
accusative or dative, corresponding to the make or
let interpretations, respectively. For other verbs the
causee must be dative, and either interpretation is
possible. I set aside these semantic details.
(14) a. Ken

Ken
ga
NOM

Taroo
Taroo

{ni/o}
DAT/ACC

hasiraseta.
ran.CAUS

‘Ken made/let Taroo run.’
b. Ken

Ken
ga
NOM

Taroo
Taroo

ni
DAT

piano
piano

o
ACC

hikaseta.
played.CAUS

‘Ken made/let Taroo play the piano.’
c. Ken

Ken
ga
NOM

Jin
Jin

ni
DAT

Yumi
Yumi

ni
DAT

hon
book

o
ACC

agesaseta.
gave.CAUS

‘Ken made/let Jin give Yumi a book.’

In an intransitive sentence the causee may be
dative without an accompanying accusative object,
suggesting lexical dative case. Additional argu-
ments appear in the expected cases, suggesting that
these are the usual structural cases. But in the
present system it is the causer that would receive
dative case from sase, not the causee. Furthermore,
it is possible to passivize a causative, in which case
the causee becomes nominative like any other struc-
turally case-marked nominal, as shown in (15).
(15) Taroo

Taroo
ga
NOM

(Ken
Ken

ni)
by

hasiraserareta.
run.CAUS.PASS.PAST

‘Taroo was made to run (by Ken).’

There are several possible solutions. One is to
add additional case tiers corresponding to each
functional head, allowing each to restrict the case
of the first K child of that head. So, a new causative
tier would determine the case of causee, leaving
the case of the causer up to the next higher tier.
While this is technically possible, a more elegant
solution makes use of the context-sensitive nature
of Graf’s (2018) tier projection and daughter string

functions in the definition of the verbal case tier.
We select the highest v head in each clause, that is,
the one selected by T, increasing the context to a
window of height 2. Then, we let the identity of
the v head determine its daughter string language.

The indirect passive (adversative passive) can
be handled in the same manner. Examples of this
construction are given in (16) below.
(16) a. Ken

Ken
ga
NOM

Taroo
Taroo

ni
DAT

hasirareta.
run.PASS.PAST

‘Ken was annoyed by Taroo running.’
b. Ken

Ken
ga
NOM

Taroo
Taroo

ni
DAT

piano
piano

o
ACC

hikareta.
play.PASS.PAST

‘Ken was annoyed by Taroo playing the piano.’

Unlike in the causative construction, the embed-
ded subject always receives dative case. We define
the daughter string language of the indirect passive
head accordingly. The revised definitions for both
the verbal and genitive tiers are given in (17) below.
A comparison of the old and new verbal case tier
is shown in Figure 6.
(17) Verbal case tier (revised)

Project categories:
{v[-stat]/CAUS/IPASS daughter of T, K, C[–ECM]}
Daughter string languages:
v: {NOM,GEN,LD} · (DAT∗ · {ACC,LD})

CAUS: {NOM,GEN} ·
{

{ACC,DAT}
DAT∗ · {ACC,LD}

}

IPASS: {NOM,GEN} ·
{

DAT
DAT∗ · {ACC,LD}

}

K/C: {ACC,DAT}∗
(18) Genitive case tier (revised)

Project categories: {N, K, C[–ECM]}
Daughter string languages:
N: {GEN,N,C}∗
K/C: {GEN}∗

4.8 Adjuncts
Adjuncts such as adverbs and PPs interfere with
the tier constraints as currently defined, since there
is in principle no bound to the number that may
appear in any given case domain. We would like
to ignore them since their presence does not affect
case licensing. However, we cannot omit them on
the tree tiers because any K heads they dominate
would be interspersed among the daughters of a
higher head. Instead, we must modify the daughter
string languages, converting them from SL to TSL
languages and ignoring adjuncts at this stage.
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C

T

sase

gaNOM

Ken

v

niDAT

Jin

VAppl

niDAT

Yumi

V

oACC

hon

↗

↘

Original tier
C

gaNOM v

niDAT niDAT oACC

Revised tier
C

sase

gaNOM niDAT niDAT oACC

Figure 6: Original verbal case tier (top right) and revised
version (bottom right) for causative ditransitive. In the
original analysis, the causee (Jin) is the first K child of
v, where it cannot be dative. In the revised version, all
verbal arguments are daughters of sase, allowing the
causee to be assigned dative in the usual manner.

To see why this works, recall again the form
of the daughter string language of v on the verbal
case tier, which (simplified) has the form a(b∗c).
Representing adjuncts by the symbol x and allow-
ing them to occur anywhere, our string language is
now x∗a((x∗b)∗x∗c)x∗. If we project a tier omitting
x then the tier language is once again a(b∗c).

While I cannot go into detail for reasons of space,
the approach I have in mind makes use of category-
preserving selection by means of adjunctizer heads.
For example, the adjunctizer head for adjectives se-
lects for categories A and N and itself is an N. The
number of such heads in any MG lexicon is finite.
We add all such heads to all tree tier projection
functions, but omit them from them the daughter
string tier projection function as just described.

4.9 Coordination
Due to the complexity of the data and the number of
theories of coordination, it is beyond the scope of
this paper to consider these in any depth, but I wish
to at least outline the general problem and what it
means for the analysis. Essentially, coordination
is a problem when it splits a case domain, such as
when a vP contains a coordinated VP. When we
project the verbal case tier, the children of both Vs
all end up as daughters of v; this predicts a change
in case marking, which is contrary to fact.

Does this issue actually arise in Japanese? Per-
haps not. Japanese allows coordination of TP and
vP but not VP, and subjects may optionally remain
in situ (cf. Hirata, 2006, and references therein).
This means that whether each verb phrase has its
own subject (remaining in situ), or both share a sin-
gle subject (raised via across-the-board movement),
there is no conflict. In a language similar where VP

coordination is possible, we would need to restruc-
ture the analysis to include additional nested case
domains (we avoided this earlier for the passive and
causative constructions by using structure-sensitive
tier projection). Should this prove unfeasible, this
seems to be the most likely way in which the tree
tier-based analysis could be invalidated.

It is at this point that I should note an alternative
generalization of TSL to trees based on so-called
c[ommand]-strings which, roughly speaking, en-
code chains of c-commanding elements (Graf and
Shafiei, 2019). Because the present analysis al-
ready operates by collecting nominals in the daugh-
ter string of the case licensing domain node, it
should be straightforward to recast it in terms of
c-strings. This new version would also be robust
against the domain-splitting problem presented by
coordination. I leave the investigation of this possi-
bility to future work.

5 Conclusion

In this paper, I developed a TSL analysis of
Japanese case, and showed that the descriptive gen-
eralizations are captured neatly with a system of
three tiers and a small number of constraints, and
that the analysis extends with minimal modifica-
tion to a wide range of constructions. The analysis
is simple in computational terms and concise as a
description of the case patterns of Japanese. These
results support the proposal that the syntactic dis-
tribution of morphological case is TSL.

As mentioned earlier, the case patterns discussed
in this paper also have close parallels in other lan-
guages. In particular, ergative case as analyzed in
dependent case theory fits neatly into the current
system, as does variation in case marking accord-
ing to tense or aspect. It seems likely that this type
of computational analysis can bring insight into our
understanding of case marking across languages.
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Abstract

This paper provides an algebraic characteriza-
tion of the total input strictly local functions.
Simultaneous, noniterative rules of the form
A→B/C D, common in phonology, are defin-
able as functions in this class whenever CAD
represents a finite set of strings. The algebraic
characterization highlights a fundamental con-
nection between input strictly local functions
and the simple class of definite string languages,
as well as connections to string functions stud-
ied in the computer science literature, the def-
inite functions and local functions. No effec-
tive decision procedure for the input strictly
local maps was previously available, but one
arises directly from this characterization. This
work also shows that, unlike the full class, a
restricted subclass is closed under composition.
Additionally, some products are defined which
may yield new factorization methods.

1 Introduction

The strictly local languages are those in which
membership is decidable by the substrings up to
some fixed width k of its words (McNaughton and
Papert, 1971; Rogers and Pullum, 2011). Such lan-
guages are useful in the description of phonotactic
patterns. Edlefsen et al. (2008) demonstrated that
75% of the patterns in the StressTyp2 database of
stress patterns (Goedemans et al., 2015) are strictly
local for k less than or equal to 6, reminiscent of
Miller’s Law on working memory, that an aver-
age person can hold roughly seven plus or minus
two objects in short-term working memory (Miller,
1956). Even k ⩽ 3 suffices to capture nearly half of
the patterns (see also Rogers and Lambert, 2019).

Chandlee et al. (2014) define the input strictly
local functions to extend this notion to maps. They
provide an efficient learner identifying functions
in this class in the limit from positive data alone,
using polynomial time and space. These mappings
describe phonologically natural processes in which
the output associated with a particular input sym-
bol is uniquely determined by some local context
around that symbol. Evidencing this naturality, 95
percent of maps in the P-Base database of phono-
logical patterns (Mielke, 2008) lie in this class
(Chandlee and Heinz, 2018). Related to this are
the output strictly local maps, in which the out-
put contributed by an input symbol is determined
by the most recent symbols in the previous output
(Chandlee et al., 2015).

One aspect of the study of formal languages is a
deep connection between logic, automata, and alge-
bra (Pin, 1997). Many classes of formal languages
are characterized by decidable properties of an alge-
braic structure associated with each language in the
class. The connection between algebraic structures
and string languages can be extended to string-to-
string maps based on the transducers that generate
them (Filiot et al., 2016; Lambert, 2022).

This paper is structured as follows. Determinis-
tic (sometimes called “unambiguous”) finite-state
acceptors (DFA) and transducers as well as the al-
gebraic structures they induce are described in sec-
tion 2. The formal definition of input strictly local
maps is provided in section 3. The primary result,
an algebraic characterization of this class, is given
there alongside the polytime decision algorithm
that it induces. This section also draws the connec-
tion to research in computer science which studied
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these functions under different names. Next in
section 4 we discuss closure properties and an algo-
rithm for composing transducers. We demonstrate
that input strictly local functions are not closed
under composition, but a subclass of them is so
closed. Other operations under which the full class,
perhaps with extensions, is closed are discussed in
section 5. We conclude with discussion of these
results in section 6.

2 Structures and Machines

A semigroup is a set S closed under some binary
operation · (often denoted by adjacency) which is
associative: a · (b · c) = (a · b) · c. Given some
finite alphabet Σ, the set of all nonempty sequences
made up of those letters forms a semigroup with
the concatenation operation. This is the free semi-
group generated by Σ. A monoid is a semigroup
in which there exists some element e such that for
all x, e · x = x · e = x. Typically this identity
element is represented by 1. The free semigroup
generated by Σ can be adapted to the free monoid
generated by Σ by including the empty sequence
(denoted by λ), the identity for concatenation. The
free semigroup and free monoid generated by Σ
are often denoted Σ+ and Σ∗, respectively.

A formal language L over Σ is some subset of
this free monoid. Two useful equivalence relations
can be defined based on L. Nerode equivalence is
defined such that a N∼ b iff for all v ∈ Σ∗ it holds
that av ∈ L ⇔ bv ∈ L (Nerode, 1958). This is
often called the Myhill-Nerode equivalence rela-
tion, as the well-known Myhill-Nerode theorem
states that a language is regular iff its set of equiv-
alence classes is finite. However, Myhill used a
finer partition to achieve the same result: Myhill
equivalence is defined such that a M∼ b iff for all
u ∈ Σ∗, ua N∼ ub; alternatively, for all u, v ∈ Σ∗,
uav ∈ L ⇔ ubv ∈ L (Rabin and Scott, 1959).
Being a coarser partition, N∼ can never define more
classes than M∼, and the number of classes defined
by M∼ is in the worst case exponential in that de-
fined by N∼ (Holzer and König, 2004), so finiteness
in one translates to the other.

2.1 Illustrating Nerode and Myhill Relations

Consider the example language over {a, b, c} con-
sisting of all and only those words that do not con-
tain an ab substring. Consider which classes must
exist. JabK is the set of words containing an ab
substring. These are rejected, and no suffix can

save them. So if x, y ∈ JabK, for all v it holds
that xv ̸∈ L and yv ̸∈ L. All of these words
are related, and distinct from any accepted words.
But the accepted words partition into two classes:
words that end in a (JaK) and others (JλK). The for-
mer are rejected after adding a b suffix, while the
latter remain accepted after adding a b suffix. No
suffix distinguishes words within these classes, so
the three can define a minimal DFA for L (Nerode,
1958), as will be discussed shortly.

There are then at least three Myhill classes. But
some classes split. An a prefix distinguishes the
strings a and ba, and this generalizes. The class of
accepted words ending in a splits to two: words
ending in a that begin with b (JbaK) and other words
ending in a (JaK). The other class of accepted
words splits to three: words beginning in b (JbK),
nonempty words not beginning in b (JcK), and the
empty word (JλK). An a prefix distinguishes the
first of these from the other two, while the a b
circumfix distinguishes the last from JcK. The six
M∼ classes are JλK, JaK, JbK, JcK, JbaK, and JabK.

The N∼ classes may have ill-defined concatena-
tion. If u N∼ u′, then uv N∼ u′v (it is a left congru-
ence), but it may be that v N∼ v′ while uv ̸N∼ uv′ (it
is not a right congruence). In the current example,
b N∼ c but ab ̸N∼ ac. In contrast, M∼ is compatible
with concatenation (it is a congruence): if u M∼ u′

and v M∼ v′, it follows that uv M∼ u′v′. That means
these equivalence classes form the elements of a
submonoid of Σ∗. The quotient monoid Σ∗/M∼
(these equivalence classes under concatenation) is
the syntactic monoid of L. If L is a regular lan-
guage, then this is the smallest monoid which can
be used as a DFA accepting L (Rabin and Scott,
1959). The syntactic semigroup is Σ+/M∼.

A string language is rational if and only if it
has finitely many Myhill classes (Rabin and Scott,
1959). A variety of finite semigroups is a class
closed under subsemigroup, quotients and finitary
direct product (Pin, 1997). This implies closure un-
der Boolean operations. Eilenberg’s theorem states
that these varieties uniquely define subclasses of
rational languages (Eilenberg and Schützenberger,
1976). As we explain later they can also charac-
terize subclasses of rational functions, such as the
input strictly local functions.

2.2 String Acceptors

A DFA is a five-tuple ⟨Σ, Q, δ, q0, F ⟩ where Σ is a
finite alphabet, Q a finite state set, δ : Σ×Q→ Q
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Figure 1: A DFA forbidding ab substrings induced by
N∼ (above) and M∼ (below). States are labeled by class
representatives. Doubly circled states are accepting and
extra thick borders designate initial states.

a transition function, q0 an initial state, and F a
set of accepting states. A word is read one symbol
at a time. If computation is in state q, the remain-
ing string is σw, and δ(σ, q) = r, then after one
step, the computation will be in state r with re-
maining string w. Given the equivalence classes
under N∼ or M∼, we can construct such an acceptor.
Σ is the alphabet, Q the set of equivalence classes,
δ(σ, q) the equivalence class of qσ, q0 whichever
class contains the empty sequence, and F the set
of equivalence classes containing accepted words.
Hopcroft and Ullman (1979) discuss a dynamic
programming algorithm to reduce an arbitrary DFA

to that induced by N∼. Another procedure, which
will be described later, derives the Myhill relation
from this form.

Figure 1 shows the acceptors induced by N∼ and
M∼ for the example language over {a, b, c} in which
no word contains an ab substring. That induced by
M∼ is a right Cayley graph of the syntactic monoid
(see Zelinka, 1981), augmented with information
about whether classes are accepting.

2.3 String-to-String Transducers
Oncina et al. (1993) discuss one method of general-
izing these acceptors into functions. A sequential
transducer is a five-tuple ⟨Σ,∆, Q, δ, q0⟩, where
Σ is the alphabet of the input, ∆ that of the output,
Q a finite set of states, δ : Σ×Q→ ∆∗×Q a tran-
sition function, and q0 an initial state. This behaves
like an acceptor, where all strings in the domain are
accepted and every edge traversed appends to an
accumulating output. Sequential functions are total.
A subsequential transducer generalizes this by as-
sociating outputs with states (Oncina et al., 1993);
if an input word ends in state q, the output receives

the suffix associated with q. The function σ map-
ping states to suffixes is added as a sixth element:
⟨Σ,∆, Q, δ, q0, σ⟩. The names and order of these
components here are not the same as those used in
the original work, but seem to have become com-
monly used in later work. Adding another element,
a string prefixed to all output strings, adds nothing
because it could be added to each edge out of q0 and
to that state’s output. So in this work, this univer-
sal prefix π will be assumed: ⟨Σ,∆, Q, δ, q0, π, σ⟩.
This change leaves most definitions unaffected.

Bruyère and Reutenauer (1999) argue that the
subsequential notion is more deserving of the sta-
tus as the basic object, and refer to such functions
as simply sequential, a practice followed by Lom-
bardy and Sakarovitch (2006), among others. A
subsequential machine is equivalent to a sequen-
tial machine over a larger alphabet that includes
explicit boundary symbols, and a well-formed ver-
sion of the latter can be rewritten as the former.
Given this bijection, the remainder of this work
will follow this recent notational trend.

Sequentiality may depend on the direction in
which the input is read. Iterative regressive har-
mony patterns cannot be described by left-to-right
sequential functions as they admit unbounded delay
between seeing a harmonizing symbol and finding
the trigger that determines its surface form (Heinz
and Lai, 2013; Mohri, 1997). However, this pro-
cess can be expressed as a right-to-left sequential
function. This is equivalent to reversing the output
of a left-to-right transducer applied to the input’s
reversal. Or one could say the machine reads the
string from right to left, prefixing to the output. If
SQ is the sequential class, we denote the left-to-
right class→SQ and its right-to-left variant←SQ,
with the arrow indicating directionality.

The longest common prefix (denoted lcp) of a
set of strings S is the unique string u such that
u is a prefix of every string in S and that u is
longer than every other string u′ which prefixes
every string in S. A transducer is onward if it emits
output as early as it can: for all states p, lcp({y ∈
∆∗: δ(a, p) = ⟨y, q⟩} ∪ {σ(p)}) = λ. The Nerode
equivalence relation extends naturally to functions
by means of the tails of input strings. The set
of tails of x in a function f , Tf (x), is defined as
follows:

Tf (x) = {⟨y, v⟩: f(xy) = lcp(f(xΣ∗))v}.
Two strings are related iff their tails are equal. We
write this relation as N∼, emphasizing connection to
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Nerode equivalence for string sets. A transducer
in canonical form is onward and has one state per
N∼ class. A two-sided extension generalizes Myhill
equivalence. The contexts of x in f are as follows:

Cf (x) = {⟨w, y, v⟩: f(wxy) = lcp(f(wxΣ∗))v}.

The subset where w = λ is essentially equivalent
to Tf (x), so the M∼ relation derived from C forms,
as with string sets, a refinement of N∼.

2.4 Monoids from Canonical Machines

The canonical form of a machine derives states
from the N∼ relation. The M∼ relation accounts for
the influence of prefixes. So, to construct a machine
over M∼ from a canonical machine, i.e. to construct
a right Cayley graph of its associated monoid, we
look to see where each input symbol takes each
of the states. In other words, what is the action of
each symbol over the states? This is the transition
congruence (Filiot et al., 2016). McNaughton and
Papert (1971) use this same construction.

Consider the automata of Figure 1. Assign an
arbitrary number to each state of the automaton
induced by N∼: JλK is 1, JaK is 2, and JabK is 3.
Denote by ⟨x, y, z⟩ the function mapping 1 to x,
2 to y, and 3 to z. The identity function, ⟨1, 2, 3⟩,
corresponds to λ. From there, a, b, and c act as
⟨2, 2, 3⟩, ⟨1, 3, 3⟩ and ⟨1, 1, 3⟩, respectively. The
complete structure extends from these. Consider
ab: this first applies the a mapping, then applies
that of b to its result. So ⟨1, 2, 3⟩ maps first to
⟨2, 2, 3⟩ by a then to ⟨3, 3, 3⟩ by b. By the same
process, we find that aa = ca = a, ac = cb =
cc = c, bb = bc = b and ba is a new state ⟨2, 3, 3⟩.
Extending ab = ⟨3, 3, 3⟩ and ba = ⟨2, 3, 3⟩, we
find ab·a = ab·b = ab·c = ba·b = ab, ba·a = ba
and finally ba · c = b. Iteration generated no new
states, so the process is complete. This conforms
to the structure shown in Figure 1, whose Cayley
graph is shown at the top in Table 1.

Note that the complement of the language forbid-
ding ab substrings – the language of words with ab
substrings – shares the same syntactic semigroup.
This holds in general: an automaton and its com-
plement share the same algebraic structure, as state
parity is independent from the actions of transitions.
It follows that classes defined purely by semigroup
properties must be closed under complement.

Now consider the transducer of Figure 2. This
transducer is a representation of intervocalic voic-
ing, a phonological process where voiceless obstru-

a b c ab ba
a a ab c ab ab
b ba b b ab ba
c a c c ab a

ab ab ab ab ab ab
ba ba ab b ab ab

T V D VT
T D V D VT
V VT V D VT
D D V D VT

VT D V D VT

Table 1: The Cayley table for the syntactic semigroups
in Figure 1 (above) and Figure 2 (below).

ents become voiced between vowels. As a phono-
logical rule this is T→D/V V. For example, this
transducer maps the string TVTVD to TVDVD.

The transducer above is in canonical form, where
each state represents one N∼ class. State 2 is all
those strings that end in V, state 3 those ending
in VT, and state 1 all others. The five actions are
the identity ⟨1, 2, 3⟩ corresponding to λ, ⟨1, 1, 1⟩,
⟨1, 3, 1⟩, and ⟨2, 2, 2⟩ corresponding to D, T, and
V, respectively, and finally ⟨3, 3, 3⟩ for VT. One
can verify that for each class, some context distin-
guishes its words from words in each other class,
and that no context distinguishes words within a
class. For example, a V V context separates
λ and T, as for λ the following V contributes V
alone while for T it contributes DV. Technically,
⟨V,V,V⟩ ∈ C(λ) while ⟨V,V,DV⟩ ∈ C(T), but
by determinism the triples are unique in their first
two components. A VT λ context separates λ
and D, as the λ contributes T to the former but λ
to the latter. That no context distinguishes strings
within a class is guaranteed by the construction.
The Cayley graph corresponding to the monoid in
Figure 2 is shown at bottom in Table 1.

This construction appears to discard output in-
formation, but it is recoverable. Outputs may be
compatibly assigned to the states and edges and the
result used as a transducer. Its structure is the same
as that of the string language in which all words
end in “VT”. This notion of structural equivalence
gives rise to a deep theory of function complexity.

2.5 Definite Algebraic Structure

A string language L is definite if can be defined
by a finite set X of permitted suffixes: L = {wv :
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Figure 2: Transducer and monoid for “T becomes D
directly between two V”.

w ∈ Σ∗, v ∈ X} (Perles et al., 1963). The class of
definite languages is denoted D. Because X is a
finite set it holds some longest string of length n.
Whether a string belongs to L can be decided by
examining its last n symbols. Such languages are
called n-definite. More generally, as the canonical
acceptor for a definite language processes strings,
the states correspond to strings in Σn representing
the most recent history. In the sense of Jurafsky
and Martin (2008) then, the state space of definite
languages is Markovian.

The definite languages were one of the early
classes of formal languages to be given an algebraic
characterization (Brzozowski and Simon, 1973; Br-
zozowski and Fich, 1984). Many algebraic struc-
tures are defined in terms of idempotents. An ele-
ment e of a monoid is idempotent if e · e = e. As
an example, the idempotents of the syntactic semi-
groups shown in 1 are {a, b, c, ab} and {V,D,VT},
respectively. Denote by E the set of idempotents.

An algebraic property characterizes exactly the
definite languages (Brzozowski and Simon, 1973;
Brzozowski and Fich, 1984). Syntactic semigroups
of definite languages have the property that for all
e ∈ E, x ∈ S, it holds that xe = e, often written
Se = e with universal quantification left implicit.

The string language which forbids ab substrings
is not definite. This follows from the algebraic
characterization and from the Cayley table for this
language in Table 1. While b is an idempotent
(since b · b = b), a · b = ab ̸= b. Thus Se ̸= e.

For intervocalic voicing it holds that Se = e for
all its idempotents e ∈ {V,D,VT}. One verifies
this by examining their columns in the Cayley table
in Table 1. As its minimal transducer processes
input, the most recently read symbols fix its state.

The syntactic semigroups such that Se = e form
the variety D (Brzozowski and Simon, 1973; Brzo-
zowski and Fich, 1984). It follows they are closed
under subsemigroup, quotients, finite direct prod-
ucts, and thus the Boolean operations. This variety
has played a key role in developing an algebraic the-
ory of recognizable languages (Straubing, 1985).

3 Input Strictly Local Functions

Chandlee et al. (2014) define input strictly local
transducers by a restriction on the tails, inducing
a canonical structure. A function is input strictly
local iff for some natural number k, the function is
definable by a sequential transducer whose states
are labeled by Σ<k, q0 is the state labeled by λ, and
edges are of the form δ(a, q) = ⟨w,Suffk−1(qa)⟩.
The suffix function is defined as expected:

Suffn(w) =





λ if n ⩽ 0,
w if |w| ⩽ n,
v if w = uv for u ∈ Σ∗, v ∈ Σn.

This canonical form is a monoid. The operation
u · v = Suffk−1(u · v) is associative, and λ is the
identity. Let f be a function,

−→
S and

←−
S be the semi-

groups of the left-to-right and right-to-left trans-
ducers associated with f , respectively, and e range
over idempotents of the appropriate semigroup.

Theorem 1. The following are equivalent:

• f is a total input strictly local function

• f is→ D:
−→
S e = e

• f is← D:
←−
S e = e

Proof. The nonidentity idempotent elements of this
monoid are Σk−1, as if x ∈ Σk−1 we have x =
Suffk−1(x) = Suffk−1(xx) and if x ∈ Σ<k−1 we
instead have x ̸= Suffk−1(xx). If x ∈ Σk−1 we
have that Suffk−1(ux) = x for all u ∈ Σ∗, so for
all elements s it holds that s·x = x. In other words,
Se = e for all idempotent elements e in the syntac-
tic semigroup (which excludes the identity). This
is the property characterizing definite languages,
defined by a set of permitted suffixes (Brzozowski
and Simon, 1973; Brzozowski and Fich, 1984).

The directionality statement follows from the
fact that input strictly local functions are not direc-
tional (Chandlee and Heinz, 2018).

The canonical form of an input strictly local
transducer is the same as that of a definite string
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language (Perles et al., 1963). Both are defined
by the k most recent symbols encountered fixing
the state, with no long-distance effects. Indeed,
this class has been discussed as the definite (Krohn
et al., 1967; Stiffler, 1973) or local (Vaysse, 1986)
functions decades before Chandlee et al. (2014)
introduced them to linguists as input strictly local.

We invoke this characterization of input strictly
local functions as definite structures to provide an
effective decision procedure for the class. First, it
is converted to a canonical sequential form by the
algorithm of Mohri (1997). If conversion fails, the
map is certainly not in the class, as it is not even
sequential. Otherwise, the syntactic semigroup is
constructible by the algorithms shown in section 2
(McNaughton and Papert, 1971). Finally one needs
only to check that for each idempotent e and each
element s, se = e. Recall that the identity is in the
semigroup iff it is reachable by a nonempty string.

Strictly local string languages follow the same
structure but additionally allow transition to a re-
jecting sink in lieu of some otherwise expected
transitions. These changes do not necessarily re-
tain the algebraic structure, but a semigroup can be
regenerated by the usual method. Accounting for
whether a factor in some fixed set has ever occurred
admits some long-distance dependency.

4 Composing Functions

Closure properties provide important insight into
classes of languages. An intersection-closed class
admits new patterns satisfying its properties defined
by coöccurrence of patterns in that class. Many sub-
regular classes are so closed, and learning a strictly
piecewise pattern as a coöccurrence of constraints
has proven more effective than learning a single pat-
tern (Heinz and Rogers, 2013). (Pseudo)varieties
of finite semigroups are closed under finitary prod-
ucts, subsemigroups, and quotients (Eilenberg and
Schützenberger, 1976). Intersections and unions
of automata are computed from a product, extract-
ing the reachable subsemigroup and minimizing
the result by a quotient. Automata share structure
with their complements, so varieties define classes
closed under Boolean operations. The property
defining definite languages, that Se = e for all
idempotents e, yields a variety, D, of finite semi-
groups. These languages are then Boolean-closed.

If coöccurring factors are a basic unit of string
languages, composed rules might be a basic unit of
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Figure 3: ISL is not composition-closed.

functions. Let δ∗ denote the transitive closure of δ:

δ∗(w, x) =





⟨λ, x⟩ w = λ

⟨uv, y⟩ w = aw′, a ∈ Σ,

⟨u, x′⟩ = δ(a, x),

⟨v, y⟩ = δ∗(w′, x′)

Then if f = ⟨∆,Γ, Qf , δf , q0f , πf , σf ⟩ and g =
⟨Σ,∆, Qg, δg, q0g, πg, σg⟩, the composition f ◦ g
computes the result of applying f to the output
of g. This composition is effectively constructible
(Mohri, 1997). A construction is as follows:

f ◦ g = ⟨Σ,Γ, Qf ×Qg, δ◦, qi, πfα, σ◦⟩
⟨α, r⟩ = δ∗f (πg, q0f )

qi = ⟨r, q0g⟩
δ◦(a, ⟨m,n⟩) =

{〈
w, ⟨s, t⟩

〉
: δg(a, n) = ⟨u, t⟩,
δ∗f (u,m) = ⟨w, s⟩

}

σ◦(⟨m,n⟩) = σf (δ
∗
f (m,σg(n))1)

This composition is not a direct product in the
algebraic sense. The state space is the product
space, but the action is not the natural pointwise ac-
tion defining the direct product. Thus, composition
closure is not free and in general does not hold.

The transducers shown in Figure 3 exhibit this
nonclosure for definite functions. The first, A, is
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simultaneous application of two rules, D→T/TV
and T→D/DV , a voicing assimilation across a
single vowel. Then B is a vowel-span truncation:
V→∅/V . By applying B and then A, the con-
text in which T or D changes becomes unboundedly
long. The strings Vn and DVn have the same n-
suffix for any n, but a suffixed T contributes a T to
the first and a D to the latter. The two have differ-
ing tails, failing to satisfy input strict locality. In
semigroup terms, V is idempotent as V and VV lie
in the same class, but DVV is DV and not V. Thus
Se ̸= e and the function is not definite. In fact, the
resulting monoid is not even locally a semilattice
(locally testable, Brzozowski and Simon, 1973) nor
J -trivial (piecewise testable, Simon, 1975). It is
everywhere-idempotent, which in string languages
would imply definability in two-variable first-order
logic of general precedence alone (Brzozowski and
Fich, 1984; Kufleitner and Weil, 2010).

One subclass of definite functions is composition
closed: that where only bounded spans may delete.

Theorem 2. If f and g are definite functions and if
all input sequences of length k to g are guaranteed
to produce nonempty output, then f ◦ g is definite.

Proof. If f is m-definite, g is n-definite, and in-
put sequences of g are guaranteed to contribute
nonempty output after at most k symbols, then af-
ter mk input symbols, g must have produced at
least m intermediate output symbols. This fixes the
state in f . The state of g is fixed after n or more
symbols. So the degree of definiteness of f ◦ g is
at most the greater of n and mk.

Corollary 1. The subclass of definite functions
deleting only bounded spans is composition closed.

Proof. If f and g are definite and guarantee
nonempty output after reading at most k and ℓ sym-
bols, respectively, then f◦g yields nonempty output
after reading at most ℓk symbols. The composition
remains in this subclass.

The machines of Figure 3 do not compose to a
definite machine because unbounded spans of V
delete, collapsing to just V no matter their length.

Many phonologically relevant patterns lie in this
subclass, including some that optimality theory has
struggled to analyze (Chandlee et al., 2018). Inter-
consonantal schwa deletion, intervocalic voicing,
and word-final devoicing are each computed by
transducers where all input sequences of length
two contribute nonempty output. In this order, their

composition is shown in Figure 4, and it is definite
of degree four: every string of length three synchro-
nizes the machine. Moreover all length four input
sequences produce nonempty output.

Readers familiar with the literature on local func-
tions may recall results that seem stronger than
our Theorem 2. For example, Sakarovitch (2009,
p. 664) states that if g is a proper local function of
degree d and f a local function of degree d′, then
the composition f ◦ g is local of degree d+ d′. In
that work, a proper local function is one in which
no deletion occurs. This is a more restrictive con-
straint than our own, as we allow for deletion in
bounded spans. Similarly, Vaysse (1986, p. 168)
states that the composition of any local function f
of degree d and any local function g of degree d′

is local of degree d+ d′ − 1. This, however, takes
place in a richer setting in which transitions not
only might append symbols to the output, but also
might delete previous symbols. Neither previous
result is directly applicable here.

5 Other Kinds of Operations

Although a subclass of the definite functions is
closed under composition, the class as a whole is
not. In general, function composition does not pre-
serve algebraic properties. This section discusses
a general type of machine that unifies transducers,
DFAs, weighted automata, and more. Operations
on these general automata that behave like prod-
ucts will preserve algebraic properties and allow
complex systems to be factored in an algebraically
natural way. Some such operations are shown here.

The outputs of a transducer influence its semi-
group structure only by preventing state merges.
Mohri (Lothaire, 2005) describes a more general
notion of a transducer whose outputs are elements
in some semiring rather than mere strings. Se-
quential transducers are input-deterministic, so the
operation combining paths is unnecessary. We can
think about machines whose output lies in some
monoid. Standard transducers satisfy this property:
if the output alphabet is ∆ then the output monoid
is ∆∗ under concatenation.

Consider then a system in which the output
monoid is not ∆∗ but regular languages over ∆.
The form of the output is irrelevant, but for con-
creteness suppose we are dealing with DFAs over
∆. A definite transducer may be translated directly
into this form by replacing the output strings with a
DFA accepting that string alone, with one state more

31



: e

:T :D e

:T :D e

T

D:λ

V, e

T

D:λ
V

e:λ
T

D:λ

V: eV, e: ee

T:λ

D:λ

V, e

T:TT

D:T
V:DV

e:λ

T:TT

D:T
V:D eV, e:D ee

T:DT

D

V:DV

e:λ

T:DT

D

V:D eV, e:D ee

Figure 4: Interconsonantal schwa deletion, then intervocalic voicing, then word-final devoicing, all composed.

than the string’s length. We define three distinct
products over this structure: pointwise evaluation,
union, and parallel application with preference. In
the following discussion, machines are defined with
an output monoid in place of an output alphabet.

If we have f = ⟨Σ,∆∗, Qf , δf , q0f , πf , σf ⟩ and
g = ⟨Σ,Γ∗, Qg, δg, q0g, πg, σg⟩, we define their
pointwise evaluation product, f ⊙ g, as follows:

f ⊙ g =
〈
Σ,∆∗ × Γ∗, Qf ×Qg, δf⊙g,

⟨q0f , q0g⟩, ⟨πf , πg⟩, σf⊙g

〉
,

where σf⊙g(⟨q, r⟩) = ⟨σf (q), σg(r)⟩, pointwise
application of suffixing, and if δf (a, q) = ⟨u, q′⟩
and δg(a, r) = ⟨v, r′⟩ then δf⊙g(a, ⟨q, r⟩) =
⟨⟨u, v⟩, ⟨q′, r′⟩⟩. The operation is pointwise con-
catenation: ⟨a, b⟩ · ⟨c, d⟩ = ⟨ac, bd⟩. The pair that
f ⊙ g derives from an input w juxtaposes the result
of applying f to w or that of applying g to w.

Let AX represent the DFAs over alphabet X . If
we have f = ⟨Σ,A∆, Qf , δf , q0f , πf , σf ⟩ and g =
⟨Σ,AΓ, Qg, δg, q0g, πg, σg⟩, we define the unioned
product of f and g, f ⊡ g as follows:

f ⊡ g =
〈
Σ,A∆∪Γ, Qf ×Qg, δf⊡g,

⟨q0f , q0g⟩, {πf , πg}, σf⊡g

〉
,

where σf⊡g(⟨q, r⟩) = {σf (q), σg(r)}, the union
of the outputs of the two suffixing functions, and
if δf (a, q) = ⟨u, q′⟩ and δg(a, r) = ⟨v, r′⟩ then
δf⊡g(a, ⟨q, r⟩) = ⟨u ∪ v, ⟨q′, r′⟩⟩. Every input
symbol admits choice, applying either f or g.

For homogeneous functions we have a final oper-
ation: apply both at once, outputting from the left

machine if it changes the input, else from the right
machine. Let f = ⟨Σ,Σ∗, Qf , δf , q0f , πf , σf ⟩ and
g = ⟨Σ,Σ∗, Qg, δg, q0g, πg, σg⟩, and define this
change-preferring product as follows:

f♢g =
〈
Σ,Σ∗, Qf ×Qg, δf♢g,

⟨q0f , q0g⟩, πf♢g, σf♢g

〉
,

where πf♢g is equal to πf unless that is λ in which
case it is equal to πg, and similarly σf♢g(⟨q, r⟩) is
equal to σf (q) unless that is λ in which case it is
equal to σg(r), and finally if δf (a, q) = ⟨u, q′⟩
and δg(a, r) = ⟨v, r′⟩ then δf♢g(a, ⟨q, r⟩) =
⟨w, ⟨q′, r′⟩⟩, where w = v if u = a or else w = u.
For two processes that do not affect one another,
this is algebraic-property preserving composition.

These combinators are built on the product con-
struction that Rabin and Scott (1959) and Hopcroft
and Ullman (1979) use for unions or intersections
of DFAs. The transition semigroup of the result
is the product of those of the inputs. Definite ma-
chines are defined by a variety, and so are product
closed, which means the ⊙, ⊡, and ♢ combinators
yield definite machines from definite inputs.

Consider then that deletion of schwa between
two consonants is definite, defined by the rule

e→∅/C C. This is a definite function, by the con-
struction used by Chandlee (2014). The identity
function is also definite, having but a single state.
Applying ⊡ yields the (definite) deterministic ra-
tional relation of Figure 5 implementing optional
interconsonantal schwa deletion. Some determinis-
tic rational relations have been studied (Beros and
de la Higuera, 2016), and this algebraic perspective
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Figure 5: Optional schwa deletion between consonants.

offers a general mechanism for dealing with them.

6 Conclusion

Input strictly local maps suffice to describe a
large portion of phonological processes. They
are definite functions (Krohn et al., 1967; Stiffler,
1973). They are local functions (Vaysse, 1986;
Sakarovitch, 2009). Given a minimal sequential
finite-state transducer representing a mapping, we
showed that it is decidable in time polynomial in
the size of the transition semigroup of the machine
whether the process is input strictly local: all idem-
potents must be right zeros. Using this characteri-
zation, we have shown that this class of functions
cannot be closed under composition, but that this
closure does hold for a restricted subclass in which
deletion may occur only in bounded spans.

In these functions, only a local context around
a symbol can influence its output. They do not
exhibit the long-distance effects that strictly local
string languages allow, where a single factor might
cause computation to fall into a sink state for the
remainder of the run. Definite languages are all
strictly local, but so are, say, reverse definite lan-
guages. These have the opposite characterization,
defined by semigroups where eS = e. These are
the functions where Prefk−1(u) = Prefk−1(v) im-
plies u N∼ v, that T (u) = T (v).

Current research involves exploring the func-
tion analogues of some of the other classes that
correspond to subregular string languages, such
as these reverse definite functions, and classify-
ing natural language patterns accordingly (Lam-
bert, 2022). Additional lines of future research
include better understanding how algebraic proper-
ties can fuel grammatical inference of string func-
tions (de la Higuera, 2010), and the factorization
of string functions into component parts along the
lines of Rogers and Lambert (2019).
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Abstract

Maltese is often described as having a hybrid
morphological system resulting from exten-
sive contact between Semitic and Romance lan-
guage varieties. Such a designation reflects an
etymological divide as much as it does a larger
tradition in the literature to consider concate-
native and non-concatenative morphological
patterns as distinct in the language architecture.
Using a combination of computational mod-
eling and information theoretic methods, we
quantify the extent to which the phonology and
etymology of a Maltese singular noun may pre-
dict the morphological process (affixal vs. tem-
platic) as well as the specific plural allomorph
(affix or template) relating a singular noun to its
associated plural form(s) in the lexicon. The re-
sults indicate phonological pressures shape the
organization of the Maltese lexicon with predic-
tive power that extends beyond that of a word’s
etymology, in line with analogical theories of
language change in contact.

1 Introduction

Maltese is a Semitic language that has been shaped
by an extensive history of contact with non-Semitic
languages. A large influx of Sicilian, Italian, and
English words over the course of hundreds of years
has influenced the Maltese lexicon and grammar,
making it a prime case study for those interested in
the effects of language contact on morphological
systems. Semitic languages are notable for their
use of root-and-pattern (a.k.a. templatic) morphol-
ogy in which inflectional or derivational forms of
a lexeme may be related via the non-concatenative
interleaving of consonants and vowels. In Mal-
tese, some lexemes of non-Semitic origin have inte-
grated into the native morphology to take both con-
catenative as well as non-concatenative patterns of
Semitic origin. Non-Semitic morphological mark-
ers have also entered the grammar and may be
found on lexemes of both non-Semitic and Semitic
origin.

This study applies methods from computational
modeling and information theory to investigate fac-
tors shaping the organization of the modern Mal-
tese lexicon. Contextualized within frameworks of
analogical classification and usage-based accounts
of contact-induced language change, we quantify
the extent to which the phonology and etymology
of Maltese lexemes are predictive of nominal plural
inflection in the language. The results indicate that
system-level phonology, hypothesized to capture
analogical pressures, and etymology, hypothesized
to capture conservative pressures that resist ana-
logical change, are predictive of Maltese plural
inflection in non-redundant ways, with phonology
being more predictive than etymology overall.

Because Maltese is a Semitic language, we are
also interested in the extent to which these fac-
tors are predictive of the type of morphology (ei-
ther concatenative or non-concatenative) relating
singular-plural pairs in the language. Our results
show that both phonology and etymology are twice
as predictive of a lexeme’s plural allomorph(s) as
compared to its concatenative type. This suggests
that the analogical processes hypothesized to in-
form speakers’ morphological intuitions are most
sensitive to phonological similarities across surface
forms, regardless of typological differences dis-
tinguishing concatenative and non-concatenative
relationships. This study provides quantitative evi-
dence for the role of analogical classification based
on phonological similarity at the word level as a
structuring principle of Maltese nominal plural mor-
phology.

2 Morphology in Contact: Maltese as a
“Hybrid” Language?

Maltese is a descendant of the Siculo Arabic vari-
ety spoken by settlers of the Maltese islands begin-
ning in the year 1048 (Fabri, 2010; Brincat, 2011).
While the language is Semitic with respect to its
genetic classification, isolation and centuries of for-

35
Proceedings of the Society for Computation in Linguistics (SCiL) 2023, pages 35-46.

Amherst, Massachusetts, June 15-17, 2023



eign colonization led to the development of Maltese
as a distinct language shaped by Sicilian, Italian,
and English influence. Written records from as
early as 1240 acknowledge Maltese as its own lan-
guage (Brincat, 2017), but it was not until 1934 that
Maltese was declared an official language of Malta,
along with English and Italian (Fabri, 2010). Ital-
ian was revoked as an official language in 1936, but
its influence on the Maltese lexicon and grammar
remains.

Much of the existing literature on Maltese de-
scribes the language as having a “split lexicon” or
a “hybrid morphology” (e.g., Spagnol, 2011; Borg
and Gatt, 2017). These characterizations reflect an
etymological divide in the lexical stock. Semitic
nouns in the language mostly form the plural with
Semitic affixes or root-and-pattern templates, while
non-Semitic nouns show a less strong tendency
to form the plural with non-Semitic affixes. At
the same time, hundreds of non-Semitic nouns in-
flect using Semitic patterns and are found in nearly
all plural classes (Borg and Azzopardi-Alexander,
1997). Integration in the opposite direction is also
found for a smaller number Semitic nouns which
inflect using non-Semitic affixes. Maltese thus rep-
resents a partial, but not total, example of what
has variously been called a “stratal effect” (Gar-
dani, 2021) or “code compartmentalization” (Fried-
man, 2013) or “compartmentalized morphology”
(Matras, 2015), in which native and borrowed mor-
phological exponents in a language are restricted
to applying to lexemes of the same etymological
origin.

It is common in contact linguistics to describe
outcomes of language contact as compositions of
distinct linguistic systems, even in cases of ex-
tensive borrowing or codeswitching (e.g., Myers-
Scotton, 1997; Gardani, 2020). Such descriptions
are sometimes intended as theoretical analyses. For
example, Gardani (2021) treats the stratal effect not
simply as an empirically observable pattern, but as
a synchronic constraint within the grammar that is
psychologically real for speakers: “... a restriction
on the application domain of non-native morpho-
logical formatives in a recipient language...” (Gar-
dani, 2021, 132) that enforces the boundaries of
etymologically-defined morphological subsystems.

However, we find the a priori assumption that
stratal effects reflect distinct and psychologically
real morphological subsystems to be problematic
inasmuch as it conflates the property to be ex-

plained – that language contact can result (to
greater or lesser degree) in compartmentalized mor-
phology – with the mechanisms that produce and
reinforce that compartmentalization. Stated differ-
ently, reification of the stratal effect as a mecha-
nism of the grammar obscures important questions:
Given that speakers do not generally know the ety-
mological origins of words, how do they classify
words into morphological patterns? What is the
relationship between the processes that they use
to do this and the stratal effect (or lack thereof)
as an empirically observable outcome of language
contact?

In this study we examine the (partial) stratal ef-
fect found in Maltese noun morphology, examining
its relationship to factors known to be important
outside of contact situations to how speakers clas-
sify words into morphological patterns. In partic-
ular we analyze the relative strength of a word’s
phonology and etymology as predictors of its nom-
inal plural morphology and look at the relevance
of these factors for the organization of the Maltese
lexicon. It is important to note that we are not inter-
ested in etymology directly and we do not assume
that speakers have or use direct knowledge of the
etymology of words. We instead use etymology
as a way to estimate the influence of conservative
forces on morphological classification. We assume
that the predictive power of etymology applies to
words which have retained their etymological plu-
rals, in some cases resisting pressures to conform
to other parts of the language system. The conser-
vative forces which resist these pressures include
token frequency (Krause-Lerche, 2022).

Additionally, as a related question, we ask
whether there is evidence in Maltese for distinct
morphological subsystems (“hybrid morphology”)
in theoretical terms. This question is interesting in
part because characterizations of Maltese as having
hybrid morphology have also suggested, sometimes
explicitly, that the non-concatenative morphology
native to Semitic languages should be analyzed
as distinct from concatenative morphology, both
Semitic and non-Semitic. Moreover, research on
morphological integration in Semitic languages has
tended to focus specifically on the extent to which
foreign words make use of native root-and-template
morphology, as compared to affixation (e.g., Ben-
soukas, 2018; Ziani, 2020). However, since the vast
majority of suffixal allomorphs in Maltese are of
Semitic origin, division of the lexicon along etymo-
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logical lines does not correspond to a split accord-
ing to concatenative vs. non-concatenative mor-
phology, as is sometimes implied. We test whether
morphological type is a distinct factor in the stratal
effect. Specifically, we ask whether there is sup-
port for analyzing root-and-pattern (templatic) plu-
ral morphology and affixal plural morphology as
distinct subsystems.

We compare the results of two models: the first
uses a lexeme’s phonology and etymology to pre-
dict its concatenative type, either affixal or tem-
platic. The second uses the same information to
predict its inflectional allomorph, i.e., the specific
affix or template found on the lexeme’s plural form.
Comparisons across factors within each model pro-
vide insight into the extent to which phonology and
etymology are informative about plural morphol-
ogy, and thus are likely to have played a role in
the development of the language over centuries of
contact with speakers of non-Semitic languages.
Comparisons across the two models offer insight
into the extent to which templatic and affixal mor-
phological patterns operate as distinct subsystems
in Maltese.

3 Analogy and Language Change

We take an analogical approach, using the term
analogy to refer broadly to any similarity-based,
paradigmatic influence of one word on the mor-
phological behavior of another. The importance
of analogy as a mechanism of language change is
well established in the field of historical linguistics
(Anttila, 1977; Hock, 1991; Fertig, 2013; Joseph,
2013), but it is most often discussed with respect to
its role in language-internal change, independent of
the effects of language contact. In contact linguis-
tics, the idea that (phonologically-based) analogy
plays a role in whether and how borrowed words
are morphologically integrated into a recipient lan-
guage has a long history, going back to at least
Haugen (1950) and Weinreich (1953). However,
most analyses of lexical and morphological borrow-
ing focus on the potential and observed outcomes
of contact (see Matras and Adamou, 2020, for an
overview), often with little to no discussion of the
exact ways in which analogy is hypothesized to
play a role.

To examine the role of analogy, we take a cue
from Matras (2009), who proposes a usage-based
model of language contact in which a multilingual
individual draws on a unified repertoire of linguis-

tic resources. In this section we elaborate on how
such a perspective can help in understanding the
role of analogy, specifically analogical classifica-
tion, in contact-induced morphological change and
the development of the Maltese lexicon.

3.1 The Paradigm Cell Filling Problem
Analysis of the analogical mechanism hypothe-
sized to drive morphological integration in contact
may be understood as an extension of the Paradigm
Cell Filling Problem (PCFP), a line of research in
theoretical morphology that seeks to identify the in-
formation available to speakers that allows them to
infer and produce grammatically inflected surface
forms (Ackerman et al., 2009). Most quantitative
analyses of the PCFP to date take an analogical ap-
proach: speakers are hypothesized to rely on emer-
gent similarities and paradigmatic relations among
previously-acquired words in the lexicon to inform
their intuitions when inflecting or processing rare
or novel word forms (see, e.g., Ackerman et al.,
2009; Sims and Parker, 2016; Guzmán Naranjo,
2020; Parker et al., 2022).

Matras’s (2009) usage-based model of language
contact is directly compatible with analogical ap-
proaches to the PCFP. Since multilingual speakers
are assumed to have access to a unified linguistic
repertoire corresponding to all of their languages,
this full repertoire may be drawn upon to make
morphological generalizations. Combinations of
generalizations from different languages during
speech production may result in linguistic inno-
vations or morphologically adapted “nonce bor-
rowings” (Poplack et al., 1988). Over time, some
of these may be conventionalized and perpetuated
throughout the larger speech community, leading
to contact-induced language change.

We may therefore specify the PCFP with respect
to language contact as follows: what guides speak-
ers’ grammatical intuitions when adapting and inte-
grating lexemes in multilingual contexts, and how
may conventionalized integration of borrowed lin-
guistic material affect the intuitions of a monolin-
gual speaker when producing inflected word forms?

3.2 Computational Modeling of the PCFP
A number of recent studies in computational lin-
guistics have applied machine learning methods
to analyze the kinds and amounts of information
that may be available to speakers when solving
the PCFP (in monolingual contexts). For exam-
ple, Guzmán Naranjo (2020) uses a Long Short-
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term Memory Network (LSTM, Hochreiter and
Schmidhuber, 1996) to quantify the respective in-
formativity of stem phonology, lexical semantics,
and affixal exponents as predictors of nominal in-
flection class organization in Russian. His results
indicate that while each factor contributes predic-
tive information, more information about inflection
class is contributed by stem phonology than by any
individual affix. Furthermore, the contributions of
the three predictors are additive, indicating a level
of nonredundancy in their informativity.

Williams et al. (2020) also employ the represen-
tational power of an LSTM to quantify the extent
to which phonology and lexical semantics are pre-
dictive of a noun’s declension class in German and
Czech. As opposed to model accuracy, they mea-
sure the amount of Mutual Information, in bits,
shared by phonology, semantics, and declension
class systems in each language. They find that,
while phonology is more predictive than semantics
overall in both languages, the relative informativity
of phonology and semantics varies greatly across
the two languages and across individual declension
classes within each language.

Dawdy-Hesterberg and Pierrehumbert (2014)
take an analogical approach to modeling plural
formation in Modern Standard Arabic. The authors
use a Generalized Context Model (GCM, Nosofsky,
1990) to quantify the extent to which phonological
factors, specifically similarities in consonant-vowel
(CV) template (a.k.a. “broken plural” allomorph),
segmental properties (in terms of natural classes),
and lexical gang size (Alegre and Gordon, 1999),
predict the form of a plural noun in Arabic. Their
results indicate that all three factors are predictive
to varying degrees, suggesting phonological rep-
resentations that are both fine-grained, i.e., at the
segmental level, and coarse-grained, i.e., with re-
spect to gang size and CV template, may serve as a
basis for analogical processing and morphological
organization in Arabic.

Finally, Nieder et al. (2021a,d) use both com-
putational and psycholinguistic methods to inves-
tigate the role of analogical classification in the
nominal plural system of Maltese. The authors
find that plural forms in Maltese may be predicted
with a reasonable degree of accuracy based on their
phonological similarity to attested plural forms,
modulated by the frequency distribution of plural
allomorphs in the language. However, the authors
do not specifically measure etymology as a predic-

tor, leaving open the question of how non-Semitic
words were integrated into the morphological sys-
tem. In other words, it is unclear from their results
whether phonology is predictive independently of
etymology, or only as an indicator of etymological
origin.

4 Methods

The current study adapts the methods proposed by
Williams et al. (2020) to quantify the relative contri-
butions of phonology and etymology as predictors
of inflectional organization in Maltese. We use a
character-level LSTM classifier trained to make
inferences about a word’s plural class by abstract-
ing over the phonology of each word form as a
whole. We then quantify the influence of phonol-
ogy on Maltese nominal plural inflection using Mu-
tual Information, an information theoretic measure
of interpredictability among two or more systems.
We compare our results to the predictive strength
of the word’s etymological origin using the same
measures, quantifying the balance of analogical
and conservative factors hypothesized to shape the
integration of foreign lexemes into the grammar.

4.1 Data

This study merges data from two collections com-
piled by Nieder et al. (2021b,c) into a single
dataset consisting of 3,174 singular-plural noun
pairs. Each pair is tagged for etymological ori-
gin, either Semitic or non-Semitic. The original
data was manually compiled from the MLRS Ko-
rpus Malti v. 2.0 and 3.0 (Gatt and Čéplö, 2013)
and supplemented with Schembri’s (2012) collec-
tion of Maltese CV templates. Etymological in-
formation was sourced from a digitized version of
Aquilina’s (2006) Maltese-English dictionary. Plu-
ral nouns in the data are classified as taking one of
12 different suffixes (“sound plurals”) or 11 differ-
ent non-concatenative CV templates (“broken plu-
rals”), forming a nominal plural inflection system
composed of 23 different inflection classes (Nieder
et al., 2021b). Maltese is the only standardized
Semitic language written in a Latin script, using
an orthography that “represents the phonology of
the language admirably” according to Hoberman
(2007, 258). For this reason, we analyze nouns us-
ing their original orthography, as in Williams et al.
(2020).

Over 135 nouns in the dataset take more than
one plural form. Of these, 78 nouns may take both
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Non-Semitic Semitic Total
Lexeme Lexeme (%)

Non-Semitic
1,274 21 42%Affix

Semitic
416 684 35%Affix

Semitic
240 537 23%Template

Total (%) 62% 38% 100%

Table 1: Distribution of Maltese nominal plural allo-
morphs by lexeme etymology and concatenative type

broken and sound plurals. In this study, we ac-
count for these nouns by representing each pair
separately at the allomorph level, whereas in the
binary prediction model of the lexeme’s concatena-
tive type (concatenative vs. non-concatenative) we
include a noun only once per type. For example,
the word LIBSA ‘dress’ may take the sound plural
libsiet and the broken plurals lbies and lbiesi. The
lexeme LIBSA is therefore included in the model
three times in the allomorph prediction setting, but
only twice in the type prediction setting.

Following Williams et al. (2020), we remove all
classes with fewer than 20 lexemes, leaving a total
of 13 plural allomorph classes in our model. Table 1
shows the full distribution of allomorphs according
to etymology and concatenative type. Note that
lexemes that take more than one allomorph are
counted more than once.

4.2 Formal Notation

Following Williams et al. (2020), we can define a
lexeme as a tuple (wi, ei, ci) where for the ith lex-
eme, wi = the lexeme’s phonological form, ei = the
lexeme’s etymological origin, and ci = the lexeme’s
inflection class. We assume the lexemes follow a
probability distribution p(w, e, c), approximated by
the corpus. We can define the space of K inflec-
tion classes as C = {1, ...,K}, so that ci ∈ C and
define C as the random variable associated with C.
For a set of lexemes derived from N etymological
origins, we can define an etymological space as
E = {1, ..., N} so that ei ∈ E and define E as the
random variable associated with E . Each noun may
be associated with one of two genders gi from the
space of genders G specific to Maltese. Finally, we
define the space of word forms as the Kleene clo-
sure over a language’s alphabet Σ, so that wi ∈ Σ*,

with W as the random variable associated with Σ*.

4.3 Mutual Information (MI)
Mutual Information (MI) is an information theo-
retic measure that quantifies the degree of inter-
predictability among two or more systems. For
example, the MI shared by the nominal plural in-
flection class system C and phonological system
W in Maltese may be calculated as follows:

MI(C;W ) = H(C)−H(C|W ) (1)

This may be generalized to consider the amount
of redundant information shared by inflection class,
phonology, and etymology E as follows:

MI(C;E;W ) = MI(C;W )−MI(C;W |E) (2)

Because a language’s grammatical gender sys-
tem is known to interact with its inflectional mor-
phology in non-deterministic ways (Corbett and
Fraser, 2000), we follow Williams et al. (2020) and
condition all relevant measures on gender:

MI(C;W |G) = H(C|G)−H(C|W,G) (3)

The intuitive reasoning behind Equations 1 - 3
may be seen in Figure 1, in which each colored cir-
cle represents H|G, the total entropy, conditioned
on gender, of the three interacting systems under
analysis.

Finally, since our corpus is only a sample of the
language, we note that all calculations are estimates.
However, while estimates over the finite inflection
class and etymology systems can be empirically
calculated using the corpus, the infinite number
of possible word forms in the Σ* means calcula-
tions involving W must be further approximated.
Methods for estimating the entropy of both kinds
of systems are described in detail in the following
sections.

4.4 Techniques for Estimating Entropy
We use plug-in estimation to obtain entropy values
for C and E, calculating the distribution p(c) for
c ∈ C (or alternatively, p(e) for e ∈ E) and using
this to estimate H(C) in Equation 1 above.

4.5 Approximating Conditional Entropy
H(C|E) may be similarly calculated using plug-
in estimation. However, given the infinite num-
ber of possible word forms in Σ*, an estimate for
H(C|W ) cannot be calculated directly from the
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Figure 1: Tripartite Mutual Information

corpus. We therefore approximate this value us-
ing cross-entropy, which has been mathematically
proven to be an upper bound on conditional entropy
(Brown et al., 1992). We use the cross-entropy
loss obtained from a computational model that has
been trained to predict the plural class ci associ-
ated with a singular noun wi to approximate the
cross-entropy of the system:

H(C|W ) ≤ − 1

M

M∑

i=1

log q(ci|wi) (4)

We note that as the amount of data in the cor-
pus increases, i.e., as M → ∞, the above value
approaches the true cross-entropy value.

4.6 Normalized Mutual Information (NMI)
To compare results across models and across lan-
guages, we normalize MI values by dividing by the
total entropy of the inflection class system. For ex-
ample, the NMI shared by a Maltese noun’s phonol-
ogy and plural inflection may be calculated as:

NMI(C;W ) =
MI(C;W )

H(C)
(5)

4.7 Model Details
We adapt the LSTM classifier implemented in
Williams et al. (2020) to estimate the probability
that a plural class c is associated with a given input
noun w of gender g, i.e., q(c|w, g) in Equation 4.
The model learns a set of character embeddings to
represent the phonological forms of singular nouns
as part of the training process. Gender is separately
embedded and input into the model’s initial hidden

TYPE ALLO.
H(C|G) 0.81 2.65
NMI(C;W |G) 0.21 0.42
NMI(C;E|G) 0.13 0.22
NMI(C;E;W |G) 0.06 0.15
NMI(E;W |G) 0.61 0.61

Table 2: Normalized Mutual Information measures for
plural class C defined with respect to TYPE vs. ALLO-
MORPH. NMI values involving C are normalized with
respect to H(C|G), while NMI(E;W |G) is normalized
with respect to H(E|G).

state. The model is trained using Adam (Kingma
and Ba, 2015) with model hyperparameters, includ-
ing the number of training epochs and the number
and sizes of hidden layers, optimized using the
Bayesian optimization technique implemented in
Williams et al. (2020). The model then learns a
probability distribution that serves to approximate
q(c|w, g).

Following training, we test the model on a held-
out dataset and use the model’s cross-entropy loss
to serve as an approximate upper bound on the
conditional entropy H(C|W,G). We use 10-fold
cross validation to make full use of the dataset
for our approximations. To estimate q(c|w, e, g),
we concatenate a binary character representing the
word’s etymology onto the end of the noun to serve
as model input and follow the same procedure.

5 Results

NMI and H(C|G) values for C defined as concate-
native type and plural allomorph, respectively, are
presented in Table 2. The largest NMI value we
obtain, NMI(E;W |G), indicates that more than
half of the information needed to predict a word’s
etymology is shared with its phonology. In other
words, it is often not difficult to guess the origin of
a Maltese word based on how it sounds. Note that
this value is consistent across models, as it does
not depend on C.

5.1 Concatenative Type

Results for the model predicting a noun’s concate-
native type are in Table 2. Note first that the entropy
H(C|G) of the plural inflection class system de-
fined at the level of concatenative type is calculated
to be 0.81, indicating that, given its gender, predict-
ing whether a random Maltese noun takes concate-
native or non-concatenative morphology is more
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predictable than chance, although not by much.
We find phonology, indicated by NMI(C;W |G),
to be more predictive than etymology, indicated
by NMI(C;E|G). Crucially, each of these bipar-
tite NMI values exceeds the tripartite mutual infor-
mation NMI(C;E;W |G) shared across all three
systems. This indicates that while a non-trivial
amount of predictive information is shared across
all three systems, phonology and etymology are
each predictive of concatenative type in partially
non-redundant ways. This suggests that both ana-
logical and conservative forces are likely to have
played a role in the development of the Maltese
nominal plural system.

5.2 Plural Allomorph

In an analogical model of inflection in which sin-
gular inflected forms and their plural counterparts
share a direct relationship in the lexicon, the predic-
tive principles structuring the morphological sys-
tem are expected to be most evident when defining
an inflection class system at the level of the allo-
morph.

We first note that the entropy H(C|G) calculated
over the plural class distribution defined at the al-
lomorph level is nearly three times as high as the
entropy of C when defined as a noun’s concatena-
tive type. This is reflective of the higher degree of
unpredictability associated with a non-uniform dis-
tribution of nouns over a greater number of inflec-
tion classes. When comparing across the allomorph
and concatenative type models it is thus important
to normalize for the fact that predicting allomorphs
is more difficult than predicting concatenative type.
However, even calculations normalized in this way
show that the interpredictability among phonology,
etymology, and plural inflection, indicated by the
NMI values in Table 2, are all twice as high at the
allomorph level as they are for concatenative type.
In other words, a noun’s singular form reduces the
relative uncertainty about its plural allomorph twice
as much as it reduces the uncertainty about whether
that allomorph is concatenative. This suggests the
analogical and conservative pressures hypothesized
to shape morphological organization are more sen-
sitive to correspondences at the word level than to
typological similarities with respect to concatena-
tivity.

Additionally, the general tendency found at
the level of concatenative type still follows when
classes are defined at the level of individual allo-

morphs: phonology shares more information with
inflection class than does etymology, with each
factor contributing some amount of non-redundant
information. This illustrates one key advantage of
the methods employed in this study, namely the
ability to disentangle the independent contributions
of either predictor from the degree to which both
exert redundant organizational pressure towards the
same end.

For example, given the fact that phonology
and etymology are themselves mutually informa-
tive, we cannot uniquely interpret either bipar-
tite measure of MI, that is, NMI(C;W |G) or
NMI(C;E|G), as indicative of the forces hypoth-
esized to shape the integration of linguistic ma-
terial in contact. Rather, evidence for analogi-
cal structuring of the Maltese plural system at
the allomorph level is specifically indicated by
the positive difference between NMI(C;W |G)
and NMI(C;E;W |G). Conservative pressures,
such as those associated with high token-frequency
items (Krause-Lerche, 2022), are similarly indi-
cated by the extent to which NMI(C;E|G) ex-
ceeds NMI(C;E;W |G).

5.3 Variation Across Allomorph Classes

Closer examination of the model’s predictions re-
veals an effect of type frequency, with larger in-
flection classes predicted more often than smaller
classes. Table 3 reports the accuracy of all models
in which singular noun phonology W is a predic-
tor. Since all models achieve an overall accuracy
above a majority baseline, the NMI values we ob-
tain may be reliably interpreted as empirical min-
imums. However, as can be seen in Figure 2, the
model’s incorrect predictions do not clearly distin-
guish between sound and broken classes; nouns
with a sound plural allomorph may be misclassi-
fied as taking a broken plural template, and nouns
taking a broken plural may be incorrectly predicted
to take a sound plural.

If speakers are sensitive to differences between
concatenative and non-concatenative allomorphs
grouped into high-level macro classes (morpholog-
ical subsystems), we might expect some degree
of observable within-class coherence with respect
to either or both of the phonology and etymology
of words exhibiting a particular morphological be-
havior. Specifically, we would expect a pattern
of predictions in which the LSTM is able to first
identify a lexeme’s concatenative type before pre-
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Target Model Accuracy

ETYM. (E) MI(E;W |G) 0.90
Baseline 0.62

TYPE (C)
MI(C;W |G) 0.80

MI(C;E;W |G) 0.81
Baseline 0.77

MI(C;W |G) 0.65
ALLOMORPH MI(C;E;W |G) 0.68

(C) Baseline 0.40

Table 3: Model accuracy for all models predicting Et-
ymology E or Plural Class C (Type vs. Allomorph)
using the Phonology W of singular nouns in Maltese

dicting, possibly incorrectly, an allomorph of that
specific type.

Figure 2: Confusion matrix: predicting plural allomorph
from singular phonology and gender

Instead, as seen in Figure 2, we do not find such
evidence. Rather, we find evidence for coherence at
the allomorph level, specifically, for phonological
patterns as a predictor of inflectional organization
and driver of inflectional behavior at the allomorph
level.

Finally, as in Williams et al. (2020), we also
conduct an analysis of the partial Pointwise Mu-
tual Information (PMI) shared between phonol-
ogy W and class C with respect to the surprisal
H(C = c|G) for each class, defined at the allo-
morph level. Figure 3 shows this distribution, with
allomorph classes presented in order of increasing
type frequency (and thus decreasing surprisal). We
note that Maltese noun classes are each only par-
tially predictable given the phonology of words

Figure 3: Partial Pointwise Mutual Information (PMI)
shared by word form and class for each allomorph class

belonging to them, regardless of class size or ety-
mological origin.

6 Discussion

In this paper we used an LSTM to help estimate
the kinds and amounts of information that may
be available to speakers when “solving” the PCFP.
Overall, our results provide quantitative evidence
for the role of both word phonology and etymology
(as a stand-in for conservative factors) in shaping
the Maltese lexicon.

Specifically, we found that the extent to which a
Maltese singular noun’s phonology predicts its plu-
ral morphology exceeds that of etymology in non-
redundant ways. This suggests that analogical pres-
sures from phonological correspondences across
the lexicon shape nominal plural inflection in Mal-
tese, independently of the etymological source lan-
guage for some word or morphological pattern.

Our results also show an independent contribu-
tion of etymology as a predictor. We hypothesize
that this captures conservative pressures theorized
to resist analogical change, including token fre-
quency (Krause-Lerche, 2022). It may also reflect
associative correlations from the use of lexemes of
a common etymology in similar contexts, strength-
ening their coherence as a subsystem in the multi-
lingual repertoire and encouraging the maintenance
of a noun’s original morphology. Further work is
needed to investigate these possibilities.

In language contact situations such as that of
Maltese, it is likely that an influx of foreign lex-
emes and increased productivity of foreign affixes
affect both the size and character (e.g., phonology)
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of nominal plural classes relative to each other over
time. This in turn is likely to affect subsequent
classification and integration of words into the in-
flectional morphology of the language.

In general, our results do not support charac-
terizations of Maltese in which concatenative and
non-concatenative morphologies co-exist as dis-
crete systems within the lexicon. While a singular
noun’s phonology and etymology are each some-
what predictive of its concatenative type, they are
twice as predictive of the actual plural allomorph(s)
with which the lexeme is associated. This suggests
that systematic relationships at the word level orga-
nize the morphology of Maltese, in turn shaping the
language as new words are integrated and inflected.

7 Conclusion

This study extends previous work in information
theory, computational modeling, and theoretical
morphology to provide quantitative evidence for
the role of phonology as an analogical force in the
morphological organization of Maltese. We ground
this in a usage-based account of multilingualism
and contact-induced change in which speakers are
hypothesized to make use of analogical reasoning,
among other language-general cognitive functions,
when integrating novel words and patterns within
a unified linguistic repertoire. The same processes
that guide synchronic language use are proposed to
be responsible for the diachronic effects of contact-
induced language change. Specifically, it is hypoth-
esized that speakers draw on similarities across
multiple dimensions – including but not limited
to phonological patterns, semantic and indexical
meaning, pragmatic function, and contexts of use –
to collaboratively construct and adapt grammatical
systems of linguistic communication over time.

In the case of Maltese, our findings indicate
that while a lexeme’s phonology and etymology
are themselves highly interpredictable, each con-
tributes non-redundant information to reduce uncer-
tainty when predicting the lexeme’s plural inflec-
tion. While the etymology of a noun is somewhat
predictive of its plural inflection, the word’s phonol-
ogy plays a much greater role. This synchronic
analysis has diachronic implications. Our results
suggest that analogical pressures from phonologi-
cal similarities across the lexicon may have guided
speakers’ inflectional behavior when code mixing
over the course of the development of the language
to result in the conventionalized forms observed

in modern Maltese. However, further diachronic
study is needed to confirm this interpretation.

Contrary to a hypothesis in which concatenative
and non-concatenative systems operate as separate
subsystems within a “split” or “hybrid” morphol-
ogy, our results indicate correspondences at the
level of individual wordforms and affixes are driv-
ing speakers’ morphological behavior. Specifically,
the phonology and etymology of a lexeme are twice
as predictive of its plural allomorph than its con-
catenative type. Further investigation into Maltese
nouns attested to take plural forms of both concate-
native types may provide additional insight into the
ways in which concatenative type affects speakers’
behavior, if at all. Future work should also con-
sider additional factors known to shape inflection
class systems, for example by integrating semantic
word vectors into the model. Finally, additional
comparisons implementing these methods across
corpora in a variety of languages will continue to
shed light on the factors shaping morphological
systems cross-linguistically.
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A Nominal Plural Allomorphs in Maltese

Sound Plural
Singular Plural Gloss Allomorph
karta karti ‘paper’ -i
omm ommijiet ‘mother’ -ijiet
rixa rixiet ‘feather’ -iet
giddieb giddieba ‘liar’ -a
meèlus meèlusin ‘freed’ -in
kuxin kuxins ‘cushions’ -s
triq triqat ‘street’ -at
sid sidien ‘owner’ -ien
baèri baèrin ‘sailor’ -n
èati èatjin ‘guilty’ -jin
spalla spallejn ‘shoulder’ -ejn
sieq saqajn ‘foot’ -ajn
qiegè qiegèan ‘bottom’ -an

Table 4: Sound plural allomorphs in Maltese, from Nieder et al. (2021b)

Broken Plural
Singular Plural Gloss Allomorph
fardal fradal ‘apron’ CCVVCVC
birra birer ‘beer’ (C)CVCVC
kbir kbar ‘big’ CCVVC
ftira ftajjar ‘type of bread’ CCVjjVC
bitèa btieèi ‘yard’ CCVVCV
sider isdra ‘chest’ VCCCV
marid morda ‘sick person’ CVCCV
gèodda gèodod ‘tool’ (gè)VCVC
elf eluf ‘thousand’ VCVC
gèaref gèorrief ‘wise man’ CVCCVVC(V)
gèama gèomja ‘blind person’ (gè)VCCV

Table 5: Broken plural allomorphs in Maltese, from Nieder et al. (2021b)
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Abstract

Syntacticians must keep track of the empiri-
cal coverages and the inner workings of syn-
tactic theories, a task especially demanding
for minimalist syntacticians to perform man-
ually and mentally. We believe that the com-
putational implementation of syntactic theo-
ries is desirable in that it not only (a) facil-
itates the evaluation of their empirical cover-
ages, but also (b) forces syntacticians to specify
their inner workings. In this paper, we present
CANDS, a computational implementation of
Collins AND Stabler (2016) in the program-
ming language Rust. Specifically, CANDS con-
sists of one main library, cands, as well as two
wrapper programs for cands, derivck and
derivexp. The main library, cands, imple-
ments key definitions of fundamental concepts
in minimalist syntax from Collins and Stabler
(2016), which can be employed to evaluate and
extend specific syntactic theories. The wrapper
programs, derivck and derivexp, allow
syntacticians to check and explore syntactic
derivations through an accessible interface.1

1 Introduction

Syntax typically involves developing a new theory
or revising an existing theory in order to explain
certain data. A syntactician needs to be able to
compare the theories in terms of their empirical
coverage and understand all the details of these
theories. These are challenging prerequisites to at-
tain for minimalist syntacticians (Chomsky, 1995).
This is partly due to the lack of consensus on the
exact mechanism of minimalist syntactic theory,
despite many efforts to formalize it (e.g., Veenstra
1998; Kracht 1999, 2001, 2008; Frampton 2004;
Collins and Stabler 2016), and partly due to the
constant source of subtle revisions to this theory.

We believe that the computational implementa-
tion of syntactic theories would help minimalist

1Our software is available at https://github.com/
osekilab/CANDS.

syntacticians understand their empirical coverages
and inner workings. This idea has been explored
in the LFG and HPSG literature with their rich
histories of grammar engineering (e.g., Bierwisch
1963; Zwicky et al. 1965; Müller 1999; Butt 1999;
Bender et al. 2002, 2008, 2010; Fokkens 2014;
Müller 2015; Zamaraeva 2021; Zamaraeva et al.
2022). In comparison, there is less effort on the
computational implementation of syntactic theories
in the minimalist literature, with some exceptions
(e.g., Fong and Ginsburg, 2019). In this paper, we
present CANDS (pronounced /kændz/), a compu-
tational implementation of Collins AND Stabler
(2016) (henceforth C&S) in the programming lan-
guage Rust. The main library, cands, implements
key definitions of fundamental concepts in minimal-
ist syntax from Collins and Stabler (2016), which
itself is a formalization of minimalist syntax. We
hope that cands can be employed to evaluate and
extend specific syntactic theories.

In addition, to make cands accessible to mini-
malist syntacticians who are not familiar with Rust,
we also provide two wrapper programs for cands
which allow syntacticians to check and explore syn-
tactic derivations through an accessible interface:
the derivation checker derivck, and the deriva-
tion explorer derivexp.

This paper is organized as follows. In Sec-
tion 2, we review key definitions of fundamen-
tal concepts in minimalist syntax from C&S. In
Section 3, we introduce the main library, cands,
as well as two wrapper programs, derivck and
derivexp, illustrating their usage with example
codes and screenshots. In Section 4, we demon-
strate how cands can be employed to evaluate
syntactic theories with two particular formulations
of the Subject Condition. In Section 5, we show
how cands can be used to extend syntactic the-
ories with two particular implementations of the
syntactic operation Agree. We discuss future work
in Section 6 and conclude the paper in Section 7.
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2 Collins and Stabler (2016)

Collins and Stabler (2016) provide a precise for-
mulation of minimalist syntax. In this section, we
review some key definitions in their work.

Universal Grammar (UG) is a 6-tuple
⟨PHON-F,SYN-F, SEM-F, Select,Merge,
Transfer⟩, where the first three elements specify
the universal sets of phonological, syntactic and
semantic features respectively, and the last three
elements are syntactic operations.

An I-language is as a 2-tuple ⟨Lex,UG⟩ where
Lex is a lexicon, i.e., a finite set of lexical items,
and UG is some Universal Grammar.

A lexical item (LI) is a 3-tuple
⟨SEM, SYN,PHON⟩, where SEM ⊆ SEM-F,
SYN ⊆ SYN-F and PHON ∈ PHON-F∗. 2

A lexical item token (LIT) is a 2-tuple ⟨LI, k⟩,
where LI is a LI and k an index. This index is used
to distinguish between multiple occurrences of the
same LI related by movement.

Syntactic objects (SO) are inductively defined. A
SO is one of three things: (a) a LIT, (b) the result of
the syntactic operation Cyclic-Transfer(SO) for
some syntactic object SO, or (c) a set of SOs.

A lexical array (LA) is a set of LITs, and a
workspace W is a set of SOs. A stage is a 2-tuple
⟨LA,W ⟩ of lexical array LA and workspace W .

The syntactic operations Select, Merge and
Transfer are defined as functions. For example,
for some stage S = ⟨LA,W ⟩ and LIT A ∈ LA,

Select(A,S) = ⟨LA \ {A},W ∪ {A}⟩.

Cyclic-Transfer, which was used in the above def-
inition of SOs, is a special unary case of Transfer,
which is a binary operation.

The central definition in C&S is that of a deriva-
tion. A sequence of stages S1, · · · , Sn with each
Si = ⟨LAi,Wi⟩ is a derivation from lexicon L if
(a) all LIs from the initial lexical array LA1 come
from L, (b) the initial workspace W1 is empty, and
(c) each subsequent stage Si+1 is derived from the
previous stage Si by an appropriate application of
some syntactic operation. The conditions involved
in (c) limit the generative capacity of the theory.
For example, the conditions on Merge enforce that,
if Si+1 is derived from Si by Merge(A,B), then
A ∈ Wi, and either A contains B or B ∈ Wi. The
first disjunct “A contains B” allows internal Merge,

2PHON-F∗ is the set of (potentially empty) sequences
whose elements come from PHON-F, i.e.,

⋃∞
k=0 PHON-Fk.

and the second disjunct “B ∈ Wi” allows external
Merge. Certain patterns of Merge, such as sideward
Merge, are disallowed in this formulation.

3 CANDS

CANDS consists of the main library, cands, and
two wrapper programs for cands, derivck and
derivexp. They are all developed in the pro-
gramming language Rust.

3.1 cands

cands is a library that implements and exposes
most concepts defined in C&S. We provide a full
list of implemented definitions in Appendix A.

Figure 1 shows the Rust code that uses
cands to create a SO. This SO is a LIT,
with index 37 and a LI that consists of the
semantic features {[M]}, the syntactic features
{[D]}, and the phonological features ⟨[Mary]⟩.
SyntacticObject is an enum type defined
in cands, which comes in three variants: LITs,
sets and results of Cyclic-Transfer. Here, we use
SyntacticObject::LexicalItemToken
to construct a LIT variant. cands also de-
fines the struct types LexicalItemToken,
LexicalItem and Feature, each of which is
associated with a new function that constructs an
object of each type. Set and Vec are container
types defined in the Rust standard library, and
their associated from functions create sets and
vectors.3

1 SyntacticObject::LexicalItemToken(
2 LexicalItemToken::new(
3 LexicalItem::new(
4 Set::from([Feature::new("M")]),
5 Set::from([Feature::new("D")]),
6 Vec::from([Feature::new("Mary")])
7 ), 37
8 )
9 )

Figure 1: Code to create a SO.

cands defines many macros, which
help reduce boilerplate code. For example,
SyntacticObject::LexicalItemToken
(...) can be reduced to a much shorter macro
invocation so!(...). Similarly, LIs and LITs
can be created with the macros li! and lit!

3To be precise, the Rust standard library does not define a
set type called Set; rather, it defines two concrete implemen-
tations of a set type called HashSet and BTreeSet. Set
is a type alias defined in cands that refers to BTreeSet.
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respectively. Sets and vectors of features can be
created with fset! and fvec!. The same code
can be re-written more concisely as in Figure 2.

1 so!(lit!(li!(fset!( "M" );
2 fset!( "D" );
3 fvec![ "Mary" ]), 37))

Figure 2: Shorter code to create a SO.

An important feature of cands is the function
is_derivation. This function implements
the definition of derivations from C&S. It takes
two arguments: il, of type ILanguage, which
represents an I-language, and stages, of type
Vec<Stage>, which represents a sequence of
stages. is_derivation(il, stages) re-
turns true iff stages is a derivation from il ac-
cording to the definition in C&S.

We see two major usages of cands. First, it can
be used to explore predictions from C&S. For ex-
ample, one can check if a given sequence of stages
is a valid derivation. Second, it can be extended to
implement other notions and theories. C&S lacks
formalization for many concepts that are popular in
minimalist syntax, e.g., Agree, head movement and
covert movement (Collins and Stabler, 2016). The
predictions and empirical coverage of extensions
to cands can be evaluated in a similar manner to
the original cands.

3.2 Two wrapper programs for cands

Using cands requires programming in Rust, a rel-
atively unfamiliar programming language among
syntacticians. In order to make cands more acces-
sible to the general audience, we provide two wrap-
per programs for cands. They are (a) derivck,
a derivation checker that runs in the terminal, and
(b) derivexp, an interactive derivation explorer
that displays a GUI.

Figure 3 shows how the wrappers can be exe-
cuted in a shell. Both programs require the user to
provide an I-language IL and a sequence of stages
S, both specified in JSON. These files are passed
to the programs via command line arguments.

1 > derivck -i IL.json -d S.json
2 > derivexp -i IL.json -d S.json

Figure 3: Typical shell commands used to run
derivck (line 1) and derivexp (line 2). The files
specifying the I-language and the sequence of stages are
passed via command line arguments.

derivck will output whether S is a derivation
from IL. If not, derivck will display the offend-
ing stage(s) of S and a log that describes how it
determined the stage(s) to be invalid. The log ver-
bosity can be set with an environmental variable.
derivexp will first verify that S is a valid

derivation. Then, it provides an interface that vi-
sualizes S and allows the user to apply various
syntactic operations to the objects that comprise S
to further advance the derivation. Figures 4a and
4b show screenshots from a derivexp session
before and after the user has applied Merge to a
pair of SOs.

Both derivck and derivexp expect the
JSON files for the I-language and the sequence
of stages to be in a specific format that transpar-
ently reflects the Rust types for these two con-
cepts, which are ILanguage and Vec<Stage>.
This format is imposed by serde, a popular
Rust data (de)serialization framework, which is
used in cands to support human-readable JSON
(de)serialization for its data structures. Even
though we believe this format should be straight-
forward for users to follow, larger I-languages and
sequences of stages in real-life use cases can be
unwieldy to specify manually in JSON. In the near
future, we plan to develop tools that would sim-
plify the creation of these JSON files, such as a
visual interface for constructing I-languages and
sequences of stages and exporting them to JSON.
For now, we provide sample JSON files in the Git
repository for CANDS that can be used to construct
a derivation for the simple sentence Mary appeared,
as illustrated in Figure 4.4

We hope that derivck and derivexp will be
useful for syntacticians working with the C&S sys-
tem. If one already has a derivation in mind, they
can check the derivation with derivck. Other-
wise, one can use derivexp to explore the possi-
ble derivations generated by the C&S system. The
two programs should facilitate working with gram-
matical and ungrammatical examples respectively.

4 Evaluating theories with cands

An important and challenging task for syntacticians
is to keep track of the empirical coverage of the
syntactic theory at hand as one proposes changes
to the theory. Often, one proposes a revision to the
theory in order to make a correct prediction for one

4We thank one reviewer for pointing out the necessity to
address how easily these JSON files can be created.
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(a) derivexp is showing a stage S3, whose workspace W3

contains two roots: Mary2 and appeared 1. We then apply
Merge(appeared1,Mary2) to derive the next stage.

(b) We advance to the next stage S4, whose workspace
W4 contains just one root, which is the result of
Merge(appeared1,Mary2). derivexp is showing S4.

Figure 4: Screenshots from a derivexp session.

sentence, only to realize later that another sentence
correctly predicted by the old theory receives an
incorrect prediction under the new theory.

Computational implementation of syntactic the-
ories facilitates the process of examining their pre-
dictions and evaluating their empirical coverage.
Using the function is_derivation defined in
cands, it is easy to check if some derivation of
interest can be generated by the C&S system. Even
if one modifies cands in order to implement their
revisions of C&S, predictions can be studied in the
same way as long as the is_derivation func-
tion is preserved. Multiple revisions to C&S can
be evaluated in terms of their empirical coverage
by testing the corresponding modified versions of
cands on a common set of derivations.

In this section, we illustrate this evaluation pro-
cess with a simple example as a proof of concept.
We consider the sentences in (1) and provide a
derivation for each sentence. The original C&S
system generates all three derivations, which is not
ideal – we expect a good theory to only generate
the derivations for the grammatical sentences. We
will provide two attempts at positing a new con-
straint and incorporating it into C&S to correct the
predictions. We will implement the new constraints
as extensions of cands, and test these extensions
on our derivations of interest. We will see that both
attempts are inadequate in that each constraint fixes
the prediction for one sentence while breaking the
prediction for another. Our examples and analy-
ses are inspired by classic literature on PP extra-
position (Akmajian, 1975; Guéron, 1980; Wexler

and Culicover, 1980).5 For space reasons, we will
only define the constraints and discuss their predic-
tions conceptually in the main paper. We provide
pseudocode for the implementations of these con-
straints in Appendix B, and the implementations
themselves in the Git repository on the branches
theory1 and theory2.

(1) a. * A story bothered me about Mary.
b. A story appeared about Mary.
c. * I know who a story appeared about.

In (1a), PP extraposition occurs from the subject
of a transitive verb. In (1b), the extraposition occurs
from the subject of an unaccusative verb. In (1c),
the same extraposition found in (1b) occurs, as well
as wh-movement to embedded [Spec; CP].

The original C&S system allows for all three sen-
tences to be derived, with the derivations sketched
in (2), (3) and (4),6 and fully detailed in Appendix
C. To accommodate rightward extraposition in
the LCA-like linearization algorithm employed in
C&S, we use two covert heads X and Y as well as
remnant movement. For example, in (2), X first
merges with TP. The extraposed PP then moves
to [Spec; XP]. Y then merges with XP, and the
remnant TP moves to [Spec; YP]. Y contains the

5We thank Kyle Johnson for introducing us to the debate
on PP extraposition when we were in search of syntactic phe-
nomena to illustrate the usage of cands with.

6Non-final occurrences of SOs are struck out. Although
the SOs in these derivations are actually sets, which should
be denoted with comma-separated lists of elements enclosed
in braces, we use the labelled bracket notation here to save
space.
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syntactic feature [T], which allows C to merge with
YP as it would merge with a TP. In (2), the extra-
position occurs from TP, while in (3) and (4) the
extraposition occurs from VP.

Note on notations: we write A ∈+ B for “A is
contained in B”, and A ∈∗ B for “A is equal to or
contained in B”.

4.1 Theory 1: derivational constraint
Consider the pair (2) and (3). They differ in their
grammaticality as well as the source of extraposi-
tion: the subject in the former derivation and the VP
in the latter. We can predict these derivations cor-
rectly if we use a derivational flavor of the Subject
Condition, i.e., a constraint that bans movement
out of [Spec; TP]. Let us write occR(X) for the set
of all occurrences of X in R. Then, we can add the
condition (5) to the derive-by-Merge condition.

(5) Derivational Subject Condition (DSC)
For (internal) Merge(A,B) where A is the
head and B ∈+ A, then
| occA(B)| > ∑

X∈SbjsA(B) | occA(X)|,
where SbjsA(B) is the set of all [Spec;
TP]s in A that contain B.

Consider internal Merge(A,B) where B ∈+ A.
DSC holds iff there exists some occurrence BP

of B in A that is not equal to or contained in any
occurrence of some [Spec; TP] in A. Thus, DSC
holds iff this instance of Merge could be interpreted
as movement from a non-subject position.

We call the C&S system extended by DSC “The-
ory 1.” We implement and test Theory 1 against
our derivations. The results show that only (2) is
ungrammatical, so Theory 1 makes an incorrect pre-
diction for (4). The PP extraposition in (2) violates
DSC because all occurrences of the PP prior to this
extraposition are contained under some occurrence
of DP, which is at [Spec; TP]. The extrapositions
in (3) and (4) do not violate DSC because the ex-
traposition occurs before TP is even built. The
subsequent wh-movement in (4) does not violate
DSC either, due to the occurrence of who contained
in the extraposed PP at [Spec; XP].

4.2 Theory 2: representational constraint
Consider the pair (2) and (4). They are both un-
grammatical, and in both derivations there is a SO
that has one occurrence inside and another occur-
rence outside of the subject, namely the PP about
Mary/who. This suggests that perhaps the Subject
Condition should be representational after all; any

Derivations Truth Theory 1 Theory 2
(2), for (1a) * * *
(3), for (1b) ! ! *
(4), for (1c) * ! *

Table 1: Derivations, grammaticalities and predictions.

SO that has an occurrence inside some [Spec; TP]
cannot have an occurrence outside that [Spec; TP].
This condition, formally stated as (6), is enforced
at every stage of the derivation, applying to every
workspace Wi.

(6) Representational Subject Condition
(RSC)
For any root R ∈ Wi and any SOs
X,S ∈∗ R such that X ∈∗ S and S is
[Spec; TP], | occR(X)| = | occR(S)|.

If X ∈∗ S ∈∗ R, then every occurrence of
S in R is either equal to or contains some occur-
rence of X in R (Theorem 1 from C&S). Thus
X ∈∗ S ∈∗ R implies | occR(X)| ≥ | occR(S)|.
If | occR(X)| > | occR(S)|, it must be the case
that some occurrence of X is not equal to or con-
tained in any occurrence of S. This is exactly the
situation that RSC bans.

Let us call the C&S system extended by RSC
“Theory 2”. We implement and test Theory 2
against our derivations. Although Theory 2 cor-
rectly rules out (2) and (4), it incorrectly rules out
(3) as well. This is because at the final stage in all
three derivations, the PP about Mary/who has four
occurrences, while the [Spec; TP] a story about
Mary/who, which contains the PP, has three occur-
rences.

Table 1 summarizes the derivations, their de-
sired grammaticalities and the grammaticalities pre-
dicted by our theories.

5 Extending theories with cands

In the literature, minimalist syntactic theories are
usually described in text, with various degrees of
formality. As such, it can be difficult to communi-
cate the precise details of the theories to the reader.
The benefit of implementing theories in code is
that one is forced to consider and specify such de-
tails, because otherwise one would end up with an
incomplete implementation.

Since C&S is a formalization of a bare-bones
Minimallist syntactic theory, we expect that
cands will provide a good starting point for min-
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(2) a. Build TP.
[TP [DP a story [PP about Mary ]] T bothered me ]

b. Extrapose PP.
[YP [TP [DP a story [PP about Mary ]] T bothered me ] Y [XP [PP about Mary ] X TP ]]

(3) a. Build VP.
[VP appeared [DP a story [PP about Mary ]]]

b. Extrapose PP.
[YP [VP appeared [DP a story [PP about Mary ]]] Y [XP [PP about Mary ] X VP ]]

c. Build TP; move DP.
[TP [DP a story PP ] T [YP [VP appeared DP ] Y [XP [PP about Mary ] X VP ]]]

(4) a. Same with (3) up to (3c), except we have who instead of Mary.
[TP [DP a story PP ] T [YP [VP appeared DP ] Y [XP [PP about who ] X VP ]]]

b. Build CP; move who.
[CP who Q [TP [DP a story PP ] T [YP [VP appeared DP ] Y [XP [PP about who ] X VP ]]]]

imalist syntacticians to implement their own pro-
posals and theories on top of it. To illustrate this,
we implement two proposals for Agree, a syntac-
tic operation commonly assumed by minimalist
syntacticians but is undefined in C&S. Specifi-
cally, we implement two proposals, described re-
spectively in Chomsky 2001 and Collins 2017.
Our implementations can be found on the Git
repository on branches agree-chomsky-2001
and agree-collins-2017. We recognize that
there are many other proposals for Agree, such as
Pesetsky and Torrego 2007, Béjar and Rezac 2009,
Zeijlstra 2012, Preminger 2014 and Deal 2015.

5.1 Agree à la Chomsky (2001)

First, we formalize and implement Chomsky’s
(2001) proposal for Agree.

Our system distinguishes two kinds of syntactic
features: normal syntactic features, which are just
like semantic and phonological features; and valu-
able syntactic features, which are associated with
interpretability and a potential value.

(7) A syntactic feature is either normal or
valuable.

a. A normal syntactic feature is some
F ∈ SYN-F.

b. A valuable syntactic feature is some
F = ⟨i, f, v⟩ where i ∈ {i, u} is its
interpretability, f ∈ SYN-F, and either
v = _ (unvalued) or v = v′ for some
value v′ (valued). F is usually denoted
[if :v] (e.g. [uCase:_], [iPerson:3] ).

Agree is a function that takes two LITs, which
we call the probe and the goal. The probe is valued
with the features from the goal, and if the probe is
not defective, the goal is valued with the features
from the probe. Agree returns the new probe and
the new goal.

(8) For lexical item tokens

P = ⟨⟨SEMP ,SYNP ,PHONP ⟩, kP ⟩,
G = ⟨⟨SEMG, SYNG,PHONG⟩, kG⟩,

Agree(P,G) = ⟨P ′, G′⟩ where

P ′ = ⟨⟨SEMP , SYNP ′ ,PHONP ⟩, kP ⟩,
G′ = ⟨⟨SEMG,SYNG′ ,PHONG⟩, kG⟩,

where

SYNP ′ = {Value(F,SYNG) | F ∈ SYNP },
SYNG′ = SYNG if P is defective, otherwise

= {Value(F,SYNP ) | F ∈ SYNG}.

(9) For a syntactic feature F and a set of
syntactic features SYN, Value(F,SYN) =

a. F , if F is normal or valued.

b. ⟨i, f, v′⟩, if F = ⟨i, f, v⟩ with v = _,
and there is F ′ = ⟨i′, f ′, v′⟩ ∈ SYN.

We modify Clause (iii) of the C&S definition
of derivations by adding the derive-by-Agree con-
dition, which checks if a workspace Wi+1 can be
derived from the previous workspace Wi by apply-
ing Agree to an appropriate probe-goal pair.
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(10) (derive-by-Agree) Consider the ith
workspace Wi. Fix some R ∈ Wi and some
active, matching pair of lexical item tokens
P,G such that

a. P c-commands G, and
b. for any lexical item token H ∈∗ R such

that H matches P and P c-commands
H , either G = H or G c-commands H .

Let ⟨P ′, G′⟩ = Agree(P,G), and let
X = R, except all occurrences of P and G
are respectively replaced with P ′ and G′.
Then the next workspace Wi+1 is
derived-by-Agree from Wi if
Wi+1 = (W \ {R}) ∪ {R′}, where either

a. R′ = X and P doesn’t contain the
EPP-feature, or

b. R′ = Merge(X,Y ) and P contains the
EPP-feature, with some Y that satisfies
G ∈∗ Y ∈∗ X determined by
pied-piping.

Derivation by Agree necessarily changes SOs in
place, thereby violating the No-Tampering Condi-
tion (NTC; Chomsky 2007). As a result, upon find-
ing an appropriate probe-goal pair, our implemen-
tation of derive-by-Agree visits the entire structure
of R in order to construct X from R by replacing
the old probe and goals with new ones.

During the construction of X , it is necessary
to replace all occurrences of the goal G with the
new goal G′, rather than just replacing the high-
est occurrence. This is common practice in a
multidominance-based theory like C&S. Otherwise,
the highest occurrence of the post-Agree goal will
no longer be considered as the same SO as the re-
maining occurrences, which has consequences in
linearization.

We illustrate our implementation with (11), a
derivation for the sentence The man falls.7 The full
derivation is in Appendix D.

5.2 Agree à la Collins (2017)
Next, we formalize and implement Collins’ (2017)
proposal for Agree. This proposal differs from
Chomsky 2001 in two important ways: (a) Agree
is not its own syntactic operation, but rather a spe-
cial case of Merge, and (b) derivation by “Agree”
complies with the NTC and does not modify SOs
in-place; rather, features are Merged to feature-
checking positions.

7π is Person, # is Number and C is Case.

As with our implementation of Chomsky 2001,
we split syntactic features into normal syntactic
features and valuable syntactic features. In this
implementation, however, the value of valuable
syntactic feature is required. Unlike Chomsky’s
feature valuation system, Collins’s feature check-
ing system does not allow features to be unvalued.

(13) A syntactic feature is either normal or
valuable.

a. A normal syntactic feature is some
F ∈ SYN-F.

b. A valuable syntactic feature is some
F = ⟨i, f, v⟩ where i ∈ {i, u} is its
interpretability, f ∈ SYN-F, and v is
some value.

We redefine SOs so that they can be created by
Merging a SO and a syntactic feature.8

(14) X is a syntactic object iff

a. X is a lexical item token, or

b. X = Cyclic-Transfer(SO) for some
syntactic object SO, or

c. X is a set of syntactic objects, or

d. X = {SO, F} for some syntactic
object SO and syntactic feature F .

As we redefine SOs, we must also change many
definitions that depend on SOs. A crucial example
is Triggers; just as some Triggers function T is
able to check a feature off a SO if it is Merged with
another approriate SO, T should able to check an
uninterpretable feature off a SO if it is Merged with
an appropriate syntactic feature. We change Clause
(ii) in the definition of Triggers that handles SOs
of the type {SO, F}:

(15) (ii) If A = {B,F} where B is a SO, F is a
syntactic feature and Triggers(B) ̸= ∅,
then Triggers(A) = Triggers(B) \ {uF}
for some uninterpretable syntactic feature
uF ∈ Triggers(B).

There are two cases of Merge we must con-
sider: Merge(A,B) where A,B are both SOs, and
Merge(A,F ) where A is an SO and F is a syntac-
tic feature. The first case is the old Merge, which
we call MergeSO from now on. The second case is
MergeF, which we define as follows:

8An alternative we do not explore in this paper is to allow
syntactic features themselves be SOs.
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(11) a. Build TP.
PRES has SYN = { [T], [=v], [EPP], [uπ:_], [u#:_], [iC:nom] }.
man has SYN = { [N], [iπ:3], [i#:sg], [uC:_] }.
Wi = {{ PRES, { v, { falls, { the, man }}}}}

b. Agree applies, with PRES as the probe and man as the goal. They are replaced with PRES′ and
man ′. Since PRES has EPP, the DP the man′ is pied-piped to [Spec; TP].
PRES′ has SYN = { [T], [=v], [EPP], [uπ:3], [u#:sg], [iC:nom] }.
man ′ has SYN = { [N], [iπ:3], [i#:sg], [uC:nom] }.
Wj = { { the, man′ }, { PRES′, { v, { falls, { the, man′ }}}}}}

(12) a. Select PRES and man.
PRES has SYN = { [T], [=v], [EPP], [uπ:3], [u#:sg], [iC:nom] }.
man has SYN = { [N], [iπ:3], [i#:sg], [uC:nom] }.
Wi = {PRES,man}

b. Merge man with [iC:nom] from PRES.
Wj = {PRES, { man, [iC:nom] }}

c. Build TP, up to and including movement of the man to [Spec; TP]. Call the result TPk.
Wk = {{ { the, { man, [iC:nom] }}, { PRES, { v, { falls, { the, { man, [iC:nom] }}}}}}︸ ︷︷ ︸

TPk

}

d. Merge TPk with [iπ:3], then with [i#:sg], both from man.
Wℓ = {{ [i#:sg], { [iπ:3], TPk }}}

(16) Given any syntactic object X and syntactic
feature F , where Triggers(X) ̸= ∅,
MergeF(X,F ) = {X,F}.

Finally, we modify Clause (iii) from the defi-
nition of derivations. The derive-by-Merge con-
dition must be split in two cases: derive-by-
MergeSO, which is the old derive-by-Merge, and
derive-by-MergeF, which handles derivation by
MergeF(A,F ) for some SO A and syntactic fea-
ture F . Derive-by-MergeF requires F to be part of
some LIT contained in the workspace, but not nec-
essarily contained in A. In other words, sideward
Merge is allowed only for MergeF.

(17) (derive-by-MergeF) LAi = LAi+1 and the
following conditions hold for some A,F :

a. A ∈ Wi,
b. There exists some lexical item token

X ∈+ Wi such that
X = ⟨⟨SEM,SYN,PHON⟩, k⟩ where
F ∈ SYN, and

c. Wi+1 = (Wi\{A})∪{MergeF(A,F )}.

We illustrate our implementation with (12), a
derivation for the sentence The man falls. This
derivation is based on Derivation (27) in Collins
2017, where the T head PRES Merges with the ϕ-
features from man to form the complex T { PRES,

[iϕ] } before Merging with vP. This is problematic,
as TransferPF cannot linearize the TP { { PRES,
[iϕ] }, vP} because vP is neither a complement, as
the complex T is not a LIT; nor is vP a specifier,
as the complex T is not a set of SOs either. In
our derivation (12), we let PRES Merge with its vP
complement before Merging with the ϕ-features,
avoiding the TransferPF problem. The full deriva-
tion is in Appendix D.

6 Future work

In Section 4, we showed how extensions of cands
can be evaluated against a common set of deriva-
tions, offering a quantitative comparison of their
empirical coverages. Our evaluation setup can be
scaled up quite easily, by curating a large-scale
test set of derivations, which can then be used to
evaluate cands-based implementations of many
different theories. This kind of evaluation is famil-
iar in the parsing literature, where parsers are eval-
uated on large datasets of syntactically annotated
sentences known as treebanks, such as the Penn
Treebank (Marcus et al., 1993), CCGbank (Hock-
enmaier and Steedman, 2002), the Redwoods tree-
bank (Flickinger, 2011; Oepen et al., 2002, 2004),
MGbank (Torr, 2017, 2018), among others.
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While cands can check if C&S generates a
given derivation, it cannot check if C&S gener-
ates some derivation that linearizes to a given PF.
Obviously, syntacticians are equally if not more in-
terested in problems of the latter type. For example,
one might wish to check if a theory overgenerates,
i.e., if it derives an ungrammatical sentence, or if it
derives a grammatical sentence with an undesirable
derivation. Solving this type of problems requires
us to develop an algorithm that automatically ex-
plores the predictions from C&S, which is essen-
tially a parser. There is a recent line of work on neu-
ral transition-based parsers, i.e. neural classifiers
that take parser states as input and output parser
transitions as output (Dyer et al., 2016; Yoshida
and Oseki, 2022; Sartran et al., 2022). While these
parsers are typically implemented with state-of-the-
art neural architectures, they usually only support
parsing for primitive grammars, such as PCFGs.
As such, we hope to explore if neural transition-
based parsers can be developed for more complex
grammars, such as Minimalist Grammars (Stabler,
1997) and C&S. An even more challenging task is
to develop methods to (semi)automatically derive
a parser for an arbitrary extension of C&S.

Finally, cands brings us closer to the quantita-
tive evaluation of the parsimony of C&S and rel-
evant theories. For example, any cands-based
implementation of some theory provides an upper
bound for the minimum description length (MDL)
of that theory. MDL can in turn be used to define
a prior distribution over theories in a probabilistic
setup (Berwick, 2015).

7 Conclusion

We present CANDS, a Rust implementation of
Collins and Stabler’s (2016; C&S) formalization of
a minimalist syntactic theory. The core of CANDS
is cands, a library. cands by itself can be used
to explore predictions from the C&S system, and
it can also be extended to implement other theo-
retical notions. We also present derivck and
derivexp, two wrapper programs that allows the
user to check and explore derivations with cands
without having to program in Rust.

Computational implementation of syntactic the-
ories greatly facilitates the evaluation of their em-
pirical coverages, and forces the programmer to
attend to the details and edge cases of the theories,
which can be easily miscommunicated in textual
descriptions of minimalist syntactic theory. In this

paper, we show how CANDS can be integrated
into a minimalist syntactician’s typical workflow.
We hope our work will benefit the minimalist syn-
tax community, and we welcome suggestions and
contributions, as our work is still under much de-
velopment.
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A List of C&S definitions that are
implemented in cands

Table 2 contains a list of all definitions in C&S.
For each definition, we indicate whether it is imple-
mented in cands.

We left four groups of definitions from C&S
unimplemented. The first group consists of tenta-
tive definitions; they are presented in earlier parts
of the C&S paper, and eventually replaced by more
complete definitions later in the paper. Specifically,
this group consists of Definitions 8 (SO) and 14
(derivation), which are replaced by Definitions 37
and 38. We implement the latter definitions instead
of the former ones.

The second group of unimplemented definitions
simply cannot be implemented. This applies to
Definitions 15, 15′ and 23. These define the con-
cept of the derivability of a given SO or workspace.
Derivability itself is a binary value, either true or
false – it is a trivial definition that does not need an
implementation. Presumably, it is more interesting
to implement a function that would compute the
derivability from a given SO or workspace. To im-
plement such a function, we need to create a parser
for the C&S system. This is beyond the scope of
our paper.

The third group of unimplemented definitions
are unnecessary to implement. This applies to Def-
inition 25, which defines trigger features. Trigger
features are just a special name to designate a cer-
tain group of features for a particular Triggers im-
plementation. As the concept is purely expository,
it has no place in our implementation of C&S.

The last group of unimplemented definitions con-
cern occurrences (Definitions 16, 17, 18, 20, 22)
and chain-based SOs (Definitions 16′, 7′, 13′, 14′,
15′), which are only partially explored in C&S as a
digression from their full formalization of a theory
of token-based SOs. We leave their implementa-
tions to future work.
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No. Definition In cands?
Section 2: Preliminary definitions
1 Universal Grammar Yes
2 Lexical item Yes
3 Lexicon Yes
4 I-language Yes
5 Lexical item token Yes
6 Lexical array Yes
7 Syntactic object (old) No
8 Immediate containment (SO) Yes
9 Containment Yes

Section 3: Workspaces, Select, and Merge
10 Stage Yes

Workspace Yes
11 Roothood Yes
12 Select Yes
13 Merge Yes
14 Derivation (old) No
15 Derivability from lexicon No
Section 4: Occurrences
16 Position No
17 Occurrence No
18 Immediate containment (occurrence) No
19 Sisterhood (SO) Yes
20 Sisterhood (occurrence) No
21 C-command (SO) Yes

Asymmetric c-command (SO) Yes
22 C-command (occurrence) No
Section 5: Digression
16′ Path (chain-based) No
7′ SO (chain-based) No
13′ Merge (chain-based) No
14′ Derivation (chain-based) No
15′ Derivability from lexicon (chain-

based)
No

No. Definition In cands?
Section 6: General Properties of Derivations
23 Derivability No
24 Binary branching Yes
Section 7: Labels
25 Trigger feature No
26 Triggers Yes
27 Triggered Merge Yes
28 Label Yes
29 Maximal projection Yes
30 Minimal projection Yes
31 Intermediate projection Yes
32 Complement Yes
33 Specifier Yes
Section 8: Transfer
34 Transfer Yes
35 Strong phasehood Yes
36 Cyclic-Transfer Yes
37 Syntactic object (new) Yes
38 Derivation (new) Yes
Section 9: TransferLF

39 TransferLF Yes
Section 10: TransferPF

40 Finality Yes
41 TransferPF Yes
Section 13: Convergence
42 Convergence and crash at the CI in-

terface
Yes

43 Convergence and crash at the SM in-
terface

Yes

44 Convergence and crash Yes

Table 2: List of definitions in C&S. For each definition, we indicate whether it is implemented in cands.
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B Implementing the extensions of cands
for PP extraposition

In Section 4, we described two extensions of C&S,
where each extension is created by adding one con-
straint into the C&S system. In this section, we
describe our implementation of these extensions in
more detail.

B.1 Theory 1
Theory 1 is the extension of C&S by the Deriva-
tional Subject Condition (DSC), defined in (5).
DSC further constricts the derive-by-Merge condi-
tion, specifically the internal Merge case.

The derive-by-Merge condition is checked by
the derive_by_merge function, which is used
by the is_derivation to check if each non-
initial stage is derived from its previous stage by
an appropriate application of a syntactic operation,
including Merge. We implement DSC inside the
derive_by_merge function. The pseudocode
for derive_by_merge as well as the DSC is
provided in Algorithm 1. The for-loop starting
on line 6 checks for internal Merge, and the for-
loop starting on line 13 checks for external Merge.
Once an appropriate pair of SOs A,B is found
in either for-loop, the function returns true from
within that loop. The DSC is thus implemented in
the for-loop for internal Merge. At line 9, we check
the negation of DSC; if the DSC is violated, the
if-statement is executed, and the current iteration
of the for-loop will be skipped (also known as a
continue-statement). As such, the return-statement
on line 12 is unreachable in the current iteration.
This implements the DSC.

B.2 Theory 2
Theory 2 is the extension of C&S by the Represen-
tational Subject Condition (RSC), defined in (6).
RSC is checked for every stage in the derivation.

We implement RSC is the is_derivation
function, whose pseudocode is provided in Algo-
rithm 2. The for-loop starting on line 7 checks
whether each pair of consecutive stages is derived-
by-Select, Merge or Transfer. The if-statement on
line 8 checks if neither of these three syntactic op-
erations derive the second stage from the first, in
which case the function returns false. RSC further
constraints this check. If RSC is violated, the if-
statement on line 15 will execute, and the function
returns false.
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Input: Two stages S1 = ⟨LA1,W1⟩ and S2 = ⟨LA2,W2⟩
Output: true iff S2 is derived-by-Merge from S1

1 if LA1 ̸= LA2 then
2 return false;

3 if W1 is empty then
4 return false;

5 foreach A ∈∗ W1 do
6 foreach B such that B ∈∗ A do

/* ===== DSC begins ===== */
7 Calculate | occA(B)| ;
8 Calculate

∑
X | occA(X)|, the sum of | occA(X)| for all [Spec; TP] X ∈∗ A such that

B ∈∗ X ;
9 if | occA(B)| ≤ ∑

X | occA(X)| then
10 Skip to the next pair of A,B;

/* ====== DSC ends ====== */
11 if W2 = W1 \ {A,B} ∪ {Merge(A,B)} then
12 return true;

13 foreach B such that B ∈ W1 do
14 if W2 = W1 \ {A,B} ∪ {Merge(A,B)} then
15 return true;

16 return false;
Algorithm 1: Pseudocode for the derive_by_merge function. The implementation of DSC is
between lines 7–10, inclusive on both ends.
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Input: an I-language IL = ⟨Lex,UG⟩, and a sequence of stages S = ⟨S1, · · · , Sn⟩, with
Si = ⟨LAi,Wi⟩ for each i ∈ [n]

Output: true iff S is a derivation from IL

1 if S is empty then
2 return false;

3 if there is some LIT X ∈ LA1 that is not contained in Lex then
4 return false;

5 if W1 is not empty then
6 return false;

7 foreach i < n do
8 if Si+1 is not derived-by-Select from Si and Si+1 is not derived-by-Merge from Si and Si+1 is

not derived-by-Transfer from Si then
9 return false;

/* ===== RSC begins ===== */
10 foreach R ∈ Wi+1 do
11 let S = the set of all S ∈∗ R such that S is [Spec; TP];
12 let X = the set of all X ∈∗ S for some S ∈ S;
13 Calculate | occR(S)| for each S ∈ S ;
14 Calculate | occR(X)| for each X ∈ X ;
15 if | occR(X)| ≠ | occR(S)| for any S ∈ S and any X ∈ X then
16 return false;

/* ====== RSC ends ====== */

17 return true;
Algorithm 2: Pseudocode for the is_derivation function. The implementation of RSC is
between lines 10–16, inclusive on both ends.
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C Full derivations for the extraposition
sentences

Here, we provide the full derivations for the sen-
tences (1a), (1b) and (1c) in Section 4. These
derivations were sketched in the main paper as (2),
(3) and (4).

We assume the lexicon in Table 3. The semantic,
syntactic and phonological features of our UG are
the unions of the semantic, syntactic and phono-
logical features over the LIs in our lexicon. The
syntactic features include (a) category features of
the form [α], where α is a syntactic category; (b)
selectional features of the form [=α], where α is a
syntactic category; (c) EPP-feature [EPP], and (d)
wh-features [uwh] and [iwh]. Selectional features,
EPP-feature and [uwh] are trigger features. A selec-
tional feature [=α] can be checked by Merging with
some SO whose label bears the category feature
[α]. An EPP-feature can be checked by Merging
with some SO. [uwh] can be checked by Merging
with some SO whose labels bears [iwh]. We use
two pairs of heads X and Y to handle extraposition;
we use XT,P and YT to handle PP extraposition from
TP and use XV,P and YV to handle PP extraposition
from VP.

The derivations (18), (19) and (20) are for the
sentences (1a), (1b) and (1c) respectively. For each
stage Si, we describe the syntactic operation by
which Si is derived, and we show its workspace
Wi. We omit Select for brevity. Transferred SOs
are struck out.

(18) a. Merge(bothered,me).
W1 = {{ bothered, me }︸ ︷︷ ︸

VP

}.

b. Merge(v*,VP).
W2 = {{ v*, VP }︸ ︷︷ ︸

v*P1

}.

c. Transfer(v*P1,VP).
W3 = {{ v*, VP }︸ ︷︷ ︸

v*P2

}.

d. Merge(about,Mary).
W4 = {{ about, Mary }︸ ︷︷ ︸

PP

, v*P2}.

e. Merge(story,PP).
W5 = {{ story, PP }︸ ︷︷ ︸

NP

, v*P2}.

f. Merge(a,NP).
W6 = {{ a, NP }︸ ︷︷ ︸

DP

, v*P2}.

g. Merge(v*P2,DP).
W7 = {{ DP, v*P2 }︸ ︷︷ ︸

v*P3

}.

h. Merge(PASTv*, v*P3).
W8 = {{ PASTv*, v*P3 }︸ ︷︷ ︸

TP1

}.

i. Merge(TP1,DP).
W9 = {{ DP, TP1 }︸ ︷︷ ︸

TP2

}.

j. Merge(XT,P,TP2).
W10 = {{ XT,P, TP2 }︸ ︷︷ ︸

XP1

}.

k. Merge(XP1,PP).
W11 = {{ PP, XP1 }︸ ︷︷ ︸

XP2

}.

l. Merge(YT,XP2).
W12 = {{ YT, XP2 }︸ ︷︷ ︸

YP1

}.

m. Merge(YP1,TP2).
W13 = {{ TP2, YP1 }︸ ︷︷ ︸

YP2

}.

n. Merge(C,YP2).
W14 = {{ C, YP2 }︸ ︷︷ ︸

CP

}.

o. Transfer(CP,CP).
W15 = {CP}.
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(19) a. Merge(about,Mary).
W1 = {{ about, Mary }︸ ︷︷ ︸

PP

}.

b. Merge(story,PP).
W2 = {{ story, PP }︸ ︷︷ ︸

NP

}.

c. Merge(a,NP).
W3 = {{ a, NP }︸ ︷︷ ︸

DP

}.

d. Merge(appeared,DP).
W4 = {{ appeared, DP }︸ ︷︷ ︸

VP

}.

e. Merge(XV,P,VP).
W5 = {{ XV,P, VP }︸ ︷︷ ︸

XP1

}.

f. Merge(XP1,PP).
W6 = {{ PP, XP1 }︸ ︷︷ ︸

XP2

}.

g. Merge(YV,XP2).
W7 = {{ YV, XP2 }︸ ︷︷ ︸

YP1

}.

h. Merge(YP1,VP).
W8 = {{ VP, YP1 }︸ ︷︷ ︸

YP2

}.

i. Merge(v,YP2).
W9 = {{ v, YP2 }︸ ︷︷ ︸

vP

}.

j. Merge(PASTv, vP).
W10 = {{ PASTv, vP }︸ ︷︷ ︸

TP1

}.

k. Merge(TP1,DP).
W11 = {{ DP, TP1 }︸ ︷︷ ︸

TP2

}.

l. Merge(C,TP2).
W12 = {{ C, TP2 }︸ ︷︷ ︸

CP

}.

m. Transfer(CP,CP).
W13 = {CP}.

(20) a. Same as (19) up to and including (19m),
but replace Mary with who.
W13 = {CP1}.

b. Merge(know,CP1).
W14 = {{ know, CP1 }︸ ︷︷ ︸

VP

}.

c. Merge(v*,VP).
W15 = {{ v*, VP }︸ ︷︷ ︸

v*P1

}.

d. Transfer(v*P1,VP).
W16 = {{ v*, VP }︸ ︷︷ ︸

v*P2

}.

e. Merge(v*P2,we).
W17 = {{ we, v*P2 }︸ ︷︷ ︸

v*P3

}.

f. Merge(PRESv*, v*P3).
W18 = {{ PRESv*, v*P3 }︸ ︷︷ ︸

TP1

}.

g. Merge(TP1,DP).
W19 = {{ DP, TP1 }︸ ︷︷ ︸

TP2

}.

h. Merge(C,TP2).
W20 = {{ C, TP2 }︸ ︷︷ ︸

CP2

}.

i. Transfer(CP2,CP2).
W21 = {CP2}.
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LI SEM SYN PHON

Mary {[Mary]} {[D]} ⟨[Mary]⟩
me {[me]} {[D]} ⟨[me]⟩
we {[we]} {[D]} ⟨[we]⟩
who {[who]} {[D], [iwh]} ⟨[who]⟩
about {[about]} {[P], [=D]} ⟨[about]⟩
story {[story]} {[N], [=P]} ⟨[story]⟩
a {[a]} {[D], [=N]} ⟨[a]⟩
bothered {[bothered]} {[V], [=D]} ⟨[bothered]⟩
appeared {[appeared]} {[V], [=D]} ⟨[appeared]⟩
know {[know]} {[V], [=C]} ⟨[know]⟩
v* {[v*]} {[v*], [=V], [=D]} ⟨⟩
v {[v]} {[v], [=V]} ⟨⟩
XT,P {[X]} {[X], [=T], [=P]} ⟨⟩
XV,P {[X]} {[X], [=V], [=P]} ⟨⟩
YT {[Y]} {[T], [=X], [=T]} ⟨⟩
YV {[Y]} {[V], [=X], [=V]} ⟨⟩
PRESv* {[PRES]} {[T], [=v*], [EPP]} ⟨⟩
PASTv* {[PAST]} {[T], [=v*], [EPP]} ⟨⟩
PASTv {[PAST]} {[T], [=v], [EPP]} ⟨⟩
C {[C]} {[C], [=T]} ⟨⟩
Q {[Q]} {[C], [=T], [uwh]} ⟨⟩

Table 3: Lexicon for the derivations (18), (19) and (20). For example, the LI Mary is a 3-tuple ⟨SEM,SYN,PHON⟩
where SEM = {[Mary]}, SYN = {[D]} and PHON = ⟨[Mary]⟩.
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D Full derivations for The man falls

Here, we provide the full derivations for the sen-
tence The man falls in Section 5. These derivations
were sketched in the main paper as (11) and (12).

We assume the lexicon in Table 4. Again, the se-
mantic, syntactic and phonological features of our
UG are the unions of the semantic, syntactic and
phonological features over the LIs in our lexicon.

The derivations (21) and (22) are for the sentence
The man falls in our implementations of Chomsky
(2001) and Collins (2017) respectively. We omit
most applications of Select for brevity, except at
the beginning of (22). There, it is important that
the tense head PRES be selected near the beginning
of the derivation, before any Merge takes place.
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LI SEM SYN PHON

the {[the]} {[D], [=N]} ⟨[the]⟩
falls {[falls]} {[V], [=D]} ⟨[falls]⟩
v {[v]} {[v], [=V]} ⟨⟩
C {[C]} {[C], [=T]} ⟨⟩
Unique to our Chomsky 2001 implementation:
man {[man]} {[N], [iπ:3], [i#:sg], [uC:_]} ⟨[man]⟩
man′ {[man]} {[N], [iπ:3], [i#:sg], [uC:nom]} ⟨[man]⟩
PRES {[PRES]} {[T], [=v], [EPP], [uπ:_], [u#:_], [iC:nom]} ⟨⟩
PRES′ {[PRES]} {[T], [=v], [EPP], [uπ:3], [u#:sg], [iC:nom]} ⟨⟩
Unique to our Collins 2017 implementation:
man {[man]} {[N], [iπ:3], [i#:sg], [uC:nom]} ⟨[man]⟩
PRES {[PRES]} {[T], [=v], [EPP], [uπ:3], [u#:sg], [iC:nom]} ⟨⟩

Table 4: Lexicon for the derivations (21) and (22).

(21) a. Merge(the,man).
W1 = {{ the, man }︸ ︷︷ ︸

DP

}.

b. Merge(falls,DP).
W2 = {{ falls, { the, man } }︸ ︷︷ ︸

VP

}.

c. Merge(v,VP).
W3 = {{ v, { falls, { the, man } } }︸ ︷︷ ︸

vP

}.

d. Merge(PRES, vP).
W4 = {{ PRES, { v, { falls, { the, man } } } }︸ ︷︷ ︸

TP1

}.

e. Agree(PRES,man).
W5 = {{ { the, man′ }, { PRES′, { v, { falls, { the, man′ } } } } }︸ ︷︷ ︸

TP2

}.

f. Merge(C,TP2).
W6 = {{ C, { { the, man′ }, { PRES′, { v, { falls, { the, man′ } } } } } }︸ ︷︷ ︸

CP

}.

g. Transfer(CP,CP).
W7 = {CP}.
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(22) a. Select(man).
W1 = {man}.

b. Select(PRES).
W2 = {man, PRES}.

c. Merge(man, [iC:nom]). [iC:nom] is in the SYN of PRES.
W3 = {{ man, [iC:nom] }︸ ︷︷ ︸

N

, PRES}.

d. Merge(the,N).
W4 = {{ the, { man, [iC:nom] } }︸ ︷︷ ︸

DP

, PRES}.

e. Merge(falls,DP).
W5 = {{ falls, { the, { man, [iC:nom] } } }︸ ︷︷ ︸

VP

, PRES}.

f. Merge(v,VP).
W6 = {{ v, { falls, { the, { man, [iC:nom] } } } }︸ ︷︷ ︸

vP

, PRES}.

g. Merge(PRES, vP).
W7 = {{ PRES, { v, { falls, { the, { man, [iC:nom] } } } } }︸ ︷︷ ︸

TP1

}.

h. Merge(TP1,DP).
W8 = {{ { the, { man, [iC:nom] } }, { PRES, { v, { falls, { the, { man, [iC:nom] } } } } } }︸ ︷︷ ︸

TP2

}.

i. Merge(TP2, [iπ:3]). [iπ:3] is in the SYN of man.
W9 = {{ [iπ:3], { DP, { PRES, vP } } }︸ ︷︷ ︸

TP3

}.

j. Merge(TP3, [i#:sg]). [i#:sg] is in the SYN of man.
W10 = {{ [i#:sg], { [iπ:3], { DP, { PRES, vP } } } }︸ ︷︷ ︸

TP4

}.

k. Merge(C,TP4).
W11 = {{ C, { [i#:sg], { [iπ:3], { DP, { PRES, vP } } } } }︸ ︷︷ ︸

CP

}.

l. Transfer(CP,CP).
W12 = {CP}.

68



Does a neural model understand the de re / de dicto distinction?

Gaurav Kamath1,∗

gaurav.kamath
@mail.mcgill.ca

Laurestine Bradford 1,2,*

laurestine.bradford
@mail.mcgill.ca

1 McGill University and Mila
2 Centre for Research on Brain, Language and Music

Abstract

Neural network language models (NNLMs) are
often casually said to “understand” language,
but what linguistic structures do they really
learn? We pose this question in the context
of de re / de dicto ambiguities. Nouns and de-
terminer phrases in intensional contexts, such
as belief, desire, and modality, are subject to
referential ambiguities. The phrase “Lilo be-
lieves an alien is on the loose,” for example, has
two interpretations: one (de re) in which she
believes a specific entity which happens to be
an alien is on the loose, and another (de dicto)
in which she believes some unspecified alien
is on the loose. In this paper we confront an
NNLM with contexts producing de re / de dicto
ambiguities. We use coreference resolution to
investigate which interpretive possibilities the
model captures. We find that while RoBERTa is
sensitive to the fact that intensional predicates
and indefinite determiners each change coref-
erence possibilities, it does not grasp how the
two interact with each other, and hence misses
a deeper level of semantic structure. This in-
quiry is novel in its cross-disciplinary approach
to philosophy, semantics and NLP, bringing
formal semantic insight to an active research
area testing the nature of NNLMs’ linguistic
“understanding.”

1 Introduction

Modern neural net language models (NNLMs)
are often publicized as “understanding” language,
which can belie a lack of knowledge about the na-
ture of the linguistic structures they truly capture
(Bender and Koller, 2020). Consequently, there
has been much interest in probing NNLMs’ sen-
sitivity to theoretical linguistic structures, an area
which Baroni (2021) calls linguistically-oriented
deep net analysis (LODNA). Such analysis often
uses psycholinguistic methods to give NNLMs ac-
ceptability tasks similar to those one would give to

∗∗ Equal contribution.

a human (Warstadt et al., 2019). Existing work has
primarily measured NNLMs’ ability to capture syn-
tactic structures (Bacon, 2020; Linzen and Baroni,
2021; Warstadt et al., 2019), though a few semantic
phenomena, such as the causative-inchoative alter-
nation, have also been investigated (Warstadt et al.,
2019).

Fine-grained semantic distinctions present
unique difficulties for LODNA. It can be chal-
lenging to pose the right problems to test NNLM
knowledge of subtle meaning distinctions; for ex-
ample, see (Tsiolis, 2020)’s discussion in the con-
text of quantifier scope ambiguity. Nonetheless,
fine-grained semantic distinctions are crucial to
modern theories of semantic structure, and it is
therefore important to find out how well NNLMs
“understand” them. One such subtle meaning dif-
ference lies in the de re and de dicto interpretations
of noun phrases in intensional contexts.

The de re / de dicto distinction, made notable by
Quine (1956) among others, refers to two distinct
kinds of interpretations of noun phrases that arise
from intensional contexts in natural language. Such
contexts include belief, desire, and modality. The
statement “Lilo believes an alien is on the loose,”
for example, has two interpretations. Under one
interpretation (de re), Lilo believes a specific entity
that just so happens to be an alien (say, Stitch) is
on the loose. Lilo herself (as is the case in Lilo and
Stitch (Sanders and DeBlois, 2002)) need not know
that Stitch is an alien for the statement to be true.
Under the other interpretation (de dicto) Lilo be-
lieves that some unspecified alien, whatever it may
be, is on the loose. Unlike the de re interpretation,
no alien needs to actually exist for the statement to
be true under this interpretation.

De re / de dicto ambiguities have traditionally
been treated in the philosophy and semantics lit-
erature as scope ambiguities, where each interpre-
tation arises out of a modal or intensional oper-
ator outscoping, or being outscoped by, another
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quantifier (see (Keshet and Schwarz, 2019) for an
overview). For example:

De re: ∃x[alienw0(x) ∧ ∀w′

[BELw0(Lilo,w′) ⇒ on-the-loosew′(x)]]

De dicto: ∀w′[BELw0(Lilo,w′) ⇒
∃x[alienw′(x) ∧ on-the-loosew′(x)]]1

NNLMs, however, lack any similar formal system
of representation, since all meaning representa-
tion is contained within numerical embeddings and
weights. This provides further theoretical motiva-
tion to investigate whether NNLMs are capable of
discerning de re / de dicto ambiguities, and whether
they show any bias towards either interpretation. If
NNLMs are capable of making these distinctions,
it would suggest not only that they are capable of
mimicking human-like fine-grained semantic dis-
tinctions, but also that numerical vectors are rich
enough to capture deep formal structure. We thus
believe that the capacity of NNLMs to discern de
re / de dicto ambiguities has strong implications
for both semantics and NLP.

Therefore, we investigate whether current pow-
erful language models can interpret NPs in inten-
sional contexts in both de re and de dicto senses.
We will do so by framing the problem as one of
coreference resolution.

2 Related Work

As NNLMs have become increasingly successful
at a range of natural language tasks in recent years,
there has been much discussion of the capacity of
such models to “understand” language. While this
use of the term is misleading (Bender and Koller,
2020), it has spurred research into the ability of
NNLMs to pick up on theoretical, often complex
linguistic structures.

Most of this LODNA work has focused on syn-
tactic structures. For overviews of such work, see
(Baroni, 2021; Bender and Koller, 2020; Linzen
and Baroni, 2021). The present paper differs from
this body of work, however, in that we address a
semantic, rather than a syntactic, phenomenon.

Although not as much, there has also been
work in LODNA on semantics. For example,
some progress has been made in measuring the

1While other equivalent formulations of the logical forms
of such sentences are present in the literature, we choose to
adopt the same notation as (Zhang and Davidson, 2021), on
account of its conciseness and simplicity.

degree to which NNLMs encode compositional-
ity (Ettinger et al., 2018; Shwartz and Dagan,
2019; Jawahar et al., 2019; Yu and Ettinger, 2020,
2021; Bogin et al., 2022) and systematicity (Lake
and Baroni, 2018; Goodwin et al., 2020; Kim
and Linzen, 2020). Researchers have also stud-
ied the capacity of NNLMs to capture more spe-
cific, fine-grained semantic phenomena, including
monotonicity (Yanaka et al., 2019), the causative-
inchoative alternation (Warstadt et al., 2019), nega-
tion (Ettinger et al., 2018; Ettinger, 2020; Kim
et al., 2019; Richardson et al., 2020), and quantifi-
cation (Kim et al., 2019; Richardson et al., 2020).

Natural language understanding (NLU) bench-
marks also have the opportunity to test models’
grasp of theoretical semantic structures. Most large
collections of NLU benchmarks focus on perfor-
mance of specific tasks (such as sentiment analysis
and question answering) rather than abstract lin-
guistic knowledge (Liang et al., 2020; Ruder et al.,
2021; Dumitrescu et al., 2021; Ham et al., 2020;
Khashabi et al., 2020; Park et al., 2021; Rybak
et al., 2020; Seelawi et al., 2021; Wilie et al., 2020;
Yao et al., 2021). Indeed, Bowman and Dahl (2021)
have argued that targeting specific linguistic knowl-
edge can hinder performance of NNLMs on NLP
tasks.

Nevertheless, some NLU benchmarks overlap
with LODNA in addressing certain theoretical se-
mantic structures. In particular, the benchmarks
discussed in (Xia and Van Durme, 2021) all assess
models’ semantically-informed coreference resolu-
tion capability, as do the collection of benchmarks
following the Winograd Schema (Levesque et al.,
2012; Kocijan et al., 2020), which includes some
large benchmark sets like those mentioned above
(Wang et al., 2019a,b; Xu et al., 2020; Shavrina
et al., 2020). A benchmark nearer to the spirit
of LODNA is proposed in (Yanaka et al., 2021).
This paper directly relates generation of NNLM
test cases to theoretical semantic structures. The au-
thors use such structures to create tests for NNLMs’
compositional generalization of logical operators,
modifiers, and embedded clauses. Finally, in the
class of NLU benchmarks, the work of (Ribeiro
et al., 2021) is nearest to our own investigation.
Here, the author proposes templates that can be
filled in to create probes of NNLMs’ capability
with a variety of structures. These structures in-
clude antonymy, temporal ordering, negation, and
coreference. Note that none of the previous work
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assesses modality or intensionality. In the present
work, we employ a template-like scheme for gener-
ating test cases that assess NNLMs’ behaviour in
intensional contexts.

We focus on the de re / de dicto distinction. Since
being highlighted in recent times by (Quine, 1956),
de re / de dicto ambiguities have been the subject
of extensive work in philosophy and semantics.
For an overview, see (Keshet and Schwarz, 2019).
Most of this work focuses on of how to formally
represent intensional contexts (Fodor, 1970; Tichý,
1971; Montague, 1973; Lewis, 1979; Von Fintel
and Heim, 2011); specific points of focus include
scope (Keshet, 2008, 2010), (Elliott, 2022), modal-
ity (Plantinga, 1969; Fine, 1978), and even tense
(Ogihara, 1996; Kauf and Zeijlstra, 2018). For all
this work on the theory of de re / de dicto ambi-
guities, however, there is a dearth of experimen-
tal work on the distinction. The work reported in
(Zhang and Davidson, 2021) therefore stands out
for its quantitative experimental approach. The au-
thors conduct an study directly measuring whether
English speakers demonstrate any preference to-
wards de re or de dicto readings. Their results sug-
gest that speakers accept de dicto interpretations
more robustly than de re interpretations.

To our knowledge, there has been no similar
attempt to situate de re / de dicto ambiguities in
the context of NNLMs. Williamson et al. (2021)
present an amendment to Abstract Meaning Rep-
resentation (AMR), a graphical meaning represen-
tation language, which allows it to encode de re
/ de dicto ambiguities as scope ambiguities. This
marks perhaps the closest recent work on these am-
biguities in a NLP context. AMR, however, is an
artificial meaning representational language, and
therefore of a different type than the meaning repre-
sentation of an NNLM. Our work directly looks for
de re / de dicto ambiguities in NNLMs’ behaviour.

3 Model

In all experiments, we use a version of the
RoBERTa (Liu et al., 2019) masked language
model already fine-tuned for the SuperGLUE Wino-
grad Schema Challenge task (Levesque et al., 2012;
Wang et al., 2019a). This is because: (i) our method
of distinguishing de re from de dicto interpreta-
tions centers on recognizing coreference, which
this model does well at, scoring 89% on the Super-
GLUE WSC task (while for comparison, OpenAI’s
few-shot GPT-3 scores 80.1%) (Wang et al.); and

(ii) this model proved most straightforward to ac-
cess and work with. We directly access and work
with this model using Meta AI’s fairseq library (Ott
et al., 2019).

4 Dataset and evaluation metric

4.1 Dataset
We generate a dataset of test sentences that consist
of a matrix subject, an intensional verb with sen-
tential complement, an embedded subject, and an
embedded intransitive verb. The matrix subject is
always John or Mary, and the embedded subject
is always a noun phrase. All of the test cases have
either the form in Figure 1a, as in the example John
believes that a dentist is singing, or the form in Fig-
ure 1b, as in the example John wants a dentist to be
singing. The choice between these structures sim-
ply depends on whether the matrix verb requires a
finite or non-finite tense in its complement.

We simultaneously generate a dataset of sen-
tences which are similar to the above, but with
a perceptual verb instead of an intensional verb.
These therefore have the form in Figure 1c, as in
the example John sees a dentist singing. Note that
perceptual verbs have been analyzed by a few in
the literature as also being intensional (e.g. Bour-
get, 2017); for sentences with perceptual verbs, we
therefore have the perceptual verbs take direct ob-
jects as their arguments (as in John sees a dentist
singing), rather than clauses (as in John sees that a
dentist is singing), so as to minimize the possibil-
ity of intensional interpretations of the perceptual
verbs.

Sentence templates are generated from the
schemata in Figure 1 with every possible combina-
tion of: John or Mary in the matrix subject, a verb
from the list in Appendix A.3 in the matrix verb, a
noun from the list in Appendix A.1 in the embed-
ded subject, and a verb from the list in Appendix
A.2 in the embedded verb.

In addition to manipulating whether the matrix
verb is intensional, we manipulate the determiner
of the embedded subject. We generate alternations
between the indefinite determiner ‘a’/‘an’, as in
Mary believes that a dentist is smiling, and the de-
ictic determiner ‘that’, as in Mary believes that that
dentist is smiling. The indefinite ‘a’/‘an’ should
give rise to a de re / de dicto ambiguity. The deictic
‘that’ should, in theory, only allow for a de re in-
terpretation, since it must refer to an entity already
present in the world of discourse.

71



[MatrixSubject] [MatrixVerb] that [EmbeddedSubject] is [EmbeddedVerb]
John believes an editor walking

Mary accepts a dentist singing

deduces a baker shouting

... ... ...

(a) Intensional sentences with finite-tensed complements.

[MatrixSubject] [MatrixVerb] [EmbeddedSubject] to be [EmbeddedVerb]
John wants an editor walking

Mary wishes for a dentist singing

requires a baker shouting

... ... ...

(b) Intensional sentences with non-finite-tensed complements.

[MatrixSubject] [MatrixVerb] [EmbeddedSubject] [EmbeddedVerb]
John sees an editor walking

Mary observes a dentist singing

hears a baker shouting

... ... ...

(c) Perceptual sentences.

Figure 1: Schemata for generating test data

We handpick 48 matrix verbs (36 intensional
and 12 perceptual), randomly select 60 embedded
nouns from a handpicked list of 204, and randomly
select 30 embedded verbs from a handpicked list
of 512. The resultant dataset contains a total of
345,600 unique sentences with the configurations
shown in Figure 1 (although the total size of dataset
is larger, for reasons explained in the following
section). 259,200 of these are sentences with in-
tensional verbs, and the remaining 86,400 are sen-
tences with perceptual verbs.

4.2 Evaluation
The availability of the embedded NP as an
anaphoric antecedent depends on whether it is
interpreted de re or de dicto. Consequently,
for each generated sentence, we post-pend three
different fixed sentences: (i) I met [pronoun],
(ii) I greeted [pronoun], and (iii) I liked [pro-
noun]3. We then use a tweaked version of
the WSC-finetuned RoBERTa model’s in-built
disambiguate_pronoun function to obtain
the scores the model assigns at the [pronoun] po-

2We randomly select subsets of these lists, instead of using
the entire handpicked lists, due to concerns of dataset size and
excessive compute requirements with little obvious a priori
benefit of using the complete lists.

3This triples the final size of our dataset, bringing it to
1,036,800.

sition to each possible coreferent (i.e. the main
subject or the embedded subject)4.

Under the de dicto reading, the embedded NP
should not be able to corefer with a subsequent
phrase, as under this reading it is interpreted solely
within the intensional context. By contrast, un-
der the de re reading, the embedded NP should be
able to corefer with a subsequent phrase, as under
this reading it is interpreted outside the intensional
context.

In intuitive terms, using the example Mary be-
lieves that a lawyer is shouting, under the de
dicto interpretation, the lawyer is only specified
in Mary’s beliefs, rather than the speaker’s world
of reference. But the subsequent post-pended sen-
tence is evaluated with respect to the speaker’s
world of reference, and not Mary’s beliefs. So, the
pronoun token in the post-pended sentence should
not be able to refer to the embedded NP. Under a de
re interpretation, however, the lawyer is specified
in the speaker’s world of reference. So it remains
accessible for coreference in the post-pended sen-
tence.

Therefore, we should be able to assess the perfor-
4In this process, the model doesn’t actually make use of

the token in the position it predicts for. We therefore use
the [pronoun] token as a placeholder for what is in effect a
masked position, as using RoBERTa’s actual <mask> token
led to issues with the code.
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mance of the masked language model at detecting
the de re / de dicto ambiguity by comparing the
scores it assigns to the matrix or the embedded sub-
ject at the pronoun position. For example, in Mary
believes that a dentist is singing. I met [pronoun],
we compare the scores assigned to the possible
coreferents Mary and a dentist at the pronoun posi-
tion5. We use three separate post-pended sentences
to try to ensure that the effects we see are not the
result of any one specific verb in the follow-up
sentence.

Scores assigned to the matrix subject should be
higher for test sentences where the matrix verb
is intensional and the embedded subject has an
‘a’/‘an’ determiner. These are the contexts that give
rise to the possible de dicto interpretation which
would exclude the embedded subject from corefer-
ence. By contrast, the relative scores for the matrix
and embedded subject should be closer to equal in
cases that only admit a de re interpretation. This
includes all cases with a ‘that’ determiner or where
the matrix verb is perceptual (i.e. non-intensional).

5 Results and Discussion

5.1 Results
To quantify the model’s coreference choice at the
pronoun position, we study the difference between
the score assigned to the matrix subject (e.g. John)
and that assigned to the embedded subject (e.g. an
actor); we call this difference matrix subject bias.
Figure 2 shows the empirical effect of matrix verb
type and determiner type on matrix subject bias.
We see an overall increase in matrix subject bias
in intensional contexts and in contexts where the
embedded subject has the determiner ‘a’ or ‘an’.
The difference between intensional and perceptual
contexts is slightly smaller when the embedded
subject has determiner ‘a’ or ‘an’.

In order to study the effects of interest while
marginalizing over other manipulations and over
random variability, we fit a linear mixed-effects
model with formula below (random effects speci-
fied in brackets).

Matrix Subject Bias ∼
1 + Determiner ∗ Matrix Verb Type

+ Followup Verb + Matrix Subject
+ (1 + Determiner + Matrix Subject

5The implementation of coreference resolution in the
model we use is such that a span such as a dentist is not
penalized simply for being longer than a single token like
Mary.
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Figure 2: Boxplot with whiskers to 1.5IQR showing
distribution of matrix subject bias by determiner and
matrix verb type.

+ Followup Verb | Matrix Verb)
+ (1 + Determiner ∗ Matrix Verb Type

+ Followup Verb + Matrix Subject
| Embedded Verb)

+ (1 + Determiner ∗ Matrix Verb Type
+ Followup Verb + Matrix Subject
| Embedded Subject)

The full results are reported in Tables 1 and 2.
The model confirms the overall trend in Figure 2.
Averaged across all conditions, there is a bias to-
wards matrix subjects of 3.27 points (df=71.91,
t=6.96, p<0.001). Sentences with perceptual ma-
trix verbs show 2.58 points lower matrix sub-
ject bias than those with intensional matrix verbs
(df=78.16, t=-5.03, p<0.001), and sentences with
with determiner ‘a’/‘an’ show 2.89 points higher
matrix subject bias than those with determiner
‘that’ (df=92.78, t=11.92, p<0.001). The effect
of verb type is smaller in indefinite (‘a’/‘an’) de-
terminer contexts than deictic (‘that’) contexts by
0.52 points, but this is not statistically significant
(df=72.83,t=1.44,p=0.152).

There is considerable variability in both effects
according to embedded verb and embedded subject,
and variability in the determiner effect according to
matrix verb, embedded verb, and embedded subject
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Coefficient β̂ SE(β̂) df t p

Intercept 3.27 0.47 71.91 6.96 < 0.001
Determiner = ‘a/an’ 2.89 0.24 92.78 11.92 < 0.001
Matrix Verb Type = ‘perceptual’ -2.58 0.51 78.16 -5.03 < 0.001
Matrix Subject = ‘Mary’ -1.27 0.17 89.18 -7.65 < 0.001
Followup Verb = ‘liked’ (vs. ‘greeted’) -0.25 0.26 102.91 -0.97 0.333
Followup Verb = ‘met’ (vs. 0.5(‘liked’+‘greeted’)) -1.12 0.13 96.10 -8.93 < 0.001
Interaction Determiner:Matrix Verb Type 0.52 0.36 72.83 1.44 0.152
Marginal R2 = 0.21, Conditional R2 = 0.65, n = 1036800,
Groups: Matrix Verb (48); Embedded Verb (30); Embedded Subject (60)

Table 1: A regression table showing fixed effects, goodness of fit, and test statistics for the linear mixed-effects
model in Section 5.1. Degrees of freedom and p-values estimated using the Satterthwaite approximation. Predictor
levels were coded as ±0.5, except Followup Verb coded with Helmert contrasts.

Group Term Variance SD
Matx. Verb Intercept 1.13 1.49

Determiner 0.89 0.94
Matx. Subj 0.05 0.22
Foll. Verb Cont.1 1.12 1.05
Foll. Verb Cont.2 0.23 0.48

Emb. Verb Intercept 3.92 1.98
Determiner 0.76 0.87
Matx. Verb Type 2.02 1.42
Matx. Subj 0.17 0.42
Foll. Verb Cont.1 0.84 0.92
Foll. Verb Cont.2 0.22 0.47
Det.:Matx. Type 0.80 0.90

Emb. Subj Intercept 1.92 1.39
Determiner 0.50 0.71
Matx. Verb Type 0.79 0.89
Matx. Subj 1.25 1.12
Foll. Verb Cont.1 0.88 0.93
Foll. Verb Cont.2 0.21 0.46
Det.:Matx. Type 0.38 0.62

Residual 10.09 3.18

Table 2: A table showing fitted random effects of the
model specified in Section 5.1, as well as residual vari-
ance.

(Table 2). Nonetheless, the overall trend is clear.
See Appendix B for an overview of additional

trends which do not bear on the main research ques-
tion.

5.2 Discussion
From these results, it is clear that both verb type (in-
tensional or non-intensional) and determiner type
(indefinite or deictic) have statistically significant
effects on the relative scores the language model

assigns to different possible anaphoric referents.
Intensional verbs yield higher matrix subject bias

than non-intensional, perceptual verbs, when all
other variables are held constant. This is in line
with our predictions, as intensional verbs allow for
de dicto readings that block the embedded subject
from coreference.

In addition, indefinite determiners yield higher
matrix subject bias than deictic determiners. This
is also in line with our predictions, as indefinite
determiners are more amenable to de dicto readings
that block the embedded subject from coreference.
However, the interaction between these two factors
is not statistically significant. This goes against our
predictions, as deictic determiners should bias the
reader toward de re readings no matter what, so
the matrix verb effect should diminish when the
determiner is ‘that’.

These results are positive evidence that neural
language models can be sensitive to the effect of
intensional predicates on de re / de dicto ambigui-
ties, and therefore to intensionality more broadly.
However, the lack of interaction suggests that there
is something deeper that RoBERTa misses. It cap-
tures the effects of verb intensionality and deictic
determiners; however, it does not capture the cor-
rect result of combining the two. By contrast, a
formal-theoretical model of intensional verbs’ and
of determiners’ meanings would lead naturally to
the correct inference that deictic determiners facili-
tate de re readings regardless of matrix verb.

Some other results are also worth mentioning,
shown in more detail in Appendix B. As seen in Ta-
ble 1 and Figure 4b, the matrix subject bias is very
similar when the followup verb is liked or greeted,
but lower in a statistically significant way when
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it is met. The reason for this effect is not known.
Whether the matrix subject is Mary or John has
a statistically significant effect on matrix subject
bias; holding other variables constant, setting the
matrix subject to Mary instead of John yields a
lower matrix subject bias. Given the propensity
for large language models to be gender-biased in
various ways (Lu et al., 2020; Vig et al., 2020;
Charlesworth et al., 2021), this is perhaps not sur-
prising.

6 Conclusion

In this paper, we investigate the capacity of a neural
language model, a version of RoBERTa fine-tuned
for coreference resolution, to identify de re / de
dicto ambiguities that arise in intensional contexts.
We find evidence suggesting that such models are
indeed sensitive to the ambiguity-generating ef-
fects of intensional predicates and the ambiguity-
resolution effects of deictic determiners, but find no
evidence that this sensitivity extends to the interac-
tion between intensional predicates and embedded
determiners.

Our approach is also subject to some limitations
that invite further research. Our range of test data
is tightly constrained in its syntactic and broad se-
mantic structure. This is deliberate, as we hoped
to isolate the semantic effects of intensional pred-
icates and determiners from the confounding fac-
tors of syntactic form and broader semantic context.
However, the downside of this approach is that our
findings may not generalize across more varied
forms of language. Similarly, our choice of percep-
tual verbs as the counterpart to intensional verbs
was the result of their shared syntactic properties,
which allowed for substitution while holding all
other variables (including sentence structure) vir-
tually unchanged. One possibility, however, is that
the effects we find between intensional and per-
ceptual verbs are dependent on the latter’s being
specifically perceptual verbs, and do not represent a
difference between intensional and non-intensional
verbs more generally. Finally, in this paper, we
work with only one model. Other models with
different architecture or pretraining may have pro-
duced different results.

Clearly, a broader study of the capacity of neural
models to capture intensional effects such as de re
/ de dicto ambiguities requires a wider set of data
and experimental setups. We hope that this inquiry
spurs further research to that end.

7 Code

Code and data for this project are available
at https://github.com/laurestine/
nnlm-de-re-de-dicto.

8 Acknowledgements

The authors would like to thank Siva Reddy for his
guidance, as well as Chris Potts and the anonymous
reviewers for their feedback on earlier versions of
this work. The CRBLM is funded by the Govern-
ment of Quebec via the Fonds de Recherche Nature
et Technologies and Société et Culture.

References
Geoffrey I. Bacon. 2020. Evaluating linguistic knowl-

edge in neural networks. Ph.D. thesis, UC Berkeley.

Marco Baroni. 2021. On the proper role of
linguistically-oriented deep net analysis in linguistic
theorizing.

Emily M. Bender and Alexander Koller. 2020. Climbing
towards NLU: On meaning, form, and understanding
in the age of data. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 5185–5198, Online. Association for
Computational Linguistics.

Ben Bogin, Shivanshu Gupta, and Jonathan Berant.
2022. Unobserved local structures make composi-
tional generalization hard. In Proceedings of the
2022 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2731–2747, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

David Bourget. 2017. Intensional perceptual ascriptions.
Erkenntnis volume, 82.

Samuel R. Bowman and George Dahl. 2021. What will
it take to fix benchmarking in natural language under-
standing? In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 4843–4855, Online. Association for
Computational Linguistics.

Tessa E. S. Charlesworth, Victor Yang, Thomas C.
Mann, Benedek Kurdi, and Mahzarin R. Banaji.
2021. Gender stereotypes in natural language: Word
embeddings show robust consistency across child
and adult language corpora of more than 65 mil-
lion words. Psychological Science, 32(2):218–240.
PMID: 33400629.

Stefan Daniel Dumitrescu, Petru Rebeja, Beata Lorincz,
Mihaela Gaman, Andrei Avram, Mihai Ilie, Andrei
Pruteanu, Adriana Stan, Lorena Rosia, Cristina Ia-
cobescu, Luciana Morogan, George Dima, Gabriel

75



Marchidan, Traian Rebedea, Madalina Chitez, Dani
Yogatama, Sebastian Ruder, Radu Tudor Ionescu,
Razvan Pascanu, and Viorica Patraucean. 2021.
LiRo: Benchmark and leaderboard for Romanian
language tasks. In Thirty-fifth Conference on Neural
Information Processing Systems Datasets and Bench-
marks Track (Round 1).

Patrick D Elliott. 2022. A flexible scope theory of
intensionality. Linguistics and Philosophy, 46:333–
378.

Allyson Ettinger. 2020. What BERT is not: Lessons
from a new suite of psycholinguistic diagnostics for
language models. Transactions of the Association for
Computational Linguistics, 8:34–48.

Allyson Ettinger, Ahmed Elgohary, Colin Phillips, and
Philip Resnik. 2018. Assessing composition in sen-
tence vector representations. In COLING.

Kit Fine. 1978. Model theory for modal logic. part i –
the de re/de dicto distinction. Journal of Philosophi-
cal Logic, 7(1):125–156.

Janet Dean Fodor. 1970. The Linguistic Description of
Opaque Contexts. Ph.D. thesis, MIT.

Emily Goodwin, Koustuv Sinha, and Timothy J.
O’Donnell. 2020. Probing linguistic systematicity.
In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 1958–
1969, Online. Association for Computational Linguis-
tics.

Jiyeon Ham, Yo Joong Choe, Kyubyong Park, Ilji Choi,
and Hyungjoon Soh. 2020. KorNLI and KorSTS:
New benchmark datasets for Korean natural language
understanding. CoRR, abs/2004.03289.

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah.
2019. What does BERT learn about the structure of
language? In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3651–3657, Florence, Italy. Association for
Computational Linguistics.

Carina Kauf and Hedde Zeijlstra. 2018. Towards a new
explanation of sequence of tense. In Semantics and
Linguistic Theory, volume 28, pages 59–77.

Ezra Keshet. 2008. Good intensions: paving two roads
to a theory of the de re / de dicto distinction. Ph.D.
thesis, MIT.

Ezra Keshet. 2010. Split intensionality: A new scope
theory of de re and de dicto. Linguistics and Philoso-
phy, 33(4):251–283.

Ezra Keshet and Florian Schwarz. 2019. De re/de dicto.
The Oxford handbook of reference, pages 167–202.

Daniel Khashabi, Arman Cohan, Siamak Shakeri, Pe-
dram Hosseini, Pouya Pezeshkpour, Malihe Alikhani,
Moin Aminnaseri, Marzieh Bitaab, Faeze Brahman,
Sarik Ghazarian, Mozhdeh Gheini, Arman Kabiri,

Rabeeh Karimi Mahabadi, Omid Memarrast, Ah-
madreza Mosallanezhad, Erfan Noury, Shahab Raji,
Mohammad Sadegh Rasooli, Sepideh Sadeghi, Er-
fan Sadeqi Azer, Niloofar Safi Samghabadi, Mahsa
Shafaei, Saber Sheybani, Ali Tazarv, and Yadollah
Yaghoobzadeh. 2020. ParsiNLU: A suite of lan-
guage understanding challenges for Persian. CoRR,
abs/2012.06154.

Najoung Kim and Tal Linzen. 2020. COGS: A compo-
sitional generalization challenge based on semantic
interpretation. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 9087–9105, Online. As-
sociation for Computational Linguistics.

Najoung Kim, Roma Patel, Adam Poliak, Patrick Xia,
Alex Wang, Tom McCoy, Ian Tenney, Alexis Ross,
Tal Linzen, Benjamin Van Durme, Samuel R. Bow-
man, and Ellie Pavlick. 2019. Probing what differ-
ent NLP tasks teach machines about function word
comprehension. In Proceedings of the Eighth Joint
Conference on Lexical and Computational Semantics
(*SEM 2019), pages 235–249, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Vid Kocijan, Thomas Lukasiewicz, Ernest Davis, Gary
Marcus, and Leora Morgenstern. 2020. A review of
Winograd schema challenge datasets and approaches.
CoRR, abs/2004.13831.

Brenden Lake and Marco Baroni. 2018. Generalization
without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In In-
ternational conference on machine learning, pages
2873–2882. PMLR.

Hector J. Levesque, Ernest Davis, and Leora Mor-
genstern. 2012. The Winograd Schema Challenge.
In 13th International Conference on the Principles
of Knowledge Representation and Reasoning, KR
2012, Proceedings of the International Conference
on Knowledge Representation and Reasoning, pages
552–561. Institute of Electrical and Electronics Engi-
neers Inc. 13th International Conference on the Prin-
ciples of Knowledge Representation and Reasoning,
KR 2012 ; Conference date: 10-06-2012 Through
14-06-2012.

David Lewis. 1979. Attitudes de dicto and de se. Philo-
sophical Review, 88(4):513–543.

Yaobo Liang, Nan Duan, Yeyun Gong, Ning Wu, Fenfei
Guo, Weizhen Qi, Ming Gong, Linjun Shou, Daxin
Jiang, Guihong Cao, Xiaodong Fan, Ruofei Zhang,
Rahul Agrawal, Edward Cui, Sining Wei, Taroon
Bharti, Ying Qiao, Jiun-Hung Chen, Winnie Wu,
Shuguang Liu, Fan Yang, Daniel Campos, Rangan
Majumder, and Ming Zhou. 2020. XGLUE: A new
benchmark datasetfor cross-lingual pre-training, un-
derstanding and generation. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6008–6018,
Online. Association for Computational Linguistics.

76



Tal Linzen and Marco Baroni. 2021. Syntactic structure
from deep learning. Annual Review of Linguistics,
7(1):195–212.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Kaiji Lu, Piotr Mardziel, Fangjing Wu, Preetam Aman-
charla, and Anupam Datta. 2020. Gender Bias in
Neural Natural Language Processing, pages 189–
202. Springer International Publishing, Cham.

Richard Montague. 1973. The proper treatment of
quantification in ordinary english. In Patrick Sup-
pes, Julius Moravcsik, and Jaakko Hintikka, editors,
Approaches to Natural Language, pages 221–242.
Dordrecht.

Toshiyuki Ogihara. 1996. Tense, attitudes, and scope,
volume 58 of Studies in Linguistics and Philosophy.
Springer Science & Business Media.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for se-
quence modeling. arXiv preprint arXiv:1904.01038.

Sungjoon Park, Jihyung Moon, Sungdong Kim, Won-Ik
Cho, Jiyoon Han, Jangwon Park, Chisung Song, Jun-
seong Kim, Yongsook Song, Tae Hwan Oh, Joohong
Lee, Juhyun Oh, Sungwon Lyu, Younghoon Jeong,
Inkwon Lee, Sangwoo Seo, Dongjun Lee, Hyun-
woo Kim, Myeonghwa Lee, Seongbo Jang, Seung-
won Do, Sunkyoung Kim, Kyungtae Lim, Jongwon
Lee, Kyumin Park, Jamin Shin, Seonghyun Kim,
Eunjeong Lucy Park, Alice Oh, Jung-Woo Ha, and
Kyunghyun Cho. 2021. KLUE: Korean language
understanding evaluation. CoRR, abs/2105.09680.

Alvin Plantinga. 1969. De re et de dicto. Noûs,
3(3):235–258.

Willard Quine. 1956. Quantifiers and propositional
attitudes. Journal of Philosophy, 53:177–187.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2021. Beyond accuracy: Be-
havioral testing of NLP models with checklist (ex-
tended abstract). In Proceedings of the Thirtieth
International Joint Conference on Artificial Intel-
ligence, IJCAI-21, pages 4824–4828. International
Joint Conferences on Artificial Intelligence Organi-
zation. Sister Conferences Best Papers.

Kyle Richardson, Hai Hu, Lawrence Moss, and Ashish
Sabharwal. 2020. Probing natural language inference
models through semantic fragments. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 34, pages 8713–8721.

Sebastian Ruder, Noah Constant, Jan Botha, Aditya Sid-
dhant, Orhan Firat, Jinlan Fu, Pengfei Liu, Junjie

Hu, Dan Garrette, Graham Neubig, and Melvin John-
son. 2021. XTREME-R: Towards more challenging
and nuanced multilingual evaluation. In Proceedings
of the 2021 Conference on Empirical Methods in
Natural Language Processing, pages 10215–10245,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Piotr Rybak, Robert Mroczkowski, Janusz Tracz, and
Ireneusz Gawlik. 2020. KLEJ: comprehensive bench-
mark for Polish language understanding. CoRR,
abs/2005.00630.

Chris Sanders and Dean DeBlois. 2002. Lilo & Stitch.
Walt Disney Pictures.

Haitham Seelawi, Ibraheem Tuffaha, Mahmoud Gzawi,
Wael Farhan, Bashar Talafha, Riham Badawi, Zyad
Sober, Oday Al-Dweik, Abed Alhakim Freihat, and
Hussein Al-Natsheh. 2021. ALUE: Arabic language
understanding evaluation. In Proceedings of the
Sixth Arabic Natural Language Processing Workshop,
pages 173–184, Kyiv, Ukraine (Virtual). Association
for Computational Linguistics.

Tatiana Shavrina, Alena Fenogenova, Anton A.
Emelyanov, Denis Shevelev, Ekaterina Artemova,
Valentin Malykh, Vladislav Mikhailov, Maria
Tikhonova, Andrey Chertok, and Andrey Evlampiev.
2020. RussianSuperGLUE: A Russian language
understanding evaluation benchmark. CoRR,
abs/2010.15925.

Vered Shwartz and Ido Dagan. 2019. Still a pain in
the neck: Evaluating text representations on lexical
composition. Transactions of the Association for
Computational Linguistics, 7:403–419.

Pavel Tichý. 1971. An approach to intensional analysis.
Noûs, 5(3):273–297.

Konstantinos Christopher Tsiolis. 2020. Quantifier
scope disambiguation.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov,
Sharon Qian, Daniel Nevo, Yaron Singer, and Stu-
art Shieber. 2020. Investigating gender bias in lan-
guage models using causal mediation analysis. In
Advances in Neural Information Processing Systems,
volume 33, pages 12388–12401. Curran Associates,
Inc.

Kai Von Fintel and Irene Heim. 2011. Intensional se-
mantics. Unpublished Lecture Notes.

Alex Wang, Yada Pruksachatkun, Nikita Nangia,
Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R. Bowman. SuperGLUE
leaderboard. Available at https://super.
gluebenchmark.com/leaderboard
(2022/04/18).

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel R. Bowman. 2019a. SuperGLUE: A
Stickier Benchmark for General-Purpose Language

77



Understanding Systems. Curran Associates Inc., Red
Hook, NY, USA.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019b.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In the Pro-
ceedings of ICLR.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2019. Neural Network Acceptability Judg-
ments. Transactions of the Association for Com-
putational Linguistics, 7:625–641.

Bryan Wilie, Karissa Vincentio, Genta Indra Winata,
Samuel Cahyawijaya, Xiaohong Li, Zhi Yuan Lim,
Sidik Soleman, Rahmad Mahendra, Pascale Fung,
Syafri Bahar, and Ayu Purwarianti. 2020. In-
doNLU: Benchmark and resources for evaluating
Indonesian natural language understanding. CoRR,
abs/2009.05387.

Gregor Williamson, Patrick Elliott, and Yuxin Ji. 2021.
Intensionalizing Abstract Meaning Representations:
Non-veridicality and scope. In Proceedings of The
Joint 15th Linguistic Annotation Workshop (LAW)
and 3rd Designing Meaning Representations (DMR)
Workshop, pages 160–169, Punta Cana, Dominican
Republic. Association for Computational Linguistics.

Patrick Xia and Benjamin Van Durme. 2021. Moving
on from OntoNotes: Coreference resolution model
transfer. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 5241–5256, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Liang Xu, Xuanwei Zhang, Lu Li, Hai Hu, Chenjie Cao,
Weitang Liu, Junyi Li, Yudong Li, Kai Sun, Yechen
Xu, Yiming Cui, Cong Yu, Qianqian Dong, Yin Tian,
Dian Yu, Bo Shi, Jun Zeng, Rongzhao Wang, Wei-
jian Xie, Yanting Li, Yina Patterson, Zuoyu Tian,
Yiwen Zhang, He Zhou, Shaoweihua Liu, Qipeng
Zhao, Cong Yue, Xinrui Zhang, Zhengliang Yang,
and Zhenzhong Lan. 2020. CLUE: A Chinese lan-
guage understanding evaluation benchmark. CoRR,
abs/2004.05986.

Hitomi Yanaka, Koji Mineshima, Daisuke Bekki, Ken-
taro Inui, Satoshi Sekine, Lasha Abzianidze, and
Johan Bos. 2019. Can neural networks understand
monotonicity reasoning? In Proceedings of the 2019
ACL Workshop BlackboxNLP: Analyzing and Inter-
preting Neural Networks for NLP, pages 31–40, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Hitomi Yanaka, Koji Mineshima, and Kentaro Inui.
2021. SyGNS: A systematic generalization testbed
based on natural language semantics. In Findings of
the Association for Computational Linguistics: ACL-
IJCNLP 2021, pages 103–119, Online. Association
for Computational Linguistics.

Yuan Yao, Qingxiu Dong, Jian Guan, Boxi Cao,
Zhengyan Zhang, Chaojun Xiao, Xiaozhi Wang, Fan-
chao Qi, Junwei Bao, Jinran Nie, Zheni Zeng, Yux-
ian Gu, Kun Zhou, Xuancheng Huang, Wenhao Li,
Shuhuai Ren, Jinliang Lu, Chengqiang Xu, Huadong
Wang, Guoyang Zeng, Zile Zhou, Jiajun Zhang,
Juanzi Li, Minlie Huang, Rui Yan, Xiaodong He,
Xiaojun Wan, Xin Zhao, Xu Sun, Yang Liu, Zhiyuan
Liu, Xianpei Han, Erhong Yang, Zhifang Sui, and
Maosong Sun. 2021. CUGE: A Chinese language
understanding and generation evaluation benchmark.
CoRR, abs/2112.13610.

Lang Yu and Allyson Ettinger. 2021. On the interplay
between fine-tuning and composition in transformers.
In Findings of the Association for Computational
Linguistics: ACL-IJCNLP 2021, pages 2279–2293,
Online. Association for Computational Linguistics.

Lang-Chi Yu and Allyson Ettinger. 2020. Assessing
phrasal representation and composition in transform-
ers. In EMNLP.

Yuhan Zhang and Kathryn Davidson. 2021. De re in-
terpretation in belief reports: An experimental in-
vestigation. In Experiments in Linguistic Meaning,
volume 1. Linguistic Society of America.

A Lexical items used in stimuli

A.1 Embedded Subjects
We used the following nouns as embedded subjects,
sampled randomly from a list of English nouns
denoting professions and types of person:

actor
administrator
ambassador
architect
assistant
baker
bartender
boy
chancellor
clerk
clown
controller
cook
cooper
count
courier
dancer
dealer
dentist
designer
dictator
diver
drummer
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economist
editor
emperor
engineer
farmer
girl
governor
guard
guitarist
historian
journalist
king
lady
lawyer
lieutenant
lobbyist
lord
magician
manager
mayor
merchant
model
negotiator
novelist
painter
philosopher
producer
psychiatrist
publisher
queen
rabbi
solicitor
spy
supervisor
treasurer
waiter
woman

A.2 Embedded Verbs
We used the following embedded intransitive verbs,
sampled randomly from a list of English intransi-
tive verbs denoting activities.

arriving
coughing
cringing
crying
dying
hiccuping
kneeling
limping
lying

moving
panicking
partying
praying
resting
running
screaming
shouting
sighing
singing
sitting
smiling
smoking
sneezing
standing
sweating
swimming
talking
walking
waving
working

A.3 Matrix Verbs
We used the following intensional matrix verbs,
meant to be as wide an array of intensional verbs
as possible:

accepts
aims for
anticipates
assumes
believes
concludes
conjectures
deduces
demands for
desires for
doubts
dreads
expects
fears
feels
figures
gathers
guesses
hopes
imagines
intends for
knows
maintains
needs
presumes
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reckons
requires
supposes
surmises
suspects
thinks
trusts
understands
wants
wishes for
worries

We used the following perceptual matrix verbs,
meant to be as wide an array of perceptual verbs as
possible:

catches sight of
detects
glimpses
hears
notices
observes
overhears
perceives
sees
spots
views
watches

B Data distribution details

This appendix contains additional details, not di-
rectly relevant to our research questions, about pat-
terns in matrix and embedded subject scores.

Figure 3 shows the raw distribution of matrix and
embedded subject scores. Matrix subject scores are
generally higher than embedded subject scores.

Figures 4a and 4b show distribution of matrix
subject bias for each matrix subject and for each
followup. We see that ‘met’ yields considerably
lower matrix subject bias than other followup verbs,
while matrix subjects of John are preferred as coref-
erents more than matrix subjects of Mary.

Figure 5 shows distribution of matrix subject
bias for each determiner-syntactic frame pair. We
see that the two intensional-verb frames pattern
together in the way indicated in the main text: they
have higher matrix subject bias than the perceptual-
verb frame, and all three frames show higher matrix
subject bias with indefinite determiners.

We next computed the raw effect of determiner,
the raw effect of intensional matrix verb, and their
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Figure 3: Histograms showing the raw distribution of
matrix and embedded subject scores.
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Figure 4: Boxplot with whiskers to 1.5IQR showing
the distribution of matrix subject bias for each matrix
subject and for each followup verb.
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Figure 5: Boxplot with whiskers to 1.5IQR showing the
distribution of matrix subject bias by syntactic frame
and determiner.

interaction separately for each possible matrix sub-
ject, embedded subject, embedded verb, and fol-
lowup verb. The results are shown in Figure 6. Raw
effects are computed as differences of means, and
the raw interaction is a difference of differences of
means. We see that the overall positive effect of
indefinite determiner and intensional matrix verb
is a trend across the bulk of data points, and is not
merely the result of a few outliers. The lack of inter-
action between these two effects is also consistent.
Figure 7 shows the pattern that test sentence frames
with "liked" as a followup verb have a higher effect
of determiner than those with other followup verbs,
but we see that the effect of an indefinite determiner
on matrix subject bias is still positive in general.

Finally, Figures 8, 9, and 10 show variability in
matrix subject score and embedded subject score
depending on the specific choice of embedded sub-
ject (Figure 8), embedded verb (Figure 9), and
matrix verb (Figure 10). This variability is quite
high, with some lexical items in each case showing
almost no matrix subject bias, and others showing
quite a lot. Aside from our deliberate manipulation
of intensionality, it is unclear what else drives this
variability.
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Figure 6: Sentence frames plotted by their raw effect
of indefinite determiner (difference in matrix subject
bias between instances of that frame with indefinite and
deictic determiners), raw effect of intensional matrix
verb (difference in mean matrix subject bias between in-
stances of that frame with an intensional and perceptual
matrix verb), and raw interaction of these two effects
(difference-of-differences between the aforementioned
subgroups).
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Figure 8: Error bar plot showing mean matrix subject score and embedded subject score for stimuli with each
embedded subject. Rows are ordered by matrix subject bias. Error bars show standard deviation.
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Figure 9: Error bar plot showing mean matrix subject score and embedded subject score for stimuli with each
embedded verb. Rows are ordered by matrix subject bias. Error bars show standard deviation.
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Figure 10: Error bar plot showing mean matrix subject score and embedded subject score for stimuli with each
matrix verb. Rows are ordered by matrix subject bias. Error bars show standard deviation. Perceptual matrix verbs
are highlighted in red.
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Abstract

Languages exhibiting both tonal and reduplica-
tion processes pose a challenge for finite-state
technologies. In this sense, Markowska et al.
(2021) propose a combination of 2-way FSTs
and multi-tape FSTs in order to simultaneously
deal with total reduplication on the segmental
level and independent tonal processes on the au-
tosegmental level. Here, we evaluate this model
for reduplication processes in Thai, which
shows total reduplication both for tones and
segments, and we suggest that the expressivity
of 2-way FSTs is needed at both levels.

1 Introduction

Reduplication, the systematic copying/repetition
of linguistic content to function with some new
grammatical purpose, is a well-attested phe-
nomenon cross-linguistically (Hurch and Mattes,
2005; Rubino, 2005; Raimy, 2012). For instance,
Rubino (2005) surveys 368 languages and shows
that about 85% exhibit some form of productive
reduplication. While the typology of reduplication
types is rich, two broader classes of processes have
been usually distinguished (Inkelas and Downing,
2015; Urbanczyk, 2007):

• partial reduplication, in which a bounded
number of segment are repeated (e.g. the last
syllable of a word);

• total reduplication, which repeats unbound-
edly many segments to form some new
morphological constituent.

It has been observed that reduplication presents
an interesting challenge to finite-state computa-
tional approaches to morpho-phonology (Dolatian
and Heinz, 2019b; Rawski et al., 2023). From
a computational perspective, by its bounded
nature partial reduplication can be modelled with
(subsequential) 1-way finite-state transducers
(FSTs), although with a significant explosion in

the number of required states (Roark and Sproat,
2007). On the other hand, because the number
of copied elements has hypothetically no upper
bound, total reduplication cannot be modelled with
these machines at all — leading some practitioners
to adopt memorized lists of words as a way to
deal with it in practical applications (Roark and
Sproat, 2007; Dolatian and Heinz, 2019a). As total
reduplication seems to be one of the few (if not the
only) morpho-phonological processes not easily
dealt with via 1-way FSTs, it is of particular interest
both for practical and theoretical research on finite-
state computational models (Dolatian and Heinz,
2019b). In this sense, Dolatian and Heinz (2020)
demonstrate how it is possible to use Deterministic
2-way FSTs — essentially, FSTs able to move
back and forth on the input tape — to succinctly
model both partial and full segmental reduplication.
Expanding on this intuition, Markowska et al.
(2021) observe that a complete finite-state treatment
of reduplication cross-linguistically is further com-
plicated by the fact that many languages exhibiting
total reduplication are also tonal, and models
need to simultaneously capture the somewhat
distinct processes affecting the segmental and the
autosegmental levels. Importantly, by showing
that tones may act independently from their
tone-bearing units, classical work in autosegmental
phonology has argued for the representational
separation of tones from segments (Leben, 1973;
Goldsmith, 1976, a.o.). Following work by Dolatian
and Rawski (2020), Markowska et al. (2021)
argue that modelling the morpho-phonology
of languages with both reduplication and tone
requires the synthesis of 1-way, 2-way FSTs, and
multi-tape FSTs (Filiot and Reynier, 2016; Furia,
2012; Rawski and Dolatian, 2020) — finite state
machines with multiple input/output tapes that can
be used to mimic autosegmental representations
(i.e., splitting the segmental and tonal levels; Wiebe,
1992; Rawski and Dolatian, 2020, a.o.).
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Importantly, the model in Markowska et al.
(2021) is motivated and validated on languages
like Shupamem, which exhibit a clear separation
between tonal and segmental processes, and that
seem to exhibit reduplication only on the segmental
level. However, broadening our typological
observations is crucial in getting insights into the
generalizability of our computational approaches.

Here, we adopt Markowska et al. (2021)’s synthe-
sis approach to reduplication in Thai, building on the
observation Thai’s total reduplication affects both
levels of representation. In other words, Thai ex-
hibits total reduplication both at the segmental and
tonal levels, each level then undergoing additional
separate transformations (e.g. vowel change in the
reduplicant). We then suggest that the approach in
Markowska et al. (2021) can be easily extended to
languages like Thai by adopting 2-way FSTs for
reduplication on both levels, supporting the overall
generalizability of the synthetic approach.

2 Reduplication and Tone in Thai

Thai is a member of the Tai-Kadai language family
and is the official language of Thailand (Chakshu-
raksha, 1994). It features five tones (Lee, 2011),
which we represent orthographically with diacritics
on vowels, following similar literature on the topic:
Mid (M; represented by an unmarked V), Low (L; di-
acritic V̀), High (H; diacritic V́), Rising (R; diacritic
V̌), Falling (F; diacritic V̂). Note that for simplicity,
we chose to not represent rising and falling tones
as a sequence of LH and HL tones, respectively, but
this is a choice that does not particularly affect our
analysis.1 Before moving on to a discussion of the
variety of reduplication processes available in Thai,
we briefly touch on its strict relation between tone
preassociation and syllable structure.

2.1 Constraints on Syllable Structure

Thai has a relatively restricted syllable structure:
an initial consonant followed by an optional
liquid/glide consonant forms the onset, followed
by a vocalic nucleus with a tone, and an optional
stop/nasal coda (Gandour, 1974; Chakshuraksha,
1994; Hudak, 2007). The general syllable structure,
adapted from Cooke (1963), is shown in 1 and 2, the

1We follow past work in using an alphabet enriched
with diacritics to represent associations between tones and
segments, but it is important to keep in mind that enriched
alphabets reveal the need for more expressive representations
(e.g., graphs) to capture tone beyond orthographic conventions
(Yli-Jyrä, 2013; Jardine, 2019).

interpretation for which is given in 3, accounting
for the phoneme inventory of the language.

1. C(C1)
T
V(C2)

2. C(C1)
T

V: (C2)

3. C = any consonant
C1 = {w, l, r}
C2 = {m, n, N, j, w, p, t, k, P}
V = any vowel
V: = any long vowel or the diphthongs /ia/,
/ua/, /Wa/
T = any tone

In what follows we will ignore the fact that some
coda obstruents (C2) are realized as unreleased {p^,
t^, k^}, since this is a transformation not relevant to
the process of interest. Note also that vowel length
and aspiration are contrastive in Thai, and we use
the : symbol to indicate vowel length.

Thai’s tonal phonotactics distinguishes live and
dead syllables. Live syllables are defined as those
that end in a sonorant, e.g. [ma:] ‘to come’ or [jàj]
‘big’. These are unrestricted and can feature all
five tones. Dead syllables are defined as those that
end in a stop, e.g. [jà:k] ‘to want’ or [rót] ‘car’.
These are restricted: dead syllables with a short
vowel can feature only low and high tones, while
dead syllables with a long vowel can feature only
low and falling tones. Note that the terms live and
dead are replaced elsewhere in the literature by
the terms unchecked and checked, or unclosed
and closed (Gandour, 1974; Lee, 2011; Cooke,
1963). These constraints on tone showcase the
importance of preassociation between segmental
and autosegmental levels, and how this might feed
into other downstream processes. Thus, attention
must be paid when formulating models that posit
a strict separation between the two levels of
representation (Lee, 2011; Gandour, 1974; Moren
and Zsiga, 2001; Rawski and Dolatian, 2020).

2.2 Thai Reduplication

Reduplication in Thai is a productive process
that is able to target every grammatical word
category (Chakshuraksha, 1994; Sookgasem, 1997).
Crucially, total reduplication targets both the
segmental and the autosegmental level. We distin-
guish four types of total reduplication processes,
based on their grammatical/semantic function and
morpho-phonological changes they induce. This
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paper adopts the naming conventions defined in
Sookgasem (1997) for the various reduplication
patterns: Simple, Complex Type 1, Complex Type
2, and Complex Type 3. Complex Type 3 is also
called “emphatic reduplication" elsewhere in the
literature (Lee, 2011; Haas, 1946; Chakshuraksha,
1994, a.o.). Henceforth, we use the ∼ symbol to
separate the base from the reduplicant and represent
the reduplication boundary, consistently with
Markowska et al. (2021).

2.2.1 Simple Reduplication
Simple Reduplication exhibits no change to the base
or reduplicant, neither on the segmental level nor on
the tonal level (Sookgasem, 1997; Chakshuraksha,
1994; Haas, 1946). In this type of reduplication
the base is copied once and the meaning is changed
depending on the word class, as in (i) and (ii).

(i) dÈk→dÈk∼dÈk ‘child’→‘children’

(ii) nâN→nâN∼nâN
‘to sit’→‘to sit continuously’

2.2.2 Complex Reduplication Type 1
In Complex Reduplication Type 1 the final vowel
of the reduplicant is changed to either /@/ or /æ/
(iii), both vowels being used interchangeably
and usage depends only on speaker preference
(Chakshuraksha, 1994; Sookgasem, 1997).

(iii) faN→faN∼fæN ‘to listen’→‘to listen’

The autosegmental level is once again fully redupli-
cated without any changes (in (iii), a mid-tone V is
copied as a mid-tone V). This reduplication pattern
indicates a level of negativity or disinterest towards
something or someone.

2.2.3 Complex Reduplication Type 2
Complex Reduplication Type 2 follows a
reduplicant∼base template, with the reduplicant
as the first copy, and it is similar in meaning to
Complex Reduplication Type 1 (Sookgasem, 1997).

(iv) còt.mǎ:j→còt.mǒ:N∼còt.mǎ:j
‘a letter’→‘a letter’

(v) s̀it→sòk∼s̀it ‘a right’→‘a right’

(vi) kàP.th íP→kàP.thóP∼kàP.thíP
‘coconut milk’→‘(something like) coconut
milk’

At the segmental level, if the base word ends in
/oN/, /ok/, or /oP/, then that word cannot undergo
this type of reduplication (Sookgasem, 1997). In
the reduplicated form, the final syllable of the
reduplicant is changed to /oN/, /ok/, or /oP/, with the
vowel length of the final syllable of the base being
maintained. The ending /oN/ is used when the final
syllable of the base ends in /m/, /n/, /j/, /w/, or in a
long vowel — i.e. live syllables (iv). The ending
/ok/ is used when the final syllable of the base ends
in /p/ or /t/ (v). The ending /oP/ is used when the
final syllable of the base is a short vowel followed
by a glottal stop (vi). Again, the tonal level is fully
reduplicated with no changes.

2.2.4 Complex Reduplication Type 3
Complex Reduplication Type 3 is similar to Simple
Reduplication, except that the first copy is made to
exhibit a high tone on its final syllable (Sookgasem,
1997; Lee, 2011; Chakshuraksha, 1994; Haas,
1946).

(vii) sǔaj→súaj∼sǔaj
‘pretty’→‘really pretty’

(viii) nâ:.rák→nâ:.ra̋k∼nâ:.rák
‘cute’→‘really cute’

When the final syllable of the base word already
exhibits a high tone, then an extra high tone is used
(represented with the diacritic V̋). The extra high
tone, also called the emphatic high tone, is not con-
sidered among the basic five tones in Thai because
it is not contrasting. Phonetically speaking, the
emphatic high tone differs from the basic high tone
in that it is higher in pitch and usually lengthened
(Lee, 2011). Complex Reduplication Type 3 is, by
implication, emphatic or intensifying in meaning.

3 Finite-state Models of
Total Reduplication in Tonal Languages

With an understanding of Thai tonal and reduplica-
tive processes in place, in this section we provide a
brief, intuitive overview to the classes of finite-state
machines combined by Markowska et al. (2021)
in their model of total reduplication. We will then
explore how this model can be adapted to Thai in
the next section.

3.1 Total Reduplication with 2-way FSTs
As mentioned, reduplication in general has been
the focus of many studies in the computational
linguistics’ literature, as it seems to be (one of) the
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q0start q1 q2 q3 qf
(⋊,λ,+1) (⋉,λ,−1) (⋊,∼,+1) (⋉,λ,+1)

(d,d,+1)

(i:,i:,+1)

(d,λ,−1)

(i:,λ,−1)

(d,d,+1)

(i:,i:,+1)

Figure 1: 2-way FST for full reduplication of di: ‘good‘ → di:∼di: ‘very good’

Figure 2: Shupamem reduplication model adapted from
(Markowska et al., 2021)

only process(es) in morpho-phonology that cannot
be modelled with a 1-way FST (i.e., the output of
this process is not a regular language; Roark and
Sproat, 2007). In the case of partial reduplication
(where only a bounded set of elements needs to
be copied) the issue lies in an explosion in the
number of states. However, total reduplication
affects elements (e.g. full words or phrases) with
no a-priory bounds. Dolatian and Heinz (2020)
address this problem by adopting 2-way FSTs.
Essentially, a 2-way FST increases the expressivity
of 1-way FSTs by being able to move back and forth
on the input tape, allowing it to read its input more
than once (Rabin and Scott, 1959). In designing
the machine, state transitions are enriched with a
direction parameter ({−1,0,+1}) that indicates if
the FST should move back to the previous symbol,
stay on the current symbol, or advance to the next
symbol. Dolatian and Heinz (2020) show that this
class of transducers not only is able to capture both
partial and total reduplication, but it does so in a
way that is more transparent with respect to the
generalizations argued for in the linguistic literature
(see also Dolatian and Heinz, 2019a).

Modelling total reduplication with a 2-way FST
involves three steps: (1) reading the input tape
left-to-right and outputting the first copy, (2) reading

the input tape right-to-left and stopping once the left
word boundary ⋊ is read, (3) reading the input tape
from left-to-right and outputting the second copy.
Figure 1 is an example of a 2-way FST that fully
reduplicates the Thai word di: ‘good’ to produce
di:∼di: ‘very good’. In the graphical representation,
the input-output pair is grouped with the direction
parameter, with each element being separated by a
comma. Following Dolatian and Heinz (2019a), we
make it so that when reading left-to-right (forward)
the input tape is copied on the output tape faithfully.
When moving backward (right-to-left), the machine
outputs an empty symbol, so that the input string
can then be copied again in an additional forward
pass. We refer the reader to Dolatian and Heinz
(2020) for a full formal treatment of these machines.

3.2 Tone, Reduplication, (2-way) MT FSTs

While the 2-way FST approach of Dolatian and
Heinz (2019a) is successful in modeling reduplica-
tion at the segmental level, Markowska et al. (2021)
point out that many of the world languages exhibit-
ing productive reduplication processes are tonal.
This presents an additional challenge for finite-state
models, as there is the need to handle processes that
affect the segmental and autosegmental represen-
tations separately. Autosegmental processes have
also been argued to exhibit different computational
properties than their segmental counterparts
(Yli-Jyrä, 2013; Jardine, 2015, 2019, a.o.).

In order to mimic the representational difference
between segmental and autosegmental levels within
finite-state machines, Dolatian and Rawski (2020)
adopt multi-tape FSTs (MT FSTs) (see also Fischer,
1965; Wiebe, 1992; Frougny and Sakarovitch,
1993; Furia, 2012; Rawski and Dolatian, 2020).
We refer the reader to (Dolatian and Rawski, 2020;
Rawski and Dolatian, 2020) for a complete formal
treatment of these machines, and here we just cover
the basic intuition behind them. Essentially, a MT
FST is similar to a 1-way FST with a single tape, but
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is able to operate (read from and write to) multiple
tapes. This means that such machines can take as
input two tapes — a tonal tape and a segmental tape
— and operate over them synchronously even when
they are subject to different processes.

Using as a motivating starting point Shupamem (a
Bantu language), Markowska et al. (2021) observes
that a combination of the properties of both 2-way
FSTs and MT FSTs is in fact needed to correctly
account for the patterns observed in tonal languages
with reduplication. Specifically, they synthesize the
work in Dolatian and Heinz (2020) and Dolatian
and Rawski (2020) to propose deterministic 2-way
(n,m) MT FSTs, wheren,m refer respectively to the
number of input and output tapes. They then present
a model of reduplication that makes use of 1-way
MT FSTs with a single input tape and two output
tapes, in order to split a single string — where tone
is orthographically represented with an enriched al-
phabet using diacritics — into a tonal level and an
segmental level. Those are then used as inputs to
a 2-way (2,2) MT FSTs composed of a 2-way FST
which reduplicates the segmental level, and a 1-way
FST dealing with an insertion process on the tonal
level. Finally, the two output tapes in the previous
step are fed into a (2,1) MT FST which combines
them into a reduplicated, enriched output string (Fig-
ure 2). Again, we refer the reader to Markowska et al.
(2021) for a full discussion of the formal details.

4 Modeling Thai

The synthetic approach surveyed above shows
how it is possible to handle both reduplication and
autosegmental representations deterministically
within a finite-state model. Importantly though,
Shupamem (and the other tonal languages analyzed
by Markowska et al., 2021) exhibits full reduplica-
tion exclusively at the segmental level, while the
autosegmental level is affected by other phonolog-
ical processes targeting tone. Because of this, their
2-way (2,2) MT FST is really 2-way only on one of
the two tapes. However, we observed how in Thai
the reduplication process on the tonal level mimics
the reduplication process on the segmental level.
Each of the reduplication types above illustrates full
reduplication on both levels, which would by itself
be challenging for the single 2-way FST adopted for
Shupamem. Additionally, different reduplication
types are distinguished by the need of additional
dedicated transformations on either the segmental
or autosegmental level. Specifically, Complex

C any consonant
V any vowel
T any tone
T′ {M, L, R, F}
K {p, t, k, P}
S {m, n, N, j, w}
C′ C - S
E extra high tone
λ empty string

Table 1: List of shorthand symbols used in the FSTs.

Reduplication Type 2 showcases transformations
that target segmental information, while Type 3
illustrate changes targeting tone specifically.

Because of these facts, Thai serves as a good
test case to explore the flexibility of the synthetic
approach. In particular, by formalizing the redupli-
cation types discussed above, in what follows we
illustrate how Thai clearly shows the need for 2-way
FSTs on both segmental and autosegmental tapes.

We assume a model like the one in Figure 2,
which utilizes MT FSTs as splitters and linearizers
to move from and to orthographic representations
with an enriched alphabet. These MT FSTs are
unchanged with respect to the ones presented by
Markowska et al. (2021), and thus we refrain from
including examples of them in this paper. We focus
instead on the application of the 2-way (2,2) MT
FST (boxed section in Figure 2) to the variety of
reduplication processes in Thai.

Henceforth, we define the alphabet our machines
operate on using the following shorthand: C refers
to any consonant, V refers to any short vowel, V:
refers to any long vowel or diphthong, and a period
(.) to syllable boundaries. Additionally, we use K
for the set {p, t, k, P}, and S for the set {m, n, N, j,
w}. A summary of these abbreviations (and all those
used in the FSTs that follow) is shown in Table 1.

4.1 Syllable-Tone Association

If we follow Markowska et al. (2021)’s in adopting
an initial alphabet with diacritics, it seems useful
to incorporate an additional step before the splitter
in order to guarantee the correct preassociations of
tones and segments. Recall that tone restrictions
are placed only on dead syllables: short dead
syllables only feature low and high tones, and
long dead syllables only feature low and falling
tones. As these constraints are all local over the
enriched alphabet, we could easily handle them
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q0start q1 q2 q3 qf
(⋊,λ,+1) (⋉,λ,−1) (⋊,∼,+1) (⋉,λ,+1)

(σ,σ,+1) (σ,λ,−1) (σ,σ,+1)

Figure 3: 2-way FST for Simple Reduplication (either segmental or tonal level).

with a 1-way FST. Dealing with tonal constraints
with 1-way FSTs over enriched representations
in not novel of course (see for example Yli-Jyrä,
2013, a.o.), and we could alternatively handle
preassociation with MT FSTs scanning the two
levels synchronously (Rawski and Dolatian, 2020).
What this draws attention to though, is the need to
consider tone-segment preassociation even within
models which require separate levels at some point.

4.2 Simple Reduplication Model
We can now start looking at Thai’s reduplication
processes. Recall that in the case of simple redupli-
cation, both the segmental and autosegmental levels
undergo total reduplication, with both copies being
rendered faithfully with respect to the input:

sàP.Pà:t→sàP.Pà:t∼sàP.Pà:t
‘clean’→‘very clean’

Although the synthetic model for Shupamem as-
sumes a 1-way FST for tone, the most general,
formal definition of 2-way (2, 2) MT FST in
Markowska et al. (2021) seems to allow for 2-way
FSTs on both tapes. This is exactly the approach
that we take. Figure 3 is an example of 2-way FST
that models simple reduplication in Thai. This is es-
sentially identical to the FST shown in Figure 1. The
symbol σ represents any symbol in an alphabet, that
is σ∈Σ, so that (instances of) this FST can work for
both the segmental level and the tonal level. A (2,2)
MT FST of simple reduplication would then apply
an instantiation of the FST in Figure 3 on both tapes.

4.3 Complex Reduplication Type 1
Consider now Complex Reduplication of Type 1:

faN→faN∼fæN ‘to listen’→‘to listen’

Recall that a vowel without a diacritic is not toneless,
but bears a Mid tone. This reduplication type shows
full reduplication of both tones and segments, but at
the segmental level the final vowel of the reduplicant
is changed to either /@/ or /æ/ (we will use /æ/ for sim-
plicity, since this assignment is speaker-specific).

A 2-way FST that reduplicates the segmental
level is shown in Figure 4, a derivation for which is
shown in Table 2. The first time the word is copied,
it is copied faithfully. The second time it is copied,
we want the final vowel of the word to change. For
this reason, we output the syllable and loop back to
q3 until a word boundary symbol is read. Once the
word boundary symbol is read, the final syllable is
outputted accordingly, including the vowel change.
For total reduplication on the tonal level, the FST
in Figure 3 suffices since there is no tone change.

State Input-Tape Output-Tape

q0 ⋊saP.Pa:t⋉ +1 λ

q1 ⋊saP.Pa:t⋉ +1 s
q1 ⋊saP.Pa:t⋉ +1 sa
q1 ⋊saP.Pa:t⋉ +1 saP
q1 ⋊saP.Pa:t⋉ +1 saP.
q1 ⋊saP.Pa:t⋉ +1 saP.P
q1 ⋊saP.Pa:t⋉ +1 saP.Pa:
q1 ⋊saP.Pa:t⋉ +1 saP.Pa:t
q1 ⋊saP.Pa:t⋉ −1 saP.Pa:t
q2 ⋊saP.Pa:t⋉ −1 saP.Pa:t
q2 ⋊saP.Pa:t⋉ −1 saP.Pa:t
q2 ⋊saP.Pa:t⋉ −1 saP.Pa:t
q2 ⋊saP.Pa:t⋉ −1 saP.Pa:t
q2 ⋊saP.Pa:t⋉ −1 saP.Pa:t
q2 ⋊saP.Pa:t⋉ −1 saP.Pa:t
q2 ⋊saP.Pa:t⋉ −1 saP.Pa:t
q2 ⋊saP.Pa:t⋉ +1 saP.Pa:t∼
q3 ⋊saP.Pa:t⋉ +1 saP.Pa:t∼s
q4 ⋊saP.Pa:t⋉ +1 saP.Pa:t∼s
q6 ⋊saP.Pa:t⋉ +1 saP.Pa:t∼s
q8 ⋊saP.Pa:t⋉ +1 saP.Pa:t∼saP.
q3 ⋊saP.Pa:t⋉ +1 saP.Pa:t∼saP.P
q4 ⋊saP.Pa:t⋉ +1 saP.Pa:t∼saP.P
q5 ⋊saP.Pa:t⋉ +1 saP.Pa:t∼saP.P
q7 ⋊saP.Pa:t⋉ +1 saP.Pa:t∼saP.Pæ:t

Table 2: Complex Type 1 derivation for the segmental
level (Figure 4) of sàP.Pà:t ‘clean’ → sàP.Pà:t∼sàP.Pæ̀:t
‘too clean’.
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q0start q1 q2

q3

q4q5q7 q6 q8qf qf

(⋊,λ,+1) (⋉,λ,−1)

(⋊,∼,+1)

(σ,σ,+1) (σ,λ,−1)

(C, C, +1)

(C,C,+1)

(V,λ,+1)(V:,λ,+1)

(., V:.,+1)

(C,λ,+1)

(⋉,æ:,+1)

(., V:C.,+1)

(⋉,æ:C,+1) (C,λ,+1)

(., VC.,+1)

(⋉,æC,+1)

Figure 4: 2-way FST for Complex Reduplication Type 1 at the segmental level.

4.3.1 Complex Reduplication Type 2
Complex Reduplication of type 2 involves a
reduplicant-base pattern, with a change to the final
sylllable of the reduplicant (the first copy):

còt.mǎ:j→còt.mǒ:N∼còt.mǎ:j
‘a letter’→‘a letter’

An FST that handles reduplication for the segmental
level for Complex Reduplication Type 2 is shown in
Figure 5. For the sake of readability, only one of the
three endings (/oN/) is considered here. We use S as
a shorthand for the set {m, n, j, w}. The shorthand C
represents the set of all consonants in Thai, as previ-
ously used in this paper. The shorthand C′ represents
the set of all consonants in Thai excluding the set S,
such that the operation C−S = C′ holds true.

For this process, the first time a word is copied
we want the rhyme of the final syllable to change.
Thus, we loop back to q1 until a word boundary
symbol is read. The FST only allows words to end
in consonants in the set S = {m, n, j, w}. Once the
first copy is outputted with the rhyme change, then
the second copy is faithfully read and outputted.

We mentioned that Complex Reduplication Type
2 is not possible for words that end in /oN/, /ok/,
or /oP/ (Sookgasem, 1997). We could of course
include this restriction in the FST in Figure 5,
for example by handling the /o/ and /o:/ vowels
separately from all other vowels, and excluding
a transition where the ⋉ symbol is read after a
syllable containing /o/ or /o:/. Alternatively, another
FST could be added to the pipeline to filter what
kind of inputs are appropriate for each reduplication
type. Once again, we can use the FST in Figure
3 for the tonal level reduplication here since it
involves total reduplication with no tone change.

4.3.2 Complex Reduplication Type 3
In Complex Reduplication of type 3, the segmental
level is reduplicated faithfully (which can be
accomplished with the FST in Figure 3). At the
autosegmental level, the final syllable of the first
copy is made to bear a high tone, while the original
tone appears faithfully in the second copy:

nâ:.rák→nâ:.ra̋k∼nâ:.rák
‘cute’→‘really cute’

This process is modelled by the 2-way FST in Figure
6. We use T as a stand in for any tone ({M, L, H, R,
F}) except for the extra high tone with we represent
as E, and T′ to stand in for non-high tones ({M, L,
R, F}). For the first copy, as the only tone that needs
to be changed is associated to its last syllable, after
reading a tone from the input tape the FST “waits”
to check whether the immediate next element is a
boundary symbol (⋉) before outputting it. If the
tone was a non-high tone and the next element is ⋉,
a high tone is outputted. If the tone was a high tone
and the next element is ⋉, then an extra-high tone is
outputted. If not at the end of the string, tones are out-
putted faithfully. The second copy is fully faithful.

5 Conclusion

This paper builds on previous work in adopting a
deterministic finite-state approach to model the in-
teraction of total reduplication and tonal processes
in Thai. Markowska et al. (2021) synthesized an
approach to autosegmental processes via MT FSTs
(Dolatian and Rawski, 2020; Rawski and Dolatian,
2020) and 2-way FSTs to deal with total redupli-
cation (Dolatian and Heinz, 2019a, 2020) in order
to account for what observed in Shupamem. They
show how this combination allows them to deal with
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(., V:C
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(.,
V:S., +
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(., VS., +1)

(⋉, oN, −1)

(σ, λ, −1)
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(σ, σ, +1)
(⋉, λ, +1)

Figure 5: 2-way FST for the segmental level of Complex Reduplication Type 2.

q0start q1 q2 q4 q5

q3

qf
(⋊,λ,+1) (H,λ,+1)

(T′,λ,+1) (., T′,+1)

(⋉, H, −1)

(.,H,+1)

(⋉, E, −1)

(σ, λ, −1)

(⋊, ∼, +1)

(σ, σ, +1)

(⋉, λ, +1)

Figure 6: 2-way FST for the tonal level of Complex Reduplication Type 3.

the double challenge of handling unbounded copies
(as required by total reduplication), and separate seg-
mental and autosegmental processes while remain-
ing faithful to linguistic analyses of these patterns.

Crucially, Shupamem exhibits total reduplication
exclusively on the segmental level, thus allowing
the model to fully treat tone and segments separately.
Here, we used Thai as an example of a language
where tones also undergo reduplication. We sug-
gested then to take full advantage of the expressivity
of the 2-way (2,2) MF FST model, by making sure
that both the segmental and the autosegmental tapes
are used as inputs to 2-way FSTs. In doing this, we
showed how carefully exploring the typological
diversity of tonal languages with reduplication
will enrich our understanding of the expressivity

required by finite-state models.

Looking back at our analyses of Thai, it is
reasonable to wonder whether we could have
handled the reduplication pattern as a whole with
a single 2-way FST, without need for the MT FST
split. While this is doable adopting an enriched
alphabet, the MT FST approach allows us to remain
as close as possible to linguistic analyses when
modeling the independent changes the segmental
and autosegmental levels go through in the Complex
Reduplication types. However, the concatenation of
2-way and multi-tape FSTs potentially pushes the
expressivity of these machines quite high (Fischer,
1965; Furia, 2012), stressing how crucial it is going
to be for an insightful computational theory of
morpho-phonology to conduct an extensive formal
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evaluation of the expressive power of alternative
combinations/restrictions of these devices.

In sum, these results add support to the determin-
istic finite-state approach to total reduplication ad-
vanced in previous literature, while highlighting the
fundamental role of broader typological evaluation.
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Figure 7: 1-way FST to model the phonotactics of short
dead syllables in Thai. C1= {w, l, r}.
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Abstract
We develop a mutual information-based fea-
ture extraction method and apply it to English
speech production and perception error data.
The extracted features show different phoneme
groupings than conventional phonological fea-
tures, especially in the place features. We eval-
uate how well the extracted features can define
natural classes to account for English phono-
logical patterns. The features extracted from
production errors had performance close to
conventional phonological features, while the
features extracted from perception errors per-
formed worse. The study shows that featural
information can be extracted from underused
sources of data such as confusion matrices of
production and perception errors, and the re-
sults suggest that phonological patterning is
more closely related to natural production er-
rors than to perception errors in noisy speech.

1 Introduction

Phonological features have usually been assumed
to be phonetically grounded in addition to explain-
ing phonological behaviour. Yet the sources of
phonetic data that have been used to infer the na-
ture of phonological features are largely limited to
physical acoustic and articulatory measures. Fur-
thermore, the analytical methods available to infer
features that are consistent with phonetic data are
limited. This study proposes a new method for auto-
matically inferring binary features from similarity
matrices, which lends itself to directly studying
data relevant to human phonetic processing: here
we study perception and production errors.

Previous work has attempted to infer
phonetically-grounded features using clus-
tering (Lin, 2005; Lin and Mielke, 2006; Mielke,
2008, 2012; Shain and Elsner, 2019). For example,
Mielke (2008) modelled consonant similarity
using hierarchical clustering applied to perceptual
confusion data, which combines consonants
together into nested clusters.

However, clustering does not directly output
features in the usual sense of independent, cross-
cutting properties of phonemes. Non-hierarchical
clustering applied to phonemes yields a flat set
of classes, the equivalent of a single binary or n-
ary feature. Hierarchical clustering yields classes
that can contain other class divisions (for exam-
ple, a cluster of vowels can be subdivided into a
cluster of high and a cluster of low vowels, and
so on). However, in typical approaches to hier-
archical clustering, decisions as to how to make
sub-clusters are taken independently in each clus-
ter. Features are thus not allowed to have scope
over more than one sub-cluster. Not only does this
contrast sharply with usual approaches to phono-
logical features which naturally give rise to par-
allel relations across clusters—the “proportional
oppositions” of Trubetzkoy (1969)—it means that
any data about similarity between phonemes across
clusters is necessarily ignored by such algorithms.

To address these issues, we develop a method
inspired by Miller and Nicely’s (1955) analysis
of confusion matrices, based on an information-
theoretic measure of feature transmission. We first
introduce the algorithm and demonstrate it using an
artificial example. Next, we report an experiment
where the feature extraction algorithm is applied to
phoneme perception and production errors, and the
extracted features sets are evaluated based on their
utility and efficiency in describing phonological
classes. Finally, we discuss the insights yielded for
the study of phonological features.

Although the paper infers phonological features
from data, our goal is not to argue that phonolog-
ical features are emergent. This paper analyzes
confusion data, and determines what set of features
would be most compatible with the data (under
certain assumptions). While this could be consis-
tent with a hypothesis that learners infer features
based on their own confusions, we tend toward the
opposite view: features are primary, and feature
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similarity is a cause of confusions. In any case, our
analysis is correlational, and as such it is neutral
to what is the cause and what is the result. The
question is merely what features best explain the
data at hand.

Of course, if we do assume that feature represen-
tations are one cause of errors (rather than assum-
ing that features are emergent from error patterns),
we must accept that feature similarity is only one
cause among others—for example, noise in the au-
dio signal, the nature of that noise, physiological
constraints on production, and phonological neigh-
bourhoods (Vitevitch, 2002), among other things.
For our purposes, we need to assume that the effect
of distinctive features on error patterns is strong
enough to be detected in spite of these other factors.

2 Extracting feature with
Redundancy-Corrected Transmission

2.1 Background

Miller and Nicely (1955) analyzed confusion ma-
trices from an identification task in which partic-
ipants heard a CV syllable in noise (a consonant
followed by /A/) and had to provide a phonemic
label for the onset consonant. They developed an
information-theoretic measure of feature transmis-
sion in a confusion matrix, using it as part of an
argument that listeners use distinctive features in
speech perception.

Miller and Nicely assumed that speech process-
ing works by transmitting information over a fixed
number of channels (features). They used five fea-
tures to analyze English consonants (voicing, nasal-
ity, affrication, duration, and place). By analyzing
the confusions between consonants with opposing
values for each feature separately (e.g., between
voiced and voiceless sounds), they measured the
amount of information faithfully transmitted for
each feature under various amounts of additive
noise. They argue that the result of this analysis
suggests that each of these five features is perceived
by listeners independently of the others, since the
sum of the information transmitted for these five
features is close to the the amount of transmitted
information measured if phonemes are not orga-
nized into features—little information is lost by
analyzing phonemes into independent features.

For our purposes, it is not this argument that mat-
ters but their transmission measure itself, which can
be seen as a measure of how “consistent” a hypo-
thetical feature is with a given confusion matrix. In

particular, a hypothetical feature which is consis-
tently extremely poorly transmitted is clearly not
implicated in perception. In what follows, we de-
velop this intuition further and show its limitations,
and motivate the use of a further term penalizing
feature redundancy. We show that, despite its lim-
itations, the idea of discovering a set of features
with high transmission and minimal redundancy
leads to satisfactory results in an artificial example.

2.2 Developing the algorithm

We use a hypothetical phoneme mapping process
within a 4-phoneme inventory [ABCD] to illus-
trate these ideas. We assume these phonemes are
transmitted via some noisy process (for example,
perception or production) whose goal is accurate
transmission—in other words, to faithfully map an
input phoneme to itself. Table 1 summarizes a pos-
sible outcome from repetitions of this transmission
process with different input phonemes.

Input
A B C D

O
ut

pu
t A 10 8 2 0

B 8 10 0 2
C 2 0 10 8
D 0 2 8 10

Table 1: A confusion matrix of the hypothetical map-
pings in a four-phoneme system with two features.

Furthermore, we assume that, in this hypotheti-
cal process, the phonemes are transmitted by trans-
mitting the values of two underlying features f1
([AB | CD]) and f2 ([AC | BD]). As features are
often transmitted with different degrees of degra-
dation (Miller and Nicely, 1955), we make it so
that f1 is maintained better than f2, resulting in
more confusions between phoneme pairs that are
differentiated by f2 (such as A and B) than between
phoneme pairs differentiated by f1 (such as A and
C). Our goal of feature extraction is to infer the true
underlying features (f1 and f2) based only on the
confusion matrix. To achieve this, we consider all
potential features, i.e., all binary groupings (While
nothing prevents the algorithm we develop here
from being used with n-ary features, we restrict
the current paper to binary features.). We examine
how well each potential feature is transmitted by
collapsing the confusion matrix according to that
feature. We show this in Table 2 for the feature that
splits the inventory into [AB | CD] (which happens

96



to be one of the true features used in transmission).

Input
+ −

AB CD

O
ut

pu
t

+ AB 36 4

− CD 4 36

Table 2: Collapsed confusion matrices for the exam-
ple in Table 1 according to the feature that splits the
inventory into [AB | CD].

Higher counts on the diagonal represent more
faithful transmissions in the collapsed confusion
matrix. Thus, even at first glance, the feature in
Table 2 is a good candidate for a feature which is
transmitted faithfully. To quantitatively evaluate
how well a feature is preserved in the output, we
calculate the transmission of a signal from the input
(I) to the output (O) with Equation 1 as defined in
Miller and Nicely (1955).

T (I;O) =
∑

o∈O

∑

i∈I
p(i, o) log

p(i, o)

p(i)p(o)
(1)

When the confusion matrix is collapsed based on
a potential feature f , T (Xf ;Yf ) evaluates the how
much information about the feature is transmitted.

The transmission alone can capture how much
information is transmitted, but it is not sufficient
to evaluate how well a feature is transmitted. This
is because the transmission value is influenced not
only by how well information from the input is
preserved in the output, but also by both how much
information was contained in the input in the first
place. In order to eliminate the influence of the
information in the input, we instead evaluate the
proportion of the input information successfully
transferred to the output. First, we quantify the
amount of information in the input by calculating
the entropy of input re-coded with the feature, as
defined in Equation 2:

H(X) = −
∑

x∈X
p(x) log p(x) (2)

in order to calculate the relative transmission
Trel(Xf ;Yf ) of the input information with respect
to the feature f :

Trel(Xf ;Yf ) =
T (Xf ;Yf )

H(Xf )
(3)

in which H(Xf ) is the amount of information in
the input and T (Xf ;Yf ) is the amount of informa-
tion shared by the input and the output.

With the relative transmission criterion, we can
evaluate all possible candidate features to character-
ize the inventory [ABCD], as seen in Table 3. The
relative transmission of the true underlying feature
f1 (feature I in the table), is higher than that of any
other hypothetical feature, as expected, given that
our constructed transmission process was one in
which this feature was well-transmitted.

However, to extract a set of relevant features,
simply seeking a set of features in which each fea-
ture individually has a high relative transmission
would usually not result in an ideal feature set. This
is because a highly informative feature can often
undergo a minor adjustment to create a slightly dif-
ferent, spurious, feature that also has high transmis-
sion. Consider Table 3 again: hypothesized feature
II corresponds to the second true underlying feature
that was used to generate the example, f2. While its
relative transmission of 0.029 is higher than that of
the (incorrect) feature III, it is still lower than that
of features IV and V. These features have a high
relative transmission because they largely overlap
with the well-transmitted feature f1, grouping to-
gether either [CD] (feature IV) or [AB] (feature
V). In order to avoid extracting features partially
containing the information included in already se-
lected feature, we consider the redundancy of the
new feature with respect to each old feature by
calculating the mutual information I(X;Y ). The
mutual information captures the degree of associa-
tion between the states of two variables. As such, it
can be used to evaluate the similarity between two
features. The mutual information I(X;Y ) for two
discrete random variables X and Y is defined as:

I(X;Y ) =
∑

y∈Y

∑

x∈X
p(x, y) log

p(x, y)

p(x)p(y)
(4)

When evaluating the similarity between features, X
and Y are the counts of the input variable re-coded
with the two features, respectively.

To keep the mutual information between features
on the same scale as the relative transmission of
features, we also define a relative mutual informa-
tion Irel(Xfa ;Xfa) between the features fa and fb
to quantify a new feature’s redundancy with respect
to an existing feature fa.

Irel(Xfa ;Xfb) =
I(Xfa ;Xfb)

H(Xfa)
(5)
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Features I II III IV V
Value + − + − + − + − + −

AB CD AC BD AD BC A BCD C ABD
+ 36 4 24 16 20 20 10 10 10 10
− 4 36 16 24 20 20 10 50 10 50

Trel(Xf ;Yf ) 0.531 0.029 0 0.091 0.091

J(f ;S)
Step 1 0.531 0.029 0 0.091 0.091
Step 2 \ 0.029 0 -0.22 -0.22

Table 3: Evaluating features in the four-phoneme system from Table 1. The table includes collapsed confusion
matrices according to different features, the corresponding Trel(Xf ;Yf ), and the RCT criterion J(f ;S) at two
steps of feature extraction. The J(f ;S) values of the selected feature at each step are marked in bold. After two
steps, the selected features are efficient to differentiate all phonemes and the algorithm ends.

Together this leads us to propose the Redundancy-
Corrected Transmission (RCT) criterion J(f, S):

J(f ;S) = Trel(Xf ;Yf )−
1

|S|
∑

fi∈S
Irel(Xf ;Xfi)

(6)
In the RCT criterion we use the average of the

relative mutual information between the candidate
feature (f ) and each of the features that are already
selected (fi ∈ S) to minimize redundancy. In ad-
dition to this, we also filter the non-contrasting
features from candidate feature set before each step
of feature selection. Non-contrasting features are
defined as the candidate features that do not cre-
ate new contrast between phonemes given a set
of selected features. For example, in a hypothet-
ical consonant inventory [p t f s m n v z], assum-
ing that two features [p t f s | m n v z] ([voice]) and
[p t m n | f s v z] ([continuant]) have been selected,
then the feature [p t v z | m n f s] would be a non-
contrasting feature since it does not create any divi-
sions in the smallest classes (i.e., [p t], [f s], [m n],
[v z]) created by the two previous features. This
filtering process ensures that the algorithm finds a
compact set of features to encode all phonemes.

The extraction process above is summarized in
Algorithm 1.

2.3 Preprocessing

Finally, we will discuss the preprocessing steps that
are important in the preparation of confusion data
for feature extraction. In real data, especially in the
errors collected from natural speech, three issues
are often present.

First, some input phonemes may present very
few errors. The sparsity of the data for a given

Algorithm 1: Binary feature extraction al-
gorithm with RCT.
Data: A confusion matrix for n items
Result: A set of binary features
F ← ∅
for i = 1 to 2n−1 do

F = F ∪ i (as a binary string)
end
S ← ∅
while Not all phonemes have distinct

featural representations do
fselect =f∈F J(f, S)
S = S ∪ {fselect}
F = F − {fselect}
for f ∈ F do

if |unique(XS∪{f})| =
|unique(XS)| then

Fredundant = F ∪ {f})
end

end
F = F − Fredundant

end

phoneme means that it may be difficult to distin-
guish between hypothesized features on the basis
of this phoneme. We address this issue by apply-
ing add-one smoothing to the data. In add-one
smoothing, we take each column in the confusion
matrix that corresponds to the counts (number of
errors) for the input phoneme, then add one to all
the values in the column. Second, in some kinds
of data, the number of examples of each phoneme
in the input may not be balanced. This is notably
the case in speech error data, which is observa-
tional. To avoid high-frequency phonemes having
an undue influence, we balance the data by con-
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verting the matrices of the error counts into the
error probability for each phoneme. Summing up
these first two steps, we estimate the probability of
mapping input phoneme i to output phoneme j as
pij = (nij + 1)/((

∑
i nij) + njj).

The third potential issue arises in the speech
error data: while the data lists the errors, it does not
record counts of the number of correctly articulated
instances. Missing faithful transmissions could
potentially lead to errors in feature extraction.

Input
x y z

O
ut

pu
t x ◦ ✓

y ✓ ◦ ✓
z ✓ ◦

Table 4: Confusion matrix for a hypothetical phoneme
inventory. Check marks represent confusions phonemes,
circles represent faithful mappings. Without the faithful
transmissions, x and z cannot be differentiated.

Consider the example in Table 4, a hypothetical
phoneme inventory with three phonemes x, y, z,
and two underlying features, one separating x and
y against z, the other separating y and z against x.
Without the faithful mappings, both x and z would
only have data from confusions with y, making it
impossible to differentiate x and z. As a result, the
incorrect feature [x z | y] has the highest transmis-
sion and would be selected as the first feature. In
order to prevent similar issues in the data where
faithful mappings are missing, the diagonal of the
confusion matrix needs to be filled in before the
feature extraction.

In our experiment, we fill the diagonal cells in
the confusion matrices with the sum of the error
counts in the corresponding column, which results
in a 50% error rate for each input phoneme. The
50% error rate provides information of phoneme
identity to address the issue described above, while
also maintains the contrasts between phonemes.

Table 5 shows the preprocessed data after each
step, from the artificial example in Table 1.

3 Experiment

We apply Algorithm 1 to a perceptual confusion
matrix from Miller and Nicely (1955), as well as
to a collection of speech error data from Fromkin
(1971). We evaluate how well the resulting features
can be used to define natural classes in English.

A B C D
A 10 8 2 0
B 8 10 0 2
C 2 0 10 8
D 0 2 8 10

(a) original data

A B C D
A 11 9 3 1
B 9 11 1 3
C 3 1 11 9
D 1 3 9 11

(b) add-one smoothing

A B C D
A 11 0.7 0.2 0.1
B 0.7 11 0.1 0.2
C 0.2 0.1 11 0.7
D 0.1 0.2 0.7 11

(c) normalizing error rates

A B C D
A 1 0.7 0.2 0.1
B 0.7 1 0.1 0.2
C 0.2 0.1 1 0.7
D 0.1 0.2 0.7 1

(d) filling diagonals

Table 5: Confusion matrices showing the outcome after
each step of preprocessing from the example data.

3.1 Data: Perception errors

We analyzed perception errors from Table III
(shown in Table 8 in the Appendix) of Miller and
Nicely (1955), which summarizes the result from
a syllable identification experiment. In the exper-
iment, the stimuli are [CA] with 16 English con-
sonants as the onset. The acoustic stimuli under-
went frequency modulation, and noise was added
to the stimuli. The data from the condition with the
widest-band noise (200-6500 Hz) was chosen in the
current study. This choice was made to avoid poten-
tial biases due to the exclusion of frequency ranges
of greater importance for a subset of features. The
condition with a relatively low S/N ratio of −12
dB was chosen so that weakly similar phonemes
could still be confused with each other, potentially
revealing more information about features that are
usually well preserved during transmission.

3.2 Data: Production errors

Speech error data were collected from the Fromkin
Speech Error Database web interface.1 The
database contains spontaneous speech errors from
natural speech. The search query included “En-
glish” as the “target language,” “phonological” as
the “error type,” “substitution” as the “process pro-
cedure,” and “all” in other fields. The entries that
also had “addition” or “exchange” as the “process
procedure” in any analysis were excluded. Then,
entries were manually removed if they involved the
following: (1) a change in the number of segments
in the same syllable component (e.g., “small” →

1https://www.mpi.nl/dbmpi/sedb/sperco_
form4.pl
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“fall”; [3ô] was considered a single segment); (2)
changes of multiple syllable components (e.g. “de-
tectors” →“locators”); (3) blending of two words
(e.g., “jumped”/ “leapt” →[dZipt] “jeapt”); (4)
mispronunciation due to orthography (e.g., [sAm]
“psalm” →[pAm] “palm”). Only phonemes that
were present in both production and perception data
were kept in the analysis, namely, the sixteen conso-
nants [p t k b d g f v T D s z S Z m n]. This resulted
in 455 production errors summarized in Table 9.

3.3 Evaluation
To evaluate how well the extracted features cor-
respond to the features that are actually used in
the English language, we examine the the feature
sets’ capacities in defining natural classes, which
are the groups of phonemes that pattern together in
phonological alternations.

English rule-based sound patterns from P-Base
(Mielke, 2008) were used to extract natural classes
in English phonology. The English patterns in
P-Base were produced with reference to Jensen
(1993); McMahon (2002). The search resulted in
9 rule-based natural classes (found as the left envi-
ronment, the right environment, the target, or the
output of the rule). Some natural classes contain
phonemes that are not included in the 16 conso-
nants for feature extraction in this study—in these
cases, the extra phonemes were removed. The pat-
terns yielded 9 unique natural classes.

The evaluation of a discovered feature set was
based on that feature set’s minimal feature defi-
nition for the set of phonemes that is the closest
to attested natural class in terms of the number of
different phonemes, where the feature definition is
formed by a single feature value or by the conjunc-
tion of multiple feature values.

We also tested how well a reference set of dis-
tinctive features could define the natural classes
to compare with extracted feature sets. We use
a set of seven phonological features from the
Sound Pattern of English (SPE; Chomsky and Halle
(1968)). We take these features to be reasonably
well adapted to capturing English phonological
classes, and thus a useful point of contact with
English phonology. The SPE features included
are [nasal] ([nas]), [voice] ([voi]), [continuant]
([cont]), [strident] ([strid]), [coronal] ([cor]), [ante-
rior] ([ant]), and [distributed].2

2Since [distributed] is underspecified for velars, in the class
definition test, velars are considered as [-distributed] to make
the [distributed] feature comparable to other features.

3.4 Results
Here we present the extracted results and compare
the extracted features with traditional phonolog-
ical features. The goal of this section is to as-
sess whether the discovered features are mean-
ingful beyond describing the errors in percep-
tion/production.

3.4.1 Perception

+
[b d g v D z Z m n]

+
[b d g v D z Z]

+
[d g z Z]

+
[z]

−
[d g Z]

+
[d]

+
[g Z]

+
[Z]

−
[g]

−
[b v D]

+
[v D]

+
[v]

−
[D]

−
[b]

−
[m n]

+
[n]

−
[m]

−
[p t k f T s S]

+
[f T s S]

+
[s S]

+
[s]

−
[S]

−
[f T]

+
[T]

−
[f]

−
[p t k]

+
[t k]

+
[t]

−
[k]

−
[p]

1: voi [p t k f T s S | b d g v z D Z m n]
2: nas cont [p t k m n | b d g f T s S v z D Z]
3: pl1 [p b f T v D m | t k d g s S z Z n]
4: cont pl2 [p k b d g f S Z m | t T s v z D n]
5 [p k g T s z D Z m | t b d f S v n]
6 [p k b d g T s v n | t f S z D Z m]

Figure 1: The binary feature set extracted from the
perception data, presented as a tree (above) and as lists
of phonemes split by the “| ” symbol (below). For the
sake of visual presentation, we leave nodes that do not
branch off of the tree, but it should be noted that the
features are fully specified: all phonemes have some
value for every feature.

As shown in figure 1, the first extracted per-
ception feature accurately differentiates the voiced
phonemes from the voiceless phonemes. The sec-
ond perception feature divides the two sub-clusters
created by the first feature based on two differ-
ent properties. Among voiceless sounds, it divides
fricatives from plosives. Meanwhile, among voiced
sounds, it creates a division based on nasality. We
remark that, unlike the hierarchical clustering meth-
ods alluded to in the introduction, which perform
a myopic subdivision of each cluster—ignoring
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all of the phonemes outside it—the algorithm we
employ here only ever discovers features that are
specified for every phoneme in the inventory. It is
therefore curious that, in this example, we see an
apparently myopic behaviour, whereby the second
discovered feature picks out a (physically) different
phonetic property depending on the value of the
first discovered feature. In addition to the fact that
the perception data may capture patterns that would
not be obvious from an objective phonetic point of
view, it should be underscored that, while the algo-
rithm’s use of fully-specified features means that it
can capture commonalities that cross-cut the whole
inventory, nothing requires that these commonal-
ities be the decisive factor in selecting a feature.
In this case, it is difficult to determine whether the
attribution of a common feature value to nasals and
voiceless plosives is perceptually meaningful or
whether it is merely an artefact of the algorithm’s
need to construct fully-specified features.

The third feature groups the labial and interden-
tal consonants against the consonants that are fur-
ther back. We will explore this “[front]” feature fur-
ther below. The rest of the extracted features com-
plete the other divisions needed to distinguish all
phonemes, but do not clearly correspond to phono-
logical properties.

3.4.2 Production
As shown in figure 2, the first production feature
corresponds to nasality. In the non-nasal subset
that the first feature induces, the second feature
mostly corresponds to the [cont] feature, with the
exception that the labiodental fricatives [f v] are
grouped with the stops. This pattern might suggest
an intermediate status for English labiodental con-
sonants between fricatives and stops. Just like in
the perception-based features, the behaviour of the
second feature is different for the nasal versus the
non-nasal subset: it divides the two nasals by place
of articulation.

The third feature also picks out phonetically dif-
ferent classes depending on the featurally-defined
subset. Among the stops, it separates labial sounds
from coronal and velar sounds. Among the frica-
tives, however, it separates [D Z] from the rest. The
fourth feature corresponds to [voice] with the ex-
ception of [Z m], which are both grouped with
voiceless segments. The fifth feature mostly con-
trasts coronal against non-coronal sounds; in the
clusters where there are only labial sounds, it sepa-
rates the sounds based on continuancy. The last fea-

+
[m n]

+
[n]

−
[m]

−
[p t k b d g f T s S v z D Z]

+
[T D s z S Z]

+
[D Z]

+
[D]

−
[Z]

−
[T s z S]

+
[z]

−
[T s S]

+
[s S]

+
[s]

−
[S]

−
[T]

−
[p t k b d g f v]

+
[t k d g]

+
[d g]

+
[d]

−
[g]

−
[t k]

+
[t]

−
[k]

−
[p b f v]

+
[b v]

+
[v]

−
[b]

−
[p f]

+
[f]

−
[p]

1: nas [p t k b d g f T s S v z D Z | m n]
2: cont [p t k b d g f v m | T s S z D Z n]
3: pl1 voi [p b f T s S v z m | t k d g D Z n]
4: voi [p t k f T s S Z m | b d g v z D n]
5: pl2 cont [p k b g T D m | t d f s S v z Z n]
6 [p k b g S z Z m | t d f T s v D n]

Figure 2: The binary feature set extracted from the
speech error data, presented as a tree (above) and as
lists of phonemes split by the “| ” symbol (below). For
the sake of visual presentation, we leave nodes that do
not branch off of the tree, but it should be noted that
the features are fully specified: all phonemes have some
value for every feature.

ture provides the last remaining contrast between
[S s].

3.4.3 Defining natural classes
The performance in defining natural classes is sum-
marized in Table 6. Recall that, for each natural
class in the list of English natural classes, we seek
to find the conjunction of features that gives the
most similar set of phonemes.

The first column indicates how many of the nat-
ural classes allow an exact match. We see that
the SPE feature set is the most capable in defining
natural classes, followed by the production feature
set, while the perception feature set performs the
worst. There is one of the natural classes [p t k f T]
that the SPE feature set cannot define. This class
includes all voiceless obstruents except for [s S].
In fact, this class, which appears in P-Base, is ap-
parently the result of an overly surface-oriented
characterization of an English phonological pat-
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Features Classes success-
fully captured

Mean minimal
feature number
for matches

production 6 2.5
perception 4 2.8
SPE 8 2

Table 6: Defining natural classes (n=9) in English rule-
based patterns with different feature sets by feature con-
junction.

tern: it is that set of consonants for which, if they
are at the end of a noun, a plural suffix would be
realized as [s] (rather than [z] or [@z]). This alter-
nation in the plural suffix is usually described with
two phonological rules (devoicing and epenthesis),
rather than with reference to this superficial class.
The two classes required in the underlying rules
are voiceless consonants and sibilants, which can
both be defined by the SPE features. The perfor-
mance is better when this class is excluded—and
we note that none of the discovered feature sets can
characterize it either. The second column shows
the average number of features required to define
the exact-matched natural classes. Again, the SPE
feature set does best, followed by the production
and then the perception features.

Here we discuss the definitions of two example
classes. The first class is the interdental consonants
[T D]. This class showcases that the same group of
consonants may be captured differently by three
feature sets. SPE defines it with [+continuant,-
strident]. The perception feature set defines it
with [+2,-3,-4] (+2 is [b d g f T s S v z D Z], -3 is
[p b f T v D m], -4 is [p k g T s z D Z m]). The pro-
duction feature set defines it with two features [+2,-
5] (+2 is [T s S z D Z n]; -5 is [p k b g T D m]). Note
that neither of the two extracted feature sets utilizes
features that only target fricatives like the SPE fea-
ture [strident].

The second class, alveolar obstruents [t d s z],
shows the limit of the extracted feature sets. It can
be defined by the SPE features [+coronal -nasal
-distributed]. But both production and perception
feature sets failed to accurately define this class:
the closest sets defined by the two feature sets are
[t d f s S v z Z] and [t k d g s S z Z n], respectively.

4 Discussion

4.1 Algorithm
As discussed above, the algorithm may “meld” fea-
tures across sub-inventories: for example, the sec-
ond feature discovered from the production data di-
vides obstruents by continuancy, but divides nasals
by place. The nature of the redundancy term con-
tributes to this problem. An alternative feature en-
coding only continuancy would not split the nasals
at all. As this would lead to greater similarity to
the previous feature (which also groups the nasals
together), this is dispreferred by the redundancy
term. One potential future direction for automatic
feature extraction method is to develop a criterion
for assigning the weight of the redundancy term so
that this tendency could be controlled.

4.2 Data sets
In the production data set, errors were collected
by multiple linguists in daily conversations. This
might introduce biases. First, the phonemes are
not equally distributed in natural speech. This
contributes to the lack of errors related to the
phonemes [D Z]. Second, because the speech error
data is based on researchers’ perception of speech,
it is inherently influenced by the biases in per-
ception (Alderete and Davies, 2019; Pouplier and
Goldstein, 2005), for examples, researchers might
have different criteria for correct pronunciation and
might miss some errors that are more difficult to
hear. The Fromkin Speech Error Database is the
most suitable publicly available English production
data for feature extraction at the time of this study.
However, researchers have started collecting new
data sets with more systematic approaches to ad-
dress these issues, for example, the Simon Fraser
University Speech Error Database Cantonese 1.0
(Alderete, 2023). Applying our feature extraction
algorithm to these new data sets could potentially
reveal more accurate featural information in pro-
duction.

In the perception data set, the errors were col-
lected from the identification of noise-masked syl-
lable audio. The design of the noise could impact
different features unequally, which also might in-
troduce biases in feature extraction.

Together, these observations point to a deeper
question: if the goal of inferring features from data
is to arrive at a single, common representation, how
might multiple, sometimes contradictory, types of
data be productively combined into a single analy-
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sis? The commonalities between the two learned
feature sets above are promising—the presence of
features encoding nasality, voicing, and continu-
ancy in both—but also highlight important differ-
ences: voicing is more prominent in the perception
data, while nasality is more prominent in the pro-
duction data. These kinds of inconsistencies may
pose challenges for combining data sets.

4.3 Insights into English consonant features

As discussed above, the English labiodental con-
sonants behave similarly to plosives in production
error data, and, as a result, share a feature in the
analysis. The consequences of such a move for
the analysis of English are not immediately ob-
vious, but the idea that these phonemes have an
intermediate continuancy status has not previously
be considered to our knowledge.

Second, considering the extracted features from
both production and perception errors, a set of two
potential place features are suggested in Table 7.

[+front] [−front]
[+peripheral] [b p (f v) m] [k g S Z]
[−peripheral] [(f v) T D] [t d s z n]

Table 7: A possible four-way place distinction for 16
English phonemes. [f v] may be specified as either
[+peripheral] or [−peripheral].

The suggested [front] feature is supported by the
third perception feature and the resembling third
production feature. This [front] feature is similar to
the [anterior] SPE feature, the difference between
the two being the membership of the alveolar con-
sonants.

The [peripheral] feature in this system is based
on the fifth production feature and a similar feature
that is the fourth perception feature. It is similar to
the Peripheral constituent proposed by Rice (1994).
The difference is that Rice’s Peripheral constituent
only encompasses the features Labial and Dorsal,
while the feature [peripheral] here also includes the
fricatives [S Z]. Besides the similarity with Periph-
eral, if the labiodental fricatives [f v] are analyzed
as [+peripheral], then the [−peripheral] feature
would also be the same as the [dental] feature of
SPE (Chomsky and Halle, 1968).

5 Summary of contributions

The current study is the first-ever attempt to ex-
tract cross-classifying features, as opposed to mere

classes, from phoneme confusion data in percep-
tion and production. The extracted feature sets
from two modalities differ, but both show links
to phonological properties. Familiar features such
as voicing, nasality, and continuancy are seen in
both extracted feature sets. The extracted feature
sets also showed interesting deviations from com-
monly used phonological features, including the
different features based on the frontness and pe-
ripherality of consonants. These alternative ex-
tracted features are also useful in defining natural
classes, with the production features having a better
performance, showing more connection between
phonology and production errors than the connec-
tion between phonology and perception errors.

6 Data availability

Code and data is available at
https://github.com/zhanaofu/
speech-feature-extraction.
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Phoneme in audio
p t k f T s S b d g v D z Z m n

Pe
rc

ei
ve

d
ph

on
em

e
p 80 43 64 17 14 6 2 1 1 1 1 2
t 71 84 55 5 9 3 8 1 1 2 2 3
k 66 76 107 12 8 9 4 1 1

f 18 12 9 175 48 11 1 7 2 1 2 2
T 19 17 16 104 64 32 7 5 4 5 6 4 5
s 8 5 4 23 39 107 45 4 2 3 1 1 3 2 1
S 1 6 3 4 6 29 195 3 1

b 1 5 4 4 136 10 9 47 16 6 1 5 4
d 8 5 80 45 11 20 20 26 1
g 2 3 63 66 3 19 37 56 3

v 2 2 48 5 5 145 45 12 4
D 6 31 6 17 86 58 21 5 6 4
z 1 1 1 7 20 27 16 28 94 44 1
Z 1 26 18 3 8 45 129 2

m 1 4 4 1 3 177 46
n 4 1 5 2 7 1 6 47 163

Table 8: Perception errors from Table III in Miller and Nicely (1955).

Intended phoneme
p t k b d g f T s S v D z Z m n

Pr
on

ou
nc

ed
ph

on
em

e

p 12 15 8 1 12 7 4 1
t 8 7 3 1 3 6 3 1
k 15 8 4 5 4 3 5 1 1

b 7 3 3 6 3 7 4 10
d 1 6 3 4 3 5 1 1 1 5
g 8 5 5 1

f 15 4 2 5 1 4 8 10 2
T 1 3 4
s 1 4 4 1 3 7 7 3 2
S 2 1 1 1 1 31 1 2

v 2 3 8 1 1 5
D 1 1 1
z 4 2 1
Z 1 1

m 9 6 1 4 3 1 1 9
n 9 3 1 15

Table 9: Single-phoneme substitution production errors extracted from the Fromkin Speech Error Database.
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p t k b d g f T s S v D z Z m n
[nas] − − − − − − − − − − − − − − + +
[voi] − − − + + + − − − − + + + + + +
[cont] − − − − − − + + + + + + + + − −
[strid] − − − − − − + − + + + − + + − −
[cor] − + − − + − − + + + − + + + − +
[ant] + + − + + − + + + − + + + − + +
[dist] + − + − − + − + − + − + + −

Table 10: SPE features (Chomsky and Halle, 1968)
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Abstract

Children learn basic word order from data in
which both subjects and objects can appear in
variable positions. Spanish learners acquire a
word order that deterministically places objects
after verbs, and allows variation only in subject
position. We present a model for acquiring this
type of constrained variability from messy data.
Our model expects that (1) its data contain a
mixture of signal and noise for canonical word
order, and (2) subjects control agreement on
verbs. We find that this model can learn to fil-
ter noise from its data to identify the canonical
word order for Spanish while a model that does
not track subject-verb agreement cannot. These
results suggest that having expectations about
the types of regularities that the data will con-
tain can help learners identify variability that is
constrained along certain dimensions.

1 Introduction

Children acquire the canonical word order of their
language at young ages, from input that contains
a mixture of canonical and non-canonical word
orders whose structure they cannot yet represent
(Hirsh-Pasek and Golinkoff, 1996; Perkins and
Lidz, 2021, 2020). Non-canonical sentences like
wh-questions introduce perceived variability into
learners’ data, which they must abstract away from
in order to identify basic subject and object posi-
tion. However, some types of variability are part of
the core grammatical phenomenon to be acquired.
In Spanish, full lexical objects canonically must
occur after verbs, but subject position is not fully
deterministic: subjects can occur both pre- and
post-verbally in basic clauses (1-2) (Lozano, 2006;
Domı́nguez and Arche, 2008; De Prada Pérez and
Pascual y Cabo, 2012). Learners must identify that
this variability is a property of the language’s ba-
sic clause syntax, whereas other variability is due
to subject or object displacement in non-canonical
sentence types (3). How do learners identify that

basic subject position varies, but object position
is fixed, if both argument positions appear to be
variable in their data?

(1) Mariela tiró la pelota. (basic SVO)
Mariela throw-PAST-SG the-SG ball-SG

‘Mariela threw the ball.’

(2) Entró Mariela. (basic VS)
Enter-PAST-SG Mariela
‘Mariela entered.’

(3) ¿Cuál pelota tiró Mariela? (wh-Q, OVS)
Which-SG ball-SG throw-PAST-SG Mariela
Which ball did Mariela throw?

On one proposal, learners might avoid being mis-
led by messy data by assuming that some portion
of their data is “noise,” introduced by grammat-
ical processes they cannot yet account for. Suc-
cessful learning arises when learners are able to
infer which portion of their data to treat as noise,
and which portion to treat as signal for the rules
governing the phenomenon they are trying to ac-
quire (Perkins and Hunter, 2023; Perkins et al.,
2022; Schneider et al., 2020). This can be seen
as a mechanism for “regularization” in learning
(Hudson Kam and Newport, 2005, 2009; Culbert-
son et al., 2013) whereby learners acquire a sys-
tem that allows less variability than the data that
they are learning from. But the case of Spanish
word order poses a challenge for this approach.
Here, learners must abstract away from certain
types of variability— for instance, the noise in-
troduced by non-canonical sentence types— while
treating other types of variability as informative
about the phenomenon to be acquired. That is,
learners must identify that they should “regularize”
along only certain dimensions.

We propose that learners might solve this prob-
lem by using knowledge about the specific types
of regularities that grammars tend to exhibit. In
the case of word order acquisition, learners might
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expect that subjects and objects will enter into dif-
ferent sorts of grammatical dependencies— for in-
stance, that subjects tend to control agreement on
verbs. We present a learner that looks for evidence
of subject-verb agreement in its data, and uses this
information to infer which portion of its data to
treat as signal for underlying basic word order. We
show that this learner is able to identify constrained
variation in Spanish word order. We also show
that our learner performs substantially better than a
learner that does not track subject-verb agreement.
This suggests that for certain types of grammat-
ical generalizations, successful learning requires
knowledge of the sorts of dependencies that gram-
mars make available, along with mechanisms for
detecting relevant evidence in noisy data.

2 Acquiring word order in Spanish

Cross-linguistically, children learn basic word or-
der in infancy (Perkins and Lidz, 2020; Hirsh-Pasek
and Golinkoff, 1996; Franck et al., 2013; Gavarró
et al., 2015; Zhu et al., 2022). They do so at ages
even before they have adult-like representations for
non-canonical clause types where this basic word
order is distorted. For instance, infants learning
English identify that their language is canonically
SVO even before they can identify that arguments
have been moved in wh-questions (Hirsh-Pasek and
Golinkoff, 1996; Perkins and Lidz, 2021). This sug-
gests that learners have a way to implicitly “filter”
the messiness introduced by non-canonical clause
types when learning basic clause syntax (Pinker,
1984; Gleitman, 1990; Lidz and Gleitman, 2004).

On one proposal, learners might infer how to
separate “signal” for the grammatical phenomenon
being acquired from “noise” introduced by various
other processes (Perkins et al., 2022; Perkins and
Hunter, 2023). This inference is possible even if
learners do not know ahead of time which of the
utterances they hear should be treated as noise—for
instance, because they have not yet learned what
basic vs. non-basic clauses look like. Perkins and
Hunter (2023) show that a learner can use the distri-
butions of imperfectly-identified noun phrases and
verbs in child-directed speech to determine which
data to treat as signal for basic word order, without
prior expectations about where noise will occur.
Their model successfully filtered its noisy input in
order to infer that French and English have canon-
ical SVO word order. A similar mechanism has
been applied to model the successful acquisition of

verb transitivity classes (Perkins et al., 2022).
Here, we ask whether this same type of filtering

mechanism can succeed in cases of more variable
word order. In Spanish, full lexical objects are
obligatorily postverbal, but subjects can occur both
before and after the verb in basic clauses.1 But a
variety of constructions obscure evidence for these
basic word orders. For instance, wh-dependencies
and topic and focus constructions introduce fre-
quent argument displacement. Furthermore, Span-
ish has frequent null subjects, which cause a unique
ambiguity for learning basic word order. For a child
at early stages of syntactic development, sentences
like (4) and (5) may be structurally ambiguous. If
the child does not know the meaning of these words
and whether null subjects are present, it is unclear
whether the noun phrase after the verb is the subject
or the object.

(4) Traen los regalos.
pro bring-PL the-PL gift-PL

‘(They) bring the gifts.’

(5) Llegan los profesores.
arrive-PL the-PL teacher-PL

‘The teachers arrive.’

On the basis of ambiguous data like (4) and (5), we
can imagine at least two erroneous conclusions that
the learner may reach. On the one hand, the learner
might conclude that both of these sentences are
transitive with null subjects, making the postverbal
noun phrases both objects. This would mean that
the learner is missing relevant evidence for postver-
bal subjects in the language. On the other hand, the
learner might decide that both of these sentences
are intransitive, and the postverbal noun phrases
are both subjects. This would mean that the learner
is missing relevant evidence for postverbal objects
in the language. If this type of data is prevalent, the
learner may need additional information to draw
the correct conclusion that the language has both
postverbal subjects and postverbal objects.

One possible source of information that could
help children reach the correct conclusion is
subject-verb agreement. Because objects do not
agree with verbs while subjects do, postverbal nom-
inals do not always match verbs in number (6). This

1In basic clauses with broad focus, postverbal subjects
typically occur in intransitive clauses with unaccusative rather
than unergative verbs (De Prada Pérez and Pascual y Cabo,
2012). There is also debate regarding the canonical clausal po-
sition of subjects in Spanish (Villa-Garcı́a, 2012). We abstract
away from these issues in the current discussion.
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agreement asymmetry reflects a cross-linguistic
tendency: in languages where verbs agree with
an argument, that argument is typically a subject
(Moravcsik, 1974, 1978; Gilligan, 1987).2

(6) Trae los regalos.
pro bring-SG the-PL gift-PL

(He) brings the gifts.

If children expect subjects to control agreement
on verbs, and can find evidence for these agree-
ment dependencies in their data, then number mis-
matches like the one in (6) could help them identify
the postverbal noun phrase as an object and not a
subject. Furthermore, a proliferation of postver-
bal noun phrases that agree with verbs could pro-
vide evidence for postverbal subjects, particularly
if these occur at a rate higher than would be ex-
pected if they were all objects.

In languages that morphologically mark subject-
verb agreement, there is evidence that in-
fants can track these patterns from very young
ages (Nazzi et al., 2011), along with other
types of morphologically-marked dependencies
(Van Heugten and Shi, 2010; Soderstrom et al.,
2007; Hohle et al., 2006; Santelmann and Jusczyk,
1998). It is not clear how abstractly children rep-
resent these types of dependencies at young ages
(Culbertson et al., 2016), but these sensitivities
make it plausible that they might use them in the
process of word order acquisition, particularly in a
language like Spanish that has rich and transparent
agreement morphology.

Can a filtering mechanism of the sort proposed
in previous literature successfully acquire the con-
strained variability in Spanish word order, given
the range of noise in the data that children will
encounter? We present a model that learns from
strings of imperfectly-represented noun phrases
and verbs. It learns to filter noise from its data in
order to identify canonical word order, using evi-
dence for subject-verb number agreement but no
further cues to sentence structure. We find that the
learner is able to successfully identify that Spanish
has postverbal objects and variation in subject posi-
tion. Moreover, this learner performs substantially
better than a learner that relies on the distributions

2Some languages mark object as well as subject agreement,
while others do not mark subject verb agreement. Two rel-
evant questions for future work are (i) how a learner would
identify multiple agreement dependencies in languages with
more complex agreement systems and (ii) how a learner would
fare in a language with fewer agreement dependencies.

of noun phrases and verbs alone, without expect-
ing subjects and verbs to agree. Thus, solving this
problem may require not only the ability to learn
in a noise-tolerant way from distributions in data,
but also expectations about the types of agreement
dependencies that clause arguments enter into.

3 Model

We adapt a Bayesian learner from Perkins and
Hunter (2023). The model observes strings of
noun phrases and verbs tagged for number fea-
tures. The model assumes that its observed strings
have been generated by some mixture of canonical
and non-canonical grammatical processes. Specifi-
cally, the learner chooses among discrete compos-
ite probabilistic context-free grammars (PCFGs)
that contain different sets of “core” rules governing
canonical word order (e.g., SVO, SOV, etc.), and a
shared set of “noise” rules that introduce additional
variability into the data. We compare two models
whose hypothesis spaces contain different sets of
composite PCFGs, one that expects subject-verb
number agreement (‘Agreement Model’) and one
that does not (‘No-Agreement Model’). The model
seeks to divide its data into signal and noise in or-
der to identify which combination of core and noise
rules best explains the distributions it observes.

3.1 Generative Model

The grammars in the Agreement Model generate
strings with exactly one verb, either singular or
plural (v-sg or v-pl), and up to two noun phrases,
either singular or plural (np-sg or np-pl). Two of
the grammars in the Agreement Model’s hypothesis
space are shown in Table 1: one whose canonical
word order is SVO, and one whose canonical word
order requires objects to occur after verbs but al-
lows subjects to vary in their position (‘VO’, the
target word order of Spanish). In these grammars,
NP-pl is deterministically rewritten as np-pl, NP-
sg as np-sg, V-pl as v-pl, and V-sg as v-sg; these
are not shown for purposes of space.

These grammars enforce subject-verb argree-
ment in their core rules by requiring, for S expan-
sions, that only an NP-pl occurs with a VP-pl and
only an NP-sg occurs with a VP-sg. However, for
VP expansions, both NP-pl and NP-sg are allowed
to occur with a V-sg or V-pl, so verbs are not re-
quired to agree with direct objects in number.

The learner chooses among nine possible gram-
mars of this sort, whose core rules correspond to
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SVO Core Rules VO Core Rules Shared Noise Rules
S → NP-pl VP-pl S → NP-pl VP-pl S 99K NP-pl VP-pl S 99K VP-pl
S → NP-sg VP-sg S → NP-sg VP-sg S 99K NP-sg VP-sg S 99K VP-sg

S → VP-pl NP-pl S 99K VP-pl NP-pl
S → VP-sg NP-sg S 99K VP-sg NP-sg

VP-pl → V-pl NP-pl VP-pl → V-pl NP-pl VP-pl 99K V-pl NP-pl VP-pl 99K NP-pl V-pl
VP-pl → V-pl NP-sg VP-pl → V-pl NP-sg VP-pl 99K V-pl NP-sg VP-pl 99K NP-sg V-pl
VP-pl → V-pl VP-pl → V-pl VP-pl 99K V-pl

VP-sg → V-sg NP-pl VP-sg → V-sg NP-pl VP-sg 99K V-sg NP-pl VP-sg 99K NP-pl V-sg
VP-sg → V-sg NP-sg VP-sg → V-sg NP-sg VP-sg 99K V-sg NP-sg VP-sg 99K NP-sg V-sg
VP-sg → V-sg VP-sg → V-sg VP-sg 99K V-sg

Table 1: SVO and VO grammars, Agreement Model

nine distinct word order options. We model the
learning process as a choice among these nine dis-
crete grammars; see Perkins and Hunter (2023)
for discussion of the role of discreteness in the
learner’s hypothesis space in this type of model.
These grammars include the four most restricted
word orders, where subjects deterministically occur
either before or after the verb phrase and objects
before or after the verb: SVO, SOV, OVS, and VOS
(the four options arising from a 2x2 choice of sub-
ject and object position). The hypothesis space also
includes a ‘Free’ word order that allows any order-
ing of subjects and objects, and four word orders
that allow some degree of variation: two that fix
object position as either OV or VO and allow sub-
jects on either side of the verb phrase; and two that
fix subject position as either SV or VS and allow
objects on either side of the verb. Note that each of
these last four grammars essentially combine two
of the more restricted grammars. In particular, the
VO grammar (the target word order for Spanish) is
the union of the VOS and SVO grammars. See the
Appendix for full details.

In addition to the core rules that generate canon-
ical word order, each grammar has a set of noise
rules (represented by dashed arrows in Table 1)
that manipulate the same set of terminal and non-
terminal symbols as the core rules, but allow for all
possible permutations and deletions of clause argu-
ments. Each of the nine grammars in the learner’s
hypothesis space has the same set of noise rules.
This allows all of the grammars to generate any of
the strings in the dataset. For example, the SVO
grammar can generate the string v-pl np-sg np-pl
via the trees in Fig. 1. In the first tree, two noise
rules are used: the noisy S expansion places the
subject after the VP, and the noisy VP expansion
places the object after the verb. Notice that it is also
possible for a tree to be generated by a mixture of

S

NP-plVP-pl

NP-sgV-pl

S

NP-plVP-pl

NP-sgV-pl

Figure 1: Two possible analyses of v-pl np-sg np-pl
(suppressing NP-sg → np-sg, NP-pl → np-pl and
V-pl → v-pl rewrites) where solid lines indicate core
rules and dashed lines indicate noise rules

core and noise rules, as in the second tree: here, the
S expansion is noisy, but the VP can be expanded
according to the core rules of the SVO grammar.

The core rules of these grammars do not contain
the rules S → VP-sg and S → VP-pl, meaning
that the learner expects canonical clauses to have
subjects. These expansions of S only occur in the
noise rules; subject-drop is assumed to be a process
that introduces noise for basic word order learning.

The No-Agreement Model is just like the Agree-
ment Model, except that the grammars in its hy-
pothesis space do not encode subject-verb num-
ber agreement. These grammars generate strings
that contain exactly one v and up to two nps, not
marked for number. The SVO grammar and the
VO grammar are shown in Table 2. In these gram-
mars, NP is deterministically rewritten as np and V
is deterministically rewritten as v; these are again
omitted for the sake of space.

The No-Agreement Model has the same nine
word order options as the Agreement Model in its
hypothesis space: the four most deterministic word
orders, four that allow variability in either subject
or object position, and one that allows both sub-
ject and object position to vary. Each of these nine
grammars again shares the same set of noise rules,
which allow any word ordering as well as argument
deletion. Just as in the Agreement Model, subject-
less clauses are only allowed via the grammars’
noise rules.
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SVO Core Rules VO Core Rules Shared Noise Rules
S → NP VP S → NP VP S 99K NP VP

S → VP NP S 99K VP NP
S 99K VP

VP → V NP VP → V NP VP 99K V NP
VP → V VP → V VP 99K V

VP 99K NP V

Table 2: SVO and VO grammars, No-Agreement Model

For both models, the prior distribution over the
nine grammars G in the learner’s hypothesis space
is uniform, meaning each of the nine grammars
has the same prior probability. This means that
none of the canonical word orders is preferred a
priori. Each of the allowable core and noise rules
in these grammars has some probability associated
with it. To work with these rule probabilities, we
recast the composite grammars illustrated in Tables
1 and 2 into standard PCFGs, following Perkins
and Hunter (2023).3 For every nonterminal N in
these grammars, we add additional nonterminals
N+ and N−. The expansions for N+ and N−

are determined by the grammar’s core and noise
rules, respectively. We also add the rules N →
N+ and N → N−, whose weights represent the
probabilities for using a core vs. noise expansion
of N . Let θ⃗nG be the vector of probabilities for
expanding a nonterminal n in the resulting standard
PCFG for G. The prior distribution over θ⃗nG is a
Dirichlet distribution with parameters αnG . We
set all components of α in these distributions to 1,
which results in a uniform distribution over the rule
probabilities. This means that all core expansions
of a given nonterminal are equally likely a priori,
as are all noise expansions.

Each grammar conditions a distribution over
trees and strings. Just as for any standard PCFG,
the probability of generating a string via a partic-
ular tree under grammar G is the product of the
rule probabilities θ⃗G used in that tree. To calculate
the overall probability of a string under grammar
G, we sum over the probabilities of all of the ways
that it could be generated.

3.2 Inference

Our model infers the posterior probability distri-
bution over its grammars G and an approximation
of trees t⃗ given its observed strings w⃗. Following

3This formalization bears resemblance to a latent variable
PCFG (Cohen, 2017), in which the choice between noise (−)
vs. non-noise (+) at each nonterminal node could be recast as
a choice of a particular latent state. We thank an anonymous
reviewer for pointing this out.

Agreement No Agreement
0.38 v-sg 0.5 v
0.18 v-sg np-sg 0.25 v np
0.14 v-pl 0.12 np v
0.08 np-sg v-sg 0.06 np v np
0.04 np-sg v-sg np-sg 0.05 v np np
0.04 v-pl np-sg 0.02 np np v
0.03 v-sg np-sg np-sg
0.02 v-pl np-pl
0.02 np-sg v-pl

Table 3: Proportions of most frequent string types

Perkins and Hunter (2023), instead of inferring a
distribution over t⃗ directly, we sample approxima-
tions of trees, which we call ‘coarse structures’,
s⃗. These coarse structures abstract away from the
core vs. noise distinctions in the trees. For ex-
ample, both trees in Fig. 1 would share the same
coarse structure: the same tree without a distinction
between dashed and solid lines. Abstracting away
from this distinction means that all grammars in
the learner’s hypothesis space can generate every
coarse structure, using either noise rules, or core
rules, or some combination. This allows for feasi-
ble sampling of grammars given a sample of coarse
structures.

We use Gibbs Sampling to estimate the joint
posterior probability of grammars and coarse struc-
tures, P (G, s⃗ | w⃗), summing over all combinations
of core and noise options in s⃗ and integrating over θ⃗.
The steps of sampling work as follows. First, G is
randomly initialized to one of the nine grammars in
the hypothesis space. Then, we alternate between
drawing samples from the posterior probability of
a grammar given a set of coarse structures for the
observed strings, P (G | w⃗, s⃗), and the posterior
probability of coarse structures given a grammar
and the observed strings, P (s⃗ | w⃗, G).

Via Bayes’ Rule, the posterior probability of a
grammar given coarse structures and strings, P (G |
w⃗, s⃗), is proportional to the likelihood of the strings
and coarse structures given the grammar, times the
prior probability of that grammar:

(1) P (G | w⃗, s⃗) = P (s⃗, w⃗ | G)P (G)∑
G′ P (s⃗, w⃗ | G′)P (G′)

We assume that all grammars have equal prior
probability, and calculate the likelihood P (s⃗, w⃗ |
G) following Perkins and Hunter (2023). After
sampling a new grammar from the posterior distri-
bution in Eq. (1), we sample a new set of coarse
structures from P (s⃗ | w⃗, G) using a Hastings pro-
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posal, following a method introduced in Johnson
et al. (2007). These steps are repeated until the
chain converges to a stable distribution which es-
timates the joint posterior P (G, s⃗ | w⃗). We refer
the reader to Perkins and Hunter (2023) for more
details of the sampling procedure.

For the results reported below, 20,000 iterations
of Gibbs Sampling were performed. Every tenth
sample of the last 10,000 iterations was analyzed.

4 Simulations

4.1 Data

We tested our learners on datasets of child-directed
Spanish created from the Fernandez/Aguado cor-
pus in CHILDES (Fernandez Vazquez and Ger-
ardo Aguado). The corpus includes a total of
45,610 utterances directed to 47 different children
between the ages of approximately 3;0 and 4;0.
This corpus was chosen because of its large size
and the large number of children included, allow-
ing for more reliable estimates of the distributions
that any given child might hear.

The dataset for the Agreement Model consisted
of strings of noun phrases and verbs annotated
with number features. We conducted an automatic
search of the corpus, using a heuristic that aimed
to approximate the immature grammatical category
knowledge of an infant learning basic word or-
der. Because young infants can differentiate nouns
from verbs using determiners, auxiliaries, and pro-
nouns (Babineau and Christophe, 2022; Shi and
Melançon, 2010; Hicks et al., 2007) we noisily
identified noun phrases and verbs in the corpus us-
ing these functional cues. All full pronouns were
included as np’s, with their number determined by
the form of the pronoun. Any word occurring after
a determiner was counted as the head of an np,
and its number was determined based on the inflec-
tion of the determiner. Any word occurring after
an auxiliary was counted as a v, and its number
was determined by the inflection on the auxiliary.
Proper names were counted as np-sg’s. Wh-words
and clitics were not counted as np’s, because there
is no evidence that children identify these as nomi-
nals before learning basic word order (Perkins and
Lidz, 2021; Brusini et al., 2017).

After these strings were extracted, only strings
with exactly one verb and up to two noun phrases
where at least one noun phrase matched the verb
in number were retained. From this subset of the
corpus, we calculated the proportion of each string

type, and sampled 25 strings according to these
proportions. This resulted in 9 string types included
in the dataset for the Agreement learner (see Table
3). This dataset is substantially noisy: nearly 60%
of these strings cannot not be generated by the core
rules of the VO grammar, which is the target word
order of Spanish, without using noise rules.

The dataset for the No-Agreement learner was
generated by the same process and heuristics for
finding noun phrases and verbs, but number fea-
tures were not tagged.4 We sampled 25 strings
according to their proportions in the corpus, result-
ing in the 6 string types in Table 3. Just as in the
dataset for the Agreement Model, almost 60% of
these strings cannot be generated by the core rules
of the VO grammar without the option of noise.

4.2 Results

Figure 2 shows the posterior distribution over
grammars inferred by the Agreement and the No-
Agreement Model, averaged across 10 runs of each
learner. In these graphs, the dashed line represents
no substantial learning: a learner that maintains its
prior belief that all of its 9 grammars are equally
probable would infer a distribution with all bars
hovering around 0.11.

The No-Agreement Model inferred roughly this
flat distribution. The target VO grammar, along
with most other grammars, was assigned posterior
probability around 0.11. VOS and OVS were as-
signed slightly higher posterior probability (both
a mean of 0.14); overall, the model gave slightly
higher probability to the more restrictive grammars.
The fact that all grammars were assigned low and
approximately equal probability suggests that the
No-Agreement Model did not learn much useful
information about Spanish word order.

The Agreement Model, by contrast, inferred a
substantially different distribution. Three of the
learner’s grammars received much higher probabil-
ity than the other six. These three grammars are
VO (mean posterior probability: 0.23), SVO (mean:
0.20), and VOS (mean: 0.28). The other grammars

4There are certain strings that were present in the No
Agreement dataset that were not present in the Agreement
dataset. For example, the string np-sg v-pl np-sg would not
be included in the Agreement dataset because the Agreement
grammars cannot generate this string (since neither np agrees
with the verb in number), but this string would be tagged as
np v np under the heuristics for the No Agreement dataset,
and thus would be included. This is why the proportions in
the Agreement dataset in Table 3 do not add up to the relevant
proportions in the No Agreement dataset.
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Figure 2: Posterior distribution over word-order grammars (G)

were all assigned much lower probability, ranging
from 0.03 (SV) to 0.09 (OVS).

While the target VO grammar is among the three
that the learner identified as having highest pos-
terior probability, it did not identify this gram-
mar as the single most probable. However, look-
ing more closely at these results, we see that the
learner’s inference was fairly sensible. All three
grammars with stand-out posterior probability only
allow postverbal objects, which indicates that the
learner successfully identified Spanish object po-
sition. Furthermore, the strings that the target VO
grammar can generate are exactly the combination
of the strings generated by the SVO and VOS gram-
mars. So, the fact that these three grammars were
assigned the highest posterior probability indicates
that the learner had success in determining that ob-
ject position is fixed, but subject position varies.
This inference is striking given the degree of noise
that the learner needed to overcome: nearly 60% of
the strings in its data were not consistent with the
canonical word order options that it successfully
identified, without taking noise into account.

Interestingly, we see that the learner’s inferred
distribution favors VOS by a small amount. Why
would this be the case? One reason may be that
this type of Bayesian learner prefers more restric-
tive hypotheses. This is a phenomenon known as
“Bayesian Occam’s Razor,” under which the hy-
pothesis with the fewest degrees of freedom that
can explain all the data will be preferred (Griffiths
et al., 2008). In the case of these models, the SVO
and VOS grammars correspond to hypotheses with
fewer degrees of freedom than the more flexible
VO grammar. Spanish allows both of these word or-
ders, so the combination of explaining the data well
and having fewer degrees of freedom gives VOS

a small advantage over VO, and gives SVO high
probability as well. The same preference for re-
strictive hypotheses is visible in the No Agreement
Model, where the four most constrained grammars
tended to receive higher posterior probability than
the more flexible ones.

The learner’s slight preference for VOS points
to an additional limitation in its search for subject-
verb agreement. The strings that provide the best
evidence for VOS are the v-initial strings in which
there is at least one postverbal np that matches
the v in number: our learner will tend to take this
match as evidence for subject-verb agreement, and
analyze these strings as having postverbal subjects.
These strings make up 23% of the learner’s dataset,
lending support to grammars in which the subject
is fixed postverbally. However, because Spanish
allows null subjects, a number of these postverbal
np’s are likely to be objects rather than subjects:
this is the ambiguity demonstrated in (4-5) in Sec-
tion 2. If a child were only tracking number agree-
ment, like our learner, perhaps that child would
likewise mis-analyze many of these sentences.

Possible extensions of this learner might lever-
age other information in order to overcome this
bias towards VOS. One of the potential cues that is
available in Spanish, but is removed by our prepro-
cessing of the data, is person agreement. Tracking
person features would give the learner an additional
way to disambiguate between subjects and objects.
Of the v-initial strings in which the v and a potential
subject np match in number, approximately 25%
mismatch in person features (see Table 4). These
person mismatches could help a more sophisticated
learner identify that many of these strings are un-
derlyingly verb-object, not verb-subject, just as
mismatches in number features can disambiguate
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V-initial string type Prop. person mismatches
v-sg np-sg np-sg 0.28
v-sg np-sg 0.25
v-pl np-pl 0.16
Overall 0.25

Table 4: Person mismatches in relevant v-initial strings

these parses in cases like (6). An example is shown
in (7), where the 3rd-person postverbal object a
ella mismatches the 1st-person inflected verb veo.

(7) La veo a ella.
pro her-3SG see-1SG to her-3SG

‘(I) see her.’

So, a learner that makes use of a wider range of ev-
idence for subject-verb agreement might overcome
its bias towards determinism, and infer with higher
probability that subject position is variable.

In sum, our results show that the Agreement
Model was able to use its expectation of subject-
verb agreement to abstract away from a great de-
gree of noise in its data and infer a canonical word
order in which objects are obligatorily postverbal,
with some variation in subject position. By con-
trast, the No-Agreement Model failed to infer that
any of its hypothesized canonical word orders were
more probable than any of the others. Thus, track-
ing subject-verb number agreement helped substan-
tially in this learning problem. A learner that ex-
pected subjects to agree with verbs was able to
draw reasonable inferences about Spanish word or-
der on the basis of noisy data; a learner with no
awareness of agreement could not.

5 Discussion

We present a model for learning constrained vari-
ability in Spanish word order. Spanish learners
need to acquire a word order with obligatorily
postverbal objects and variable subject position
from messy data, in which both subjects and ob-
jects might appear to vary in position. We extend an
approach introduced by Perkins and Hunter (2023)
to model this learning as a case of separating “sig-
nal” for basic word order from “noise” from non-
canonical clause types. We pursue the hypothesis
that, in solving this problem, learners may make
use of knowledge that subjects and verbs will tend
to agree. We compare a learner that attempts to
identify a grammar of canonical word order using
subject-verb number agreement to a learner that
relies entirely on noun phrase and verb distribu-

tions. We find that the model that tracks subject-
verb agreement is able to infer Spanish word order,
whereas the model with no knowledge of agree-
ment cannot. This suggests that knowledge of the
types of dependencies that clause arguments enter
into may helpfully guide word order learning.

Our case study demonstrates how tolerant this
learning mechanism is to noise: the learner suc-
ceeds at identifying the target canonical word order
even though approximately 60% of the data ap-
pears inconsistent with that order. The learner’s
noise-tolerance comes in part from its ability to
find useful information in sub-parts of strings, in-
stead of treating each string as either entirely signal
or entirely noise. The learner assumes that noise
can occur in any of the internal nodes in a tree
individually, so it entertains the possibility that a
string could be generated with a mixture of core
vs. noise rules, as shown in Figure 1. This allows
the learner to look within strings to find evidence
for the grammatical regularities it expects, thereby
making use of more of its data.

Thus, if Spanish-learning children are reliably
able to track subject-verb agreement at the age
when they are learning word order, then they might
be able to use agreement to aid in this task, even in
the absence of other reliable cues to sentence struc-
ture (e.g., from meaning or prosody; Pinker, 1984;
Christophe et al., 2008). However, this depends
on children knowing the morphological forms of
number and potentially person inflection in the lan-
guage. Prior work shows that French learners track
subject-verb dependencies in infancy (Nazzi et al.,
2011), and learners in various languages track sim-
ilar dependencies at young ages (Van Heugten and
Shi, 2010; Soderstrom et al., 2007; Hohle et al.,
2006; Santelmann and Jusczyk, 1998). However,
we do not know precisely when children begin to
track these dependencies, and how reliably and
abstractly they represent them (Culbertson et al.,
2016). Further work could explore whether our
filtering mechanism would succeed even if learn-
ers have noisy or incomplete representations of
these dependency types. These findings also in-
vite further behavioral work on the acquisition of
agreement in Spanish and similar languages.

Our model provides a window into the mecha-
nisms for acquiring basic clause syntax in a lan-
guage with frequent argument-drop and complex
argument realization patterns. Subject pro-drop
is a frequent and basic property of Spanish; how-
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ever, our model treats this as a type of noise to ig-
nore, and expects that canonical clauses will have
overt subjects. While learners must eventually ac-
quire pro-drop in Spanish, it may make sense for
a learner to only attempt to learn canonical sub-
ject position from overt arguments, setting aside
subject-drop as a phenomenon to be acquired inde-
pendently. Indeed, in exploratory simulations, we
find that allowing null subjects in the learner’s core
grammar rules does not help it identify Spanish
word order; what helps is knowledge of subject-
verb agreement. Our model therefore makes the
prediction that knowledge of subject-verb agree-
ment, but not necessarily pro-drop, may need to
be acquired prior to the acquisition of word order
in Spanish— a prediction that could be tested in
future behavioral work. Beyond Spanish, many
languages with argument-drop and more variable
word orders also have rich case and agreement sys-
tems. The model presented here could therefore
be extended to explore how case and agreement
dependencies may inform learning in languages
with diverse argument structure profiles.

These results have broader implications for our
understanding of when and how learners regularize
variable data (Hudson Kam and Newport, 2005,
2009; Reali and Griffiths, 2009; Ferdinand et al.,
2019). We highlight a distinction between forms of
regularization in which learners (i) abstract away
from variability in data in order to draw fully de-
terministic generalizations, and (ii) draw general-
izations that are not fully deterministic, but are still
more constrained than the data would appear to
support. For the current case study, we propose
that learners use knowledge about the kinds of reg-
ularities that grammars tend to exhibit in order to
identify which types of variability they should learn
from, and which types they should treat as noise.
This mechanism may generalize to other areas in
language acquisition and learning in other domains,
in which learners’ regularization tendencies arise
from the expectation that their data will noisily
reflect a richly structured underlying system.
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A Complete List of Grammars

VO Core Rules OV Core Rules SV Core Rules VS Core Rules Free Core Rules
S → NP-pl VP-pl S → NP-pl VP-pl S → NP-pl VP-pl S → VP-pl NP-pl S → NP-pl VP-pl
S → NP-sg VP-sg S → NP-sg VP-sg S → NP-sg VP-sg S → VP-sg NP-sg S → VP-pl NP-pl
S → VP-pl NP-pl S → VP-pl NP-pl S → NP-sg VP-sg
S → VP-sg NP-sg S → VP-sg NP-sg S → VP-sg NP-sg

VP-pl → V-pl NP-pl VP-pl → NP-pl V-pl VP-pl → NP-pl V-pl VP-pl → NP-pl V-pl VP-pl → NP-pl V-pl
VP-pl → V-pl NP-sg VP-pl → NP-sg V-pl VP-pl → NP-sg V-pl VP-pl → NP-sg V-pl VP-pl → NP-sg V-pl

VP-pl → V-pl NP-pl VP-pl → V-pl NP-pl VP-pl → V-pl NP-pl
VP-pl → V-pl NP-sg VP-pl → V-pl NP-sg VP-pl → V-pl NP-sg

VP-pl → V-pl VP-pl → V-pl VP-pl → V-pl VP-pl → V-pl VP-pl → V-pl

VP-sg → V-sg NP-sg VP-sg → NP-pl V-sg VP-sg → NP-pl V-sg VP-sg → NP-pl V-sg VP-sg → NP-pl V-sg
VP-sg → V-sg NP-pl VP-sg → NP-sg V-sg VP-sg → NP-sg V-sg VP-sg → NP-sg V-sg VP-sg → NP-sg V-sg

VP-sg → V-sg NP-pl VP-sg → V-sg NP-pl VP-sg → V-sg NP-pl
VP-sg → V-sg NP-sg VP-sg → V-sg NP-sg VP-sg → V-sg NP-sg

VP-sg → V-sg VP-sg → V-sg VP-sg → V-sg VP-sg → V-sg VP-sg → V-sg

SVO Core Rules SOV Core Rules VOS Core Rules OVS Core Rules
S → NP-pl VP-pl S → NP-pl VP-pl S → VP-pl NP-pl S → VP-pl NP-pl
S → NP-sg VP-sg S → NP-sg VP-sg S → VP-sg NP-sg S → VP-sg NP-sg

VP-pl → V-pl NP-pl VP-pl → NP-pl V-pl VP-pl → V-pl NP-pl VP-pl → NP-pl V-pl
VP-pl → V-pl NP-sg VP-pl → NP-sg V-pl VP-pl → V-pl NP-sg VP-pl → NP-sg V-pl
VP-pl → V-pl VP-pl → V-pl VP-pl → V-pl VP-pl → V-pl

VP-sg → V-sg NP-pl VP-sg → NP-pl V-sg VP-sg → V-sg NP-pl VP-sg → NP-pl V-sg
VP-sg → V-sg NP-sg VP-sg → NP-sg V-sg VP-sg → V-sg NP-sg VP-sg → NP-sg V-sg
VP-sg → V-sg VP-sg → V-sg VP-sg → V-sg VP-sg → V-sg

Shared Noise Rules Shared Terminal Rules
S 99K NP-pl VP-pl NP-pl → np-pl
S 99K VP-pl NP-pl NP-sg → np-sg
S 99K VP-pl V-pl → v-pl
S 99K NP-sg VP-sg V-sg → v-sg
S 99K VP-sg NP-sg
S 99K VP-sg

VP-pl 99K NP-pl V-pl
VP-pl 99K NP-sg V-pl
VP-pl 99K V-pl NP-pl
VP-pl 99K V-pl NP-sg
VP-pl 99K V-pl

VP-sg 99K NP-pl V-sg
VP-sg 99K NP-sg V-sg
VP-sg 99K V-sg NP-pl
VP-sg 99K V-sg NP-sg
VP-sg 99K V-sg

Table 5: All Agreement Grammars
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VO Core Rules OV Core Rules SV Core Rules VS Core Rules Free Core Rules
S → NP VP S → NP VP S → NP VP S → VP NP S → NP VP
S → VP NP S → VP NP S → VP NP
VP → V NP VP → NP V VP → NP V VP → NP V VP → NP V

VP → V NP VP → V NP VP → V NP
VP → V VP → V VP → V VP → V VP → V

SVO Core Rules SOV Core Rules VOS Core Rules OVS Core Rules
S → NP VP S → NP VP S → VP NP S → VP NP
VP → V NP VP → NP V VP → V NP VP → NP V
VP → V VP → V VP → V VP → V

Shared Noise Rules Shared Terminal Rules
S 99K NP VP NP → np
S 99K VP NP V → v
S 99K VP
VP 99K NP V
VP 99K V NP
VP 99K V

Table 6: All No-Agreement Grammars
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Abstract

We report data from a preference rating ex-
periment that tested for conflicting effects of
subjectivity and discriminatory strength on ad-
jective ordering preferences in referential visual
context. Results indicate that, if the commu-
nicative efficiency of an adjective is low in a
given context, it is preferred later in a multi-
adjective expression. To account for qualitative
aspects of these data, we propose a novel com-
putational model of incremental processing in
the Rational Speech Act framework. What sets
the model apart from previous approaches is
that it assumes fully incremental interpretation,
without the need to anticipate possible sentence
completions.

1 Introduction

In noun phrases (NPs) with multiple adjectives,
as in (1), the relative order of the adjectives can
vary, but at the same time, there are robust cross-
linguistic preferences (Sproat and Shih, 1991) such
that certain adjective sequences are more common
and perceived as more natural than others. For
example, the ordering in (1-a) is strongly preferred
to that in (1-b).

(1) a. big white bear
b. white big bear

Although adjective ordering preferences have been
known and studied for some time, they have re-
sisted a unified explanation. Existing explanations
come from different perspectives in linguistics
and include semantic hierarchies (Dixon, 1982),
syntactic mapping (Cinque, 1993) and psycholin-
guistic explanations based on as absoluteness (Mar-
tin, 1969) or closeness to the meaning of head noun
(Whorf, 1945). Here, we focus on two recent hy-
potheses (Scontras et al., 2017; Fukumura, 2018,
see next section for explanation) that have gained
support from experimental work and share a com-
mon theoretical motivation. In particular, they are

both based on the idea that efficiency in commu-
nication determines ordering preferences. Despite
being based on the same general idea, theses hy-
potheses may lead us to expect significantly diver-
gent outcomes in certain contexts. To address this
tension, we pit these predictions against each other
in a preference rating experiment. Furthermore,
we implement both hypotheses in a novel compu-
tational model of incremental interpretation in the
Rational Speech Act (RSA, Frank and Goodman,
2012) framework that not only provides a qualita-
tive explanation of our findings but also sheds light
on the relative contribution of the two hypotheses.

2 Two rational explanations of adjective
ordering

The first explanation we focus on was proposed by
Scontras et al. (2017), who showed that the subjec-
tivity of adjectives is a strong predictor of ordering
preferences. We call this the SUBJECTIVITY hy-
pothesis. They operationalized subjectivity as fault-
less disagreement, roughly the degree to which two
speakers can disagree about attributing a property
to an individual without one of them necessarily
being wrong. According to the SUBJECTIVITY hy-
pothesis, (1-a) is preferred over (1-b) because big
is more subjective than white and is also further
away from the noun. In fact, gradable dimension
adjectives like big, tall or heavy are prime exam-
ples of subjective adjectives that have received a
lot of attention in previous work. We therefore fo-
cus the following discussion on these instances. In
subsequent work, Scontras et al. (2019) proposed
that the low communicative efficiency of subjec-
tive expressions is one possible reason for effects
of subjectivity on ordering preferences. The main
idea of Scontras et al. (2019) is that more efficient
expressions are integrated earlier in the hierarchi-
cal structure underlying semantic composition in
order to minimize the risk of misidentification of
referents, and thus, as a result, these expressions
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end up closer to the modified noun in the linear
sequence (at least in languages with prenominal
modification).

The SUBJECTIVITY hypothesis has gained sup-
port from corpus studies as well as preference rat-
ing experiments in a variety of languages (Scontras
et al., 2020b). Furthermore, the idea that com-
municative efficiency is increased if the more sub-
jective expressions enter later into compositional
meaning derivations was corroborated in computa-
tional simulations of rational communication (Si-
monic, 2018; Franke et al., 2019, see section 5 for
discussion).

Another explanation of ordering preferences was
given by Fukumura (2018), who investigated the
impact of the discriminatory strength of adjec-
tives. In a given context, a referring expression
has greater discriminatory strength if it contains
more information about the intended referent. If
it singles out the intended referent perfectly, it has
maximal strength. The main idea of the DISCRIM-
INATORY STRENGTH hypothesis is that the more
discriminatory an adjective is, the more salient and
accessible it will be in a visual context and also the
more useful for reference resolution. Consequently,
there will be a higher likelihood of early mention
in the linear sequence (and thus greater distance
from the noun in prenominal modification).

Fukumura (2018) tested the DISCRIMINATORY

STRENGTH hypothesis in a production experiment
where participants described referents that were
marked in visual context. Discriminatory strength
was controlled by manipulating the properties of
the presented objects. In addition, color adjectives
were compared to adjectives describing patterns,
e.g. striped. As expected based on previous stud-
ies, Fukumura (2018) found that color adjectives
were preferred before pattern adjectives and she
explained this by a high availability of color ad-
jectives in production. In addition, she found that
discriminatory strength had the predicted effect and
higher discriminatory strength in context led to ear-
lier mention in the participants’ productions. How-
ever, since there is no strong subjectivity gradient
between color and pattern adjectives, her results do
not speak to the SUBJECTIVITY hypothesis and the
question remains open how these two hypotheses
are related to each other.

3 Relation between SUBJECTIVITY and
DISCRIMINATORY STRENGTH

Both the SUBJECTIVITY and the DISCRIMINATORY

STRENGTH hypothesis are based on the idea that
ordering preferences emerge from pressures to-
wards efficient communication and both of them as-
sume that more informative expressions are in some
sense used "earlier". However, the two hypotheses
take different perspectives and thus arrive at differ-
ent definitions of what "early" means. In particular,
the SUBJECTIVITY hypothesis is derived from the
perspective of a listener whereas DISCRIMINATORY

STRENGTH assumes a speaker perspective. The
listener aims to identify an intended referent by se-
quentially restricting a set of potential referents in
a process that follows the compositional semantic
structure of a given expression. Thus, the listener
evaluates the adjective that is closer to the noun
first (thereby interpreting (1-a) as referring to bears
that are big for white bears). As a consequence, the
hierarchical structure of the NP determines what
counts as "early" in the SUBJECTIVITY hypothe-
sis. The speaker, by contrast, aims to maximize
informativity at each step in the word-by-word pro-
duction of an utterance. In the DISCRIMINATORY

STRENGTH hypothesis, the position in the linear se-
quence of words is thus central. For these reasons,
"earlier" translates to either closer to the noun or
further away from the noun, depending on which
perspective we take.

This is, in fact, a striking difference between
the SUBJECTIVITY and the DISCRIMINATORY

STRENGTH hypothesis and it is an interesting em-
pirical question what happens if these two perspec-
tives stand in direct conflict to each other. This
could, e.g., be the case in a context in which a less
subjective adjective discriminates more strongly
than a more subjective one between the intended
referent and a set of distractors. This exact ques-
tion is the main question we addressed in the ex-
periment reported in the next section, in which
participants indicated their preferences between
multi-adjective expressions like in (1) when refer-
ring to a target referent in visual context.

To appreciate the purpose and limitations of our
experiment, it may be worthwhile to reflect briefly
on the predictions that can be derived from the SUB-
JECTIVITY hypothesis in the type of contextually-
embedded experimental setting underlying the DIS-
CRIMINATORY STRENGTH hypothesis of Fuku-
mura (2018). We acknowledge that, strictly speak-
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ing, the SUBJECTIVITY hypothesis, by itself, does
not predict how preferences are affected by manip-
ulations of visual context. This is because SUBJEC-
TIVITY does not presuppose that subjective-first
expressions are less informative in every setting.
There only need to be enough such instances over-
all for a general preference to "evolv[e] gradually"
(Franke et al., 2019; cf. also Scontras, 2023). Thus,
the SUBJECTIVITY hypothesis explicitly allows for
counterexamples. One such counterexample is the
case where a multi-adjective expression like in (1)
receives a conjunctive instead of the assumed "se-
quentially intersective" reading (cf. Franke et al.,
2019), such that (1-a) would be understood as re-
ferring to bears that are white and big (for bears)
rather than big for white bears. In fact, Scontras
et al. (2020a) presented empirical evidence that the
preference for subjective-first orderings vanishes
when adjectives restrict the set of potential referents
in conjunction. We cannot exclude the possibility
that the specific design of our current experiment
constitutes another counterexample, maybe even
because conjunctive readings are favored in our
design. Be this as it may, a gradual evolution of
the SUBJECTIVITY-based preferences that are com-
monly observed would be extremely challenging
to explain based on low informativity of subjective
expressions if we find empirically that speakers
actually adapt by producing subjective adjectives
more often in first position (in the linear sequence)
if context renders them more (rather than less) in-
formative.

4 Experimental Data: Preference ratings
in visual contexts

4.1 Method

In a web-based experiment, we collected data on
adjective ordering preferences in German using
preference ratings of multiple adjective sequences
in visual referential context. Participants (N=120)
were recruited via the platform prolific.co. They
were instructed at the begin of the experiment by a
cover story that they should communicate a target
sticker (marked with a red box, see Fig. 1) in a
scrapbook to an imagined listener on a telephone
call. With this setting, we aimed to rule out the
possibilities of using information of relative spa-
tial positions in the context and tried to simulate
an online communication situation as closely as
possible. In each experimental trial, participants
were presented with a visual context and they indi-

cated their preference between two sentences with
reversed adjective order using a slider in the middle
of the screen (see Fig. 1).

In a mixed factorial design, we manipulated,
within participants, the COMBINATION of adjec-
tives from different semantic classes (levels: dimen-
sion & either color or shape and color & shape)
and the RELEVANCE of the corresponding proper-
ties for reference resolution, i.e. whether the first,
second or both properties were needed to identify
a referent (cf. Fig. 1). 1 The purpose of these two
factors was to test whether the basic findings of
Fukumura (2018) replicate also with subjective ad-
jectives and, in particular, whether the preference
for subjective adjectives in first position persists
if the more subjective adjective has the lesser dis-
criminatory strength.

In addition to this within-participants manipula-
tion, we also manipulated the SIZE DISTRIBUTION

of objects (sharp vs. blurred) between-participants.
As in Fig. 1, there were always six objects in the
visual context that were either large or small. The
large objects had sizes that were randomly sampled
from the integers 9 and 10 (in some arbitrary unit of
length that effectively depended on the display set-
tings of the experimental participants). If size was
the relevant property, the target object was always
the biggest, irrespective of SIZE DISTRIBUTIONs.
In sharp SIZE DISTRIBUTION, sizes of the remain-
ing, small objects were sampled from the integers
in the range [1, 3] whereas they were sampled from
[1, 6] in blurred SIZE DISTRIBUTION. As a result,
the small objects in the blurred as compared to
the sharp distribution had greater variance in size
among them and a smaller mean distance to the
sizes of the big objects. The idea behind this ma-
nipulation was to affect the information that size
adjectives could convey in such a way that they
are more useful in sharp vs. blurred distributions.
In particular, we intended to make size adjectives
effectively non-subjective in sharp distributions.
If any prediction about the effect of this manip-
ulation can be derived from the SUBJECTIVITY

hypothesis (see discussion above), the preference

1The factor COMBINATION was originally a three-level
factor with the levels dimension & color, dimension & shape
and color & shape. We aggregated the first two levels here
because they did not differ significantly and their distinction
is not relevant for our present purpose, in particular for the
computational models described in section 6. The complete
design and statistical analysis along with a free production
experiment in the same general design is described in the
unpublished MA thesis of Wang (2022).
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Figure 1: An example item from the current experiment in the condition with COMBINATION of dimension and
color adjectives and RELEVANCE of the first property (i.e. dimension) in a sharp SIZE DISTRIBUTION. A property
was counted as relevant if it was necessary for referent identification. In this example size is relevant but color and
shape are not. Glosses for the German linguistic material in the example item are provided in Appendix A.

for subjective-first orders should therefore be weak-
ened in sharp SIZE DISTRIBUTION. The reason
is that the SUBJECTIVITY hypothesis assumes that
less subjective adjectives are integrated earlier into
the hierarchical structure.

We generated 27 experimental items in each of
the 18 conditions, resulting in a total of 486 items
that were distributed across 6 lists (three per SIZE

DISTRIBUTION). Each participant saw a total of
81 experimental items. These were combined with
99 filler items that were constructed in a similar
way as the experimental items but also included
sentences with only one adjective instead of two.
Overall, each participant thus completed 180 trials.
An experimental session took around half an hour
and participants received reimbursement of 5.25 £.

4.2 Results

The mean slider positions are shown in Fig 2. For
statistical analysis, we used linear mixed effects
models (Bates et al., 2015) that incorporated fixed
effects of all manipulated factors and their inter-
actions, along with random intercepts for partici-
pants and items. For hypothesis testing, we used
model comparisons based on log-likelihood ratio
tests. First of all, our results replicate effects of
SUBJECTIVITY: There was a strong preference
for dimension adjectives in first position which
resulted in a significant effect of COMBINATION

on slider ratings (χ2(1) = 361.97, p < .001).
Furthermore, we found a significant interaction
between RELEVANCE and SIZE DISTRIBUTION

(χ2(2) = 21.26, p < .001). This interaction was

due to the fact that there was a preference for or-
derings with adjectives that are needed (and suffi-
cient) for reference resolution in first position (i.e.
an effect of RELEVANCE) and this preference was
more pronounced in sharp (χ2(1) = 385.91, p <
.001) as compared to blurred SIZE DISTRIBUTIONs
(χ2(1) = 222.49, p < .001). Since we had specific
expectations concerning the effect of SIZE DIS-
TRIBUTION on the preference for orderings with
subjective adjectives in first position, we split the
data according to the factor COMBINATION and
performed separate analyses on dimension and X
and color and form combinations. In both cases,
the interaction between RELEVANCE and SIZE DIS-
TRIBUTION turned out to be significant but for
different reasons: In combinations of dimension
and X, the preference for subjective-first order-
ings in dimension-relevant contexts was increased
in sharp as compared to blurred DISTRIBUTIONs
(β = 0.58, χ2(2) = 19.50, p < .001). In com-
binations of color and form adjectives, sharp in
comparison to blurred distributions led, by con-
trast, to an increased preference for form-first or-
derings (the 2nd property in the COMBINATION

color and form) in form-relevant contexts (β =
−0.71, χ2(2) = 8.29, p = 0.016). The former of
these two interactions was directly relevant to our
hypotheses whereas the latter was completely un-
expected and we do not have an explanation for
it.

4.3 Discussion

We replicated both the SUBJECTIVITY and DIS-
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Figure 2: The mean slider positions from the cur-
rent experiment: The slider had an initial value of
0 and potential values ranged between +50 and -50.
A positive value indicates a preference for the first
adjective in a COMBINATION (i.e. the color adjective
in the combination color and form or the dimension
adjective in the combination dimension and x, where
x stands for either color or form) at the first position
in the linear sequence. For combinations involving
dimension adjectives (labeled dimension_x), a posi-
tive value indicates the conventional subjective-first
order and a negative value shows the opposite.

CRIMINATORY STRENGTH effects in our study,
which suggests that more than one source can con-
tribute to adjective ordering preferences, especially
in visual contexts. We manipulated the communica-
tive efficiency of subjective adjectives by varying
discriminatory strength of the size property and
varying size distributions of contrast objects in vi-
sual contexts. Contrary to the predictions we de-
rived from Scontras et al. (2019), our present results
indicate that the robust preference for subjective-
first orderings cannot be easily explained by com-
municative efficiency alone (cf. section 3).

5 Previous modeling approaches

Below, we propose a novel incremental model of
interpretation in the RSA framework (Frank and
Goodman, 2012; Scontras et al., 2018) in order to
account for qualitative aspects of our experimental
findings. In doing so, we build on previous models,
but also highlight differences between the current
and previous approaches.

In order to explain subjectivity-based ordering
preferences, computational models of communica-
tion were used in recent research. The model we
propose in the following section builds on some
of these previous proposals (in particular, Simonic,
2018, Scontras et al., 2019 and Franke et al., 2019)
that are closely related in spirit to referential com-
munication in the RSA framework (but see also
Hahn et al., 2018, for a slightly different approach).
The general agreement among these approaches
is that less subjective content is more effective in
conveying intended meanings because it is more
likely to be interpreted in the same way by lis-
teners and speakers. Among the mentioned ap-
proaches, Franke et al. (2019) is closest to the stan-
dard, vanilla RSA model and it thus serves as a
reference point for us.

Furthermore, the model of Cohn-Gordon et al.
(2019) is also directly relevant for the current work.
In their model a literal listener constructs mean-
ings incrementally at each word by considering all
possible completions of the sentence. This type
of incremental RSA model was also combined
with a continuous semantics (as proposed by De-
gen et al., 2020) to account for the tendency of
English speakers to produce more over-specified
expressions with color adjectives than with size
adjectives (Waldon and Degen, 2021). However,
while these incremental models can address some
aspects of the production of referring expressions,
they do not directly address ordering preferences
for multiple adjectives and, in fact, cannot account
for them for reasons we explain below.

6 A fully incremental model of
interpretation

Both the SUBJECTIVITY hypothesis and the DIS-
CRIMINATORY STRENGTH hypothesis explain or-
dering preferences by means of incremental pro-
cesses. They differ, however, in the perspective
they take. The SUBJECTIVITY hypothesis takes the
perspective of a listener who performs a sequen-
tially intersective context update in order to identify
an intended referent. By contrast, the DISCRIMINA-
TORY STRENGTH hypothesis takes the perspective
of an incremental speaker who maximizes infor-
mation at each step in the word-by-word produc-
tion of an utterance. In order to see whether these
two perspectives (combined or separately) can ac-
count for the effects we observed in our preference
rating experiment, we implemented a version of
an incremental listener as well as an incremental
speaker in a fully incremental probabilistic com-
putational model in the RSA framework and com-
pared qualitative modeling results to our empirical
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observations. In particular, we compared the lis-
tener and speaker perspectives and asked whether
one of them or both in combination can account for
our qualitative results. In what follows, we focus on
the experimental conditions involving dimension
adjectives because all relevant effects were found
in these conditions. Furthermore, we do not distin-
guish between color and shape adjectives as we did
not find significant differences between them when
they were combined with dimension adjectives.

In the vanilla RSA model (Frank and Goodman,
2012; see Scontras et al., 2018 for review), the lit-
eral listener, L0, infers an intended referent r by
combining prior expectations, P (r), about what
the referent will be with the literal meaning, [[u]], of
an utterance u according to the proportionality in
(2). The listener thus updates prior expectations by
filtering out all potential referents that are incom-
patible with the literal meaning of the utterance.
The speaker, S1, on the other hand, tries to maxi-
mize communicative utility by trading off the in-
formation an utterance provides about the intended
referent (measured in its surprisal − log(L0(r|u)))
against its production cost, C(u). This is done by
choosing utterances according to the soft-max deci-
sion rule in (2-b), where α determines how rational
a speaker is in choosing between utterances.

(2) a. L0(r|u) ∝ [[u]](r) · P (r)
b. S1(u|r) ∝ exp(α · (logL0(r|u)− C(u)))

We extend the vanilla RSA model in a number
of ways to account for our empirical observations.
The main innovations are (i) a fully incremental
literal listener, who performs a sequentially inter-
sective context update that respects the hierarchical
structure underlying semantic composition (i.e. it
interprets German multi-adjective sequences from
right to left), and (ii) a fully incremental speaker,
who produces one word after the other (from left to
right). In principle, these two innovations allow us
to capture ordering preferences because they break
the symmetry that is usually assumed in the compo-
sitional operations used to interpret multi-adjective
sequences. In contrast to previous incremental ap-
proaches (Cohn-Gordon et al., 2019; Waldon and
Degen, 2021), we propose a model that allows for
truly incremental processing without the need to
anticipate possible sentence completions.

The incremental literal listener is defined in the
recursion in the first two rows in Table 1. Applied
to a single-word utterance, this is just the standard

literal listener from the vanilla RSA model, with
the added feature of potentially context-dependent
meanings. In particular, it allows for word mean-
ings that vary with the support of the prior proba-
bility over possible states (i.e. a distribution over
potential referents in our case), P (r). This feature
is important for two reasons.

Firstly, gradable adjectives are well-known to
have context-dependent interpretations, which have
been accounted for in previous computational mod-
els in various ways (e.g. Lassiter and Goodman,
2017; Qing and Franke, 2014). Here, we adopt the
so-called k%-semantics in (3-a) because it has been
shown in previous work (Schmidt et al., 2009; Cre-
mers, 2022) to match speakers’ judgments remark-
ably well and allows for a comparison with Franke
et al. (2019), who used this semantics as well. Un-
der this semantics an individual is considered tall
if its height exceeds that of k% of the individu-
als in the comparison class C. The k% semantics
was combined with a ‘perceptual blur’ such that
perceived sizes deviated from the ground truth ac-
cording to the Weber-Fechner law (implemented as
in van Tiel et al., 2021). For color adjectives, we
assumed the continuous semantics in (3-b) as pro-
posed by Degen et al. (2020). According to (3-b)
categorization is imperfect in the sense that blue
objects may be judged as non-blue with probability
ϵ and vice versa. In the following, a relatively low
value of .02 was assumed for ϵ throughout.

(3) a. [[big]]C = λx.size(x) > max(C) −
k/100 ∗ (max(C)−min(C))

b. [[blue]] = λx.

{
1− ϵ if x is blue,
ϵ if x is not blue

Secondly, the definition in Table 1 implies that
the incremental listener cannot distinguish between
different orders if none of the involved meanings
depends on the result of the previous step in the
sequential update. As a sanity check, we have
verified this theoretical result by treating dimension
adjectives exactly as color adjectives, using the
semantics in (3-b) for them as well.

The global speaker in Table 1 functions as in
the vanilla RSA model but produces utterances
according to a utility function U(−→w ; r) (row 7 in
Table 1) that is based on the incremental listener.
This global speaker contrasts with the incremen-
tal sequence speaker, defined in rows 4 and 5 of
the table, which maximizes informativity at each
word. The latter is a probabilistic speaker that pro-
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(1) Incremental Listener Linc
0 (r|w1,n) ∝ [[w1]]

supp(Linc
0 (·|w1,n−1))(r) · Linc

0 (r|w1,n−1)

(2) Linc
0 (r|w1) ∝ [[w1]]

supp(P )(r) · P (r)
(3) Global Speaker S1(w1,n|r) ∝ U(w1,n; r) · P (w1,n)

(4) Incremental Sequence Sinc
1 (w1,n|r) ∝ U(w1,n; r) · PLang(wn|w1,n−1) · Sinc

1 (w1,n−1|r)
(5) Speaker Sinc

1 (w1|r) ∝ U(w1; r) · PLang(w1|∅)

(6) Incremental Utterance Sinc_utt
1 (w1,n|r) ∝ exp(α · (log(Sinc

1 (w1,n|r)))) · P (w1,n)
Speaker

(7) Utility U(−→w ; r) = exp(β · (log(Linc
0 (r|−→w ))− c(−→w )))

Table 1: Model definitions for the Incremental Listener (rows: 1 & 2), the Global Speaker (row: 3; GS in Fig. 3),
the Incremental Sequence Speaker (rows: 4 & 5; I1 and I2 in Fig. 3), and the Incremental Utterance Speaker (row:
6; IU in Fig. 3). All speaker models depend on the utility function U in (7). In all the definitions, r stands for a
referent; w1, w1,n and −→w stand for the first word in a sequence, a sequence of n words and any sequence of one or
more words, respectively; supp(·) denotes the support of a probability distribution; P denotes prior probabilities
over referents and utterances; PLang assigns prior probabilities to potential next words in a sequence; and, finally, α
and β are rationality parameters that govern the soft-max functions defined in rows (6) and (7), respectively. The
parameter β was set to 1 in all reported simulations. In addition we used a bias (b in Fig. 3) in the prior P (w1,n) of
Sinc_utt
1 . The bias determines how much more likely the subjective-first ordering is a priori.
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Figure 3: Simulations of preferences for the experimental stimuli (labeling of conditions as in Fig. 2) with different
values of α, and the bias for subjective-first orders, b. In each plot, the first row shows results for the global speaker,
the second and third row represent the sequence speaker distributions for one- and two-word sequences, respectively,
and the fourth row represents the incremental utterance speaker. The y-axes show probabilities shifted to [−.5, .5].

duces n-word sequences by recursively sampling
from a sequence speaker for length n − 1, gener-
ating a continuation word and evaluating this, as
before, using the utility function U(w1,n; r). The
next word in each step is generated by a language
model, P (wn|w1,n−1), that is extremely simple in
the present case: It produces either a dimension or
color adjective as the first word and then generates
the other alternative in the next step. Thus, our two
candidate utterances big blue and blue big are gen-
erated with equal frequency prior to factoring in the
utility function. Finally, the incremental utterance
speaker chooses between alternative utterances by
sampling from a prior distribution over candidate
utterances (big blue and blue big in our case) and
reweighing their probabilities according to the se-
quence speaker. In the utterance prior, we used a

bias parameter, b, to encode an a priori preference
for the subjective-first ordering.

6.1 Results and discussion

The model was implemented and simulated using
the probabilistic programming language WebPPL
(Goodman and Stuhlmüller, 2014). We applied the
model to all our stimuli from the conditions that
involved dimension adjectives and tested various
parameter settings. We report those that best repre-
sent the general picture that emerged. We did not
find significant deviation from this general pattern
for any of the parameter sets we tried. Posterior
distributions were inferred using MCMC simula-
tion with 30000 samples (burn-in: 5000, lag: 3) for
the incremental listener and sequence speaker and
15000 samples (burn-in: 3000, lag: 3) for the two
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utterance speakers. All simulations had an ϵ of .02
for the semantics of color adjectives, a k of 50 for
the dimension adjective and a Weber fraction of .5
for the perceptual blur.

In a first simulation, we chose a relatively large
value for the rationality parameter, namely α = 5,
and assumed no bias for the subjective-first order in
the utterance speakers (i.e. b = 1). The results of
this simulation are shown in Figure 3a. We did not
find any deviation from uniform preferences in the
global speaker (whose preferences are determined
by the incremental literal listener alone). In con-
trast, the other three components (i.e. the sequence
speaker for one- and two-word sequences and the
incremental utterance speaker) revealed effects of
SIZE DISTRIBUTION and also showed the charac-
teristic effects of DISCRIMINATORY STRENGTH.
2 The effect of SIZE DISTRIBUTION was more
pronounced in the conditions in which both prop-
erties were relevant than in conditions in which
only one was relevant. This was because the pref-
erences were at ceiling in the latter four conditions,
revealing strong effects of discriminatory strength.
Nevertheless, there was still a small effect of SIZE

DISTRIBUTION in the conditions in which the di-
mension adjective was relevant, matching another
aspect of our empirical observations.

To attenuate preferences in the conditions in
which only one adjective was relevant for refer-
ence resolutions, we ran the same simulation with
lower α. The results are shown in Fig. 3b. As be-
fore, effects are limited to the incremental speaker
components of our model and there are again ef-
fects of both SIZE DISTRIBUTION and DISCRIMI-
NATORY STRENGTH. As expected, extreme prefer-
ences are attenuated compared to the first simula-
tion. This led to a preference pattern in which the
effect of SIZE DISTRIBUTION is almost completely
restricted to the dimension relevant conditions. Be-
sides this effect, there are still relatively large ef-
fects of DISCRIMINATORY STRENGTH. Both of
these aspects match our empirical observations.
The absolute preferences, on the other hand, do
not. This can, e.g., be seen by the negative values
in the color-relevant and balanced preferences in
the both-relevant conditions.

Absolute preferences were adjusted in a third
simulation using a bias of 2 : 1 (b = 2) for the
subjective-first order. The resulting preferences are

2We refrain from reporting statistical analyses because we
did not perform a quantitative analysis and existing qualitative
effects can be boosted by increasing rationality parameters.

shown in Fig 3c. They matched our empirical ob-
servations better but still not perfectly. One notable
deviation from our empirical observations consists
in preferences for the subjective-last order in the
color relevant conditions.

While it would be possible to shrink this de-
viance further using yet different parameter val-
ues, we think that this is beyond the scope of the
present qualitative analysis. What our result pro-
vide, though, is initial indication concerning the
region of the parameter space that may be worth
examining further in a quantitative analysis. One
first step towards such an analysis would be to
specify a linking function between the production
preferences of the model and the slider values we
observed in the experiment. Their relationship may
well be non-linear and could thus lead to com-
pressed slider values in some regions.

One surprising result is that we did not find any
effects whatsoever in the incremental listener com-
ponent of the model. We investigated this issue
further in two directions. Firstly, we used a differ-
ent semantics for the dimension adjectives when
modeling our experimental stimuli. This semantics
was based on the identification of large and small
objects based on the optimal breaks algorithm of
Jenks (1967) akin to the cluster-based semantics
in Schmidt et al. (2009). Secondly, we generated
up to 350 random stimuli by sampling sizes from
a Gaussian and colors from a Binomial distribu-
tion and modeled these stimuli using various sets
of parameters (e.g. larger values of α and differ-
ent values for k). We did, however, not find pro-
nounced preferences in any of these attempts. We
see two potential reason for this discrepancy be-
tween previous models (Simonic, 2018; Scontras
et al., 2019; Franke et al., 2019) and the current
results: It could be due to limited sample size in
the present simulations or to the fact that previous
models implemented different assumptions, (e.g.
applying a threshold-based semantics also to color
adjectives, as in Franke et al., 2019).

7 General discussion and outlook

We showed that a qualitative account of our data
can be given by means of an incremental speaker
that maximizes informativity at each word in com-
bination with a general preference for subjective-
first sequences. This does not imply that the gen-
eral preference for subjective-first sequences is not
driven by pressures towards efficient communica-
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tion in sequential context updates, as was proposed
by previous studies. However, as noted in section
3, an explanation along these lines has to acknowl-
edge the type of adaptation we observed in the cur-
rent preference rating experiments. In particular,
participants used subjective expressions earlier in
the linear sequence if they were more informative
about the intended referent. Based on the current
empirical and modeling results, we would like to
suggest an alternative explanation of how prefer-
ences for subjective-first sequences may emerge,
at least for dimension adjectives. Such adjectives
are commonly thought of as being used to commu-
nicate properties that deviate from the norm. This
implies that, when they are used, they tend to have
high discriminatory strength and may therefore be
produced early in the linear sequence.

What we did not observe in our incremental
model are truly incremental effects, i.e. shifts in
preferences between one word and the next. In-
stead, preferences were due to an utterance-level
prior in combination with a tendency to start the
sequence with an informative word. The reason
that incremental effects did not emerge in the cur-
rent setting was that there were no strong ordering
preferences on the listener side that could have
modulated any initial biases. Other types of incre-
mental effects may emerge if there are different
numbers of continuations depending on how an ut-
terance was started. Such effects were discussed,
e.g., by Cohn-Gordon et al. (2019) and they can be
reproduced in the current model.

Previous incremental RSA models (Cohn-
Gordon et al., 2019; Waldon and Degen, 2021)
were based a non-incremental semantics and evalu-
ated all possible sentence completions of a given
sentence beginning at each step. This is a natural
approach because compositional semantic models
often only provide interpretations for complete sen-
tences. In contrast, our listener model evaluates
an utterance word-by-word from right to left in
line with the assumed sequential context update
of multi-adjective strings. The more general idea
behind our model is to use a genuinely incremental
semantics (as proposed, e.g., by Bott and Sterne-
feld, 2017) that implements the local evaluation
of yet incomplete sentences in a systematic fash-
ion while ensuring that the interpretation of the
complete utterance will conform to its standard
compositional interpretation. We view our model
as an instantiation of this general approach.

An interesting question is how much of our
present considerations can be extended to non-
definite noun phrases, where ordering preferences
seem to persist but the current informativity-based
notions do not apply directly because they are tai-
lored to referential communication and the identi-
fication of intended referents. 3 Firstly, we see no
reason to rule out the possibility that the bias we
assumed in order to explain the general (context-
independent) preference for subjective-first orders
can be extended to non-referential usages right
away. Secondly, we think that considerations based
on (context-dependent) informativity might also
generalize to non-definite noun-phrases. From the
perspective of Generalized Quantifier Theory (Bar-
wise and Cooper, 1981), for example, a modified
noun in a quantified noun phrase provides the re-
striction of the quantifier and the meaning of a
quantified sentence, like e.g. many of the big white
bears are moving south is determined by two spe-
cific cardinalities: that of the set of elements that
are both in the restriction and in the so-called nu-
clear scope of the quantifier (e.g. the big white
bears moving south) and that of the set of elements
that are in the restriction but not in the scope (e.g.
the big white bears not moving south). Obviously,
the relevant sets have to be identified first in or-
der to determine these cardinalities. Informativity-
based notions may, in principle, affect the amount
of errors that are expected during this process, both
from the perspective of a listener performing se-
quentially intersective updates as well as the per-
spective of a speaker aiming to provide the most
discriminatory information first (see van Tiel et al.,
2021, for an RSA model of quantifier interpreta-
tion).

Similarly, one might wonder how the present re-
sults generalize beyond nominal modification to the
modification of verb phrases or even entire propo-
sitions (see, e.g., Specht and Stolterfoht, 2023, for
an experimental investigation). While some of the
present considerations might generalize to such
cases, they also pose significant challenges to our
present approach. In particular, such modification
often involves properties that are fairly abstract or
intensional in nature and are, therefore, difficult
to control by means of contextual manipulations.
Whether the present approach can be extended to
cover such cases as well thus remains to be seen.

3We would like to thank an anonymous reviewer for raising
this question.
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A Glosses for example item

(4) The question below visual contexts as part of
the cover story in the current experiment (see.
Fig. 1)
a. Wie

how
fragen
ask

Sie?
you

‘How do you ask?’

(5) ...and questions on both sides of the slider for
rating
a. Brauchst

need
du
you

den
the

großen
big

blauen
blue

Aufkleber?
sticker

‘ Do you need the big blue sticker?’
b. Brauchst

need
du
you

den
the

blauen
blue

großen
big

Aufkleber?
sticker

‘ Do you need the blue big sticker?’
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Abstract

Artificial neural networks can generalize pro-
ductively to novel contexts. Can they also learn
exceptions to those productive rules? We ex-
plore this question using the case of restrictions
on English passivization (e.g., the fact that “The
vacation lasted five days” is grammatical, but
“*Five days was lasted by the vacation” is not).
We collect human acceptability judgments for
passive sentences with a range of verbs, and
show that the probability distribution defined by
GPT-2, a language model, matches the human
judgments with high correlation. We also show
that the relative acceptability of a verb in the
active vs. passive voice is positively correlated
with the relative frequency of its occurrence
in those voices. These results provide prelimi-
nary support for the entrenchment hypothesis,
according to which learners track and uses the
distributional properties of their input to learn
negative exceptions to rules. At the same time,
this hypothesis fails to explain the magnitude
of unpassivizability demonstrated by certain
individual verbs, suggesting that other cues to
exceptionality are available in the linguistic in-
put.

1 Introduction

Many studies have demonstrated language models’
ability to extend a generalization from a small set
of examples to novel lexical items, structures, and
contexts, even if the models do not always do so
in a human-like way (Hupkes et al., 2020; Kim
and Linzen, 2020; Lake and Baroni, 2018; McCoy
et al., 2018). These studies show that models can
substitute novel lexical items into rules where those
items were previously unseen. At the same time,
language models can sometimes over-generalize,
for instance by producing a literal, compositional
translation of idiomatic expressions like kick the
bucket when humans would not (Dankers et al.,
2022). A full evaluation of language models’ gen-
eralization abilities should thus not only measure

whether models can generalize when humans do,
but also whether models are able to constrain their
generalizations when humans do.

We address this question by building on a line of
work that probes whether human-like acceptability
judgments for argument structure alternations can
be predicted from the probability distribution that a
from language model defines over sentences. This
studies have shown, for example, that the GPT-2
language model (Radford et al., 2019) can match
human judgments about whether the dative alterna-
tion applies to a verb (Hawkins et al., 2020), and
that information about which syntactic frames a
verb can appear in (e.g. whether a verb participates
in the SPRAY/LOAD alternation) can be recovered
from the verb’s contextualized representations and
from sentence embeddings (Kann et al., 2019).

In this work, we evaluate models’ ability to iden-
tify exceptions using the case study of the English
passive.1 The passive voice is highly productive
in English; most strikingly, young children ex-
posed to novel verbs in the active voice are able
to understand and produce passive constructions
using those verbs (Pinker et al., 1987; Brooks and
Tomasello, 1999). This suggests that English speak-
ers do not in general conclude that verbs that they
have never encountered in the passive voice are
unacceptable in that voice. Yet there are limits to
the productivity of the English passive; examples
such as (1) have been reported to be unacceptable
in the passive voice:

(1) a. The vacation lasted five days.

b. *Five days was lasted by the vacation.

Sentences like (1b) are unlikely to occur produc-
tively in natural speech—just like passives of infre-
quent verbs. Yet even though they do not receive

1Data and code are available at https://github.com/
craaaa/exceptions.
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Figure 1: Passive drop in humans vs. GPT-2 — A GPT-2 model trained on 100M words approximately predicts
variable amounts of passive drop equivalent to human judgments. Horizontal and vertical error bars indicate
bootstrapped 95% confidence intervals.

explicit evidence that these sentences are unac-
ceptable, rather than simply rare, English speakers
nonetheless learn that they constitute exceptions,
and do not judge (1b) to be acceptable.

How do humans acquire such exceptions? The
entrenchment hypothesis suggests that speakers
track and use the distributional properties of their
input as indirect negative evidence for the existence
of an exception (Braine and Brooks, 1995; Regier
and Gahl, 2004; Theakston, 2004). For instance, if
an English learner never encounters the verb last
in the passive voice, despite having seen last used
productively in the active voice, they may conclude
that last cannot occur in the the passive voice. Are
language models—which do not have access to
human feedback or syntactic supervision, and are
trained solely to perform next-word prediction—
attentive to the same information that humans are
when determining the extent to which syntactic
rules can generalize?

In this paper, we tackle these questions by com-

paring human acceptability judgments on sentences
containing verbs that are exceptional in the passive
voice, on the one hand, to the probability distri-
bution defined by a GPT-2-like model trained on
a 100-million word English corpus. We find that
the language model matches human acceptability
judgments on active and passive sentences to a
large degree (Figure 1), suggesting that language
models can constrain their syntactic generalizations
in a human-like way. Using our model’s training
corpus, we further show that there is a weak but
positive correlation between the relative frequency
of actives and passives in the input and their rela-
tive acceptability. Together, these empirical results
suggest that the linguistic input contains useful
information from which exceptions to syntactic
generalizations can be learned.

2 Restrictions on passivization

Although the English verbal passive is highly pro-
ductive, not all verbs can occur in the passive. For
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Verb class Active sentence Passive sentence

Advantage Your investment the community. The community was by your investment.
Price Your book thirty dollars. Thirty dollars was by your book.
Ooze That machine a sound. A sound was by that machine.
Duration The journey three days. Three days was by the journey.
Estimation Your drawing her likeness. Her likeness was by your drawing.

Table 1: Example sentence frames — Each verb in the verb class was substituted into frames specific to the class.

instance, intransitive and middle verbs resist pas-
sivization in general (Perlmutter, 1978; Zaenen,
1993). In this paper, we focus on passives of transi-
tive verbs that occur with by-phrases. These long
passives are clauses of the form given in (2), which
in most cases have an uncontroversially acceptable
passive form:

(2) a. The ball was hit by the boy.

A small list of lexical exceptions have been de-
scribed for which the passive voice is deemed un-
grammatical (Levin, 1993; Postal, 2004). Some of
these exceptions can be classed together based on
the semantics of the verb or types of arguments the
verb takes. For instance, verbs that take measure
phrases as their object reportedly do not occur in
the passive:

(3) a. That house costs fifty thousand dollars.

b. *Fifty thousand dollars is/are cost by that
house.

(Hale and Keyser, 1997, 17-8)

Even within a particular verb class, passivizabil-
ity may also be an idiosyncratic characteristic of in-
dividual lexical items (Zwicky, 1987): verbs which
can be substituted for each other in any other syn-
tactic context may differ in their ability to passivize.
Thus, for instance, although in the active voice
matched, mirrored, approximated and resembled
can occur in the same environment, (4a) is gram-
matical, while (4b) is not.

(4) a. Kim is matched/mirrored/approximated
by the model in nearly every detail.

b. *Kim is resembled by the model in nearly
every detail. (Zwicky, 1987)

We may thus expect differences in passivizability
not only between verbs with different semantics
and argument frames, but also among verbs with
very similar meaning.

3 Human Acceptability Judgments

In order to test whether language models follow a
human-like generalization patterns, we need to first
characterize the human judgment pattern, which
will serve as the target of modeling. In this sec-
tion, we report on an acceptability judgment study
whose goal was to verify the judgments from the
syntax literature and measure any gradient differ-
ences in the degree to which different verbs can be
passivized.

3.1 Materials
We identified five verb classes containing verbs that
have been reported to be unpassivizable (Levin,
1993; Postal, 2004; Zwicky, 1987):

• Advantage verbs: benefit, help, profit, strengthen
• Price verbs: cost, earn, fetch
• Ooze verbs: discharge, emanate, emit, radiate
• Duration verbs: last, require, take
• Estimation verbs: approximate, match, mirror,

resemble

Each of these class includes verbs with similar se-
mantics that can be substituted into the same posi-
tion in a sentence in the active voice. While some
of these verbs can be used in other senses, we tested
the specific sense that was reported in the literature
by controlling the sentence frames used. Five past-
tense sentence frames were constructed for each
verb class (Table 1).

Each of the verbs in the class was substituted
into the sentence frame, resulting in 90 total test
sentence pairs. Example (5) demonstrates a sen-
tence pair generated from the sentence frame in
Table 1 using the verb matched:

(5) a. Your friend matched my brother.

b. My brother was matched by your friend.

As control verbs, we also selected five agent-
patient and five experiencer-theme verbs; we expect
these verbs to be passivizable:
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• Agent-Patient: hit, push, wash, drop, carry
• Experiencer-Theme: see, hear, know, like, re-

member

Because of the varied semantics of the verbs in
these groups, unique sentence pairs were created
for each verb, yielding 50 control sentence pairs.
An example of a sentence pair for the verb push is
given in (6):

(6) a. A boy pushed the cup.

b. The cup was pushed by a boy.

Each participant only saw either the active or the
passive of a sentence pair. The 140 sentence pairs
(90 test + 50 control) were divided into two buckets
of 70 sentence pairs each such that each bucket
contained two or three sentence frames per verb.
Each bucket was then further divided into groups
of 70 sentences such that the active and passive
forms of a sentence pair were in different groups.
Each group of sentences contained one quarter of
the test and control stimuli (70 sentences).

Presentation order was counterbalanced by mak-
ing four ordered lists for each group. Each group
was organized into two lists such that an item that
appeared in the first half of of one list appeared in
the second half of the other list. The order of items
was pseudorandomized within those lists to ensure
that not more than two active or passive sentences
and no two sentences within the same verb class
were seen in succession. These lists were then re-
versed, so that a total of four ordered sentence lists
were made per sentence group.

Additionally, every experimental trial alternated
with a filler sentence. Filler sentences were also
used as attention checks. We used 24 grammatical
and 46 ungrammatical filler sentences: since the
passives of control sentences were expected to be
acceptable, the greater number of ungrammatical
fillers was intended to balance the experimental
stimuli. The full set of materials is available in
Appendix A.

3.2 Participants
We recruited 84 participants who had IP addresses
located in the US and self-reported as native En-
glish speakers via the crowdsourcing platform Pro-
lific. Each participant rated 140 sentences (70 test
+ 70 filler) and was paid US$3.50. The experiment
took approximately 12 minutes to complete.

Participants were asked to rate how acceptable
each sentence sounded based on their gut reaction.
They were told that there were no right or wrong
answers. Participants rated sentences by moving a
slider from “Completely unacceptable" to “Com-
pletely acceptable", which corresponded to an in-
teger score (invisible to them) between 0 and 100.
They were not able to rate a sentence with a score
of 50. Two practice sentences (one ungrammatical,
one grammatical) were used to familiarize partici-
pants with the paradigm.

Participants were excluded from the results if
they answered more than 15 filler questions unex-
pectedly, either by giving ungrammatical sentences
scores above 50 or giving grammatical sentences
scores below 50. We excluded 10 participants from
analysis for this reason.

3.3 Results
We calculate the passive drop of an item as the
difference in mean acceptability ratings between
its active and passive version. The results are re-
ported in Figure 2; a steeper downward gradient
corresponds with a larger passive drop. Since cor-
responding active and passive sentences contain
the same lexical items except for the auxiliary was
and by, which are common across all sentences,
directly comparing active and passive sentences
isolates the effect of the passivization from lexical
effects that might increase the acceptability of sen-
tences with more common verbs like helped over
low-frequency verbs like profited.

Across all verb classes, there was a significant
difference between scores given to active and pas-
sive sentences. This difference may be accounted
for by pragmatic factors: although the passive con-
struction is more pragmatically marked than the
active (Comrie, 1988), each sentence in the accept-
ability judgment task was presented to participants
without establishing a relevant context. This set-
ting might have caused participants to rate passive
sentences as worse than their active counterparts.

Although the passive drop was positive for all
verbs, its magnitude differed across verb classes.
The duration class showed the largest mean passive
drop (59.4 points), and the ooze class showed the
lowest mean passive drop (8.0 points) among the
test verb classes.

We fit a linear mixed-effects model to predict
SENTENCE SCORE using the agent-patient verb
class as the baseline. We used SENTENCE TYPE
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Figure 2: Passive drop in human acceptability judgments of active and passive sentences by verb — The steeper
the downward gradient between active and passive conditions, the larger the passive drop. Error bars indicate
bootstrapped 95% confidence intervals.

and VERB CLASS as well as their interaction as
fixed effects and FRAME, PARTICIPANT and VERB

as random intercepts. We found a significant differ-
ence between agent-patient verbs and three other
verb classes: estimation verbs (p = 5.74e-06), price
verbs (p < 2e-16), and duration verbs (p < 2e-16).
On the other hand, there was no significant differ-
ence in the sentence scores obtained from agent-
patient verbs and ooze verbs, advantage verbs, or
experiencer-theme verbs as a class.

Within each verb class, some verbs were more
passivizable than others. For example, last was sig-
nificantly less passivizable than took and required,
and cost was less passivizable than fetched. Simi-
larly, while resembled had a high passive drop, the
remaining verbs in the estimation class showed rel-
atively low passive drops. These results validate the
claim that some verbs may be more passivizable
than others despite sharing similar paradigmatic
relationships (Zwicky, 1987).

In summary, the human acceptability judgment
experiment demonstrated that some verbs in the
verb classes being tested are degraded in the pas-
sive voice, and that unacceptability was gradient
between verbs. For a model to adequately approxi-
mate such behaviour, it must exhibit the following
characteristics:

• Exceptionality: some verbs (e.g. duration
verbs) exhibit passive drops that are signifi-
cantly different from the baseline passive drop
expected of the canonically passivizable agent-
patient verbs.

• Gradience: (un)acceptability is gradient, with
some verbs on average exhibiting higher pas-
sive drop than others.

4 Comparison with Language Models

With the quantitative human acceptability judgment
data in hand, we now turn to evaluating language
models. If distributional data is sufficient to learn
the extent to which verbs are unacceptable in the
passive, we expected GPT-2 to be able to match
human judgments on both passivizable verbs and
unpassivizable verbs. We also expect GPT-2 to be
able to match the relative gradience of passive drop
that humans display.

4.1 Method
We evaluated GPT-2 (Radford et al., 2019), a Trans-
former (Vaswani et al., 2017) language model. We
tested four different pre-trained GPT-2 models,
which differed in their number of parameters and
number of layers, but were trained on the same data.
Each model was trained on Open-AI’s WebText
corpus, which contains 40GB of data — approx-
imately 8B words, assuming each word contains
an average of 5 bytes/chars. Pre-trained GPT-2
models have performed well on targeted syntac-
tic evaluations requiring knowledge of argument
structure, such as differentiating between verbs that
participate in the causative alternation and those
that do not (Warstadt et al., 2020).

The GPT-2 models available for download are
trained on a much larger corpus than is realistic
for any human to be exposed to (Linzen, 2020).
English-speaking children are exposed to 2–7M
words per year (Gilkerson et al., 2017), or 26M–
91M words by the age of 13. Rounding to the near-
est order of magnitude, we trained a GPT-2 model
on a 100M word subset of the OpenWebText cor-
pus (Gokaslan and Cohen, 2019), an open-source
reproduction of the Web Text corpus; this simu-
lates more closely the amount of linguistic input
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a human may receive (though not its genre). We
trained five iterations of this model, which we call
GPT2-100M, using different random seeds and
report averages of the results obtained from these
five models.

We adapted the targeted syntactic evaluation
paradigm (Linzen et al., 2016; Lau et al., 2017;
Warstadt et al., 2019) to compare the language mod-
els to humans. This paradigm involves obtaining
model “judgments” for minimal pairs of sentences.
For each sentence, a score is obtained by summing
the log-probabilities assigned to each token in the
sentence, which gives the probability the model as-
signs to that sentence. We conclude that a model’s
distribution is consistent with human judgments
if it assigns a higher probability to the acceptable
sentence than to the corresponding unacceptable
one. Unlike some prior work, we collected numeric
scores instead of binary acceptability judgments:
we calculated a gradient passive drop of each sen-
tence pair by subtracting the score of the active
sentence from the score of its passive counterpart.

Since we compared active sentences to long pas-
sives, which contain by-phrases, every passive sen-
tence contained two more words than its active
counterpart. A sentence with more tokens will on
balance be less probable than a sentence with fewer
tokens; we thus normalized each sentence score by
dividing it by the number of tokens in the sentence
(Lau et al., 2017). Doing so accounts for the ef-
fect of sentence length on the sentence score, and
also allows us to compare sentences where words
are split into separate tokens during GPT-2’s tok-
enization process, e.g. approximated → approx +
imated.

4.2 Results
The four pre-trained models as well as the five
GPT2-100M models showed positive correlations
between mean human passive drop and mean
model passive drop, reported in Table 2. For pre-
trained GPT-2 models, we calculate mean model
passive drop for each verb by averaging over the
passive drop of all five sentence frames. For GPT2-
100M, we calculate the average passive drop of
each verb over all sentence frames across the five
versions of the model (trained with different ran-
dom seeds); we report these results as GPT2-
100M-avg.

The results were qualitative similar for all mod-
els (Figure 3); in what follows, we focus on GPT2-

Model # parameters rs

GPT2-100M-avg 124M 0.709
GPT2 124M 0.659
GPT2-med 345M 0.385
GPT2-large 774M 0.549
GPT2-xl 1558M 0.559

Table 2: GPT2 model parameters and correlation coeffi-
cients — in all five models, a correlation was found be-
tween human passive drop and the model’s passive drop,
but it was stronger for smaller models, and strongest for
the models trained on only 100M words.

Figure 3: Passive drop of different-sized GPT-2 mod-
els compared to human judgments — Each point in
represents a single verb. Models differed in number
of parameters and/or training data, but showed qualita-
tively similar passive drops.

100M-avg, whose behaviour showed the strongest
correlation with human judgments. These models
are also trained on the most cognitively realistic
corpus.

Figure 1 plots GPT2-100M-avg’s passive drop
against the passive drop observed in the human ex-
periment. A strong correlation was found between
the passive drop in the models’ sentence scores and
human passive drop (rs = 0.709), suggesting that
predictions learned from linguistic input match hu-
man gradient judgments on passivization relatively
well.

GPT2-100M-avg also matched humans’ judg-
ments of exceptionality within verb classes:
among verbs with similar meanings, both humans
and the model identified the same verbs as be-
ing less passivizable. In verbs for which humans
demonstrated low passive drop, such as strength-
ened and discharged, close to no passive drop was
observed in the model’s predictions. GPT2-100M-
avg also predicted high passive drops for verbs like
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Figure 4: Occurrence of active transitive and passive sentences using test verbs in the training corpus — sentences
whose verb had a passive dependent (csubjpass, nsubjpass, or auxpass) were tagged as passive, while all other
instances of the verb were tagged as active.

lasted, resembled and cost, aligning with human
judgments that these verbs are unique in their verb
class.

5 Does Frequency Explain Passivizability
Judgments?

Having established that a language model can suc-
cessfully model humans’ gradient passivizability
judgments, we now examine the extent to which
GPT2-100M’s passivization judgments correlate
with the distributional properties of its training data.
Specifically, we explore the utility of the entrench-
ment hypothesis in explaining GPT2-100M’s gra-
dient judgments of passivization. Recall that this
hypothesis argues that learners conclude that a verb
cannot appear in a particular context if it appears
in many other contexts but systematically fails to
appear in the context in question.

Here, we consider a weaker version of the en-
trenchment hypothesis, which does not presuppose
that exceptions never occur in the learner’s input.
Instead, we hypothesize that the less frequently a
verb is used in the passive voice relative to the ac-
tive voice, the less acceptable passive constructions

using that verb will be.

5.1 Method
We conducted a corpus study on the data that GPT2-
100M was trained on. We processed each document
in the corpus using the spaCy Transformer-based
lemmatizer, POS tokenizer and dependency parser
(Honnibal et al., 2020) and extracted all sentences
that contained a verbal lemma corresponding to the
test and control verbs. Sentences that contained the
verbs in question and had a dependency edge to
a passive auxilliary (auxpass), a passive nominal
subject (nsubjpass) or a passive clausal subject
(csubjpass) were classified as passive sentences,
while all other sentences containing the verb were
classified as active sentences. We hand-checked a
1000 sentence subset of the training data to verify
the accuracy of the tagging process. No sentences
were incorrectly tagged in the manually verified
subset, although the corpus did contain instances
of typos such as (7) (tagged as passive):

(7) It was fun while it was lasted.
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Figure 5: GPT2-100M’s passive drop against the ratio of active to passive sentences in its training corpus. Error
bars indicate bootstrapped 95% confidence intervals across sentence frames.

5.2 Results
Figure 4 shows the number of active and passive
sentences in GPT2-100M’s training corpus.

Not all verbs appear in the same ratios in the
active and passive voice. Agent-patient verbs con-
sistently appeared in approximately 10 times as
many active sentences as passive sentences, match-
ing estimates from previous corpus studies (Roland
et al., 2007). On the other hand, test verbs appeared
in varying amounts in the active and passive. For
instance, last appeared 5666 times in the active and
four times in the passive in the 100M word corpus,
while cost appeared 7706 times in the active and
19 times in the passive. This result suggests that
the test verbs differ from canonically passivizable
control verbs in their distribution.

Figure 5 graphs the correlation between the ratio
of active to passive sentences for a given verb, on
the one hand, and that verb’s mean passive drop
on the other hand. We find a weak but positive
correlation between the two variables (rs= 0.212).

Two key outliers that are not well accounted

for by this measure of relative frequency are last
and cost. In both humans and model judgments,
these verbs demonstrated high passive drops; yet,
they are similar in relative frequency of active and
passive to verbs like emanate, profit and resemble,
whose passive drops are lower. While frequency
seems to predict some amount of unpassivizability,
then, it cannot account for the full magnitude of the
passive drop displayed by these particular verbs.

Furthermore, entire verb classes are systemat-
ically over- or under-predicted in Figure 5. The
duration verb class on the whole has a high passive
drop relative to its frequency in the corpus, while
frequency over-predicts the passive drop expected
for the advantage verb class. We thus conclude that
while the relative frequency of active and passive
voice sentences positively correlates with passive
drop, other factors are likely to also be relevant on
a verb-class level.

Although take appears to be an outlier in Fig-
ure 5, with an active to passive ratio similar to that
of the agent-patient and experiencer-theme con-
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trol verbs, the measure of frequency we used does
not take into account the fact that take has multi-
ple senses. If a different sense than the one being
tested is heavily represented by passive sentences,
the number of passives counted may be overesti-
mated. For example, although we only test the
duration sense of take, as given in (8a), the sense
used in (8b) may be more prevalent in the corpus:

(8) a. *Two days was taken by the meeting.

b. The photo was taken by the boy.

These differences in verb sense are not accounted
for in the current corpus study; future work should
make use of word sense disambiguation to conduct
more targeted corpus analyses. Additionally, the
issue of differentiating verb senses in polysemous
verbs is one that both human and machine learners
face, raising the question of the extent to which
learners differentiate between verb senses that are
more or less difficult to passivize.

Overall, while the relative frequency of a verb’s
occurrence in the active and passive does posi-
tively correlate with its unpassivizability, it does
not account for crucial verb-level differences in the
magnitude of passive drop demonstrated by GPT2-
100M-avg.

6 Discussion

The goal of this study was to explore whether a
language model can identify exceptions to a pro-
ductive syntactic rule in a human-like way. We
compared human acceptability judgments to sen-
tence scores produced by a GPT-2 model trained
on the amount of linguistic input that a human can
plausibly be exposed to, and found that the model
displayed human-like exceptionality and gradience
in its judgments of passive sentences. The results of
our study suggest that language models are able to
refrain from over-generalizing to exceptions. Our
results suggest that future empirical inroads may be
made towards understanding the mechanisms and
input required to overcome the projection problem
(Baker, 1979), i.e. the problem of acquiring arbi-
trary negative exceptions, using language models
as experimental subjects.

We took a first step in this direction by show-
ing a positive correlation between the relative fre-
quency of active and passive sentences containing
a given verb and the difference between that verb’s
acceptability in the active and passive voice (i.e.

its passive drop) in GPT-2. Although our results
lend some credence to the entrenchment hypoth-
esis, they suggest that additional factors must be
recruited to explain the full magnitude of excep-
tionality displayed by highly unpassivizable verbs
such as last and cost.

Moreover, although we demonstrated that the
relative frequency of a verb’s occurrence in the
active and passive is correlated with its passive
drop, a causal relationship between the two cannot
be established from our data. A single underlying
factor, such as verbal semantics, may affect both
the frequency of a verb in the passive in relation
to the passive and its acceptability in the passive
construction.

Future research should test the causal impact
of a verb’s absolute and relative frequency in the
training corpus on its predicted passivizability. Fol-
lowing Wei et al. (2021), we plan to create an
altered training dataset where we match the fre-
quency of active and passive sentences containing
passivizable verbs like drop to the absolute fre-
quency of sentences containing highly unpassiviz-
able verbs, such as last. Comparing models trained
on this dataset against GPT2-100M will allow us to
move beyond a correlational analysis and explore
whether altering the frequency of a verb in the ac-
tive and passive voice in a model’s training data
has a causal effect on the model’s predictions of
that verb’s passivizability.

7 Conclusion

In this paper, we explored whether a language
model trained on a human-scale amount of linguis-
tic input is able to learn lexical exceptions to a
productive syntactic generalization in English. We
showed that it was able to match humans’ reported
judgments on unpassivizable verbs like last, show-
ing both the ability to identify exceptions as well
as to identify the magnitude of an exception. We
also demonstrated a weak correlation between the
degree to which a model prefers active over passive
sentences using a given verb, on the one hand, and
the ratio between the frequencies with which sen-
tences containing that verb occur in the active and
passive voice, on the other hand. Together, these
results suggest that distributional information plays
a role in learning exceptions to syntactic rules.
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A Stimuli

A.1 Test sentence frames

Verb class Sentence frame

Advantage

Your investment the community.
The exercise his fitness.
Our friendship my life.
The law these workers.
The treaty both countries.

Price

Your dish ninety dollars.
The painting a fortune.
The tickets a lot of money.
Your book thirty dollars.
His actions the medal.

Ooze

My friend confidence.
The lightbulb some light.
That machine a sound.
The teacher wisdom.
The trash an odor.

Estimation

Your drawing her likeness.
Your friend my brother.
The character the author.
Her son her father.
The copy the original.

Duration

The journey three days.
My meeting two hours.
The interview some time.
Her speech seventeen minutes.
His trek a month.
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A.2 Agent-patient sentences

Verb Active sentence

hit

My brother hit your friend.
Your sister hit the target.
The child hit the ball.
A boy hit my bag.
A monkey hit the toy.

pushed

My brother pushed a child.
The mother pushed my toy.
A boy pushed the cup.
A child pushed the bag.
Your sister pushed your friend.

washed

A boy washed the cup.
A child washed the bag.
My sister washed a towel.
My brother washed my plate.
Your mother washed my toy.

dropped

My brother dropped my plate.
The mother dropped my toy.
A boy dropped the cup.
A child dropped the bag.
Your sister dropped a book.

carried

A boy carried my bag.
Your mother carried the child.
My brother carried your friend.
The dog carried the toy.
The donkey carried the load.

A.3 Experiencer-theme sentences

Verb Active sentence

saw

My brother saw your friend.
Your dog saw the toy.
Your sister saw a book.
A boy saw my bag.
The child saw a monkey.

heard

A boy heard the sound.
The child heard the rules.
My brother heard your friend.
Your dog heard the toy.
Your sister heard a squeak.

knew

My brother knew your friend.
Your dog knew my cat.
Your sister knew my brother.
A boy knew my mother.
The mother knew the dog.

liked

A boy liked the game.
The child liked a monkey.
My brother liked your friend.
Your dog liked the toy.
Your sister liked a book.

remembered

My brother remembered your friend.
Your dog remembered my toy.
Your sister remembered a book.
A boy remembered the game.
The child remembered the rules.
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Abstract

Stabler (2013)’s top-down parser for Minimal-
ist grammars has been used to account for
a variety of off-line processing preferences,
with measures of memory load sensitive to
subtle structural details. This paper expands
the model’s empirical coverage to ergative lan-
guages by looking at the processing asymme-
tries reported for Basque relative clauses. Our
results show that the model predicts a subject
over object preference as identified in the rele-
vant psycholinguistic literature.

1 Introduction

A core question in research on human sentence pro-
cessing is how language-specific linguistic features
interact with more general processing mechanisms
to give rise to the behavioral patterns recorded in
production/comprehension experiments.

In this sense, differences between subject and
object relative clauses (SRC and ORC, respec-
tively) have received a lot of attention through-
out the years (see Lau and Tanaka, 2021, for a
review). Generally, SRCs are more common cross-
linguistically (Keenan and Comrie, 1977), and they
are reportedly produced and comprehended earlier
and more easily than ORCs. While this subject
advantage can be modulated by other properties
of the sentence (e.g. case mismatches), it seems
to be an overall strong pattern in both head-initial
nominative/accusative languages with postnominal
RCs (e.g., English or French; Mecklinger et al.,
1995; Gibson, 1998; Frazier, 1987; Friedmann and
Novogrodsky, 2004) and (somewhat less reliably)
in head-final languages with prenominal RCs (e.g.
Korean or Japanese; Kwon et al., 2010, 2013; Naka-
mura and Miyamoto, 2013).

Crucially, the very broad question about the in-
teraction between language-specific properties and
general cognitive processes of the human parser
also leads to the more specialized question of which
features of a language matter for different aspects

of sentence processing, and how. In particular, from
the perspective of highly detailed syntactic frame-
works, it seems important to probe the relevance
of fine-grained syntactic details in deriving behav-
ioral patterns (Miller and Chomsky, 1963; Bresnan,
1978; Rambow and Joshi, 1997).

In this paper, we follow work recasting this
question in computational terms, by specifying a
transparent linking hypothesis between the syntac-
tic structures assumed in Minimalism (Chomsky,
1995) and off-line processing difficulty. Specifi-
cally, we adopt a model integrating Stabler (2013)’s
top-down parser for Minimalist grammars (Stabler,
1996, 2011) with complexity metrics measuring
memory usage to derive off-line estimates of pro-
cessing complexity, based on the interaction be-
tween the parser’s tree-traversal strategy and the
rich structure of a derivation (Kobele et al., 2013;
Gerth, 2015; Graf et al., 2017; De Santo, 2020b).

RCs in general, and the asymmetries in process-
ing between subject and object RCs in particu-
lar, have been extensively probed with this model
across a variety of languages (Graf et al., 2015,
2017; De Santo, 2021a,b; Zhang, 2017). Here then,
we contribute to this line of work by evaluating
the model’s ability to predict the contrast between
SRCs and ORCs reported for Basque. Basque is of
particular interest to this type of investigation as a
highly inflected, ergative, SOV language with both
prenominal relatives and postnominal RCs. Erga-
tive languages have been somewhat generally over-
looked in past psycholinguistic work on the com-
prehension and production of RCs (Carreiras et al.,
2010; Juncal Gutierrez Mangado and José Ezeiz-
abarrena, 2012; Yetano and Laka, 2019, a.o.), as
well as in the recent MG parsing literature. Their
morpho-syntactic properties, however, make them
ideal candidates to explore how the properties of
RCs interact with processing strategies, as they
pose challenges for various syntactic accounts of
sentence structure and theories of sentence process-
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ing proposed for other languages.
Due to its particular structural properties, Basque

thus presents a novel, challenging test case for
the computational model adopted in this paper. In
showing how the model handles the SRC vs. ORC
contrast reported by some of the Basque literature
on RC comprehension, we not only extend the ty-
pological coverage of the model, but also highlight
the relevance of computational models grounded in
theoretical considerations in opening new research
directions at the intersection between theoretical
syntax and sentence processing.

2 Preliminaries: MG Parsing

Minimalist grammars (MGs; Stabler, 1996, 2011)
are a lexicalized, feature driven formalism incorpo-
rating the structurally rich analysis of Minimalist
syntax (Chomsky, 1995, a.o.).

An MG is a set ot lexical items (LIs) consisting
of a phonetic form and a finite, non-empty string
of features. The latter are divided into two types:
Merge features and Move features. LIs are assem-
bled via the two relative feature checking opera-
tions Merge and Move. Essentially, Merge encodes
subcategorization, while Move long-distance dis-
placement dependencies. Given the scope of this
paper, the technical details of the mechanism be-
hind feature-checking are unnecessary — and in
fact, in the rest of the paper we avoid displaying
the feature component of the LIs altogether. What
we want to highlight instead is the intuition behind
the core MG data structure: derivation trees.

Intuitively, MG derivation trees encode the se-
quence of operations (Merge and Move) required
to build the phrase structure tree for a specific sen-
tence (Michaelis, 1998; Harkema, 2001; Kobele
et al., 2007). Observe the tree in Figure 1b, rep-
resenting a simplified derivation of the sentence
Who does Salem like?. Here, leaf nodes are labeled
by LIs, while unary and binary branching nodes
represent Move and Merge operations, respectively.
The main and crucial difference between this rep-
resentation and a more standard phrase structure
tree is that in these derivations, moving phrases re-
main in their base position: their landing site can be
fully (deterministically) reconstructed via feature
calculus. What this means though is that the final
word order of a sentence is not directly reflected
in the order of the leaf nodes of a derivation tree.
For the sake of clarity, while movement arrows are
not technically part of this representation, since

Steps Parse Action
1 CP is conjectured
2 CP expands to C’
3 C’s expands to does and TP
4 TP expands to Salem and T’
5 T’ expands to T and VP
6 VP expands to like and who
7 who is found
8 does is found
9 Salem is found

10 T is found
11 like is found

(a)

1CP2

2C’3

3does8 3TP4

4Salem9
4T’5

5T10
5VP6

6like11 6who7

index

outdex

(b)

Figure 1: Example of a string-driven top-down tree
traversal for an MG derivation tree of the sentence Who
does Salem like?.

we make away with features in the rest of the pa-
per, we will incorporate dashed arrows to indicate
movement relations.

2.1 Top-Down Parsing

Stabler (2013) takes advantage of the fact that —
modulo a more complex mapping from trees to
strings — MG derivation trees form a regular tree
language, to propose a string-driven MG variant of
a standard depth-first, top-down parser for Context-
Free Grammars. Essentially, this parser hypothe-
sises tree nodes from top to bottom and from left
to right. However, since the surface order of lex-
ical items in the derivation tree is not the phrase
structure tree’s surface order, simple left-to-right
scanning of the leaf nodes yields the wrong order.
The MG parser, while scanning the nodes, must
thus also keep tracking the derivational operations
which affect the linear word order and prioritizes re-
solving movement dependencies over the top-down
strategy (i.e. the string-driven component).

Following Kobele et al. (2013), without delving
too much in technical details, the parsing procedure
can be outlined as follows: I) hypothesize the top of
structure and add nodes downward (toward words)
and left-to-right; II) if move is predicted, it triggers
the search for mover → build the shortest path
towards predicted mover; III) once the mover has
been found, continue from the point where it was
predicted. A memory stack plays a fundamental
role in this: if a node is hypothesized at step i, but
cannot be worked on until step j, it must be stored
for j — i steps in a priority queue.

The example in Figure 1a exemplifies this strat-
egy for the tree in Figure 1b. To keep track of these
operations, we follow past literature on this topic
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and adopt Kobele et al. (2013)’s notation: each
node in the tree is annotated with a superscript
(index) and a subscript (outdex). The annotation
intuitively indicates for each node in the tree I)
when it is first conjectured by the parser (index)
and placed in the memory stack, and II) at what
point it is considered completed and flushed from
memory (outdex).

Since MGs are able to closely encode the de-
tailed structural analyses of Minimalist syntax, Sta-
bler’s MG parser has led to a rich line of work
aimed at connecting syntactic assumptions to of-
fline processing behavior, through the use of com-
plexity metrics (Kobele et al., 2013; Gerth, 2015;
De Santo, 2020b, a.o.).

2.2 Complexity Metrics

We employ complexity metrics that predict pro-
cessing difficulty based on how memory usage is
affected by the geometry of the trees built by the
parser.

Building on previous work in (computational)
psycholinguistics (Gibson, 1998; Rambow and
Joshi, 1997, a.o.), Kobele et al. (2013) identify
broad cognitive notions of memory usage like 1)
tenure: how long a node is kept in memory and 2)
size: the amount of information a node consumes
in memory. In practical terms, the tenure of a node
is equal to the difference between its index and its
outdex. Given how derivation trees are built by
the parser, given a left-to-right string to tree match-
ing a tenure of two is the minimum expected for
the right sister in a tree with binary branching —
thus, tenure ≤ 2 is labelled as trivial. In practice,
size encodes how nodes in a derivation consume
memory because a phrase m moves across these
nodes — and it can be computed in our simplified
representation of derivation trees by subtracting the
index of a moved element from the index of its
landing site (see Graf and Marcinek, 2014; Graf
et al., 2015, for a more technical discussion). For
instance, referring to the annotated tree in Figure
1b, the size of who is 6.

These memory notions can then be used to de-
fine a large set of complexity metrics measuring
the offline processing difficulty over a full deriva-
tion tree. Kobele et al. (2007) associate tenure with
quantitative values by implementing complexity
metrics such as: MAXT := max(tenure-of(n)), and
SUMT := Σn tenure-of(n). MAXT measures the
maximum amount of time any node stays in mem-

ory during processing, while SUMT measures the
overall amount of memory usage for all nodes with
non-trivial tenure (i.e., > 2), capturing the total
memory usage over the course of a parse. Build-
ing on these findings, Graf and Marcinek (2014)
show that MAXT (only considering pronounced
nodes) makes the right difficulty predictions for
several phenomena, e.g., right vs. center embed-
ding, nested vs. crossing dependencies, and the
contrasts involving relative clauses at the center of
our paper.

Following up on these results, Graf et al. (2015)
extend the definition of these complexity measure
to size. For instance, SUMSIZE can be used to mea-
sure the overall cost of maintaining long-distance
filler-gap dependencies over a derivation. Let M be
the set of all nodes of a derivation tree t that are
the root of a subtree undergoing movement. For
each m ∈ M , i(m) is the index of m and f(m) is the
index of the highest Move node that m’s subtree
is moved to. Then SUMSIZE is defined as Σm∈M
i(m) - f(m).

Graf et al. (2015) also propose an idea similar to
Optimality Theory’s (Prince and Smolensky, 2008)
constraint ranking. In their formulation, metrics of
the type ⟨ M1, M2,...,Mn ⟩ are ranked, and lower
ranked metrics only matter if all higher ranked
metrics have failed to pick out a unique winner
(e.g., two constructions result in a tie over MAXT).
While such a system would easily generate an enor-
mous number of possible metrics, Graf et al. (2017)
have argued that a small number of such metrics
is in fact enough to account for a vast number of
processing contrasts cross-linguistically. In par-
ticular, the ranking ⟨MAXT, SUMSIZE⟩ has been
surprisingly successful in offering insights into the
connection between processing load and syntac-
tic choices (see De Santo, 2020a; Liu, 2018; Lee,
2018; De Santo and Lee, 2022, for additional sup-
port to these claims).

With a slight over-generalization of terminology,
henceforth we refer to the combination of MGs as
a grammar formalism, Stabler (2013)’s top-down
parser, and complexity metrics estimating memory
usage as the MG Parser or the MG Model, even
though it is important to recognize that alterna-
tive combinations of these components are possible
(Yun et al., 2015; Hunter, 2019; Hunter et al., 2019).
Following Graf et al. (2017) and others, we then
use this model to conduct pairwise comparisons
of full derivations for constructions under analysis
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(e.g., SRCs vs. ORCs) and derive estimates of pro-
cessing difficulty that we can categorically match
to the contrasts reported in the psycholinguistics
literature.1

3 SRCs vs ORCs in Basque

Ergative languages, albeit representing roughly
25% of the world languages (Dixon, 1994), have
received relatively little attention in computa-
tional psycholinguistics’ literature. As mentioned,
Basque is an ergative and head-final language al-
lowing for prenominal RCs (de Rijk, 2007). Fur-
thermore, Basque is a three-way pro-drop language
that can omit all arguments in a sentence (i.e., the
XPs marked by ergative, absolutive, and dative
case). Finally, while canonically an SOV language,
the word order of Basque is prone to variation
(de Rijk, 2007).

Importantly, while prenominal RCs have been
modelled with the MG parser (Graf et al., 2017;
Zhang, 2017) the focus (somewhat in parallel with
the broader psycholinguistics literature) has been
on East Asian languages (Japanese, Korean, and
Mandarin Chinese more specifically). The avail-
ability of prenominal RCs combined with a highly
flexible word order, and ergativity, however, makes
Basque an ideal candidate to expand the array of
languages the MG model has been tested against.

Consider now sentences like in (1), illustrating
Basque’s prenominal RC constructions. This exam-
ple presents an SRC (1-a) and an ORC (1-b) in a
subject-modifying set-up (that is, the RC modifies
a noun acting as the subject of the main clause).

(1) a. Irakasleak
teacher.PL.ABS

aipatu
mention.PRT

ditu-en
has=comp

ikasleak
student.SG.ERG

lagunak
friend.PL.ABS

ditu
has

orain.
now
‘The student that mentioned the teach-
ers has friends now.’ SRC

1It is worth mentioning that in its full formulation, Sta-
bler’s parser exploits a search beam discarding the most un-
likely predictions at each step. However, past work (starting
with Kobele et al., 2013) has ignored the beam, assuming that
the parser is equipped with a perfect oracle, which always
makes the right choices when constructing a tree. On the one
hand, such an idealization is obviously implausible from a
psycholinguistics perspective. On the other hand, this choice
allows the model to focus on the specific contribution of struc-
ture building operations to processing difficulty. Interestingly,
even in this configuration the MG Parser has been used to gain
insights into phenomena dealing with ambiguity resolution
(De Santo and Lee, 2022; Lee and De Santo, 2022).

b. Irakasleak
teacher.PL.ABS

aipatu
mention.PRT

ditu-en
has=comp

ikasleak
student.PL.ERG

lagunak
friend.PL.ABS

dira
are

orain.
now
‘The students that the teachers men-
tioned are friends now.’ ORC

Consistently with other languages with prenominal
RCs, behavioral experiments on Basque RCs pref-
erences are somewhat split (cf. Kwon et al., 2013;
Yang et al., 2010; Gibson and Wu, 2013; Yetano
and Laka, 2019). However, there seems to be sound
evidence that, in absence of other confounds (e.g.
morphological and syntactic ambiguity) Basque
participants show a clear subject preference (Juncal
Gutierrez Mangado and José Ezeizabarrena, 2012;
Munarriz et al., 2016; Yetano and Laka, 2019).

Additionally, recent studies on Basque have also
shown a strong subject preference for postnomi-
nal RCs, a construction that seems to lack some
of the morpho-syntactic ambiguity present in the
prenominal structure (Carreiras et al., 2010; Yetano
and Laka, 2019, a.o.). However, the syntactic sta-
tus of postnominal RCs in Basque is controver-
sial and understudied to the point that we are not
aware of extensive theoretical work discussing the
structural details of such configuration. Since syn-
tactic choices are fundamental to the modelling
approach taken here, in the present paper we leave
postnominal structures aside, and focus on evaluat-
ing whether the parser can predict a subject advan-
tage for prenominal sentences as in (1).

4 Modelling Basque RCs

As input to the MG parser we used derivations
for the sentences in (1), as shown in Figure 2 and
Figure 3. We expect a preference for SRCs over
ORCs (SRC > ORC), following the results in (Jun-
cal Gutierrez Mangado and José Ezeizabarrena,
2012; Munarriz et al., 2016). As the MG parser
is sensitive to fine-grained structural details, we
are interested in a) capturing current Minimalist
approaches to the structure of these sentences and
b) explore how much particular syntactic choices
involved in the derivation of RCs affect the parser’s
prediction. Thus, we compare derivations follow-
ing two different approaches to the structure of
restrictive relatives. Note also that, given the com-
bination of an SOV base-clause plus a prenominal
RC construction, these sentences show a gap-filler
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Figure 2: Annotated MG trees for the SRC and ORC sentences in Example (1) following the Head External analysis.
Boxed nodes are those with tenure greater than 2.

dependency — that is, the gap within the relative
clause precedes the head noun it modifies, indepen-
dently of the particular RC analysis of choice.

4.1 Syntactic Assumptions

We consider two syntactic analyses proposed for
Basque RCs, modeled after similar approaches
commonly proposed cross-linguistically (for a sum-
mary of pre-minimalist analysis for Basque, see
Gondra, 2016a)): a Head External Analysis (Arti-
agoitia, 1992, HE), and a Head Internal Analysis
(Gondra, 2015, HI).

Head External Analysis. The HE analysis posits
the presence of an RC-internal null operator coin-
dexed with the external DP the RC modifies. This
null operator raises to Spec, CP to structurally func-
tion as the head of the RC, leaving a gap in its
base-generated position (Artiagoitia, 1992) .

Head Internal Analysis. According to the
HI (also Head Raising) approach, a determiner
external to the RC carrying a [+def(inite)] feature
selects the relative CP. The head of the RC is a
DP with a null determiner that thus moves from
its base-position in the low part of the clause
(either subject or object position) to Spec, CP (its
landing site within the RC). Crucially, a series
of “antisymmetric" movements (Kayne, 1994) is
needed to ensure the correct surface word order
(Gondra, 2015).

While not too distant from similar lines of RC
analysis put forward for other languages (Gondra,
2016b, for an overview), Basque is characterized by
a number of morpho-syntactic factors that further
complicate the already generally complex approach
to the analysis of RCs constructions crosslinguis-
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Figure 3: Annotated MG trees for the SRC and ORC sentences in Example (1) following the Head Internal analysis.
Boxed nodes are those with tenure greater than 2.

tically (Bianchi, 2002a,b; Hemforth et al., 2015;
Fernández, 2017, i.a.).

In particular, a number of assumptions are made
in the proposed syntactic accounts in terms of
functional projections and movement operations.
Specifically, the HI analysis strongly relies on pro-
jections in the expanded left periphery (Rizzi, 1997)
of the RC clause to derive the correct prenominal
SOV surface order. These additional projections
split the CP head into multiple projections, which
encode aspectual and discourse-oriented informa-
tion. Conversely, the HE analysis does not exploit
these projections in the derivation, partially due to
the fact that the modified noun is base-generated
externally to the RC structure. It will thus be in-
teresting to see whether and how these additional
structural elements in the HI approach have any
effect on the predictions made by the MG parser,
when interacting with subject or object movement.

4.2 Modelling Results
As mentioned before, here we exclusively consid-
ered prenominal RCs like (1), and expect a SRC >
ORC contrast. The (annotated) MG derivations for
the two analyses are given in Figure 2 and Figure 3
respectively, for the prototypical sentences in (1).

With these preliminaries in place, we can look at
the modelling results.2 We evaluated the whole set
of 1800 metrics defined by Graf et al. (2017) but,
following previous MG parsing work, we focus our
discussion on the predictions made by MAXT and
SUMSIZE. As it turns out, the MG parser equipped
with the ⟨MAXT,SUMSIZE⟩ metric predicts a pref-
erence for SRCs over ORCs for both analyses, but
with interesting differences between the two in how
this is accomplished (see Table 1). Note that for
both derivations, the pairwise contrasts predicted

2All simulations were run with a version of the
code made freely available by Graf et al. (2017) at
https://github.com/CompLab-StonyBrook/mgproc.
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Head Internal Head External
MaxT Node SumSize MaxT Node SumSize

SRC 30 orain 50 25 orain 31
ORC 31 orain 64 25 orain 37

Table 1: Performance of MAXT and SUMSIZE for each of the RC sentences in (1), derived according to a Head
Internal and a Head External analysis.

do not change whether we consider intermediate
movement steps or not (cf. Zhang, 2017).

Consider again the sentences in (1). For the HE
analysis, MAXT leads to a tie between SRC and
ORC, with a tenure of 25 recorded on the matrix
clause temporal auxiliary orain. Since we are con-
sidering subject RCs (i.e. the noun modified by the
SRC/ORC goes to become the subject of the matrix
clause) and because of the prenominal nature of the
RC, every element in the matrix vP has to wait
until the NP containing the RC and its noun moves
to subject position in matrix Spec,TP. This results
in an equivalent tenure on those nodes, given that
the size (in terms of number of nodes) of the two
structures is the same, independently of whether
the head noun originates in subject or object posi-
tion within the RC. Note that this tie is also shown
on the rightmost node internal to the RC (en), il-
lustrating how this is more a consequence of the
prenominal RC than of having picked (consistently
with the psycholinguistic literature) subject modi-
fying structures. Interestingly, tenure on the head
itself does display a subject preference. In the ORC
case, irakasleak (in the embedded subject position)
comes early in the linear sequence but has to wait
for the the movement of OP from object position
to Spec,CP to be resolved before it can be flushed
out of the stack-memory of the parser. Nonethe-
less, the tie on MAXT in not a problem for a model
using a ranked metric, and SUMSIZE makes in fact
the correct prediction by capitalizing on the longer
movement of OP in ORCs and on the additional
movement of the embedded subject to (RC internal)
Spec,TP.

Conversely, for the HI analysis, MAXT makes
directly the correct prediction, registering a slightly
higher tenure on the highest temporal adjunct
(orain, but also on lower nodes) in the ORC struc-
ture. Inspecting the HI derivations more closely,
we note that in this case tenure on the relativized
head (ikasleak) predicts the opposite preference
(24 − 16 for the SRC compared to a 25 − 20 for
the ORC). This is due to the fact that in the SRC

construction ikasleak is predicted in Spec,vP but
then it cannot be confirmed and discarded from
memory until the lower VP elements (preceding it
in the linear order) are found lower in the clause,
and that their movement dependencies are resolved.
Being predicted in object position makes it so that
the waiting time for ikasleak is actually lower in the
ORC derivation. Interestingly however, this differ-
ence disappears when we move to the higher parts
of both derivations, covered by the movement of
the head to Spec, ForP. The ORC derivation need-
ing the additional movement of the RC-internal TP
clause to Spec,DP is what causes its tenure to in-
crease on the higher nodes compared to that for the
SRC. SUMSIZE makes again the correct prediction
by considering both these additional movement de-
pendencies and the number of extra-projections the
object head needs to move across compared to the
subject head.

5 Discussion

The results above display how the MG model is
able to predict a subject preference in Basque
SRC/ORC constructions, in line with what reported
in both production and comprehension studies (Jun-
cal Gutierrez Mangado and José Ezeizabarrena,
2012; Munarriz et al., 2016). This success adds
to previous MG modelling of sentence processing
results in supporting MAXT and SUMSIZE as a
combination of metrics able to capture different
aspects of syntactic difficulty cross-linguistically,
in ways that can give us insights into the relation
between parsing and fine-grained syntactic choices.

Importantly, while the model predicts the SRC
> ORC ranking across two different syntactic anal-
yses of RCs, a closer inspection reveals that it
does so in strikingly different ways. In this sense,
the results for the HI analysis seem mostly driven
by the additional structural operations required
by that analysis to derive the correct linearization.
In contrast, a study of the metrics’values for the
HE analysis show a higher sensitivity for the dif-
ferences between subject and object RCs both in
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terms of movement dependencies, and the way the
tree traversal strategy of the MG parser interacts
with subtler differences in the geometry of the two
derivation trees. These considerations thus high-
light the value of a model quantifying the relation
between syntactic structure and processing load as
transparently as possible, so to allow not just for
quantitative predictions but also careful qualitative
analyses. Specifically, this suggest ways in which
this type of model could be used by both syntacti-
tians and psycholinguists to spell out which aspects
of a syntactic derivation they predict to be relevant
to behavioural performance, and why.

Going back to the question of RC processing
more broadly, past psycholinguistic literature has
focused on well-established asymmetries between
SRCs and ORCs in order to investigate the con-
nection between universal properties of the human
parser and the syntactic features of particular lan-
guages. In this sense, even though the MG model
does not encode a bias towards structural local-
ity explicitly, these results (together with previous
MG modelling work on RC asymmetries in other
languages) show how a subject preference could
arise cross-linguistically from the interaction of
language specific structural properties and general-
ist parsing mechanisms taking memory usage into
consideration.

Finally, it is worth mentioning again that some
experimental studies have reported a preference
for an ORC interpretation in the processing of
Basque prenominal RCs (Carreiras et al., 2010;
Yetano and Laka, 2019). However, a close look at
the kind of sentences tested in these studies has
highlighted how the syntactic properties of Basque
make prenominal SRCs temporarily ambiguous.
Recall that Basque can drop several arguments
(bearing ergative, absolutive, and indirect case).
Additionally, the prenominal RC does not contain
an explicit particle (like a wh element in English)
functioning as a complementizer, which is instead
attached to the subordinate verb in clause-final po-
sition (en in our sentences). Taken together, these
characteristics make it so that a prenominal SRC
could be initially interpreted as a main clause with
dropped argument, at least until the parser reaches
the embedded verb marked with the complemen-
tizer (Carreiras et al., 2010). Thus, past work has ar-
gued that the ORC preference found by some stud-
ies is in fact a result of the additional complexity
brought in SRC structures by ambiguity resolution

(Juncal Gutierrez Mangado and José Ezeizabarrena,
2012). This explanation is also in line with what
has been argued for the object preference some-
times found in other head-final languages (Kwon
et al., 2010, 2013; Nakamura and Miyamoto, 2013).
In fact, when testing unambiguous postnominal
RCs (as in (2)), Yetano and Laka (2019) report a
strong preference for SRC constructions.

(2) a. Ikasle-a-ki,
Student-sg-ergi,

[zein-a-ki
[who-sg-ergi

ei
ei

irakasle-ak
teacher-pl

aipatu
mentioned

bait-ditu,]
Comp-has,]

lagun-ak
friend-pl

ditu
has

orain.
now.

‘The student, who mentioned the teach-
ers, has friends now.’ SRC

b. Ikasle-aki,
Student-pli,

[zein-aki
[who-pli

irakasle-a-k
teacher-sg-erg

ei
ei

aipatu
mentioned

bait-ditu,]
Comp-has,]

lagun-ak
friend-pl

dira
are

orain.
now.
‘The students, who mentioned the
teacher, are friends now.’ ORC

As discussed before, here we did not test our
model against postnominal structures, in part due
to the lack of extensive syntactic literature on the
topic. Importantly though, future work in this di-
rection will have to consider the variety of morpho-
syntactic factors (especially related to case syn-
creticity) differentiating prenominal and postnomi-
nal constructions, and suggest fundamental ways in
which the current MG model (only sensitive to tree
geometry) should be expanded in order to pursue
a full, in-depth investigation of syntactic process-
ing in ergative languages. On the other hand, the
preliminary results in this paper draw attention to
gaps in the literature connecting theoretical syn-
tax and psycholinguistic studies, thus showcasing
once again the contribution of models like the MG
parser to the broader study of the role of syntactic
representation in linguistic cognition.
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Abstract

We fuse two recent strands of work in subreg-
ular linguistics—probabilistic tier projections
(Mayer, 2021) and tier-based perspectives on
movement (Graf, 2022a)—into a probabilistic
model of syntax that makes it easy to add gra-
dience to traditional, categorical analyses from
the syntactic literature. As a case study, we test
this model on experimental data from Sprouse
et al. (2016) for a number of island effects in
English. We show that the model correctly
replicates the superadditive effects and gradi-
ence that have been observed in the psycholin-
guistic literature.

1 Introduction

Gradience has been a long-standing issue in theoret-
ical syntax and its interface with psycholinguistics.
Is gradience a performance phenomenon or part
of syntax proper? And if the latter, how could
current syntactic formalisms handle gradience con-
sidering they were designed around the categori-
cal distinction between well-formed and ill-formed
structures? In this paper, we approach the issue
of gradience from the perspective of subregular
linguistics, a program equally rooted in theoretical
linguistics and formal language theory. Subregular
linguistics seeks to identify very restricted classes
of computational (string or tree) mechanisms that
can capture a wide range of linguistic phenomena.
The insights from this perspective can be leveraged
in a variety of ways, e.g. for new learning algo-
rithms, novel explanations of typological gaps or
linguistic universals, or to identify abstract proper-
ties that hold of both phonology and syntax.

We combine recent subregular work by Graf
(2018, 2022b,a) on syntactic movement as a tier-
based strictly local (TSL) dependency over trees
with the framework in Mayer (2021) for proba-
bilistic TSL dependencies over strings. Intuitively,
a dependency is TSL iff it can be analyzed in
two steps: first, one projects a tier that contains

only some parts of the original structure, and sec-
ond, this tier must satisfy a finite number of well-
formedness constraints on adjacent structural ele-
ments. Mayer’s framework allows for gradience
in the string case of TSL by making this tier pro-
jection probabilistic while keeping the constraints
categorical. We extend this notion of probabilistic
tier projection to the the kind of TSL over trees that
is used by Graf to capture syntactic movement.

The resulting framework of probabilistic TSL
dependencies over trees can account for key aspects
of the gradient judgments commonly observed with
island effects, where a phrase is illicitly moved
out of a containing phrase that does not allow for
extraction. An example of such an island violation
is shown below.

(1) a. Who does Mary say that John likes?
(no island)

b. ?? Who does Mary wonder whether
John likes? (whether island)

Concretely, we test the ability of a probabilistic
TSL model to handle a subset of the experimental
island data in Sprouse et al. (2016).1 The gradi-
ence observed in this experimental island data is ar-
guably the result of many interacting factors, which
may also include performance, semantics, and prag-
matics (see Chaves (2022) for a recent survey). We
conclude that if one wants to capture the syntactic
aspects of said gradience directly in the grammar,
it is eminently feasible to do so — the switch from
categorical to gradient is computationally simple,
natural, and does not require any modifications of
the underlying syntactic analysis.

Our paper makes several contributions beyond
showing the empirical viability of probabilistic
TSL over trees. It continues a recent trend in sub-
regular linguistics to increasingly unify phonology
and syntax, with both aspects of language using

1We thank Jon Sprouse for giving us permission to use the
experimental data for English from Sprouse et al. (2016).
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roughly the same kind of dependencies but apply-
ing them over strings and trees, respectively. In
doing so, it also lends additional support to the
specific proposals about movement in Graf (2018,
2022b,a) and gradience in Mayer (2021). The view
of movement as a TSL dependency is not a mere
stipulation that works in the limited case of categor-
ical judgments, but rather provides exactly the kind
of parameters that are also needed for gradience.
TSL thus seems to capture a fundamental aspect of
movement. Similarly, the probabilistic tier projec-
tions of Mayer (2021) have broad empirical appeal
that extends far beyond the phenomena that they
were originally proposed for. At the same time, our
paper responds to the challenge by Chaves and Put-
nam (2022) to provide a TSL model of syntax that
can handle gradient data. The fact that this answer
requires no major changes to the categorical anal-
ysis supports the position commonly espoused by
syntacticians that the issue of gradience is largely
orthogonal to the enterprise of identifying the rel-
evant syntactic structures and the operations and
constraints that give rise to them.

The paper proceeds as follows. The Background
section (§2) covers the relevant subregular con-
cepts over strings. It first introduces the categorical
notion of TSL (§2.1) before generalizing it to prob-
abilistic TSL (§2.2, 2.3). We then turn to TSL over
trees (§3), starting with an intuitive introduction
of movement as a TSL dependency over trees and
how this can be used to capture island effects in a
categorical setting (§3.1–3.3). This intuition is then
spelled out in formal terms (§3.4) that make it easy
to combine tree TSL with the probabilistic notion
of TSL from §2.3. Finally, we present the results
of a modeling study (§4) showing that a simple
probabilistic TSL grammar can predict many of
the salient properties of the experimental data on
island effects from Sprouse et al. (2016). We close
with a brief discussion of the results (§5).

2 Background

This section introduces all relevant mathemati-
cal aspects of the probabilistic TSL formalism.
Throughout we let Σ be an alphabet of symbols, ε
the empty string, Σ∗ the Kleene closure of Σ (the
set of all strings of length 0 or more formed over Σ),
and Σk the largest subset of Σ∗ that contains only
strings of length k. The symbols ⋊ and ⋉ repre-
sent left and right string boundary symbols, respec-
tively. The : operator has type Σ → (Σ∗ → Σ∗)

and prepends a symbol in Σ to a string in Σ∗ (e.g.
a:bc = abc).

2.1 Strictly local and tier-based strictly local
languages

Let s ∈ Σ∗ for some Σ. The set of k-factors
of s, fk(s), is defined as all the substrings of
⋊k−1s⋉k−1 of length k. For example, f2(tree) =
{⋊t, tr, re, ee, e⋉}.

A strictly k-local (SL-k) grammar is a set G that
contains (finitely many) forbidden substrings of
length k. A string s is well-formed with respect
to G iff fk(s) ∩G = ∅, i.e. if it contains no illicit
substrings of length k.2

Heinz et al. (2011) define a tier-based strictly k-
local (TSL-k) grammar as a tuple ⟨G,T ⟩ such that
T ⊆ Σ is a tier alphabet and G ⊆ T k is a SL-k
grammar over the tier alphabet. The tier projection
function πT , which deletes from any given string
all symbols not in T , is defined recursively:

πT (ε) := ε (1)

πT (σu) :=

{
σπT (u), if σ ∈ T

πT (u), otherwise
(2)

where σ ∈ Σ and u ∈ Σ∗. The shape of the tier
πT (s) projected from string s is then constrained
by G exactly as in an SL grammar. Hence a string
s is well-formed with respect to a TSL-k grammar
⟨G,T ⟩ iff fk(πT (s)) ∩G = ∅.

A stringset (or equivalently, string language) is
SL (TSL) iff it contains all and only those strings
that are well-formed with respect to some SL-k
(TSL-k) grammar, where k ≥ 0.

2.2 Probabilistic tier projection
Probabilistic TSL (pTSL) is a generalization of
TSL where πT is a discrete probabilistic function.

A discrete probabilistic function f : X →
(Y → [0, 1]) maps pairs of strings x ∈ X and
y ∈ Y to probabilities. These probabilities are
drawn from the conditional distribution P (y|x),
and accordingly

∑
y∈Y f(x, y) = 1 for every

x ∈ X .
Here we generalize the projection function πT to

a probabilistic version πP : Σ∗ → (Σ∗ → [0, 1]).
2Alternatively, a SL-k grammar can be interpreted as a col-

lection of all well-formed substrings instead of all ill-formed
substrings. In that case, string s is well-formed with respect
to G iff fk(s) is a subset of G. The two interpretations are
equivalent in the sense that every SL-k grammar G of for-
bidden k-grams generates the same set of strings as the SL-k
grammar (Σ ∪ {⋊,⋉})k −G of allowed k-grams.
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Thus πP (x) returns a probability distribution over
projections of some x ∈ Σ∗, and πP (x, y) re-
turns the probability associated with projecting
some x ∈ Σ∗ to some y ∈ Σ∗. It follows that∑

y∈Σ∗ πP (x, y) = 1 for every x ∈ Σ∗. πT is a
special case of πP such that the probability distri-
bution for all x ∈ Σ∗ assigns a probability of 1 to
a single projection.

The probabilistic tier projection πP is calculated
based on probabilities associated with the projec-
tion of each individual symbol in Σ. We define an
additional function P : Σ → [0, 1]. This function
represents the probability that each symbol in Σ is
projected to the tier. For example, if P (a) = 0.7,
then there’s a 70% chance the symbol a will project.
We can then define πP recursively as follows:

πP (ε, v) :=

{
1, if v = ε

0, otherwise
(3)

πP (σx:u, ε) := (1− P (σx)) · πP (u, ε) (4)

πP (σx:u, σy:v) := Jσx = σyK · P (σx) · πP (u, v)
+ (1− P (σx)) · πP (u, σy:v)

(5)

where σx, σy ∈ Σ, u, v ∈ Σ∗ and Jσx = σyK is an
indicator function that evaluates to 1 if σx = σy
and 0 otherwise.

The base case (3) ensures that the only valid
projection of ε is ε. In the first recursive case (4)
where the input is non-empty and the projection
is empty, the probability of the projection is the
probability of not projecting each symbol in the
input. In the second recursive case (5) where both
input and projection are non-empty, we consider
two possibilities for each symbol: either it projects
(the first term), or it does not (the second term). The
indicator variable ensures that we only consider
projection as a possibility when the symbols at the
beginning of the input and projection are identical.

Example. Let Σ = {a} and P (a) = 0.75. We
show that the probability of projecting aa → a is
0.375. First, by definition:

πP (aa, a) = P (a) · πP (a, ε)
+ (1− P (a)) · πP (a, a)

(6)

We omit the indicator variables for brevity. The
first term corresponds to the case where the first
a projects, and the second corresponds to the case
where it does not. Solving for the two recursive

instances of πP in (6) gets us:

πP (a, ε) = (1− P (a)) · πP (ε, ε)
= 1− P (a)

(7)

πP (a, a) = P (a) · πP (ε, ε)
+ (1− P (a)) · πP (ε, a)
= P (a)

(8)

Plugging these into (6) gets us:

πP (aa, a) = P (a) · (1− P (a))

+ (1− P (a)) · P (a)

= 0.75 · 0.25 + 0.25 · 0.75
= 0.375

(9)

The support of the distribution over projections,
i.e. the set of projections assigned non-zero proba-
bility, is:

πP (aa, aa) = 0.5625

πP (aa, a) = 0.375

πP (aa, ε) = 0.0625

(10)

2.3 pTSL grammars
A pTSL-k grammar over an alphabet Σ is a tuple
(πP , G), where I) πP is a probabilistic tier projec-
tion defined according to projection probabilities
for each σ ∈ Σ, and II) G ⊆ (Σ ∪ {⋊,⋉})k is a
SL-k grammar.

The function val(πP ,G) defines the probability
assigned to a string u by the grammar (πP , G):

val(πP ,G)(u) =
∑

v∈Σ∗
Jfk(v) ∩G = ∅K · πP (u, v)

(11)
where Jfk(v) ∩ G = ∅K is an indicator variable
that evaluates to 0 if v contains any illicit k-factors
and 1 otherwise. val(πP ,G)(u) is the sum of the
probabilities of all projections of the string u that
do not contain any prohibited k-factors. Note that
val(πP ,G) is not a probability distribution over in-
put strings, but rather the conditional probability of
some grammatical projection given the input string.

Example. Assume the definitions of Σ and πP
from the previous example, and suppose we have a
pTSL-2 grammar where G = {aa}. Then:

val(πP ,G)(aa) = πP (aa, a) + πP (aa, ε)

= 0.4375
(12)

πP (aa, aa) is not included in this calculation
because the projection aa contains the prohibited
substring aa.
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In sum, a pTSL-k grammar is the combination of
a categorical SL-k grammar G with a probabilistic
tier projection πP . In contrast to the categorical
tier projection πT , πP may project multiple tiers
from any given string s. Each one of these tiers
has a specific probability that is the product of
the projection probabilities that resulted in this tier
given s. We then sum the probabilities of all tiers
projected from s that are well-formed with respect
to G, yielding the conditional probability of some
grammatical projection given the input s. With
this understanding of how TSL over strings may be
made probabilistic, we now turn to TSL over trees.

3 (p)TSL over trees

Graf (2018) generalizes TSL (more precisely the
subclass TSL-2) from strings to trees. The intuition
is exactly the same as in the string case: Given a
tree t over alphabet Σ, we project all nodes with
a label in the tier alphabet T ⊆ Σ while preserv-
ing the ordering between those nodes in terms of
dominance and precedence. SL constraints then
regulate the shape of permissible tiers. A full defi-
nition of TSL-2 over trees can be found in Graf and
Kostyszyn (2021), but for present purposes only
the tier projection needs to be discussed in depth.

The ensuing discussion is motivated by empir-
ical examples such as the one below, which is an
instance of an island effect.

(2) ?? Who does Mary wonder whether John
likes t?

This sentence is commonly considered degraded
by native speakers of English, and syntacticians
attribute this to whether creating an island for ex-
traction. In the parlance of Minimalist syntax, the
object who in the embedded clause wh-moves to
Spec,CP of the matrix clause, but wh-movement is
degraded out of whether-clauses.

Let us see, then, how this can be captured with
TSL over trees using the analysis in Graf (2022a).
We will first put in place feature-annotated depen-
dency trees as a tree-based representation of the
syntactic derivation (§3.1), from which we project
specific tree tiers to regulate movement in a strictly
local manner (§3.2). This in turn provides an easy
way of modeling a wide range of island constraints
as a categorical constraint against specific move-
ment configurations (§3.3). These intuitive ideas
are then made rigorous and, ultimately, probabilis-
tic in §3.4.

3.1 Syntactic representations

Each sentence is associated with a syntactic deriva-
tion, which we represent with a dependency tree.
Figure 1 gives the dependency tree for (2). Follow-
ing common Minimalist assumptions, each clause
consists of a verb and its three extended projections:
v (which selects the subject), T (which provides
the default surface position for the subject), and
C (which hosts complementizers and serves as a
landing site for some movement steps). Each node
of the dependency tree is a lexical item, and m is
a mother of a iff m selects a as an argument. If a1
and a2 are both daughters of m, then a1 is a right
sibling of a2 iff a1 is selected by m before a2 is.
That is, the right-to-left order of siblings reflects
the order of selection. The geometry of the depen-
dency tree thus encodes all relevant head-argument
relations and their relative order in the derivation.

In addition, every lexical item is given a feature
annotation inspired by the feature system of Mini-
malist grammars (Stabler, 1997, 2011). For each
lexical item, its feature annotation encodes its cate-
gory (e.g. category feature X−), the categories of
its arguments (e.g. the string X+Y+ of selector
features), whether it serves as a landing site for
movement steps (e.g. licensor feature wh+), and
whether it undergoes any movement steps (e.g. the
unordered set {nom−,wh−} of licensee features).3

Note the use of capitalization to distinguish cate-
gory and selector features on the one hand from
licensor and licensee features on the other. All four
types of features will play a key role in deciding
which nodes should be projected onto a given tier.

3.2 Movement tiers

With the basics of feature-annotated dependency
trees in place, we turn to tier projection for move-
ment. In Fig. 1, we have three separate movement
steps: two instances of subject movement, and
one instance of wh-movement. Let us consider
the former first. The subject Mary in the matrix
clause moves to Spec,TP of the matrix clause, and
the subject John in the embedded clause moves to
Spec,TP of the embedded clause. In both cases,
this is implicitly encoded by the fact that Mary
and John carry the licensee feature nom−, and the

3In contrast to Minimalist grammars, licensee features are
unordered in our system so that a mover with multiple licensee
features will always target the closest dominating nodes with
matching licensor features. This affects neither weak nor
strong generative capacity (Graf et al., 2016) but is a crucial
prerequisite for capturing movement dependencies via tiers.
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Syntactic derivation

does :: T+wh+C−

ε :: v+nom+T−

ε :: V+D+v−

Mary :: D−{nom−} wonder :: C+V−

whether :: T+C−

ε :: v+nom+T−

ε :: V+D+v−

John :: D−{nom−} likes :: D+V−

who :: D−{wh−}

nom-tier

ε :: v+nom+T−

Mary :: D−{nom−} ε :: v+nom+T−

John :: D−{nom−}

wh-tier

does :: T+wh+C−

whether :: T+C−

who :: D−{wh−}

Figure 1: Syntactic derivation for (2), its well-formed nom-tier (in red), and the ill-formed wh-tier (in blue)

corresponding T-heads carry the matching licensor
feature nom+. A lexical item with some licensee
feature f− will always move to a specifier of the
closest dominating lexical item with matching li-
censor feature f+. This is why Mary moves to
Spec,TP of the matrix clause, whereas John moves
to Spec,TP of the embedded clause. Each one of
these subject movement steps is well-formed, and
as pointed out by Graf (2018), this can be verified
in a tier-based strictly local manner.

In order to determine whether the derivation con-
tains any illicit instances of subject movement, we
construct a subject movement tier that contains
only nodes that matter for subject movement. At
the very least, this tier must contain every lexical
item that carries nom+ or nom− (as we will see
during the discussion of wh-movement, projecting
additional lexical items is exactly what gives rise
to island effects). The resulting nom-tier is shown
in Fig. 1. Note how the dominance relations in
the tier match the dominance relations in the de-
pendency tree. Moreover, Mary is the left sibling
of the embedded T-head on the tier because in the
dependency tree, Mary precedes the embedded T-
head (that is to say, Mary is reflexively dominated
by a node that is the left sibling of a node that re-
flexively dominates the embedded T-head). The
nom-tier is well-formed iff it obeys both of the
following conditions for movement tiers:

(3) Well-formedness of an f-tier

a. Every node with f+ has exactly one
node with f− among its f-tier daugh-
ters.

b. Every node with f− has an f-tier
mother that carries f+.

Both of these conditions are met in the nom-tier,
which entails that all subject movement steps in the
derivation are well-formed.

3.3 Categorical island effects
Now consider the case of wh-movement of who
from the embedded object position to Spec,CP of
the matrix clause. Without additional assumptions,
this movement step should be well-formed. If we
construct the corresponding wh-tier, it consists only
of does with who as its only daughter. As the for-
mer carries wh+ and the latter wh−, the conditions
in (3) are met and the tier should be well-formed.
But we already saw that (2) is not considered well-
formed due to the presence of whether. Suppose,
then, that we also project whether onto the wh-tier,
yielding the wh-tier in Fig. 1. Both conditions in (3)
are now violated by the wh-tier because whether
intervenes between does and who. Island effect
thus arise whenever an element that does not carry
the relevant features is projected onto a tier and de-
stroys the mother-daughter configuration between
a mover and its target.4

This same idea can be used to capture other
island effects. In addition to the whether island

4Note that projecting whether on the nom-tier would not
destroy any such configurations. Irrespective of whether one
projects whether, the nom-tier is well-formed. In general,
it is safe to assume that islands project onto all movement
tiers, unless there is good empirical evidence that a specific
movement type is not subject to a specific island condition.
For the purposes of this paper, what exactly projects onto
the nom-tier does not matter as all our modeling will focus
exclusively on the wh-tier.
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constraint described above, we will also examine
the adjunct island constraint and the complex NP
constraint. The adjunct island constraint prevents
extraction from adjuncts, e.g. because-clauses as in
(4a). The complex NP constraint prevents extrac-
tion from sentential complements of nouns (4b).
Both effects also arise with extraction from rela-
tive clauses as in (4c) and (4d), respectively. For
simplicity, we will conflate the difference between
wh-movement and relative clause extraction and
treat both as involving the features wh+ and wh−

for the rest of this paper.

(4) a. * Who did Mary complain because
John likes t?

b. * Who did Mary deny the rumor that
John likes t?

c. * I saw the congressman who Mary
worries if John respects t.

d. * I saw the man who Mary heard the
rumor that John likes t.

All these cases can be analyzed as some lexical
item projecting onto a movement tier and disrupt-
ing the local licensing relations there. The adjunct
island constraints are captured by projecting the
heads of adjunct islands, for example because and
if. The complex NP constraint amounts to project-
ing all nouns that select a CP as their only argument
(i.e. every lexical item whose feature annotation
contains the substring C+N−). Crucially, the de-
cision to project a lexical item only requires maxi-
mally local information: the surface realization of
the lexical item and/or its feature annotation.5

However, all these accounts are hamstrung by
the fact that tiers are either well-formed or ill-
formed. It is not possible to express the fact that,
say, whether-island violations are not judged as
degraded as extraction from because-clauses. One
easy way to add gradience to this system is to

5Mathematically, the tier projection may use any infor-
mation that can be encoded in terms of a finitary annota-
tion scheme for lexical items. This includes, among other
things, the semantic denotation of the lexical item, a higher-
dimensional vector representation derived from word embed-
dings, aspects of information structure such as topic and focus,
or basic frequency information in terms of a finite classifica-
tion system like very rare/rare/common/ubiquitous. Any kind
of annotation that preserves Minimalist grammars’ require-
ment that the set of lexical items must be finite is mathemati-
cally permissible. So even though we will limit ourselves to
purely syntactic information in our subsequent discussion of
island effects, the approach could be extended to consider at
least some of the semantic and pragmatic factors observed in
Chaves (2022) and the studies referenced therein.

adapt the probabilistic tier projection mechanism
of Mayer (2021), which we discussed in §2.2 and
§2.3.

3.4 Probabilistic tree tier projection
In order to define a probabilistic tier projection for
trees, we first need a rigorous definition of categori-
cal tier projection for trees. We adopt the logic-
based definition of Graf and Kostyszyn (2021)
where a tier is just the result of enriching the de-
pendency tree with relations for tier daughter and
tier sibling.

Let us use ◁+ (◁∗) to denote proper (reflexive)
dominance in the dependency tree, i.e. x ◁+ y
(x ◁∗ y) holds in dependency tree t iff x properly
(reflexively) dominates y in t. We also use x ≺ y
to denote that x is a left sibling of y in t. Further-
more, the predicate T (x) is true iff the label of
x (e.g. wonder :: C+V− in Fig. 2) is part of our
tier alphabet T . We define proper dominance on
tier T (◁+T ) and use that to subsequently define the
daughter-of relation over tier T (◁T ), which in turn
is needed to define the left-sibling relation over tier
T (≺T ):

x ◁+T y ⇔T (x) ∧ T (y) ∧ x ◁+ y

x ◁T y ⇔x ◁+T y ∧ ¬∃z[x ◁+T z ∧ z ◁+T y]

x ≺T y ⇔∃z[z ◁T x ∧ z ◁T y]∧
∃z, z′[z ◁∗ x ∧ z′ ◁∗ y ∧ z ≺ z′]

These predicates implicitly define the tier T over
dependency tree t and provide the relevant struc-
tural relations for tier constraints such as the one-to-
one match between mothers with licensor features
and daughters with licensee features we encoun-
tered in (3).

In order to turn this categorical notion of tree
tiers into a probabilistic one, it suffices to make
membership in the tier alphabet probabilistic. For
example, if elements with the same label as x have
a probability of 0.7 to project onto tier T , then
the predicate T (x) has a probability of 0.7 of be-
ing true. This is the only required change. The
definitions of ◁+T , ◁T , and ≺T remain exactly the
same—it is only the interpretation of T (x) that be-
comes probabilistic. Once this change is made, the
probability of a given tier projection is calculated
in exactly the same manner as in the string case
(§2.2): it is the product of T (x) for every x that
projects, and (1− T (x)) for every x that does not
project. The overall conditional probability of a
given tree having some grammatical projection is

160



also calculated in the same manner as the string
case: it is the sum of the probabilities of all its
possible licit tier projections.

4 Modeling study

The next section presents a computational model-
ing study where a simple pTSL grammar over trees
is fit to experimental data on English island effects
from Sprouse et al. (2016).6 We demonstrate that
in addition to exhibiting the superadditive effects
found by Sprouse et al., it can also represent the
gradience observed across judgments of different
island effects.

4.1 Methods
The stimuli from Sprouse et al. (2016) were given
a syntactic analysis using feature-annotated depen-
dency trees as described in §3. We restricted our-
selves to the subset of sentences exhibiting the is-
land effects described above: whether islands, ad-
junct islands, and complex NP islands. We also
omitted filler sentences. This produced a total of
160 trees.

Sprouse et al. (2016) partitions the data within
each island effect type based on two factors:
whether the sentence contains an island structure,
and whether the node that undergoes movement is
located in the matrix clause or the embedded clause.
Examples of the four combinations of these two
factors are show in (5) for whether islands (from
Sprouse et al., 2016).

(5) a. Who t thinks [that John bought a car]?
(non-island, matrix clause)

b. What do you think [that John bought
t]? (non-island, embedded clause)

c. Who t wonders [whether John bought
a car]? (island, matrix clause)

d. What do you wonder [whether John
bought t]? (island, embedded)

This factorial design is intended to separate the ef-
fects of extracting from a matrix clause vs. extract-
ing from an embedded clause, and also the effects
of the presence or absence of an island structure. In
particular, Sprouse et al. expect that sentences like
(5d), which are the only ones that contain syntactic
island configurations, should display superadditive
effects. That is, the effect of these configurations
on human judgments should be greater than the

6The code and data can be found at: https://github.
com/connormayer/pTreeTSL

independent contributions of extracting out of an
embedded clause, as in (5b), and the presence of
an island structure that is not extracted over, as in
(5c).

The dataset from Sprouse et al. (2016) contains
about 14 Likert scale ratings for each sentence we
considered. Because our model is unable to rep-
resent cross-speaker variability in judgments, we
assigned each sentence the mean rating across par-
ticipants. Following Sprouse et al. (2016), we use
ratings that were Z-score normalized by participant
rather than the raw Likert scores.

Using the dependency trees and Z-scores, we fit
a pTSL grammar to the data by finding the optimal
projection probabilities: that is, those that align
as closely as possible the scores assigned by the
model to the scores assigned by humans. We do
this by first transforming the mean Z-score values
to fall in the range [0, 1] and then minimizing the
mean squared error between the transformed hu-
man acceptability judgments and the probabilities
assigned by the model. This minimization was per-
formed using scipy.optimize.minimize
(Virtanen et al., 2020) with bounded L-BFGS op-
timization to ensure each projection probability is
within the interval [0, 1].

We a priori fixed most of the projection proba-
bilities to 0 (irrelevant nodes) or 1 (nodes with wh+

or wh−), and we fit only projection probabilities
for nodes that could feasibly induce island effects.
This was done to facilitate interpretability of the
model, speed up the model training, and offset the
comparatively small size of the training set.

The nodes whose projection probabilities were
fitted were:

• that :: T+C−

• whether :: T+C−

• if :: T+C−

• all nodes whose feature annotation contains
the substring C+N−

The first three items are potential blockers for
the whether island and adjunct island constraints;
nodes with C+N− correspond to nouns that head
complex NPs and should thus induce complex NP
island effects. There are a set of seven nouns in
the data that have this featurization (rumor, claim,
etc.). For simplicity we assume all such nouns have
the same projection probability and treat this as a
single parameter.

Finally, nodes representing wh-movers and land-
ing sites were set to always project. The latter
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includes interrogative C-heads and relative clause
C-heads with feature string T+wh+C− (recall that
we use wh both for wh-movement and for rela-
tive clause movement). The former consists of
wh-pronouns with the feature string D−{wh−}).

Because fitting the model is stochastic, we per-
formed training ten times in order to determine
whether the probabilities reliably converge to the
same values.

4.2 Results

For our four features of interest, learned projec-
tion probabilities showed little variance across the
ten runs. Each converged within 10−3 to the same
projection probability. This aligns with the sugges-
tion in Mayer (2021) that the optimization function
when fitting a pTSL model in this way is concave.
We report projection probabilities and scores aver-
aged across the ten runs.

Table 1 shows the projection probabilities
learned by the model for the four nodes of interest.
Recall that higher projection probabilities increase
the likelihood of these nodes projecting to the wh-
tier and intervening between a tier mother with
wh+ and its tier daughter with wh−. Therefore,
higher projection probabilities should correspond
to lower ratings for the relevant island structures.
The relative projection probabilities show that if is
mostly likely to act as a blocker, that is least likely,
and complex NPs and whether are intermediate
between the other two.

The mean human scores and the mean model
scores for each sentence type are shown in Fig. 2.
The model scores capture several important aspects
of the human judgments: (a) extracting out of a
matrix clause is uniformly judged to be better than
extracting out of an embedded clause; (b) extract-
ing out of an embedded clause over an island pro-
duces the expected superadditive effects; and (c)
the relative badness of the five types of island ex-
traction (the right point in the red lines in Fig. 2)
matches the relative badness reflected in the human
judgments.

Node Projection probability
that :: T+C− .46
C+ N− .63
whether :: T+C− .73
if :: T+C− .89

Table 1: Mean projection probabilities

There are a number of aspects of the data the
model fails to capture. First, it over-predicts this
superadditivity in the case of relative clause adjunct
islands, where it was not found in the human data.
Second, it does a poor job of predicting the relative
badness of forms in the matrix extraction condition.
These sentences are not ungrammatical in terms
of the wh-tier, and the model accordingly assigns
them all probabilities of 1 in these cases. In particu-
lar, humans generally assign worse scores when an
island structure is present, even if it is not a blocker,
while the model cannot do so. Finally, although
it captures the general tendency for extraction out
of embedded clauses to be worse than extraction
out of a matrix clause, the relative effect of this in
different island types is not captured by the model.

5 Discussion

Assessing the performance of the probabilistic TSL
model for the English island data from Sprouse
et al. (2016) is a sutble affair because there are
so many factors that could influence what Likert
scores participants assign to specific stimuli. Syn-
tactic constraints, processing difficulties, lexical
frequency, semantics, pragmatics, and information
structure may all be involved. By limiting our atten-
tion to only the phonetic exponents of lexical items
and their feature make-up, we are asking the model
to capture the experimental data as well as possible
with only syntactic information. In that respect, the
model succeeds as it gives rise to super-additivity,
which has been argued to be the primary reflex of
syntax in experimental island effect data.

Admittedly the model does not do a perfect job,
and future work is needed to fully explore these
issues. For example, the model overpredicts super-
additivity in relative clause adjunct islands. This
raises the question whether alternative analyses of
relative clauses would have fared better in this re-
spect, and if not, what non-syntactic factors could
explain the less pronounced nature of superaddiv-
ity in these constructions. Similarly, although the
model is able to capture superadditivity and the
relative badness of the types of island violations
considered here, it does poorly in predicting the
variability in judgments of the non-island cases
and the short forms of island cases. Once again
this might indicate the need for a revised syntactic
analysis, or point towards non-syntactic factors.

Crucially, these non-syntactic factors are not nec-
essarily beyond the purview of the pTSL model —
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Figure 2: Human judgments from Sprouse et al. (2016) (top) and mean model judgments after training (bottom)

any information that can be lexicalized can be taken
into account by the tier projection function. For
example, an analysis that encodes topic and focus
as movement of phrases to specific syntactic po-
sitions furnishes specific movement features that
encode the topic-focus distinction and thus could
serve as parameters for the tier projection and the
constraints that apply on tiers. Hence it is important
not to equate the syntax-only approach we took in
this paper with the limits of what can be modeled
with pTSL.

In relation to this, it is also important to remem-
ber that the probabilities themselves might encode
remnants of non-syntactic factors and hence don’t
give us a “pure” picture of the role of syntax in is-
land effects. It is likely that the learned projection
probabilities shown in Table 1 encode some effects
related to processing rather than syntax. In particu-
lar, that has a relatively high projection probability
despite it not being considered a syntactic blocker.
The model has likely assigned this probability in or-
der to encode the decrease in acceptability between
extraction out of a matrix clause and extraction out
of an embedded clause. Integration of the model
proposed here with other models, e.g. the process-
ing approach of De Santo (2020) to gradience in
adjunct islands, has the potential to shed more light
on whether effects such as this should be modeled
as part of the grammar.

Our primary goal was to show that the switch
from categorical TSL (and the categorical syntactic
analyses that can be expressed this way) to a prob-

abilistic, gradient model is easy and empirically
viable. The task of adequately modeling island ef-
fects with pTSL is much larger than this, but we are
confident that pTSL will be able to provide novel
insights in this domain.7

6 Conclusion

We have presented pTSL as a simple probabilistic
extension of TSL syntax that makes it easy to add
gradience to existing syntactic analyses (provided
they can be stated in terms of categorical TSL).
The key idea of this extension is the switch to a
probabilistic tier projection function. We discussed
island effects as an example of the empirical viabil-
ity of this approach: the combination of a standard
Minimalist analysis with probabilistic tier projec-
tion is able to replicate the superadditive effects of
extraction out of islands and the gradience in the
relative badness of different types of island con-
structions.
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Abstract

In this study I probe the combinatoric prop-
erties of Japanese morphemes that participate
in compounding. By representing morphemes
through box embeddings (Vilnis et al., 2018;
Patel et al., 2020; Li et al., 2019), a model
learns preferences for one morpheme to com-
bine with another in two-member compounds.
These learned preferences are represented by
the degree to which the box-hyperrectangles
for two morphemes overlap in representational
space. After learning, these representations
are applied to test how well they encode a
speaker’s knowledge of the properties of each
morpheme that predict the plausibility of novel
compounds in which they could occur.

1 Introduction

In Japanese, compounding is very productive, par-
ticularly when the morphemes involved have a
Sino-Japanese reading. The NHK Pronunciation
Dictionary (NHK, 2016) lists 26,867 two-member
compounds, in which 2,901 different morphemes
occur as morpheme 1 and 2,740 morphemes occur
as morpheme 2. The compounds are listed with
their kanji characters, followed by their pronun-
ciation in Japanese katakana syllabic characters.
Following Nagano and Shimada (2014), I adopt
the hypothesis that Japanese kanji characters cor-
respond with morphemes, even when the pronun-
ciation of the character might differ in different
contexts or when there is what Nagano and Shi-
mada (2014) refer to as a ‘dual reading’ for a char-
acter, with one ‘kun’ reading as a native Yamato
Japanese word and the other ‘on’ reading with an
unrelated Sino-Japanese pronunciation borrowed
from Chinese.1 An example is作, ‘make’, whose

1As shown in Nagano and Shimada (2014), morphemes or
combinations of them in a Sino-Japanese vs. a native Yamato
reading occur in complementary grammatical contexts: “[A]
kanji graph loses its dual pronunciation once it is given a
grammatical context.” (p. 331)

作品 saku + hin ‘goods’ = ‘production’
作家 saku + ka ‘house’ = ‘author’ (sak-ka)
作成 saku + see ‘become’ = ‘to make’
作戦 saku + sen ‘battle’ = ‘strategy’
作文 saku + bun ‘sentence’ = ‘composition’
作曲 saku + kyoku ‘music’ = ‘composed music’
作業 saku + gyoo ‘business’ = ‘work’ (sa-gyoo)
作者 saku + sya ‘person’ = ‘author’

Table 1: Eight compounds beginning with saku, 作,
‘make’

Sino-Japanese pronunciation is saku and which oc-
curs as a native Yamato morpheme in verb tukuru
作る ‘make’. It occurs as the first member of 28
two-member compounds listed in NHK (2016) of
which eight examples are shown in Table 1.

For many of these compounds, the combina-
tion of morpheme 1 with morpheme 2 is trans-
parently compositional. For example, the meaning
‘production’ of the first example in Table 1 fol-
lows logically from ‘make’ + ‘goods’. But many
other compounds such as親切 sin-setu ‘kindness’,
formed from親 sin ‘parent’ and切 setu ‘cut’, are
not compositional in any obvious way, unless the
constituent morphemes are taken to be polysemous,
with sub-meanings that do in fact compose to de-
note, in this example, ‘kindness’.2 The question
I tackle here is, what kinds of representations of
morphemes might a speaker have that enables them
to predict whether morphemes can combine in a
compound word? Especially in cases where a mor-
pheme is bound, and thus never occurs in isola-
tion, deduction of its contribution to compounds
it occurs in becomes a matter of its relation to
other morphemes it combines with rather than some
meaning that it may or may not have on its own.3

2Nelson (1987) lists ‘intimate, familiar, friendly’ and ‘kind’
among many sub-meanings for the two kanji characters, re-
spectively.

3As elaborated on by Nagano and Shimada (2014), a Sino-
Japanese reading of a morpheme, whether it also has an ad-
ditional Yamato reading or not, generally acts like a bound
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I thus investigate how learned representations of
morphemes can predict how plausible their combi-
nation would be in a compound word.

The paper is organized as follows. In §2 I in-
troduce Box Embeddings, which I use to represent
morphemes in compounds. In §3 I describe a model
trained to learn Box Embeddings of Japanese mor-
phemes that occur in compound words that is based
on which morphemes occur or do not occur to-
gether. In §4 I give details of the model’s method
of training. In §5 I discuss what the trained model
predicts about hypothetical compounds that were
not seen in training. In §5.1 I probe further into the
kinds of associations between morphemes that the
model finds in training. In §6 I show graphically
what some examples of overlap of box embeddings
look like in two dimensions. In §7 I discuss the
issue of morpheme frequency and to what extent
it can be an indicator of how perspicuously two
morphemes can combine in a compound. In §8 I
address the question of exactly what the model is
learning about the morphemes it is trained on. In
§9 I present results of some further testing of hypo-
thetical compounds that the model predicts to have
the most ideal choice of a morpheme 2 to combine
with each of the morpheme 1s in the corpus. In
§10 I compare the box embedding model with a
model trained on simple vector embeddings. In §11
I conclude with a discussion of what the next steps
would be in continuing the current investigations.

2 Box Embeddings

In a manner analogous to the way that word em-
beddings are based on the context in which a word
is found (e.g., ‘Word2vec’, Mikolov et al. (2013)),
here I represent morphemes that occur in Japanese
compounds according to what other morphemes
they occur with in compounds. To do so, I use Box
Embeddings (Vilnis et al., 2018), which represent
entities as hyperrectangles in a space of n dimen-
sions. A box is defined in Chheda et al. (2021)
as the Cartesian product of closed intervals and
can also be defined by zi and Zi, the minimum and
maximum coordinates of the box in each dimension
i. Box embeddings have advantages over simple
vector representations. As discussed by Vilnis et al.
(2018), the relation between two hyperrectangles
is asymmetric, unlike the relation between two vec-
tors. As shown in two dimensions in Figure 1, the

morpheme that only occurs in combination with another mor-
pheme in a compound.
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Figure 1: Overlap of boxes A and B in two dimensions

degree to which element A entails element B can
be expressed as the amount of the volume of the
box or hyperrectangle representing A that occurs
in the box representing B, or vol(A∩B)

vol(B) .
This differs from the degree to which B entails

A. Applying this to two members of a bimorphemic
compound M1M2, we can distinguish the degree to
which M1 as a first member entails the occurrence
of M2 as the second member from the opposite
implication. We could also combine the two impli-
cations for prediction by averaging the implication
from M1 to M2 with the implication from M2 to
M1.

A second advantage of box embeddings given
by Vilnis et al. (2018) is that they can capture neg-
ative correlations between concepts. In our case,
for reasons given in §3, we want to train a model
based not just on which M2 can occur with each M1

in a compound and vice-versa, but also on which
choices of M2 do not occur with M1.

See Vilnis et al. (2018); Patel et al. (2020); Li
et al. (2019) for detailed discussion of the theoreti-
cal basis of box models and how they compare to
other related models that are based on geometric
structures.

3 The task

Our task is to train a model to learn box embed-
dings of morphemes that occur in two-member
Japanese compounds based on (a) combinations
of morphemes that occur together and (b) random
pairs of morphemes that do not occur together in
any compound. The training objective for occur-
ring combinations is to have their box embeddings
overlap as much as possible – that is for vol(M1∩M2)

vol(M1)

and vol(M1∩M2)
vol(M2)

to each approach 1.0. In the case of
non-occurring combinations, we want these inter-
secting volumes to approach 0. I use the corpus that
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was described on page 1 of 26,867 two-member
compounds extracted from NHK (2016) in which
2,901 different morphemes occur as M1 and 2,740
morphemes occur as M2. Morphemes are repre-
sented orthographically by Japanese kanji charac-
ters as in the examples in Table 1. Training on
randomly-chosen non-occurring combinations of
morphemes in an equal number to occurring combi-
nations is essential to prevent the box embeddings
of morphemes from expanding to the extent that
all the morphemes would coincide in the represen-
tational space. If this were to happen, the model
would incorrectly predict that every M1 can occur
with every M2 and vice-versa. Because there are
2, 901 × 2, 740 or almost 8 million possible com-
binations of M1 and M2, in 10 million data points
of training, we expect each hypothetical combina-
tion to be trained on only slightly more than once
on average, whereas each existing compound will
have been trained on in each implicational direc-
tion 107 (number of updates) ÷26, 867 (number of
compounds) or about 372 times on average. This
means that even though one non-occurring com-
bination was trained on once for every occurring
combination, in testing, a randomly chosen non-
occurring combination of M1 and M2 will have had
negligible or no training based on that particular
combination as a non-occurring compound (which
would seek to make their boxes disjoint); rather the
volume overlap for that combination that appears
in testing will have resulted from training more
generally on what other morphemes each of that
M1 and M2 occur or do not occur with.

On the hypothesis that these learned embeddings
of morphemes inform how well they combine with
each other to form a compound, the greater the
intersecting volume ratio of two embeddings, the
more we expect their combination to be plausible.

4 Training

Using the Pytorch implementation of the open-
source library for box embeddings in Chheda et al.
(2021), I trained the corpus data with an embedding
dimension of 16, a learning rate of 0.01 and a mean
squared error loss function. On each of 10 million
updates, a randomly chosen occurring compound
and a random combination of morphemes that do
not occur were each chosen. For each, prediction
of M2 from M1 and M1 from M2 are made sepa-
rately. If a morpheme can occur both as an M1 and
an M2, it is given a separate embedding for each.

The loss is the squared difference between the vol-
ume overlap ratio and 1.0 for existing compounds
and 0.0 for non-occurring compounds.

After training, the volume overlap ratio scores
for the actual compounds vary from low scores of
0.122 (M2 from M1) and 0.111 (M1 from M2) up
to high scores above 0.99. We find that the com-
pounds whose score comes close to 1.0 in train-
ing tend to be compounds for which each mem-
ber occurs in no other compounds in the database.
This means that in training, the embeddings for
each member will be drawn to overlap with each
other without any countervailing forces pulling
them away because of an occurrence with other
morphemes. Their training on non-occurring com-
pounds will have pulled their embeddings in ran-
domly diverse directions whose net effects should
cancel out and thus not move the two embeddings
away from each other. On the other hand, com-
pounds with low scores will tend to have at least
one member that occurs in many compounds. An
example is上巳 zyoo-si, ‘March 3rd dolls festival’
(lit. ’upper’ + ’sixth sign in the Chinese zodiac’),
with a relatively low score of 0.124 for predicting
M2 from M1. M1 上 zyoo ‘upper’ occurs as the
first member of 90 other two-member compounds
whereas巳 si occurs in only one other compound.
The other 90 morphemes that combine with M1

上 zyoo will pull its embedding in a very differ-
ent direction from where巳 si pulls it, given the
idiosyncratic meaning of this apparently atypical
combination of morphemes. The average scores for
real compounds are 0.652 for predicting M2 from
M1 and 0.651 for predicting in the other direction.

For randomly chosen compounds in which a dif-
ferent morpheme was substituted for either M1 or
M2, one compound scores above 0.9 for predict-
ing M2 from M1. 心物 ’heart" + ’thing’ scores
0.927 predicting M1 from M2. 心 occurs in 46
compounds and物 in 152. Not only does物 butu,
motu4 ‘thing’ combine as a M2 with many M1s,
but心 ‘heart’ has an existing compound心事 sin-
zi with morpheme事 which also means ‘thing’ but
with a more abstract meaning than物. Moreover,
there are 24 M1s that form compounds with both
物 and事, one example with M1変 hen ’disaster;
strange’ being 変物 hen-butu ‘eccentric person’
and変事 hen-zi ‘accident, disaster’. This example
illustrates the way that the model can capture par-

4In some compounds, 物 has the native Yamato reading
mono
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allel analogies. Here, it predicted the possibility of
a compound A+X if there exists a compound B+X
and there exist many pairs of compounds of the
form (A+Y, B+Y). Although心物5 is not listed in
NHK (2016), an internet search finds it occurring
on a page of Japanese text at University of Virginia
Library.

At the opposite end of the scale, for刎頚 hun-
kee ‘decapitate + neck = decapitation’, when 呵
ka ‘scold’ is substituted for M2, the score is 0.061.
All the morphemes involved participate in only one
compound in the corpus. For the real compound,
the score is high at 0.989 and 0.99 for prediction
in each of the two directions. This happens for
reasons that are similar to those given above for上
巳 zyoosi. Hypothetical刎呵 ‘decapitate’ + ‘scold’
gets a low score because neither morpheme gets an
opportunity to associate with the other during each
of the single training instances that each morpheme
participates in, the one for呵 ka ‘scold’ being啖
呵 tan-ka ‘defiant words’.

5 Testing hypothetical compounds

After training the model, I tested 1000 random
combinations of morphemes that occur in the real
compounds but do not occur together. The scores
based on prediction of M1 from M2 ranged from
0.0518 at the low end to 0.7817 at the high end. Ta-
ble 2 shows, in ascending order of scores, relevant
data for the bottom 10 and top 10 among the 1000
hypothetical compounds tested.

Among the 10 lowest scoring compounds, only
one shows up on a Google search: 6.英瑚 e-ko is
a possible girl’s name found at NazukePON. The
rest yield “No results found”.

Among the 10 highest scoring compounds, 7 are
found on the following Japanese web pages.6

992.餅雪 motu-yuki is a pen name at Pixiv.
993.廃話 is a song title at More Records.
994.丁事 is at Open food facts7

996. 荒分ara-bun is personal name at Internet
Archive.
997.着書 is at Cultural Japan8 with apparent mean-

5This hypothetical compound could be pronounced either
with a Sino-Japanese pronunciation such as sin-zi or a native
Yamato one as kokoro-koto.

6Some of these combinations of characters also show up on
Chinese language webpages. These hits were not considered.

7Possible meanings for 丁 given at Nihongo Master are
“street, ward, town, counter for guns, tools, leaves or cakes of
someth[sic], even number, 4th calendar sign.”

8This page was accessible on Chrome but throws an error
when accessed via Firefox.

M1M2 Score Freq Freq Glosses
M2 → M1 M1 M2 M1, M2

Shaded compounds were found in web pages.
1.玻伜 0.052 1 1 glass + son
2.駱墳 0.065 1 1 white horse

+ tomb
3.忌齪 0.077 5 1 mourning

+ grating teeth
4.代渫 0.077 40 1 era + dredging
5.茨褓 0.082 1 1 thorn + diaper
6.英瑚 0.082 24 1 English + coral
7.全堝 0.084 73 1 all + crucible
8.裲吹 0.084 1 3 ancient robe

+ breathe
9.堅躙 0.087 11 1 strict + trample
10.英捕 0.089 24 2 English + capture
...
991.刑略 0.6695 7 26 punish + abbreviate
992.餅雪 0.680 3 32 rice cake + snow
993.廃話 0.687 39 47 abolish + speak
994.丁事 0.695 12 100 * + thing
995.制火 0.709 17 59 law + fire
996.荒分 0.720 23 70 rough + part
997.着書 0.730 36 83 wear + write
998.湯草 0.736 28 43 hot water + grass
999.仕品 0.745 11 41 serve + goods
1000.逐額 0.782 6 26 **

Table 2: Bottom 10 and top 10 scores for model predic-
tions of 1000 hypothetical compounds

ing ‘postal letter’.
998.湯草 is at amazon.com as the name of a piece
of pottery.
999.仕品 is at The Japanese Association of Man-
agement Accounting with meaning ‘project’.
∗∗逐額 combines varied abstract meanings “pur-
sue, drive away, chase, accomplish, attain, commit”
+ “forehead, tablet, plaque, framed picture, sum,
amount, volume.”

Given that we see a much higher incidence of
hits in web searches among the high-scoring as
opposed to low-scoring compounds, these limited
results give a preliminary indication that the vol-
ume overlap ratio scores determined by the model
tell how perspicuous the combination of two mor-
phemes in a compound might be.9

9A reviewer asks whether many of the high scoring com-
pounds are “simply names”, apparently questioning whether
names are less constrained than other words in what mor-
phemes can combine together. There is no obvious answer to
this question, given that many names in the language suggest
some interpretable meaning: e.g., oo-saka ‘Osaka’ ‘big slope’
or kuro-sawa ‘Kurosawa’ ‘black swamp’. Conversely, many
lexical compounds combine morphemes in ways that might
seem implausible – e.g., kei-setu 螢雪 ‘firefly’ + ’snow’ =
‘diligent study’.
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Checking for internet search hits needs to be
done manually by searching for the sought string
of two characters on a page resulting from a Google
search. One needs to sure of a number of things
when searching: first, that the two characters are
not, for example, occurring at the end and begin-
ning of two consecutive phrases or sentences. One
also needs to be sure that an M1M2 combination
one is looking for is not occurring in an environ-
ment XM1M2Y , where XM1 forms a compound
and M2Y forms a compound with an overall mor-
phological structure {(XM1)(M2Y )}. In such a
case M1M2 does not form a compound itself. And
one also needs to be sure that the webpage one is
checking is in Japanese and not Chinese, where
the sought-after character sequence could also oc-
cur. Doing automated web-search results would
provide us with much more data but it is question-
able how accurate such data would be with respect
to determining that a sought-after candidate com-
pound actually occurs as a compound. As a result,
I consider these web-search results as preliminary
and show here only 10 examples from the bottom
and top of the scale that were given a manual web
search.

If we test these 20 examples for tetrachoric corre-
lation between boolean variables ‘yes/no for inter-
net hit search’ and ‘occurs in top 10 vs. bottom 10
scores’ we get a correlation result of 0.85. It should
be noted that this data is underlyingly continuous:
that is, not only are the score values continuous but
the degree to which a hypothetical compound can
be considered possible is also gradient, whether
it is measured by number on internet hits or by
native-speaker judgement scores.

Another problem with using internet search re-
sults as a test for the viability of a hypothetical
compound is that whether or not such a compound
is found does not necessarily determine how plau-
sible it is. There could be some combinations that
are not found that nevertheless would be judged
possible by native speakers. On the other hand,
some combinations that do occur are not necessar-
ily forms that would enter general circulation in the
language.10 Accordingly, we can consider these
results as preliminary evidence for the hypothesis
that the model is learning, through box embeddings
of morphemes, representations that can predict how
well two morphemes can combine to form a com-
pound word.

10This point was also noted by a reviewer.

5.1 Analysing the score results

I now investigate what kinds of associations be-
tween compound words and morphemes that the
model finds in training might lead to high or low
scores. If we take third-highest scoring hypotheti-
cal compound湯草 yu-kusa11 ‘hot-water + grass’
as an example, there are 56 real compounds for
which the M1 also forms a real compound with
草 kusa ‘grass’ and the M2 also forms a real com-
pound with 湯 yu ‘hot water. An example is 青
葉 ao-ba (green + leaf) ‘fresh leaves’ (also a pla-
cename) where 青 ao ‘green’ combines with 草
kusa in青草 ao-kusa ‘green grass’ and葉 ha ‘leaf’
combines with湯 yu ‘hot water’ in湯葉 yu-ba12

‘tofu skin’.

青葉 ao-ba real green + leaf
青草 ao-kusa real green + grass
湯葉 yu-ba real hot water + leaf
湯草 yu-kusa hypoth. hot water + grass

This means that 湯 yu ‘hot water’ will tend to
learn an embedding that is similar to the other M1s
that combine with a common set of M2s. Similarly,
M2 草 kusa ‘grass’ will learn an embedding that
is similar to the other M2s that combine with this
common set of M1s. These sets of M1 and M2

embeddings will move closer to each other during
training when many members of the two sets com-
bine with each other in compounds, as is the case
here. Clearly, having a large number of compounds
in which each of 湯 yu ‘hot water’ and 草 kusa
‘grass’ occur increases the opportunity for this kind
of association to occur, but frequency is not the
only factor. For example, hypothetical compound
追竿 (‘chase’ + ‘pole’)13 which has reasonably
good morpheme frequencies of 39 and 6, got low
scores from the model of only 0.154 and 0.237. If
we search the corpus for other compounds in which
the M1 forms compounds with竿 sao ‘pole’ and
M2 forms compounds with 追 oi/tui ‘chase’, we
find no such compounds. 竿 sao ‘pole’ as an M2

forms compounds in the corpus with morphemes
掛 kake ‘hang’, 竹 take ‘bamboo’, 鳥 tori ‘bird’,
秤 hakari ‘balances’,旗 hata ‘flag’,黐 and moti

11This compound would be pronounced on-soo in a Sino-
Japanese reading and yu-kusa in a native Yamato reading.

12The occurrence of an initial [b] on ha ‘leaf’ in the com-
pound is a case of rendaku voicing, where /b/ is the voiced
version of /h/.

13This compound is found on one single Japanese webpage
at Excite Blog of haiku poems, where it appears to be more
like a poetically licensed contraction of ‘chased by a pole’
than an actual compound.
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‘bird-lime’ as M1s but none of these forms a com-
pound with any of the 39 M2s that追 oi/tui ‘chase’
combines with. This demonstrates that morpheme
frequency is not the sole determiner of how well
morphemes combine to make compounds. Also
important are the associations between morphemes
(or lack of them) that develop when morphemes oc-
cur together. The present model seeks to discover
and encode those associations.1415

6 Plotting overlap of morpheme
embeddings

The plots in Figures 2 and 3 show graphically how
the box embeddings of 18 of the above 20 pairs of
morphemes overlap in the first 2 of 16 dimensions.
Blue boxes are M1s and red boxes M2s.16

Because the plots show only the first 2 of 16
dimensions, the ratio of overlap volume to the vol-
ume of M1 across all 16 dimensions will be lower
than it appears in the plots. If the overlap ratio
in each of 16 dimensions were 0.8, the overlap ra-
tio of the total volume would be 0.816 = 0.028.
Additionally, we don’t see an exact progression in
fraction of overlap as we proceed from the lowest
to the highest scoring pair.17

14A reviewer suggests that an approach using collaborative
filtering might be useful here. Arguably, the kinds of associa-
tions that develop in learning these embeddings would have a
similar effect. As a further step, it would be useful to compare
the present approach to one in which each morpheme is given
a similarity score to another morpheme based on how many
of the morphemes that each combines with in compounds are
shared between the two. (See §8 for some initial steps in this
direction.)

15A reviewer notes that there is an unlimited number of
ways that the head and non-head in a two member compound
could have a meaning relation and questions whether this
model can "capture the range of possible meaning relations.” It
is not clear, though, that the precise meaning relation between
M1 and M2 needs to be captured in order to predict whether
such a compound could reasonably exist. What the model is
learning is not necessarily the semantics of each morpheme but
rather associations between morphemes that combine similarly
with other morphemes. (See §8 below for further discussion.)
For example, among the 56 above-mentioned compounds,
the four whose M1 is 下 ‘under’ give the same adjectival
meaning to下, so the associations between similarly behaving
morphemes seems to be more important there than precise
meaning relations.

16One reviewer said that Figure 2 is “not that informative
without knowing what the M1 and M2 scores are in each case.”
This comment misses the fact that scores only apply to the
intersection of boxes of two morphemes and that morphemes
themselves do not have scores in this model.

17Another reason that our calculations of volume will turn
out to be a bit different from what is suggested by these graphs
is that our code implements a SOFTVOLUME function in the
box embedding library of Chheda et al. (2021) that was devel-
oped by and discussed in Li et al. (2019) for dealing with the

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2: 9 lowest scoring hypothetical compounds
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Figure 3: 9 highest scoring hypothetical compounds

7 Correlation with frequency?

Among the 10 lowest scoring and 10 highest scor-
ing examples in Table 2, the lowest scorers all
have one morpheme with a frequency of 1 and
the highest scorers tend to have more frequently
occurring morphemes. Can morpheme frequen-
cies alone predict the viability of their combination
in a compound? There are some combinations
of relatively low frequency morphemes that score
relatively high, one example being 蓮羽 ren-ha
‘lotus + wing’, which is the 31st highest scoring
randomly composed compound in a list of 1000
random compounds, with frequencies of 6 and 7
for morphemes蓮 ren ‘lotus’ and羽 ha ‘wing’ .蓮
羽 ren-ha shows up on a Google search at Japanese
Names Info as a possible boy’s name. We also find
the occasional low-scoring compound with at least
one relatively high morpheme frequency: e.g.,追
竿 ‘chase’ + ‘pole’ in §5.1 above, scoring 0.154

problem of getting disjoint boxes to overlap in training.
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and 0.237 and frequencies of 39 and 6.
I tested scoring based on morpheme frequency

with 1000 random out-of-corpus combinations of
an M1 and an M2 and ordered them by the sum of
the two morpheme frequencies. Results are shown
in Table 3.

M1M2 FM1 + FM2 Glosses
Shaded compounds were found in web pages.

1.嗜嬪 2 taste + bride
2.誅違 2 death penalty + difference
3.闖籟 2 inquire + sound of wind
4.僭玄 2 arrogant + mysterious
5.姻嚇 2 marriage + menacing
6.齲芒 2 decayed tooth + pampas grass
7.蛹蟀 2 chrysalis + cricket
8.猩捺 2 orangutan + print
9.菰咎 2 straw mat + blame
10.廷忠 2 courts + loyalty
...
991.不闇 114 not + darkness
992.秤色 118 scales + colour
993.門金 118 gate + money
994.不関 120 not + barrier
995.公球 127 public + ball
996.水谷 134 water + valley
997.残日 135 remain + day
998.孜子 146 industrious + child
999.小諜 154 small + spy
1000.閲人 168 inspection + person

Table 3: Bottom 10 and top 10 scores for model predic-
tions of 1000 hypothetical compounds based on com-
bined frequency of morphemes

None of the compounds in the lower-frequency
section of the list was found on a web search.
Among the 10 highest-scoring compounds, the fol-
lowing 4 were found in web searches:
992. at Agriknowledge meaning ‘scale colour’.
994. at The Japanese Society of Chemotherapy
with meaning ‘indifferent’.
996. is a common surname.
997. at Nara Prefecture meaning ‘remaining days’.
1000. as a personal name etu-to at Nazuke Pon

This is not a large statistical sample for compar-
ing with the results from the box embedding model
in Table 2 but four hits out of 10 in Table 3 is only
marginally different from 7 in table 2, so further
investigation is needed to determine whether mor-
pheme frequency is as good a predictor as learned
box embeddings.18

18A reviewer suggests that for further investigation, it might
be better to count morpheme frequency based on how often a
kanji character occurs in actual usage rather than in a lexicon
of two-symbol words.

8 Exactly what is the model learning?

Following up on footnote 15, it is not clear that
what the model is learning is at all the semantics of
each morpheme. To test this, following Williams
et al. (2020), and using the k-Nearest-Neighbour
Information Estimator, (Gao, 2018), I tested the
mutual information between the learned box em-
beddings for M1s and each of (a) word2vec embed-
dings of the same morphemes, (b) the phonological
information for each morpheme based on the hid-
den layer of a LSTM that was trained to predict its
phonological string, (c) representations of the kanji
characters as combinations of basic radical shapes
taken from Breen (2020) and (d) a matrix of sim-
ilarity scores between pairs of morphemes based
on the number of M2s that occur with both divided
by the total number of M2s that occur with ether
of the two. The results suggest that semantics, to
the extent it is encoded by word2vec embeddings,
is not what the model is learning, with similarity
scores and phonology showing the highest mutual
information with the box embeddings.

Representations MI
Word2vec with boxes 0.008
Phonology with boxes 0.129
Radicals with boxes 0.011
Similarity with boxes 0.229

Table 4: Mutual information calculations

9 Ideal pairings of M2 with M1

Table 5 below shows the top scoring 60 compounds
in which an M2 gets the highest volume-overlap
ratio score with an M1 in an out-of-corpus combi-
nation. Here, 45 out of 60, or 75% of the pairings
are found in web searches. The last column shows
the url of a page that contains the pairing of M1

and M2 if such a page was found. These results
are not statistically conclusive but suggest that box
embeddings that are learned on the basis of known
morpheme combinations in compounds do contain
information about morphemes that can predict how
well they can combine to make a compound not
seen in training.
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M1M2 Score Possible Gloss Gloss Web link
pronunciation of each of compound if found

1.潰脹 0.9268 kai-tyoo crush + dilate pen name Pixiv
2.東岸 0.9075 too-gan east + coast ‘east coast’ Nihongo Master
3.旺賑 0.9049 oo-sin/kyoo-sin flourishing + flourishing
4.地風 0.9044 ti-kaze earth + wind personal name Nazuke Pon
5.現用 0.9009 gen-yo currently + used ‘currently used’ NihongoMaster
6.部主 0.9006 bu-syu part + master Buddhism
7.国人 0.8976 koku-zin country + person ‘indigenous person’ Japandict
8.人風 0.8975 zin-huu/nin-huu person + wind a pen name Tik Tok
9.空山 0.8972 sora-yama sky + mountain a family name Pinterest
10.重作 0.895 zyuu-saku heavy + work ‘heavy work’ Your katakana
11.手面 0.8924 te-zura hand + surface name Japanese Names Info
12.別国 0.8909 betu-koku other + country ‘another country’ Asian Historical Records
13.下面 0.8875 ka-men under + surface ‘underside’ Romaji Desu
14.三風 0.8873 san-puu three + wind store name in Koriyama Yelp
15.自学 0.887 zi-gaku self + study ‘self-study’ JapanDict
16.上幅 0.8865 zyoo-huku upper + width ‘upper width’ BigLemon
17.全作 0.8852 zen-saku all + work ‘whole work’ JLearn
18.難意 0.8846 nan-i impossible + thought
19.多調 0.8845 ta-tyoo many + tone ‘polytonal’ JapanDict
20.一作 0.8841 is-saku one + make family name Worldcat
21.懊瑣 0.8837 oo-sa distress + small, chain
22.毎春 0.8811 mai-haru every + spring ‘every spring’ Weblio
23.有学 0.88 u-gaku exist + study Buddhist term Japanese Wiki Corpus
24.当位 0.8795 too-i correct + rank
25.内家 0.8791 nai-ka inside + house
26.外学 0.8787 gai-gaku outside + study
27.出部 0.8777 de-bu leave + part family name Your Katakana
28.美種 0.8768 yosi-tane beautiful + seed name Pon Navi
29.心体 0.8752 sin-tai heart + body a name of a performance Taka Takiguchi
30.回戦 0.8747 kai-sen times + battle ‘match, game’ Romaji Desu
31.学社 0.8736 gaku-sya study + company Pinterest
32.家家 0.8733 ie-ie house + house ‘every house’ Romaji Desu
33.軍費 0.8731 gun-pi war + expenditures ‘war funds’ Japandict
34.中面 0.8728 naka-tura middle + surface family name National Cancer Centre
35.本所 0.8725 hon-syo main + office ‘main office’ JapanDict
36.神利 0.8721 kami-ri divine + profit family name Fate Grand Order Wiki
37.各産 0.8721 kaku-san each + product ‘each product’ LP Gas
38.二端 0.8716 ni-tan two + edge
39.仏名 0.8712 butu-myoo Buddha + name ‘Buddha’s name’ JapanDict
40.用利 0.8702 yoo-ri use + profit
41.大心 0.87 tai-sin big + heart boy’s name Japanese Names Info
42.同利 0.8697 doo-ri same + profit
43.通意 0.8696 tuu-i pass through + idea ‘meaning’ Cultural Japan
44.無調 0.8689 mu-tyoo not + tone ‘atonality’ Japan Wikipedia
45.良道 0.8683 yosi-miti good + path name Nazuke Pon
46.遠座 0.8678 en-za distant + seat family name Japanese Names Info
47.小風 0.8678 ko-huu small + wind ‘breeze’ Tanoshii Japanese
48.雑論 0.8668 gen-ron miscellany + discussion ‘miscellaneous remarks’ Genron blog
49.産部 0.8666 san-bu product + part
50.経科 0.8664 kee-ka sutra + department
51.議略 0.8663 gi-ryaku opinion + abbreviation
52.土屋 0.8658 tuti-ya earth + door family name Lingq
53.西辺 0.8644 nisi-be west + sides family name Japanese Names
54.金屋 0.8638 kana-ya metal, money + room place name found in numerous locations
55.定産 0.8633 tee-san fixed + production ‘regular production’ Issu
56.高食 0.8632 koo-syoku high + food
57.主話 0.863 syu-wa master + speak ‘main discourse’ Spotify
58.総訳 0.8623 soo-yaku full + translation ‘general translation’ CiNii
59.楽書 0.8623 raku-gaki easy + write ‘graffiti’ JapanDict
60.会学 0.8622 kai-gaku meet + study

Table 5: Top 60 scores for model predictions of the best scoring hypothetical compound for each M1 in the corpus
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10 Comparison with a vector embedding
model

For comparison, I ran the same data through a
model that used simple vector embeddings rather
than box embeddings. Since each dimension of the
16D box embeddings consists of two values: one
for each of zi and Zi, (the maximum and minimum
coordinates of the box in each dimension), to make
the comparison fair I used an embedding dimen-
sion of 32 for vector embeddings. The model was
trained on 9 million data points in the same way as
with the box embeddings. The score of a combi-
nation of two morphemes was the sigmoided dot
product of their two embedding vectors. The ob-
jective was to bring the score for a real compound
close to 1.0 and for a non-occurring one to 0.0.

Testing the learned embeddings on a random
sample of 1000 out-of-dataset compounds as was
done for trained box embeddings, we find that
among the top 40 scorers, only 4 yield web search
hits, and out of the top 10, only the last one (牛
流 go-ryuu) is found in a web search. This result
compares unfavourably with the web-search results
for trained box embeddings in Table 2.

If we look at the constituent meanings among top
10 scorers just mentioned (Table 6), the semantic
juxtapositions appear no more odd than the pairs of
meanings in the bottom half of Table 2 that had hy-
pothetical compounds scored on box embeddings.
The lack of any perceptible difference in semantic
congruity between the top scorers in the two mod-
els supports the conclusion that what the model is
learning is not so much semantics but rather associ-
ations between morphemes based on co-occurrence
in known compounds as discussed above in §5.1.
A possible clue for why box embeddings might
better encode these associations than simple vec-
tors is that, as mentioned above on page 2, they
can capture negative correlations between concepts
(in this case between morphemes that tend not to
occur together) through non-overlap of boxes in a
way not possible with simple vectors (Vilnis et al.,
2018).

11 Next steps

The initial steps for training a model of box embed-
dings of morphemes that occur in compound words
are offered here as a proof-of-concept to build on
in further research. Given the limitations of evalu-
ating the model with webpage hits, a next step is
to elicit native-speaker judgements of hypothetical

Compd. Possible M1 M2

pronunciation

駐部 tyoo-bu reside part
端成 tan-see edge become
芸山 gee-san art mountain
変本 hen-bon strange origin
轆行 rok-koo pulley go
海語 kai-go ocean language
称木 syoo-moku praise tree
伏作 huku-saku prostrate make
国車 koku-sya country wheel
牛流 go-ryuu cattle method

Table 6: Constituent morphemes in top 10 scoring hy-
pothetical compounds trained on vector embeddings

compounds that are evaluated by the model. To
what extent might such judgement scores correlate
with those given by the model? I would also like to
experiment with different hyperparameters of the
model. Does increasing the dimension size of the
box embeddings enable the model to better capture
relations between morphemes or does the enlarged
space make it too difficult to get boxes to overlap
where we wish them to?

Since box lattice embeddings were first proposed
by Vilnis et al. (2018), they have been mainly used
for tasks like hypernym prediction, for example,
in Li et al. (2019). To my knowledge, the present
study is the first instance of their implementation
for the task of encoding abstract properties of mor-
phemes based on which other morphemes they as-
sociate with in compound word formation. This
study shows the promise of opening up new pos-
sibilities for how box embeddings might encode a
speaker’s knowledge of language.
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Abstract

Recent research suggests that Recurrent Neural
Networks (RNNs) can capture abstract general-
izations about filler-gap dependencies (FGDs)
in English and so-called island constraints on
their distribution (Wilcox et al., 2018, 2021).
These results have been interpreted as evidence
that it is possible, in principle, to induce com-
plex syntactic knowledge from the input with-
out domain-specific learning biases. However,
the English results alone do not establish that
island constraints were induced from distribu-
tional properties of the training data instead
of simply reflecting architectural limitations
independent of the input to the models. We
address this concern by investigating whether
such models can learn the distribution of ac-
ceptable FGDs in Norwegian, a language that
is sensitive to fewer islands than English (Chris-
tensen, 1982). Results from five experiments
show that Long Short-Term Memory (LSTM)
RNNs can (i) learn that Norwegian FGD forma-
tion is unbounded, (ii) recover the island status
of temporal adjunct and subject islands, and
(iii) learn that Norwegian, unlike English, per-
mits FGDs into two types of embedded ques-
tions. The fact that LSTM RNNs can learn
cross-linguistic differences in island facts there-
fore strengthens the claim that RNN language
models can induce the constraints from patterns
in the input.

1 Introduction

Human linguistic knowledge is complex and ab-
stract, yet children master language relatively
easily and quickly through exposure to their na-
tive language(s). A major debate centers around
whether acquiring such knowledge requires com-
plex domain-specific learning biases or whether
it can be induced from the input using domain-
general learning routines. We contribute to this
debate by investigating whether Recurrent Neural

Networks (RNNs), which are weakly biased lan-
guage models, can induce complex knowledge of
filler-gap dependencies and constraints on them
from the input in Norwegian.

Filler-Gap Dependencies (FGDs) are contingen-
cies between a displaced filler phrase and a later
gap position where the filler is interpreted (denoted
with __ throughout the paper). There are different
types of FGDs. (1-a) is a wh-FGD where the filler
wh-word is interpreted as the direct object of the
verb forged. (1-b) is a Relative Clause (RC) FGD
where the filler, the head of the RC, painting, is
interpreted as the direct object of forged within the
RC.

(1) a. They found out what the dealer forged __ using
a new technique.

b. They found the painting that the dealer forged
__ using a new technique.

FGDs have been the subject of extensive re-
search because they require complex hierarchical
generalizations about sentence structure to be inter-
preted. For example, establishing the RC FGD in
(1-b) requires (i) identifying the head of the RC as
a filler corresponding to a later empty NP position;
(ii) knowing that forged requires a direct object;
(iii) identifying the gap by recognizing the absence
of an object next to forged, and (iv) associating the
filler with the gap to form a dependency. There is
a bidirectional relationship between the filler and
the gap: fillers require gaps to be interpreted, and
gaps require fillers to be properly licensed. This
relationship can be established across a potentially
unbounded structural distance as in (2).

(2) She knows what he thought they found out the dealer
forged __ using a new technique.

FGDs are also constrained. Certain environ-
ments, called islands (Ross, 1967), block FGD
formation. Various structures have been identified
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as islands. For example, embedded questions (3-a),
sentential subjects (3-b), and adjuncts (3-c) are gen-
erally considered island domains in English.

(3) a. *What did he wonder [whether the dealer forged __]?
b. *What is [that the dealer forged __] extremely likely?
c. *What does the dealer worry [if they find out __]?

How do learners acquire island constraints?
Nativist approaches hold that acquisition of is-
lands would be impossible without innate domain-
specific learning biases due to the induction prob-
lem known as the Poverty of the Stimulus (PoS;
e.g., Chomsky 1986; Crain and Pietroski 2001).
According to this argument, the input to the learner
lacks direct evidence that islands exist. The input
is therefore compatible with conflicting hypothe-
ses about whether islands should be in the adult
target state. The fact that learners nevertheless con-
verge on the same set of island constraints has led
the proponents of the nativist approach to suggest
that innate domain-specific learning biases guide
learners to the conclusion (for example, Subjacency
Condition, Chomsky 1973).

Empiricist approaches, on the other hand, claim
that the input is sufficiently rich to support learn-
ing island constraints when coupled with domain-
general learning biases (Clark and Lappin, 2010).
This position has recently gained support from neu-
ral network simulations. Wilcox and colleagues
suggest that RNNs (and other autoregressive neural
models) can capture the abstract generalizations
governing wh-FGDs in English, as well as the as-
sociated island constraints (2018; 2019b; 2019a;
2021). They claim that this result militates against
the PoS argument that islands cannot be induced
from the input without domain-specific biases.

Wilcox and colleagues’ results are suggestive,
but they do not fully establish that the models
‘learn’ islands from the input. An alternate expla-
nation is that the results are artifacts. Under this
possibility, RNNs do not pursue FGDs into islands
in English because the models are simply incapable
of representing syntactic dependencies into island
environments irrespective of the input they receive
(either because the domains are too complex or be-
cause of some other unknown limitation inherent
to the RNN architecture). One way of ruling out
this explanation is to test the models’ performance
on a language that has a different set of island con-
straints. If the models can learn to pursue FGDs in
another language into domains that are islands in
English, that would constitute additional evidence

that the models are inducing islands from the input.
To this end, we explore whether RNNs can learn

the distribution of acceptable FGDs and island
constraints in Norwegian – a language that dif-
fers from English in the set of domains that are
islands. To preview our results, the models can
learn that temporal adjuncts and subject phrases are
islands in Norwegian, but that embedded questions
are not (wh-islands). These results suggest that
weakly-biased RNNs can capture patterns of island-
insensitivity in Norwegian, thus providing empir-
ical evidence that this pattern of cross-linguistic
variation can be learned from the input.

2 Island constraints in Norwegian

Norwegian is similar to English in several respects
when it comes to FGDs. Norwegian allows long-
distance dependencies with gaps in various syntac-
tic positions. Norwegian also exhibits sensitivity to
some of the same islands that English does. FGDs
into temporal adjuncts (4) or subject phrases (5) are
unacceptable in Norwegian like English (Bondevik
et al., 2021; Kush et al., 2019, 2018; Kobzeva et al.,
2022b).

(4) *Hva
What

spiste
ate

du
you

kake
cake

[da
when

han
he

spiste
ate

__]?
__

*‘What did you eat cake when he ate __?’

(5) *Hva
What

har
has

[brevet
letter.DEF

om
about

__]
__

skapt
created

problemer?
problems

*‘What has the letter about __ created problems?’

On the other hand, Norwegian allows FGDs into
environments that are considered islands in English,
such as Embedded Questions (EQs, Christensen
1982; Maling and Zaenen 1982). RC FGDs into
embedded constituent questions like (6) are found
in written corpora of Norwegian (Kush et al., 2021)
and native speakers rate various types of FGD into
EQs as acceptable in judgment studies (Kobzeva
et al., 2022b).

(6) Vi
We

var
were

redde for
afraid of

noe
smth

vi
we

ikke
NEG

visste
knew

[hva
what

__
__

var].
was.

‘We were afraid of something we did not know what __
was.’

This distribution of FGDs in Norwegian makes
it a good testing ground for exploring whether
RNNs can induce a set of islands that is different
from what is observed in English. Recent research
shows that RNNs can capture basic generalizations
about wh- and RC FGDs in Norwegian: they learn
that fillers can license gaps in different syntactic
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positions and across increased linear distance be-
tween the filler and the gap (Kobzeva et al., 2022a).
Here we expand on this line of research by testing
whether RNNs can learn that FGDs like (6) are
acceptable in Norwegian, while simultaneously rul-
ing out FGDs like (4) and (5). We do so by testing
whether the models are less likely to expect FGDs
in potential island environments relative to control
sentences without island structures. We also test
the robustness of the result by testing two more
models with the same architecture but different
initializations.

We ran five experiments. Experiment 1 tested
whether the models learn that Norwegian FGDs
are unbounded by seeing if they can successfully
associate fillers and gaps across multiple embedded
clauses. Establishing this basic result is a prereq-
uisite for testing islands, which typically require
cross-clausal dependencies. Experiments 2 and 3
tested if the models can learn that temporal adjunct
clauses and complex subject phrases are islands in
Norwegian, as in English. Finally, Experiments
4 and 5 tested if RNNs can learn that FGDs into
embedded questions are possible in Norwegian.
Experiments 1-4 evaluate the models performance
on Norwegian only, while Experiment 5 directly
compares wh-FGDs in Norwegian and English.

3 Method

3.1 Language models

We trained Long Short-Term Memory (LSTM)
RNNs (Hochreiter and Schmidhuber, 1997) to take
a sequence of words as input and compute a proba-
bility distribution of the next word over the model’s
vocabulary. We trained three such models with dif-
ferent random initializations following the proce-
dure described in (Gulordava et al., 2018), using
the code provided by the authors1. Each model
was a 2-layer LSTM with 650 hidden units in each
layer, trained for 40 epochs on 113 million tokens
of Norwegian Wikipedia (in the Bokmål written
standard) with a vocabulary size of 50000 most
frequent words. The models achieved perplexities
between 30.05 and 30.3 on the validation set.

3.2 Dependent measure

We test how the models would fare as incremental
language processors by looking at surprisal, which
measures how (un)predictable a word is given a

1https://github.com/facebookresearch/colorlessgreenRNNs

specific prompt using the models’ probability dis-
tribution. We measure the surprisal values by com-
puting the negative log of the predicted conditional
probability from the models’ softmax layer.

3.3 Measuring FGDs

Wilcox et al. (2018) introduced a 2×2 factorial
design for measuring FGDs inspired by psycholin-
guistic paradigms. The design independently ma-
nipulates the presence of a filler and the presence
of a gap as in (7).

(7) They found out...
a. that the dealer forged the art -FILLER, -GAP
b. *what the dealer forged the art +FILLER, -GAP
c. *that the dealer forged __ -FILLER, +GAP
d. what the dealer forged __ +FILLER, +GAP

...using a new technique.

When both the filler and the gap are absent (7-a)
or present (7-d), the sentences are grammatical.
When either the filler or the gap is absent, (7-b)
and (7-c), the sentences are ungrammatical. We
measure filler effects – how the presence of a filler
affects surprisal – in two different pairwise com-
parisons. Filled gap effects are measured by com-
paring surprisal associated with an NP in -GAP

conditions. Unlicensed gap effects are measured
by comparing surprisal associated with a gap in the
+GAP conditions. We discuss each type of filler
effect in more detail below.

3.3.1 Filled gap effects

In behavioral studies, filled gap effects are regarded
as support for the active gap-filling strategy: after
encountering a filler, the processor actively predicts
a gap without waiting for the actual gap site. Stowe
(1986) observed a slow-down in self-paced reading
times at the direct object us in (8-b), which contains
the filler who, compared to the same word in a
corresponding sentence without a filler (8-a). The
slow-down reflects a violated expectation: seeing a
filler caused the processor to predict a gap in object
position.

(8) a. My brother wanted to know if Ruth will bring us home
to Mom at Christmas.

b. My brother wanted to know who Ruth will bring us
home to __ at Christmas.

We test whether the models exhibit similar filled
gap effects. We measure the surprisal difference
between the ungrammatical +FILLER, -GAP condi-
tion as in (7-b) and the grammatical -FILLER, -GAP

condition in (7-a) at the region of the filled NP (the
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art in (7)). If seeing a filler sets up an expecta-
tion for a gap in object position, the NP should be
more surprising in (7-b) than in (7-a), resulting in
a positive surprisal difference.

Crucially, humans do not exhibit filled gap ef-
fects inside island environments (Stowe, 1986;
Traxler and Pickering, 1996; Phillips, 2006), in-
dicating that the active prediction of gaps is sus-
pended where they are impossible. Following the
same logic, if the models show sensitivity to island
constraints, we expect to see no filled gap effects
inside islands.

3.3.2 Unlicensed gap effects
Unlicensed gap effects provide a measure of how
‘surprised’ the model is to encounter a gap without
a filler to license it. We measure these effects as
a difference in surprisal between the grammatical
+FILLER, +GAP (7-d) condition and ungrammat-
ical -FILLER, +GAP (7-c) condition at the region
following the gap (using a new technique in (7)).
If a presence of a gap without a licensing filler is
surprising to the models, the unlicensed gap effect
should manifest as a negative difference between
low surprisal in the post-gap region in (7-d) and
high surprisal in (7-c).

Unlicensed gap effects show if the models rec-
ognize gaps as licit inside certain syntactic environ-
ments. Whereas filled gap effects measure the mod-
els’ expectation for an upcoming gap, unlicensed
gap effects arguably should reflect the models’ un-
derstanding of grammaticality, as sentences with
illicit gaps are ungrammatical (and, unlike filled
gaps, cannot be ‘rescued’ by establishing another
gap site later in a sentence). Analogous to filled
gap effects, unlicensed gap effects should be close
to zero in island environments if the models can
derive their island status from their training data.

3.4 Statistical analysis

Following standard practice in psycholinguistics,
statistical analysis was performed using mixed-
effect linear regression models with sum-coded
fixed effects of FILLER (0.5 for +FILLER, -0.5 for
-FILLER) and CONDITION (0.5 for CONTROL and
-0.5 for ISLAND except for Experiments 1 and 4,
see details below). We fit the statistical models on
differences in surprisal between +FILLER, -FILLER

conditions with these fixed effects and a maximal
random effect structure (Barr et al., 2013). We ran
separate models for filled gap effects in the filled
NP region and for unlicensed gap effects in the

post-gap region. If a model failed to converge, we
reduced the random effect structure until conver-
gence was reached. Model formulas are presented
in Appendix A.

4 Experiments

4.1 Experiment 1: Unboundedness
It is important to establish whether LSTMs can
represent FGDs across hierarchical distance before
testing island environments, as they involve cross-
clausal dependencies. Therefore, in Experiment 1
we tested how increased hierarchical distance be-
tween the filler and the gap influences models’ rep-
resentations of FGDs. To do that, we manipulated
the number of clausal embeddings between the
filler and the gap (from 1 to 5 layers of clausal
embedding, as illustrated in (9)). We created 30
items by crossing the factors FILLER and GAP in
(7) with NUMBER OF LAYERS, resulting in a 2 × 2
× 5 design. Test sets were created for wh- and RC
FGDs (600 test sentences per dependency type).

(9) a. 1 LAYER (+FILLER, +GAP)
Hun
She

vet
knows

hva
what

selgeren
dealer.DEF

forfalsket
forged

__
__

ved
with

hjelp
help

av
of

moderne
modern

teknologi.
technology.

‘She knows what the dealer forged __ using modern
technology’.

b. 5 LAYERS (+FILLER, +GAP)
Hun
She

vet
knows

hva
what

han
he

trodde
thought

de
they

fant
found

ut
out

avisen
newspaper.DEF

rapporterte
reported

politiet
police.DEF

visste
knew

selgeren
dealer.DEF

forfalsket
forged

__
__

ved
with

hjelp
help

av
of

moderne
modern

teknologi.
technology.
‘She knows what he thought they found out the news-
paper reported the police knew the dealer forged __
using modern technology’.

We tested all three models on all of the items, and
we present the results averaged across the models
for both dependency types together. Overall, filler
effects decrease as layers of embedding increase
(Figure 1). For wh-dependencies (blue bars), there
was a significant reduction in both the filled gap
effect and the unlicensed gap effect already at two
layers of embedding, which was also true for every
layer thereafter (p’s <0.05 in all cases). For RC
dependencies (orange bars), there was a significant
reduction in filled gap effects at three layers (p
<0.05), and in unlicensed gap effects at two layers
(p’s <0.001) of sentential embedding, as well as
for every layer thereafter (p’s <0.001 in all cases).
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Tables with statistics summary can be found in
Appendix A.

Figure 1: Unboundedness experiment: Filler effects by
the number of embeddings for both dependency types.
Bars represent an average over three models, error bars
represent 95% confidence intervals.

Despite the reduction in filler effects as a func-
tion of the number of sentential embeddings, the
filler effects remain above zero even at the largest
hierarchical distance. This suggests that the models
have learned that FGD formation is unbounded and
have the basic representational capacity required
for testing FGDs inside islands.

4.2 Islands shared between Norwegian and
English

Experiments 2 and 3 tested FGDs into constituents
that are islands in Norwegian (just as in English)
– subjects and temporal adjunct clauses – to see
if the models’ expectations for FGDs are attenu-
ated within the two environments in Norwegian,
as previously seen in English (Wilcox et al., 2018,
2021).

4.2.1 Experiment 2: Subject island
Fillers cannot be associated with gaps inside a sub-
ject phrase, like the gap inside the prepositional
phrase attached to the subject in (10). Such sen-
tences are rated as unacceptable by English speak-
ers, and the same pattern is found in Norwegian
(11-b). We compare the island condition in (11-b)
to an NP-subject extraction as in (11-a).

(10) *The newspaper reported what [the agreement with __]
will strengthen the political interaction after the elections.

(11) a. SUBJECT CONTROL (+FILLER, +GAP)
Avisen
Newspaper.DEF

rapporterte
reported

hva
what

som
REL

__
__

vil
will

forsterke
strengthen

det
the

politiske
political

samspillet
interaction.DEF

etter
after

valget.
election.DEF

‘The newspaper reported what __ will strengthen the
political interaction after the election.’

b. SUBJECT ISLAND (+FILLER, +GAP)
*Avisen
Newspaper.DEF

rapporterte
reported

hva
what

[avtalen
agreement.DEF

med
with

__]
__

vil
will

forsterke
strengthen

det
the

politiske
political

samspillet
interaction.DEF

etter
after

valget.
election.DEF

‘*The newspaper reported what the agreement with
__ will strengthen the political interaction after the
election.’

We created 30 items according to a 2 × 2 × 2
design that crossed the factors FILLER and GAP

in (7) with a third factor: CONDITION (CONTROL,
ISLAND). Again we created separate sets of sen-
tences for wh- and RC FGDs (240 total test sen-
tences per dependency type). The results of this
experiment are presented in Figure 2.

Figure 2: Subject island experiment: Filler effects by
gap position for both dependency types.

Filled gap effects (Figure 2 left panel) were large
in the control condition, but were significantly re-
duced in the island condition: statistical analysis
revealed a main effect of CONDITION for both de-
pendency types (both p’s <0.001). The same pat-
tern was found for unlicensed gap effects (Figure
2 right panel). For both dependency types, there
was a significant effect of CONDITION (p’s <0.001
in both cases). These results show that the models
exhibit reduced filler effects within subject islands,
which is in line with behavioral acceptability data
from native Norwegian speakers.

4.2.2 Experiment 3: Adjunct island
Adjuncts are said to block FGD formation, which
explains the unacceptability of (12): The filler what
cannot be associated with the gap inside the adjunct
when-clause. Norwegian, like English, does not al-
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low gaps inside temporal adjuncts (Bondevik et al.,
2021; Bondevik and Lohndal, 2023).

(12) *What were the voters excited [when the politician visited
__ last week]?

We created 30 items according to a 2 × 2 × 3
design that crossed FILLER, GAP, and CONDITION

for each dependency type (360 test sentences per
dependency). CONDITION had three levels that de-
termined the location of a direct object gap. In the
LINEAR CONTROL (13-a) and STRUCTURAL CON-
TROL (13-b) the gap was not embedded in an island,
whereas in ADJUNCT ISLAND (13-c), the gap was
embedded inside a temporal adjunct (headed by
mens ‘while’, da ‘when’, etter at ‘after’ and før

‘before’). In the linear control condition (13-a), first
used in (Wilcox et al., 2018), the filler and gap are
in the same clause, but the linear distance between
them is comparable to the distance in (13-c). In
the structural control condition (13-b), our novel
addition to the design, the filler and the gap are
separated across two clauses, making the structural
distance between the filler and the gap comparable
to (13-c). We included these control conditions
in order to estimate the independent effects of lin-
ear distance and structural distance on the model’s
performance, so as to better isolate island effects.

(13) a. LINEAR CONTROL (+FILLER, +GAP)
Jeg
I

husker
remember

hva
what

politikeren
politician.DEF

med
with

godt
good

omdømme
reputation

besøkte
visited

__
__

forrige
last

uke.
week.

‘I remember what the politician with a good reputation
visited __ last week.’

b. STRUCTURAL CONTROL (+FILLER, +GAP)
Jeg
I

husker
remember

hva
what

avisen
newspaper.DEF

rapporterte
reported

at
that

politikeren
politician.DEF

besøkte
visited

__
__

forrige
last

uke.
week.

‘I remember what the newspaper reported that the
politician visited __ last week.’

c. ADJUNCT ISLAND (+FILLER, +GAP)
*Jeg
I

husker
remember

hva
what

velgerne
voters.DEF

var
were

begeistret
excited

da
when

politikeren
politician.DEF

besøkte
visited

__
__

forrige
last

uke.
week.

‘*I remember what the voters were excited when the
politician visited __ last week.’

We defined two contrasts for analysis: CONTROL

contrast compared effect size between the two con-
trol conditions (linear vs. structural). ISLAND con-
trast compared effects between the structural con-
trol and the adjunct island condition.

Figure 3: Adjunct island experiment: Filler effects by
condition for both dependency types. Control conditions
are lin-c and struct-c.

The results of the experiment are presented in
Figure 3. Filled gap effects for both dependency
types (left panel) were largest in the linear control
condition, significantly larger than in the structural
control condition (CONTROL contrast p’s <0.001).
Filled gap effects were in turn significantly larger in
the structural control condition than in the adjunct
island condition (ISLAND contrast p’s <0.001),
where filled gap effects were close to zero.

The same qualitative pattern was observed with
unlicensed gap effects for both dependency types
(right panel). Unlicensed gap effects were larger in
the linear control condition compared to the struc-
tural control, and in the structural control condi-
tion compared to the island condition (p’s <0.001
in all cases). Therefore, the models show reduced
filler effects inside temporal adjuncts in Norwegian.
However, the average filler effects are not 0 in the
adjunct island condition, suggesting that the mod-
els might not treat them as full islands.2 Norwegian
shows some variation in adjunct island effects, with
extraction from conditional adjuncts rated higher
than from temporal and reason-adjuncts (Bondevik
et al., 2021; Bondevik and Lohndal, 2023). The
result obtained here could be explained by the mod-
els’ sensitivity to this variation (and potential over-
generalization).

4.3 Islands contrasting English and
Norwegian

The results of Experiments 2 and 3 suggest that the
models learn that subjects and temporal adjuncts
are islands in Norwegian, similar to the conclusions

2On around 65% of the trials, the models show filled-gap
effects greater than zero, while unlicensed gap effects are less
than zero on around 70% of the trials. However, the effects
are mostly small, under 1 bit of surprisal 90% of the time.
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made for English by Wilcox et al.. Experiments 4
and 5 test whether the models can learn that embed-
ded questions (EQs) are not islands in Norwegian.
We test two types of EQs in Norwegian: 1) inter-
rogative EQs, and 2) whether-EQs.

4.3.1 Experiment 4: Interrogative EQ

According to Kush et al. (2021), the most common
type of extraction from EQs (in a children’s fiction
corpus) includes a subject gap inside an interroga-
tive EQ as in (14).

(14) Vi
We

var
were

redde for
afraid of

noe
smth

vi
we

ikke
NEG

visste
knew

[hva
what

__
__

var].
was.

‘We were afraid of something we did not know what __
was.’

We chose to first test such EQs because we rea-
soned that they were likely the most frequent in
the model’s training data. We created 30 items
that crossed FILLER, GAP, and CONDITION for
each dependency type (240 test sentences per de-
pendency). CONDITION controlled whether the
embedded clause was an EQ (15-b) or a declarative
complement (15-a) control.3

(15) a. DECLARATIVE CONTROL (+FILLER, +GAP)
Han
He

sa
said

hvem
who

som
REL

sjåføren
driver.DEF

glemte
forgot

at
that

__
__

skulle
should

hentes
be.picked.up

i
in

sentrum
center.DEF

den
that

dagen.
day.DEF.

‘He said whoi the driver forgot (that) __i should be
picked up in the center that day.’

b. WH-ISLAND (+FILLER, +GAP)
Han
He

sa
said

hvem
who

som
REL

sjåføren
driver.DEF

glemte
forgot

hvor
where

__
__

skulle
should

hentes
be.picked.up

__
that

den
day.DEF.

dagen.

‘He said whoi the driver forgot wherek __i should be
picked up __k that day.’

We expected clear filled gap effects and unli-
censed gap effects in the declarative clauses. If
the models recognize that interrogative EQs are
not islands in Norwegian, the filled gap effects and
unlicensed gap effects in the EQ sentences should
be comparable to their declarative counterparts, or
at least greater than zero.

3The direct translation of (15-b) would be ungrammatical
in English due to that-trace effects. Norwegian exhibits some
variation in that-trace effects; theoretical and experimental
work shows that it mostly allows subject gaps after that (Lohn-
dal, 2009; Kush and Dahl, 2020). We return to this issue in
the Discussion.

Figure 4: Interrogative EQ island experiment: Filler
effects by condition for both dependency types.

Figure 4 shows that filled gap effects were small
or close to 0 across all conditions and dependency
types, while unlicensed gap effects were large. Sta-
tistical analysis revealed a main effect of CONDI-
TION for both filled gap effects and unlicensed gap
effects with wh-dependencies (p’s <0.01). With
RC dependencies, the same was true for the filled
gap effect (p <0.05, orange bars on the left panel).
For the unlicensed gap effect with RC dependen-
cies, the effect of CONDITION was not significant
(p <0.1). Importantly, despite the significant effect
of CONDITION in three out of four cases tested,
both filled gap effects and unlicensed gap effects in
the island condition were comparable to the declar-
ative control, suggesting that the models treat EQs
and embedded declarative clauses similarly with
respect to FGD formation in Norwegian.

4.3.2 Experiment 5: Whether-EQ
In Experiment 4, we tested FGDs into interroga-
tive EQs with gaps in subject position. However,
previous research in English has not tested inter-
rogative EQs and has instead focused on FGDs into
polar EQs, whether-islands. For example, Wilcox
et al. tested whether-islands with gaps in object po-
sition in English. An example of +FILLER, +GAP,
ISLAND condition from their whether-island exper-
iment is presented in (16).

(16) *I know what my brother said whether our aunt devoured
__ at the party.

In order to facilitate more direct cross-linguistic
comparison, and to test the robustness of the result
of Experiment 4, we decided to run an experiment
comparing FGDs into whether-EQs in English and
Norwegian side by side. To do so, we slightly modi-
fied the 24 English items from (Wilcox et al., 2018)
and created 24 novel items following the same tem-
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plate, resulting in 48 items total. We then translated
them into Norwegian. As the original (Wilcox et al.,
2018) items did not include RC dependencies, we
restricted dependency types to wh-FGDs in this
experiment. We compared the performance of the
Gulordava model (used by Wilcox et al., 2018) on
English stimuli and the performance of one of the
Norwegian models (used by Kobzeva et al., 2022a).
The results are presented in Figure 5.

Overall, filler effects are smaller in English (light
blue bars) than in Norwegian (dark blue bars; main
effect of LANGUAGE, p <0.001). The pattern of
island sensitivity also differs. In Norwegian, robust
filled gap effects were observed in both declarative
control and whether-island environments, while in
English, no filled gap effect was observed inside a
whether-island (left panel). Statistical analysis con-
firmed a significant CONDITION × LANGUAGE in-
teraction for filled gap effects (p <0.01). Similar dif-
ferences were observed for unlicensed gap effects
(right panel): In Norwegian, unlicensed gap effects
are equally large in declarative complements and
whether-islands, whereas there is no unlicensed
gap effect inside a whether-island in English com-
pared to the declarative control (CONDITION ×
LANGUAGE p <0.05).

Figure 5: Whether-island experiment (with wh-
dependencies): Comparison of filler effects in English
and Norwegian.

Taken together with the fact that the architecture
of the English and the Norwegian model was the
same, and that they were trained using the same
hyper-parameter combination for the same number
of epochs on input data that were comparable in
size and genre, these results suggest that RNNs can
come to different conclusions about the status of
whether-islands based on different language input.
This provides further evidence for the claim, made
in Wilcox et al., that autoregressive language mod-

els can learn the distribution of FGDs in a language
from their input.

5 Discussion

In this paper, we tested LSTMs’ ability to estab-
lish FGDs in Norwegian by looking at filled gap
effects and unlicensed gap effects. Experiment 1
found non-zero filled gap effects and unlicensed
gap effects across multiple layers of embedding
suggesting that the models learn that FGDs are un-
bounded. Experiments 2 and 3 showed that filled
gap effects and unlicensed gap effects are signifi-
cantly reduced inside subject phrases and temporal
adjuncts, suggesting that the models learned that
these domains are islands in Norwegian, mirroring
previous findings for English (Wilcox et al., 2018,
2019a,b, 2021).

Broadly speaking, results from Experiments 4
and 5 suggest that the models can learn that em-
bedded questions are not island environments in
Norwegian. In both Experiment 4 and 5, we found
large unlicensed gap effects in Norwegian interrog-
ative EQs and in Experiment 5 we observed filled
gap effects inside Norwegian whether-EQs. Taken
together, the results are consistent with the conclu-
sion that LSTM RNNs can learn cross-linguistic
differences in island facts from different language
input. We do not know whether the model’s gen-
eralization was derived from actual examples of
FGDs into embedded questions in the training data,
or whether the model learned the distribution indi-
rectly. We cannot verify that in this case that the
models learned from direct evidence, but it is plau-
sible that such evidence would be available in the
Wikipedia corpus given that FGDs into embedded
questions are found (in relatively small numbers)
in other corpora (such as the child fiction corpus
investigated by Kush et al., 2021).

One potentially surprising finding was the asym-
metry in filled and unlicensed gap effects between
Experiments 4 and 5. In Experiment 4, filled gap
effects were not robust in subject position, but un-
licensed gap effects were. In Experiment 5, both
filled gap effects and unlicensed gap effects were
observed in object position. We take this effect
to mean that the model was not actively pursu-
ing embedded subject gaps in our stimuli. There
are various possible interpretations for this effect.
One possibility is that the model avoids gaps af-
ter overt material in left edge of a clause (a kind
of that-trace effect, see Lohndal, 2009). Another
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possibility is that embedded subject gaps were not
frequent enough in the training data to establish
strong expectations for them.

We do not take the fact that filled gap effects are
absent in some EQs as evidence against the models
being able to establish FGDs into EQs. Even in
the absence of filled gap effects, unlicensed gap ef-
fects show that the models can still recognize gaps
in EQs as licit in Norwegian. We think that unli-
censed gap effects provide a better indication of
what the models have learned is possible. In other
words, the two effects measure different aspects
related to an FGD: While filled gap effects mea-
sure active expectation/prediction for a gap inside a
particular structural configuration (i.e. whether the
models think that a gap is likely in a given position),
unlicensed gap effects reflect whether the models
‘understand’ that FGDs are in principle possible
in that configuration. We suggest that future work
using this paradigm should keep this dissociation
in mind when interpreting results: Learning what a
possible FGD is, does not necessarily entail active
expectation in RNN language models.

One outstanding question is how well the
model’s active gap-filling behavior mirrors how ac-
tual humans would process these sentences. Native
English speakers do not actively pursue gaps inside
islands (Stowe, 1986; Traxler and Pickering, 1996;
Phillips, 2006). In this regard, the English models
of Wilcox et al. mimic human behavior. It is un-
known whether native Norwegian speakers suspend
active gap-filling inside islands, but pursue active
gap-filling inside structures like EQs, that are not
islands in their language. Future work should test
the alignment between the model’s performance
and human behavior.

6 Conclusion

In this study, we tested whether LSTMs, an RNN
architecture without language-specific bias, can
learn two types of filler-gap dependencies in Nor-
wegian in several (potential) island environments.
We found evidence that the models can pick up
patterns of island-insensitivity when it comes to
embedded questions in Norwegian, while still in-
ducing island effects in subject and adjunct islands.
Our results also show that RNNs are sensitive to
differences in the distribution of FGDs in English
and Norwegian, suggesting that the input to the
models must provide enough evidence for the di-
verging patterns. Our results lead us to reassess the

importance of domain-specific learning biases in
acquiring island constraints from the input.
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A Results of Statistical Tests

The levels of significance used in the tables below:
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001.
The statistics are presented separately for filled gap
effects (FGE) and unlicensed gap effects (UGE)
by each dependency type and experiment. The re-
sponse variable s in lmer formulas is the difference
in surprisal between +FILLER, -FILLER conditions.

1. Unboundedness

s ~lyrs + (1+lyrs | model) + (1+lyrs | item)

FGE, wh-dependencies

Est. S.E. t

(Intercept) 2.801 0.304 9.221***
layers2 −0.931 0.220 −4.240*
layers3 −1.223 0.204 −5.980***
layers4 −1.711 0.246 −6.959***
layers5 −1.997 0.219 −9.104***

UGE, wh-dependencies

(Intercept) −1.867 0.147 −12.681***
layers2 0.936 0.099 9.488***
layers3 0.954 0.099 9.671***
layers4 1.402 0.099 14.212***
layers5 1.427 0.099 14.465***

FGE, RC dependencies

(Intercept) 2.131 0.194 10.971***
layers2 −0.394 0.281 −1.402
layers3 −0.617 0.237 −2.598*
layers4 −1.019 0.203 −5.024***
layers5 −1.301 0.233 −5.593**

UGE, RC dependencies

(Intercept) −1.912 0.192 −9.954***
layers2 0.877 0.161 5.447***
layers3 0.864 0.156 5.557***
layers4 1.419 0.166 8.564***
layers5 1.400 0.158 8.885***
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2. Subject island

s ~cond + (1+cond | model) + (1+cond | item)

FGE, wh-dependencies

Est. S.E. t

(Intercept) 2.411 0.255 9.459***
condition 4.476 0.335 13.368***

UGE, wh-dependencies

(Intercept) −2.658 0.255 −10.437***
condition −4.098 0.488 −8.390***

FGE, RC dependencies

(Intercept) 1.713 0.132 12.944***
condition 2.970 0.254 11.697***

UGE, RC dependencies

(Intercept) −2.895 0.223 −13.008***
condition −5.147 0.383 −13.455***

3. Adjunct island

s ~cntrs + (1+cntrs | model) + (1+cntrs | item)

FGE, wh-dependencies

Est. S.E. t

(Intercept) 0.952 0.127 7.476***
controlCntrs 2.457 0.232 10.609***
islandCntrs 1.618 0.221 7.323***

UGE, wh-dependencies

(Intercept) −0.981 0.208 −4.714***
controlCntrst −0.948 0.298 −3.182**
islandCntrst −1.255 0.273 −4.602***

FGE, RC dependencies

(Intercept) 0.896 0.136 6.593***
controlCntrst 1.692 0.200 8.454***
islandCntrst 1.344 0.234 5.755***

UGE, RC dependencies

(Intercept) −1.042 0.187 −5.569***
controlCntrst −0.889 0.201 −4.423***
islandCntrst −1.139 0.178 −6.382***

4. Interrogative EQ

s ~cond + (1+cond | model) + (1+cond | item)

FGE, wh-dependencies

Est. S.E. t

(Intercept) 0.376 0.081 4.647***
condition 0.288 0.107 2.690**

UGE, wh-dependencies

(Intercept) −1.595 0.260 −6.142***
condition −0.454 0.153 −2.961**

FGE, RC dependencies

(Intercept) 0.095 0.080 1.189
condition 0.228 0.100 2.271*

UGE, RC dependencies

(Intercept) −1.920 0.220 −8.707***
condition −0.272 0.152 −1.795+

5. Whether-EQ

s ~condition*language + (1+condition | item)

FGE

Est. S.E. t

(Intercept) 0.617 0.074 8.388***
condition 0.109 0.102 1.074
language 0.700 0.102 6.880***
condition:language −0.625 0.204 −3.073**

UGE

(Intercept) −0.652 0.099 −6.570***
condition −0.354 0.132 −2.690**
language −0.676 0.127 −5.346***
condition:language 0.627 0.253 2.477*
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Abstract

Children acquire their language’s canonical
word order from data that contains a messy
mixture of canonical and non-canonical clause
types. We model this as noise-tolerant learn-
ing of grammars that deterministically pro-
duce a single word order. In simulations on
English and French, our model successfully
separates signal from the noise introduced by
non-canonical clause types, in order to identify
that both languages are SVO. No such prefer-
ence for the target word order emerges from a
comparison model which operates with a fully-
gradient hypothesis space and an explicit nu-
merical regularization bias. This provides an
alternative general mechanism for regulariza-
tion in various learning domains, whereby ten-
dencies to regularize emerge from a learner’s
expectation that the data are a noisy realization
of a deterministic underlying system.

1 Introduction

Children at early stages of language acquisition
draw accurate grammatical generalizations from
incomplete, immature, and variable representa-
tions of their input. For example, infants learn
their language’s basic word order despite immature
abilities to identify clause arguments, and despite
non-canonical constructions that disrupt this basic
word order (e.g., wh-questions, passives) (Hirsh-
Pasek and Golinkoff, 1996; Perkins and Lidz, 2020,
2021). This is one of many ways in which learn-
ers draw generalizations that are more regular or
deterministic than the variable data that they are
learning from. What kind of mechanisms allow for
learning to abstract away from messiness in (the
learner’s representation of) the data?

One potential answer emerges from studies of
learning in the context of unpredictable variability,
for example in the context of acquiring language
from non-native speakers. This approach posits

a general learning bias to regularize inconsistent
variability (Hudson Kam and Newport, 2005, 2009;
Reali and Griffiths, 2009; Culbertson et al., 2013;
Ferdinand et al., 2019). Learners consider hypothe-
ses that closely match the statistical distributions
in their input, but in some circumstances they are
biased to “sharpen” those distributions, pushing
them towards more systematic extremes.

Implicit in this account is a hypothesis space
that can accommodate the full variability of the
data. For instance, when exposed to an artificial
language in which determiners occur inconsistently
with nouns, children are equipped to consider that
the language allows determiners with any probabil-
ity, but nonetheless prefer to use particular deter-
miners all of the time or not at all (Hudson Kam
and Newport, 2005, 2009). The literature takes
this as evidence for a regularization bias operating
within a learner’s fully-flexible hypothesis space,
pushing learners to prefer probabilities closer to 0
or 1 and producing near-categorical learning out-
comes. This idea could be applied to the learning
of basic word order in infancy— for example, learn-
ing that English is canonically SVO. Children who
encounter a messy mixture of canonical and non-
canonical sentences would be equipped to consider
that clause arguments can flexibly occur in multiple
orders in the language, but prefer hypotheses that
are skewed heavily towards one consistent order.

Here, we explore a different approach. We pro-
pose that in certain circumstances, learners face a
choice among discrete hypotheses, each of which
is deterministic in a way that is incompatible with
the full variability of the observed data. Learners
expect that their data result from an opaque interac-
tion between (i) one of the deterministic hypothe-
ses currently under consideration, and (ii) various
other processes that might introduce “noise” into
the data. For a child learning an artificial deter-
miner system, the data might reflect a combination
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of signal for deterministic rules, and noise coming
from unknown grammatical or extra-grammatical
processes. For a child learning the syntax of basic
clauses, the data reflects a combination of signal
for the target language’s basic word order and noise
introduced by non-canonical sentence types. Reg-
ularization emerges when learners are able to suc-
cessfully identify signal for a deterministic hypoth-
esis within their noisy data (Perkins et al., 2022;
Schneider et al., 2020).

We introduce a general computational frame-
work for performing this inference. A learner of
the sort we describe below expects that its data are
generated by a complex system: a core determin-
istic component that the learner is attempting to
acquire, operating alongside a “noise” component
whose properties are currently unknown. Using the
case study of basic word order acquisition, we show
that our model can learn to separate evidence for
a deterministic grammar of canonical word order
from the distorting effects of non-canonical noise
processes. It does so without knowing ahead of
time how much noise there is, or what its proper-
ties are. Moreover, we show that our approach fares
better in this learning problem than the more com-
mon approach to regularization described above.
This suggests that in certain domains, successful
learning from noisy data is enabled by a hypothesis
space comprising restrictive grammatical options.

2 The intuition behind our approach

Suppose that a bag contains coins of two types:
Type A coins, which always come up heads, and
Type B coins, which all have some single unknown
probability θ of coming up heads. We know noth-
ing about how many of each type are in the bag.
We observe ten coin flips, producing eight heads
and two tails. How many of these flips might we
guess came from Type A coins, and how many from
Type B coins? There is a wide range of options,
including the possibility that all ten flips came from
Type B coins; but given the observed skew towards
heads, there is a clear intuition that Type A coins
were probably responsible for a significant portion
of the observations. Why is this?

Under the hypothesis that all ten flips came from
Type B coins, eight of those flips would need to
come up heads and two to come up tails in order to
generate the observed data. Contrast this with the
(more intuitively plausible) hypothesis that there
were six Type A and four Type B flips. Under this

hypothesis, the six Type A flips need to come up
heads, which is guaranteed to happen; so, generat-
ing the observed data just amounts to having the
four Type B flips produce two heads and two tails.
This is clearly less “costly” than the first hypoth-
esis’s requirement that ten Type B flips produce
eight heads and two tails. By positing six Type A
flips, six of the heads that we need to generate
“come for free”; with only Type B flips, however,
we get no such head start.

More precisely, the likelihood of the observed
data, under the hypothesis that relies on only four
Type B flips, is

(
4
2

)
θ2(1− θ)2. Under the hypothe-

sis that leaves all the work to ten Type B flips, this
likelihood is

(
10
8

)
θ8(1 − θ)2. It is the exponents

that matter: the ten-flip likelihood is smaller than
the four-flip likelihood whenever θ < 0.71, so for
most values of θ. This is one way to understand
our intuitive preference for hypotheses that invoke
Type A flips. We can make this even more precise
by marginalizing over θ; see Appendix A for de-
tails. These details make clear that all that matters
about a particular hypothesis is how many Type B
flips it must appeal to. We’ve seen that four Type B
flips is better than ten, but two is even better: the
very best hypothesis is that there were eight Type A
flips and two Type B flips (likelihood (1− θ)2).

Suppose now that, as well as the bag with two-
headed coins and head-tail coins (call this Bag H),
there is a bag with two-tailed coins and head-tail
coins (Bag T). We again see 10 coin flips, 8 heads
and 2 tails. We know that they all came from one
of the two bags, and we have to guess which one.

We have seen that Bag H makes available “good”
explanations of the data, which exploit the pres-
ence of two-headed coins to minimize the crucial
number of uncertain head-tail flips. With Bag T,
however, the available “known outcome” coins pro-
duce tails; so the best we can do is to suppose that
both of the two observed tails came from the two-
tailed coins, and rely on eight uncertain flips to do
the rest of the work (likelihood θ8). Since there is
no way for the two-tailed coins to contribute to a
good explanation of the observed high proportion
of heads, Bag H is a better guess than Bag T.

This choice between Bag H and Bag T will cor-
respond to the choice between competing restricted
hypotheses in the learners we describe below. It
will be useful to think of this as essentially a choice
between the two-headed coin and the two-tailed
coin, where either choice (since it’s accompanied
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by head-tail coins) is embedded in a system that
also produces some “noise”, i.e. divergences from
what would be generated by these core mechanisms
alone. When comparing such composite systems,
our learner will prefer the one whose core mecha-
nisms predict the skew in the data; this will provide
the least costly solution, even though the shared
noise possibilities ensure that all the competing
systems can account for the data as a whole. And
the proposed learner will do this without knowing
a priori how much of the data is noise (i.e. how
much of the data came from the head-tail coins) or
what the contribution of noise looks like (i.e. the
probability θ of noise contributing a head).

Perkins et al. (2022) applied this approach to
model how learners might identify the core transi-
tivity properties of verbs in their language, despite
“noise” from non-canonical clause types. This type
of noise might arise when a young child encounters
an obligatorily-transitive verb in a sentence with a
displaced object (e.g., What did you bring?) but is
unable to parse it as such. By hypothesizing that
unknown noise processes cause the data to be a
distorted reflection of verbs’ core argument-taking
properties, their model was able to successfully
identify that certain verbs were deterministically
transitive and intransitive— for roughly the same
reason that Bag H above provides a good explana-
tion for data that does not consist entirely of heads.

Here, the basic syntax we consider generates
subjects and objects according to some canonical
order (SVO, SOV, etc.), yielding surface strings of
verbs and noun phrases. And just like in Perkins
et al., unknown grammatical processes— for in-
stance, argument movement or ellipsis— operate
alongside this basic syntax, with the result that the
observed strings of verbs and noun phrases are a
distorted reflection of canonical word order.

3 Applying this to PCFGs

We now turn to situations where a learner’s core hy-
potheses take the form of grammars — specifically,
probabilistic context-free grammars (PCFGs). The
learner will observe some collection of strings, and
in general none of the core grammars under consid-
eration will be consistent with all of the observed
strings. One way to apply the idea from above
would be to suppose that some of the observed
strings were generated by a separate “noise gram-
mar” — just as some of the coin flips above were
generated by the head-tail coin. But this would

mean that every string is analyzed as either all sig-
nal (i.e. informative about the core grammar) or all
noise, and so the learner would not be able to ex-
tract useful information from subparts of sentences.

Instead, we allow the signal-or-noise choice to
be made at a finer-grained level: each derivational
step might be contributed either by the core hypoth-
esized grammar or by noise processes. Either way,
each step is licensed by a CFG-style rewrite rule;
in other words, the noise is itself characterized by
particular rules for expanding nonterminals that sit
alongside the rules of the core grammar. The over-
all system therefore consists of rules of two sorts,
which we’ll call core rules and noise rules.

Framed slightly more generally: we formulate a
generative process for strings that we call a Mixture
PCFG. A Mixture PCFG uses rules built out of
terminal and nonterminal symbols in the manner of
a standard PCFG. But whereas defining a standard
PCFG involves identifying just a single set of rules,
defining a Mixture PCFG involves identifying two
sets of rules. For the moment we will simply call
them ϕ-rules and ψ-rules, but in the case study
below these will correspond to core rules and noise
rules respectively. A particular candidate rewriting
step, e.g., ‘S → NP VP’, might be included in
the set of ϕ-rules, in which case it will have some
non-zero probability ϕS→NP VP associated with it;
and independently might be included in the set
of ψ-rules, in which case it will have some non-
zero probability ψS99KNP VP associated with it. In
addition to these ϕ parameters and ψ parameters,
a Mixture PCFG has one additional parameter ϵA

associated with each nonterminal symbol A, which
controls the choice between using a ϕ-rule or a
ψ-rule to expand an occurrence of A.

To illustrate, an example Mixture PCFG is
shown in Fig. 1. In this grammar and all those
in the case studies below, NP is deterministically
realized as np and V as v; we abstract away from
these steps in all the discussion that follows.1 We
write ϕ-rules with standard arrows and ψ-rules with
dashed arrows. Notice that the ϕ-probabilities as-
sociated with the expansions of a particular nonter-
minal symbol sum to one, as do the ψ-probabilities.
Roughly foreshadowing the grammars we use in
the case study below, the ϕ-rules in Fig. 1 encode
the basic clause structure of an SVO language, and
the ψ-rules generate “noise” that diverges from this
canonical word order in various ways.

1This is just ϵNP = ϵVP = 0 and ϕNP→np = ϕV→v = 1.
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ϕ-rules ψ-rules ϵ probabilities
1.0 S → NP VP 0.3 S 99K VP NP ϵS = 0.2

0.5 S 99K NP S
0.2 S 99K VP

0.4 VP → V 0.7 VP 99K NP V ϵVP = 0.3
0.6 VP → V NP 0.3 VP 99K NP

Figure 1: An example Mixture PCFG.

S

VP

NPV

NP

S

NPVP

VNP

S

S

VP

NPV

NP

Figure 2: The three possible analyses of np v np (su-
pressing NP→np and V→v rewrites).

To calculate the probability of a string under
this Mixture PCFG, we sum over all possible ways
it can be generated. For the string np v np, for
example, there are three possibilities, shown in
Fig. 2; solid lines represent expansions using ϕ-
rules, and dashed lines expansions using ψ-rules.

The first tree represents one way of generating
np v np that uses only ϕ-rules: ϵS is the probability
of using a ψ-rule rather than a ϕ-rule to expand
an occurrence of S, and so the probability of ex-
panding the root S node as shown in this first tree
is the product of (1 − ϵS) and the corresponding
ϕ-probability. The probability of the entire tree is
the product of two such rewrites, as in (1); simi-
larly, the probability of the second tree is given in
(2). The third tree’s probability, in (3), uses a more
interesting combination of ϕ-rules and ψ-rules.

(1− ϵS)(ϕS→NP VP)× (1− ϵVP)(ϕVP→V NP)(1)

(ϵS)(ψS99KVP NP)× (ϵVP)(ψVP99KNP V)(2)

(ϵS)(ψS99KNP S)× (ϵS)(ψS99KVP)

× (1− ϵVP)(ϕVP→V NP)

(3)

Using values from Fig. 1, these three trees there-
fore have probabilities of 0.336, 0.013 and 0.001,
respectively; and so the total probability of the
string np v np is 0.350.2

Although we are restricting attention to PCFGs
here, exactly the same approach could be used to
formulate “mixture” versions of any kind of prob-
abilistic grammar where the probability of a com-

2The overall mechanics of a Mixture PCFG can be recast
as a single classical PCFG. Specifically: add nonterminals
Sϕ and Sψ alongside S, and include the rules S → Sϕ and
and S → Sψ with probabilities (1− ϵS) and ϵS, respectively;
the subsequent expansions of Sϕ and Sψ are determined by
the ϕ-rules for S and the ψ-rules for S, respectively. Our
implementation in fact works with exactly this classical PCFG.

plex structure is the product of the probabilities of
certain local choices (e.g. HMMs or PFSAs). The
sampling methods we employ below for inference
are compatible with any model where these local
choices are expressed as multinomial distributions.

In the learning scenarios modeled below, the
learner will have some set of hypotheses to choose
from, each of which is represented by a Mixture
PCFG such as that in Fig. 1. One of the competitor
hypotheses might be represented by a similar Mix-
ture PCFG that has the basic clause structure of an
SOV language (rather than SVO) reflected in its
ϕ-rules, and has some of the same ψ-rules as Fig. 1.
Each of these two hypotheses will therefore gener-
ate strings that diverge from the strict SVO or SOV
pattern licensed by its particular ϕ-rules. Decid-
ing which of these two Mixture PCFGs provides a
better explanation of some observed strings is there-
fore analogous to the decision between Bag H and
Bag T in Section 2, with the ϕ-rules corresponding
to the two-headed and two-tailed coins, and the
ψ-rules corresponding to the head-tail coins.3 Just
as the decision between Bag H and Bag T could
be made by considering (i.e. marginalizing over)
all possible values of the unknown weight θ, we
can make the decision between competing Mix-
ture PCFGs in a way that considers all possible ϕ,
ψ and ϵ values. The logic outlined in Section 2,
whereby explanations in terms of core mechanisms
that align with skews in the data are preferred, car-
ries over to the case where the core mechanisms
are either SVO or SOV word order.

4 Case study: Learning basic word order

We show that the approach of deciding among
competing Mixture PCFGs provides a novel so-
lution to the problem of word order acquisition
in early development. Children acquire the basic
word order of their language from data that con-
tains a large amount of noise. For example, En-
glish learners identify that their language is canoni-
cally SVO in infancy, before they can identify the
processes that produce non-canonical word orders
in sentences like wh-questions (Hirsh-Pasek and
Golinkoff, 1996; Lidz et al., 2017; Perkins and
Lidz, 2020, 2021). Many accounts assume that
learners have the ability to “filter” non-basic sen-
tences of this sort, ignoring them when drawing

3Bag H is analogous to a Mixture PCFG with ϕS→h = 1,
ψS99Kh = θ and ψS99Kt = 1 − θ, and ϵS representing the
proportion of head-tail coins in the bag.
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VP → NP V
VP → V

VP → NP VP
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Rules for all
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Rules for
additional NPs

(B)

Figure 3: (A) Hypothesis space for our noise-tolerant learner; (B) Fully-flexible learner for comparison.

early syntactic inferences (e.g. Pinker, 1984). But
if learners do not yet know what counts as basic,
how do they identify which sentence types count
as non-basic, in order to filter them out (Gleitman,
1990; Perkins et al., 2022)? Our model provides a
way to implement the essence of this filtering idea,
while avoiding potential issues of circularity.

Our learner’s hypothesis space consists of four
sets of ϕ-rules and one shared set of ψ-rules, giv-
ing rise to the four Mixture PCFGs in Fig. 3A.
The ϕ-rules generate the core predicate-argument
structure of basic transitive and intransitive clauses,
deterministically putting subjects before or after
verb phrases and objects before or after verbs. This
yields a 4-way choice of canonical word order:
SVO, SOV, VOS, OVS.4 Subjects are are obligatory
and objects are optional, reflecting the learner’s be-
lief that canonical clauses need subjects. All four
grammars share the same set of noise rules, which
allow for all permutations and deletions of NP argu-
ments, and for additions of NPs into non-argument
positions. The flexibility in the noise rules produces
many more possibilities for expanding a given non-
terminal than are provided by the core rules, mirror-
ing the asymmetry between restrictive two-headed
(and two-tailed) coins and flexible head-tail coins.

Crucially, while the learner’s noise rules contain
hypotheses about which non-canonical processes
might operate in its language, the learner does not
know ahead of time the ψ and ϵ probabilities as-
sociated with these rules: it does not know which
kinds of non-canonical clauses it will encounter, or
how frequently. We show that our learner is able

4We limit our focus to these four word orders because they
are the options generated by a 2x2 choice of subject and object
position. Natural languages allow more complex argument
structure profiles, including canonical orders in which the
verb and object are separated (VSO and OSV), or variability
from argument-drop or scrambling. How these properties are
learned is an important question that we leave for future work.

to identify the correct Mixture PCFG— the correct
combination of core and noise rules— using only
the distributions of noun phrases and verbs that
a 15-month-old infant might be able to represent.
This inference does not require information about
underlying clause structure. However, a similar
mechanism could be generalized to make use of
structural cues from meaning or prosody (Pinker,
1984; Christophe et al., 2008).

Using strings of imperfectly-identified noun
phrases and verbs, the learner evaluates the fol-
lowing three questions, corresponding to the ϕ, ψ,
and ϵ parameters of its input filter, respectively:
(1) What do the data from the core rules look like?
(2) What do the data from the noise rules look
like? (3) What is the right division into signal
vs. noise? For each grammar in its hypothesis
space, the learner considers the possible answers to
these questions in order to determine how well that
grammar explains the data it observes. Comparing
across the four grammars, the learner selects the
grammar that provides the best explanation.

4.1 Generative model

The model’s data consists of a collection w⃗ of
strings, each comprising a single v with any num-
ber of satellite np’s (i.e., of the form np∗ v np∗).
The model assumes that these are generated by
one of the Mixture PCFGs in its hypothesis space
(Fig. 3A), each of which has equal prior probabil-
ity; the learner is not biased a priori in favor of any
particular word orders.

Given any particular Mixture PCFG, we can con-
struct an equivalent standard PCFG that defines the
same distribution over strings (via some additional
nonterminals and unary rules; see Footnote 2 for
details). Let θ⃗AG be the vector of weights of the
allowable expansions of a given nonterminal A in
this resulting standard PCFG G; the prior over θ⃗AG
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English French
Corpus Brown: Eve Lyon
# Children 1 5
Ages 1;6-2;31 1;0-3;0
# Words 81,687 885,334
# Utterances 14,232 182,511

Table 1: Corpora of child-directed English and French

is a Dirichlet distribution with parameters α⃗AG .
We begin with the assumption that all components
αAG
i are equal to 1, resulting in a uniform prior

distribution, i.e. the model considers all possible
expansions for A with equal probability.

4.2 Inference

From the observed strings, the model infers the pos-
terior distribution over all grammars in its hypoth-
esis space, P (G | w⃗). Calculating this posterior
analytically would require marginalizing over both
θ⃗G and t⃗— i.e., integrating over the rule weights
and summing over all possible trees for a string, for
all strings in the data. This calculation is intractable.
So, instead of marginalizing over all of the infor-
mation in t⃗, we marginalize over only some of it,
and sample the remaining partial analyses. We call
these partial analyses “coarse structures” (s⃗), de-
scribed below. We begin by randomly initializing
a set of possible coarse structures for the observed
strings. Then, we use Gibbs sampling to jointly in-
fer the posterior P (G, s⃗ | w⃗), alternating between
sampling a new grammar according to P (G | s⃗, w⃗),
and sampling new coarse structures according to
P (s⃗ | G, w⃗). This process will converge to the
joint posterior distribution over G and s⃗.

The coarse structures s⃗ take the same shape as
the trees generated by the learner’s grammars, but
abstract away from the distinction between core
and noise rewrites in those trees. This corresponds
to abstracting away from the distinction between
solid and dashed lines in Fig. 2. Unlike a full
tree, which commits to particular core vs. noise
distinctions and therefore is compatible with only
some grammars, any coarse structure is consistent
with all of the grammars in the learner’s hypothesis
space: it might be generated by core rules in certain
grammars, or by some combination of noise and
core rules, or by only noise rules, which are shared
across all grammars. Therefore, for every grammar
G, P (G | s⃗, w⃗) is always non-zero, allowing us
to draw samples from this posterior in a feasible
way. We sample s⃗ from the posterior P (s⃗ | G, w⃗)
with a Hastings proposal, using a variant of an al-

English French
0.36 np v 0.48 np v
0.20 v 0.21 np v np
0.20 np v np 0.13 v
0.17 v np 0.05 np np v
0.04 np v np np 0.03 np v np np
0.03 v np np 0.03 v np

Table 2: Proportions of most frequent string types

gorithm introduced by Johnson et al. (2007) and
marginalizing over θ⃗G. See Appendix B for details.

5 Simulations

We tested our model on English and French. These
languages are both canonically SVO, but differ in
how strictly they adhere to this canonical pattern:
English has rigid word order, whereas French al-
lows a greater degree of argument dislocation. We
show that our model sucessfully identifies SVO as
the target grammar for its noisy data, and does so
even in an expanded hypothesis space that allows
a choice among more flexible discrete hypotheses.
Moreover, our model out-performs a learner whose
grammar allows all word-order rules with some
probability (Fig. 3B), with a numerical bias to pre-
fer rule weights that are close to 0 or 1. This shows
that for this case study, our model fares better than
the more common type of explicit regularization
bias in prior literature.

5.1 Data

We used the Eve and Lyon CHILDES corpora
(Brown, 1973; Demuth and Tremblay, 2008),
which contain speech directed to English- and
French-learning 1- and 2-year-olds (see Table 1).
We searched these corpora for strings of one v and
any number of satellite np’s. We used a noisy
heuristic to approximate the knowledge of infants
at 15 months and younger, who can use functional
cues— determiners, pronouns, and auxiliaries—
to differentiate nouns and verbs (Babineau et al.,
2020; Shi and Melançon, 2010; Hicks et al., 2007).
We categorized any full pronoun as an np; any
word following a determiner as the head of an np;
and any word following an auxiliary as a v. Wh-
words and object clitics were not categorized as
np’s, because they may not be recognized as such
by infants learning basic word order (Perkins and
Lidz, 2021; Brusini et al., 2017). Object clitics that
are homophonous with determiners were treated
erroneously as determiners, to simulate the uncer-
tainty that infants might have about their category.
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To create the datasets for our learner, we sam-
pled 50 strings in their relevant proportions in each
language (see Table 2). Over 30% of the strings in
each language are incompatible with the core rules
of the target SVO grammar. As a whole, these data
cannot be generated by the core rules of any single
grammar in the learner’s hypothesis space, without
considering the option of noise.

5.2 Results: Our model
Fig. 4 displays our model’s inferred posterior prob-
ability distribution over the four Mixture PCFGs
in its hypothesis space, averaged over 10 runs of
the model in each language. In both English and
French, the SVO grammar was assigned a higher
posterior probability than any other grammar in
the learner’s hypothesis space (all ps < 0.001,
Binomial tests). This shows that the learner’s fil-
tering mechanism allowed it to overcome the large
amount of noise in its data. The learner success-
fully discovered that the best explanation for its
data involved identifying some portions that were
signal for core SVO word order, and some portions
that came from noise processes.

5.3 Comparison: Fully-flexible model
In order to assess how much our model’s suc-
cess depended on a choice of discrete canonical
word-order grammars, we constructed a compari-
son learner whose hypothesis space collapses the
distinction between canonical and non-canonical
structures. This “fully-flexible” hypothesis space
consists of a single standard PCFG comprising
all of the word-order rules across our learner’s
four grammars (Fig. 3B). For this model, learn-
ing canonical word order would mean identifying
that some of its rules have probabilities near zero.

We tested two variants of this model. The first
assumes that all rules in its hypothesis space are
equally probable a priori, as in our original model.
The second is numerically biased to regularize its
rule weights, following the regularization approach
in prior literature (Reali and Griffiths, 2009; Cul-
bertson et al., 2013; Ferdinand et al., 2019). This
regularization bias takes the form of a skewed prior
over the rule weights θ⃗ in the learner’s grammar.
For each nonterminal A, we set all component pa-
rameters αA

i of the model’s Dirichlet prior to a
small value, 0.001. This biases the learner to put
probability mass on only one expansion of a given
nonterminal, and push the probabilities of other
expansions towards zero.
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Figure 4: Posterior distribution over grammars
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Figure 5: Posterior distribution over subject and object
position in sampled treesets (⃗t), fully-flexible learner

The learner’s inference process consists of one of
the steps in our original Gibbs sampler. We sample
trees for the learner’s data from the posterior given
its sole grammar, P (⃗t | G, w⃗), just as we sampled
P (s⃗ | G, w⃗) in our original model.

We assessed whether the fully-flexible learner
had identified a canonical word order by calculat-
ing the proportion of the learner’s sampled trees
that contained subject NPs before verb phrases and
object NPs before verbs. These proportions are
plotted in Fig. 5, where each point corresponds
to a sampled set of trees, aggregated across ten
runs of the model in each language. These plotted
distributions provide an estimate of the learner’s in-
ferred posterior probabilities of subject-initial and
object-initial structures. The four possibilities for
canonical word order correspond approximately to
the four corners in each panel: clockwise from top
left, these are OVS, SOV, SVO, and VOS.

If the learner had successfully identified that En-
glish and French are canonically SVO, the major-
ity of tree samples would lie close to the lower
right corners of these graphs. Instead, the unbi-
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ased learner (bottom) inferred a distribution over
tree structures that mirrored its noisy data. These
ranged from the OVS to the SVO regions in En-
glish, and across the OVS, SOV, and SVO re-
gions in French. The biased learner (top) inferred
distributions closer to the corners corresponding
to canonical word orders. However, the English
learner gave equal posterior probability to both
OVS and SVO structures; its mean proportions of
subject-initial and object-final trees were not sig-
nificantly different from 0.5 (mean subject-initial:
0.51, mean object-final: 0.54, ps > 0.67). The
French learner converged to SOV structures in-
stead of SVO (mean subject-initial: 0.99, mean
subject-final: 0.01, ps < 0.001). The learner’s
regularization bias helped it identify one or two
canonical word orders for its noisy data. But unlike
our model, it did not correctly converge on SVO as
the most probable word order in either language.

Why would our approach fare better than the
more common approach to regularization in past
work? Our model’s success comes in large part
from its expectation that canonical clauses re-
quire subjects; subject-drop can occur only in non-
canonical clause types. This allows our learner to
use the large number of np v strings as evidence
for a subject-initial grammar. Given the choice
between using its restricted core rules to analyze
the sole np as a canonical subject, versus using
its noise rules to analyze the np in a different posi-
tion, a preference emerges for the canonical-subject
analysis— just as we prefer to analyze a sequence
of heads as coming from a two-headed rather than
a head-tail coin. The fully-flexible learner does not
distinguish between canonical structures in which
subjects are required, and non-canonical structures
in which they are not, so no preference emerges to
to analyze a sole np in a specific clausal position.

For this learning problem, it appears helpful to
have a hypothesis space with a distinction between
core rules that provide deterministic options for
canonical word order, and noise rules that produce
non-canonical structures. This mixture of determin-
istic and non-deterministic options is what allows
the target basic clause structure to emerge as the
best explanation of the learner’s noisy data.

5.4 Comparison: A data-coverage heuristic

Our learner successfully shows a preference for
some hypotheses over others in a scenario where
none are compatible with all of the data. But
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Figure 6: Eight-way hypothesis space: proportion data
coverage vs. model’s posterior distribution

one might ask whether the same result could be
achieved via a much simpler approach: the core
rules of the SVO grammar can generate 56% of
the English data, which is a greater proportion than
can be generated by the core rules of any of the
alternatives (each less than 40%), and so this alone
might lead a learner to identify SVO as the pre-
ferred option. Our model’s inference mechanism
does more than simply recapitulate this “data cov-
erage” heuristic. To see this, it is useful to consider
a scenario where the learner has a wider range of
discrete hypotheses to choose among, including
some that are more restrictive than others.

We constructed a comparison learner that con-
siders an eight-way choice among Mixture PCFGs.
These include all four deterministic options from
our original model: grammars whose core rules fix
subject and object position. In addition, the hypoth-
esis space includes four more flexible grammars
whose core rules fix only one of those argument
positions, and allow the other to vary. For instance,
the grammar we call “SV” fixes the subject pre-
verbally, but allows the object to appear either be-
fore or after the verb: its rules are the union of the
rules in the SVO and SOV grammars. Similarly,
the “VS” grammar fixes the subject post-verbally
but allows object position to vary, and the “OV”
and “VO” grammars fix object position, but allow
subject position to vary. All eight grammars share
the same set of noise rules as in our original learner.

Given a choice among these eight grammars, the
data-coverage heuristic will always favor one of the
four more flexible ones, since they generate unions
of the stringsets generated by the original four. In
each of the top panels in Fig. 6, where a compari-
son only among the leftmost four grammars would
have SVO as the winner (roughly mirroring Fig. 4),
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we see that the more flexible grammars in general
fare better by the data-coverage metric. But our
learner, on both languages, assigned SVO higher
posterior probability than any other grammar in the
hypothesis space (Fig. 6, bottom; all ps < 0.001,
averaged across 10 runs of the learner).

Why does our learner still succeed at identify-
ing that English and French are SVO, even when
there are other hypotheses that cover more of the
data? Intuitively, our learner considers a tradeoff
between fit to the data and restrictiveness of its
hypotheses. Given the choice between the restric-
tive SVO hypothesis that provides a decent fit to
the data, and the more flexible hypotheses that pro-
vide slightly better fits, a preference emerges for
the more restrictive option— again paralleling our
intuitive preference to attribute as many coin flips
as possible to a two-headed rather than a head-tail
coin. In our original model, this preference for re-
strictive hypotheses applied within each grammar,
governing the learner’s choice of attributing data to
the restrictive core rules vs. the flexible noise rules.
Here, we show that this same mechanism informs
the learner’s choice across grammars.

These findings demonstrate the flexibility and
robustness of this learning mechanism. Our learner
identifies strict SVO word order as its preferred hy-
pothesis not only in comparison with other equally-
strict alternatives, but also when other less restric-
tive options are available; the fact that it settled on
deterministic SVO order in Fig. 4 was not simply
a by-product of the fact that we provided only de-
terministic options. An implicit tradeoff between a
grammar’s restrictiveness and its fit to the data, and
the expectation that this fit will be noisy, together
enable the learner to identify the target determinis-
tic word order among more flexible hypotheses.

6 Discussion

We introduce a general mechanism for noise-
tolerant learning of deterministic grammars. Our
learner assumes that its data are generated by a
complex system: the particular grammatical pro-
cesses that the learner is currently trying to acquire,
and other unknown processes that conspire to in-
troduce variability into the data. We model the
inference process as a special case of probabilistic
grammar learning, in which the learner evaluates a
choice among different Mixture PCFGs: composite
grammars in which each node might be introduced
either by a restricted set of “core” rules, or by a

less restricted set of “noise” rules.
We apply this approach to the problem of ac-

quiring basic word order from immature sentence
representations. Using distributions of imperfectly-
identified noun phrases and verbs, our model suc-
cessfully infers that English and French are SVO,
without further cues to underlying sentence struc-
ture. It does so by separating signal for canonical
word order from noise due to non-canonical struc-
tures, thereby implementing a proposal that young
learners “filter” non-canonical clauses from their
data (Pinker, 1984; Perkins et al., 2022). Because
the learner’s grammatical hypotheses allow only
certain restricted core rules, a preference emerges
to use these core rules to explain the skews in its
data when possible, rather than analyzing most of
the data as noise. This provides the impetus for
successful filtering, even though our learner does
not know ahead of time the rate or properties of
non-canonical clauses in the language.

While we focus here on Mixture PCFGs, this
same approach can be applied to “mixture” ver-
sions of other sorts of grammars that generate com-
plex structures as a function of local choices about
smaller subparts. This approach may therefore gen-
eralize to many other problems in grammar learn-
ing: e.g., learning phonological constraints that
can be expressed in mixture finite-state systems,
or learning syntactic dependencies that can be ex-
pressed in mixture multiple context-free grammars.

More broadly, this approach provides a novel
mechanism for regularization in grammar learning.
Here, a learner’s tendency to regularize variable
data is not driven by an explicit bias to prefer ex-
treme points in a fully-gradient space, but instead
emerges from the learner’s expectation that its data
are a noisy realization of a restrictive underlying
system. This invites the possibility that other ob-
served cases of regularization may be accounted for
without adopting a fully-flexible hypothesis space.
Instead, successful learning in certain domains may
be underwritten by deterministic options in the
learner’s hypothesis space, combined with a gen-
eral mechanism for filtering signal from noise.
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A Details of the coins example from
Section 2

Recall the scenario with just Bag H: this bag con-
tains an unknown number of Type A coins, which
always come up heads, and an unknown number of
Type B coins, which all have some single unknown
probability θ of coming up heads. Ten times, a coin
is chosen from the bag and flipped; this produces
eight heads and two tails. How many of these ten
flips might we guess came from Type A coins, and
how many from Type B coins?

We consider three hypotheses:

• H1: 0 Type A flips, 10 Type B flips
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• H2: 6 Type A flips, 4 Type B flips

• H3: 8 Type A flips, 2 Type B flips

The three hypotheses’ likelihoods, conditioned
upon the unknown probability θ, are as follows.

Pr(data | H1, θ) =
(
10
8

)
θ8 (1− θ)2(4)

Pr(data | H2, θ) =
(
6
6

)
16 ·

(
4
2

)
θ2 (1− θ)2(5)

=
(
4
2

)
θ2 (1− θ)2

Pr(data | H3, θ) =
(
8
8

)
18 ·

(
2
0

)
θ0 (1− θ)2(6)

= (1− θ)2

As noted in the main text, these expressions high-
light the fact that H1 is the most costly hypothe-
sis, since it relies most heavily on the contingent
outcomes from Type B coins, and H3 is the least
costly.

We can make this more precise by marginalizing
over the unknown value of θ in (4) and (5). The
useful general result here is that

(7)
∫ 1

0

(
n

k

)
θk(1− θ)n−kdθ =

1

n+ 1

for any n and k; notice that the right-hand side only
depends on n. Marginalizing over θ in (4), (5) and
(6), under the assumption of a uniform prior on θ,
yields integrals of this form.5 For H1, n = 10 so
Pr(data | H1) = 1

11 . What this highlights is that
the likelihood under such a hypothesis depends
only on the number of times that hypothesis needs
to invoke the uncertain Type B coin flip: any out-
come of the ten-flip experiment invoked by H1 has
probability 1

11 , and any outcome of the two-flip
experiment invoked by H3 has probability 1

3 .

Pr(data | H1) = 1
11

Pr(data | H2) = 1
5

Pr(data | H3) = 1
3

Now consider the choice between Bag H and
Bag T, as candidate explanations for a sequence of
ten flips that yielded eight heads and two tails. We
have seen that, using Bag H, the possible hypothe-
ses range from those that provide “good” explana-
tions of the data (such as H3 at one extreme) by
exploiting the presence of the two-headed coins, to

5Specifically, the uniform prior can be represented as
a Beta(1,1) distribution over θ, so Pr(data | H1) =∫ 1

0
Pr(data | θ,H1)Beta(θ | 1, 1)dθ =

∫ 1

0
Pr(data |

θ,H1)dθ, since Beta(θ | 1, 1) = 1 for all θ.

Figure 7

those that constitute “costly” explanations (such as
H1 at the other extreme) because they rely heavily
on flips of the head-tail coins; see Fig. 7. With
Bag T, the explanations at the costly extreme are
still available (e.g. the hypothesis that all ten flips
came from head-tail coins; n = 10), but there is
no way for the two-tailed coins to contribute to par-
ticularly good explanations of the observed high
proportion of heads. To minimize the reliance on
the contingent outcomes of head-tail coins, the best
one can do is to suppose (call this H4) that the two
observed tails both came from two-tailed coins,
which still leaves eight uncertain flips. The likeli-
hood under this hypothesis (compare with (5) for
H2) is

(8) Pr(data | H4, θ) =
(
2
2

)
12 ·

(
8
0

)
θ8 (1− θ)0

= θ8

and Pr(data | H4) = 1
9 .

Returning now to the overarching choice be-
tween the two bags: the likelihood assigned to the
data by a particular bag is the sum of the heights of
the associated bars in Fig. 7. This is clearly larger
for Bag H, and so assuming a flat prior over the
two bags, the posterior probability of Bag H will
be higher than that of Bag T.

B Details of Gibbs sampling

In the first step of sampling, we use Bayes’ Rule to
calculate the posterior probability of each grammar
given the observed strings w⃗ and a collection of
hypothesized coarse structures s⃗ for those strings:

(9) P (G|s⃗, w⃗) = P (s⃗, w⃗|G)P (G)∑
G′ P (s⃗, w⃗|G′)P (G′)

Bayes’ Rule tells us that the posterior probability
of any grammar is proportional to the product of
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the likelihood (the probability of s⃗ and w⃗ under that
grammar) and the prior probability of that grammar.
We assume that all four grammars have equal prior
probability.

Because we are only considering coarse struc-
tures that could have yielded the strings in the data,
the joint likelihood of the coarse structures and
strings, P (s⃗, w⃗|G), is equivalent to the likelihood
of the coarse structures alone, P (s⃗|G). Calculating
this likelihood requires summing over the unknown
ways that each portion of these coarse structures
might be analyzed as either a core (ϕ, solid line)
or noise (ψ, dashed line) rewrite. The specific core
vs. noise choices are interchangeable for each par-
ticular nonterminal given a grammar, so we make
this calculation tractable by considering how many
core vs. noise rewrites might have occurred for
each nonterminal.

We divide the nA total observations of a par-
ticular nonterminal A into nA1 . . . n

A
m observations

of the 1st through the mth possible rewrites (col-
lapsing across ϕ-rewrites and ψ-rewrites of A).
The full likelihood of the set of coarse structures,
P (s⃗|G), is the product over all nonterminals A of
P (nA1 . . . n

A
m | G). We divide each of the observed

rewrites of a nonterminal into some number of core
(solid line) rewrites (ϕ) and some number of noisy
(dashed line) rewrites (ψ). The nA1 occurrences
of the first type of rewrite for A are divided into
nA

ϕ

1 core occurrences and nA
ψ

1 noisy occurrences.
More generally, the nAm occurrences of the mth

rewrite type are divided into nA
ϕ

m core occurrences
and nA

ψ

m noisy occurrences. We can calculate the
likelihood by marginalizing over nA

ϕ

1 . . . nA
ψ

m :

P (s⃗|G) =
∏

A

P (nA1 . . . n
A
m | G) =(10)

∏

A

[ nA1∑

nA
ϕ

1 =0

· · ·
nAm∑

nA
ϕ

m =0

[
P (nA

ϕ

1 . . . nA
ϕ

m |nAϕ , G)

×P (nAψ1 . . . nA
ψ

m |nAψ , G)

×P (nAϕ |nA, G)
]]

The first term in the sum is the probability of
observing nA

ϕ

1 . . . nA
ϕ

m core occurrences of each
rewrite type, out of nA

ϕ
total core occurrences of

A. This follows a multinomial distribution with
parameter ϕ⃗AG . Because ϕ⃗AG is unknown, we

integrate over all possible values of ϕ⃗AG to obtain

(11)
B(α⃗ϕ

AG + (nA
ϕ

1 . . . nA
ϕ

m ))

B(α⃗ϕ
AG)

for this first term, where α⃗ϕ
AG represents the pa-

rameters of the Dirichlet prior over ϕ⃗AG , and B(·)
is the multivariate Beta function.

The second term in the sum in (10) is analogous:
this is the probability, given nA

ψ
total noisy oc-

currences of A, of observing nA
ψ

1 . . . nA
ψ

m noisy
occurrences of each rewrite type, which follows a
multinomial distribution with parameter ψ⃗AG . The
third term is the probability of observing nA

ϕ
to-

tal core occurrences out of nA overall occurrences
of A. This follows a binomial distribution with
parameter (1− ϵAG). We again integrate over all
possible values of ψ⃗AG and ϵAG , obtaining results
analogous to Eq. (11).

This allows us to calculate the likelihood P (s⃗ |
G) for each G in our hypothesis space, and (since
we assume a flat prior of grammars) sample a new
G with probability proportional to this likelihood.

After re-sampling a new grammar G, we then
use a component-wise Hastings proposal to sample
a new set of coarse structures s⃗ for the observed
strings, given G. Following Johnson et al. (2007),
we consider the probability of a particular coarse
structure si for corresponding string wi, given G
and the current hypotheses about coarse structures
s⃗−i for all the other strings. We can define a func-
tion f that is proportional to the posterior distribu-
tion over si, f(si) ∝ P (si|wi, s⃗−i, G), as

(12) f(si) = P (wi|si)P (si|s⃗−i, G)

The probability of a string being the yield of a
given coarse structure, P (wi|si), is always 1 or 0.
The probability of a coarse structure given all other
coarse structures and G, P (si|s⃗−i, G), is

(13) P (si|s⃗−i, G) =
P (s⃗|G)
P (s⃗−i|G)

Both P (s⃗|G) and P (s⃗−i|G) are calculated accord-
ing to to Eq. (10).

We can use this function f to sample s⃗ given
G and w⃗ as follows. Within each iteration of the
Gibbs sampler, we re-sample s⃗ using a procedure
modified from Johnson et al. (2007). First, we
choose a string wi and its current corresponding
si at random. Second, we take the other coarse
structures s⃗−i, to be the output of a simple PCFG
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which generates coarse structures directly, rather
than the full trees generated by a Mixture PCFG.
We estimate of the weights of this PCFG, θ⃗s, from
the relative frequencies of each observed rewrite,
using add-one smoothing to account for accidental
gaps. Third, we generate a new proposed coarse
structure si′ for wi by sampling from this gram-
mar’s distribution using θ⃗s. Finally, we decide to
accept this proposal with probability

(14) A(s′i) = min

(
1,
f(si

′)P (si|wi, θ⃗s)

f(si)P (si′|wi, θ⃗s)

)

We ran multiple chains from different starting
places to test convergence. For the simulations
reported in Sec. 5.2, we ran chains of 20,000 iter-
ations of Gibbs sampling each, and analyzed ev-
ery 10th iteration from the last half of each chain.
We report averages across 10 chains as estimates
of the posterior over G and s⃗. To simulate the
“fully-flexible” learner described in Sec. 5.3, we
estimate the posterior distribution over t⃗ by using
a component-wise Hastings sampler analogous to
that for estimating P (s⃗|G, w⃗) in our original model.
We ran 10 chains of 20,000 Hastings iterations each,
and analyzed every 10th iteration from the last half
of each chain.
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Abstract

This paper explores the application of spec-
tral graph theory to the problem of character-
izing linguistically significant classes of tree
structures. As a case study, we focus on three
classes of trees, binary, X–bar, and asymmet-
ric c–command extensional, and show that the
spectral properties of different matrix repre-
sentations of these classes of trees provide in-
sight into the properties that characterize these
classes. More generally, our goal is to provide
another route to understanding the structure of
natural language, one that does not come from
extensive definitions and rules taken by extrap-
olating from the syntactic structure, but instead
is extracted directly from computation on the
syntactically–defined graphical structures.

1 Introduction

In order to explore properties of natural and ar-
tificial language, the choice of representation is
extremely important, as one is constrained to work
within the tools existent for that representation.
Motivated by immediate consituency theory, tree–
structured graphical representations are the over-
whelming favorite of syntacticians, capturing the
multidimensionality inherent in the hierarchical
structures of grammar. Modern graphical represen-
tations of syntax utilize binary trees: rooted tree
graphs where each node branches into 0, 1 or 2 new
nodes.

Syntacticians ask what constraints exist on tree
structures by deriving properties of the acceptable
structure and extrapolating from those potential
rules and axioms governing natural language struc-
tures. All syntactic trees are rooted and downward
branching. The most basic of restrictions syntacti-
cians have imposed on a syntax tree is the branch-
ing factor of the nodes: it is widely assumed that
syntactic trees are binary branching.

XP

SpecXP

. . .

X′

X CompX

. . .

Figure 1: The requisite
underlying structure of a
phrase XP.

Another attempt by
syntacticians to con-
strain permissible tree
structures which ac-
curately model natu-
ral language is X–bar
theory: all phrases
require the template
of XP branching into
specifier SpecXP and
X′, and X′ branching
into head X and com-
plement CompX, as in
Figure 1. SpecXP and
CompX are optional—
if they do not exist, neither do the edges connecting
them to the structure (denoted by the dashed lines).
If they do exist, they themselves have to follow the
same structural guidelines of X–bar theory.

Kayne (1994) develops another restriction on
possible tree structures by means of the Linear Cor-
respondence Axiom (LCA), which states that the
asymmetrical c–command relationship is a strict
linear order (i.e. irreflexive, transitive, and asym-
metric). Well–formed versus ill–formed trees can
then be characterized as a result of the hierarchy
(by way of the LCA and asymmetric c–command).

Frank and Vijay-Shanker (2001) suggest a partial
order defined by a c–command relation as a primi-
tive relation and that which should determine the
hierarchy of syntactic tree structures (as opposed
to dominance, by deriving dominance using the
c–command relation). Frank and Kuminiak (2000)
extended this idea to asymmetric c–command, sug-
gesting that asymmetric c–command is a primitive
relation, defining trees using this relation and ar-
guing that this class is very similar to X–bar trees.
Kuminiak (1999) considers classes of trees that
are uniquely definable by some relation—more
specifically, those that are uniquely defined by their
asymmetric c–command relation, i.e. asymmetric
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c–command extensional (ACC).
Much of the work studying constraints on syn-

tactic structures that accurately reflect properties of
natural language has been done in a vein similar to
the aformentioned work, by way of thinking about
which structures are syntactically valid, and then
attempting to generalize these properties. This pa-
per provides an alternate route, one which directly
studies syntactic classes from a mathematical per-
spective. While many properties are not derivable
directly from the graphical structure, the aformen-
tioned work demonstrates some which are. This
paper explores the three previously–defined classes
of trees—binary, X–bar, and ACC—from the van-
tage point of spectral graph theory.

Spectral graph theory (SGT) maps graphs to
various matrix representations and analyzes spec-
tral properties of these matrices. 1 Simple eigen-
value/eigenvector properties of a graph’s matrix can
be linked to properties of the graph that are often
of high importance to the mathematician/computer
scientist, such as graph–coloring and graph iso-
morphism (Wilf, 1967; Hoffman, 1970; Spielman,
2019; Chung, 1997; Godsil and Royle, 2001).

Researchers explore the distribution of eigenval-
ues of various graphs across the real numbers and
concrete bounds on these distributions. A host of
work explores whether graphs can be determined
or distinguished by their spectra: cf. van Dam and
Haemers (2003), Haemers and Spence (2004).

The notion of a tree has long existed within the
mathematical subfield of graph theory, and trees
have been extensively studied within both graph
theory and spectral graph theory. Jacobs et al.
(2021) study the distribution of eigenvalues of tree
graphs. Dadedzi (2018) analyzes the spectra of var-
ious classes of trees, developing bounds on multi-
plicities of eigenvalues. Work has been done study-
ing the spectrum of k−ary trees, trees where every
non-leaf node has branching factor, i.e. degree, of
k ∈ N, and each leaf has degree 1 (He et al., 2000;
Wang and Xu, 2006).

With respect to linguistic questions, Chowdhury
et al. (2021) demonstrates an application of SGT
to phylogenetic trees involving different graph iso-
morphism techniques. Ortegaray et al. (2021) use
eigenvectors of the Laplacian matrix to detect rela-
tions between various vectors of syntactic parame-
ter values.

1We thus interchangeably refer to the spectra of a matrix
representing a graph as the spectra of the graph.

SGT has not, however, been used to explore
graphical properties of linguistic classes of tree
structures. This paper demonstrates the utility
in doing just that. It presents natural spectral
properties of these trees that distinguish desirable
classes of syntactic structures, exploring the ex-
tent to which these classes can be characterized by
properties of their spectra.

The paper is structured as follows. Section 2 in-
troduces the formal mathematical tools necessary:
graph theory, matrix theory, and spectral graph the-
ory. Section 3 explores spectral properties of the
undirected graphs, before pivoting to those prop-
erties of directed graphs in section 4. Section 5
concludes.

2 Mathematical preliminaries

We present the mathematical notations and con-
cepts of the paper, beginning with graph theory.

2.1 Graph Theory

Formally, we define a graph G = (V (G), E(G)),
where V (G) = {v1, v2, . . . , vn} is a set of n ver-
tices, E(G) = {{va, vb}, . . . , {vp, vq}} is a set of
m edges.2 We often abbreviate this notation to
G = (V,E), and label a set of k nodes with inte-
gers 1 through k. If the edges are undirected, the
edge pair {vi, vj} is unordered, whereas if the edge
is directed, the edge pair is ordered {start, end}.

The degree dv of a vertex v is the number of
edges connected to that node. For directed graphs,
we use outdegree, the number of edges leaving that
node. We denote the set of (out)degrees of a graph
G as D(G). A leaf is a node of degree 1 (or, in the
case of a directed graph, i.e. digraph, outdegree
0). Two adjacent vertices are connected by a single
edge. A quasipendant vertex is a vertex adjacent
to a leaf. A path from some vertex vi to another vj
is the sequence of edges connecting adjacent nodes
between vi and vj . A graph is connected if there is
a path from every node to every other node.

Graphs are often divided into classes. Graphs
in a given class have one or more (often structural)
unifying characteristics. The class of trees is the
class of connected acyclic graphs T = (V,E) de-
fined by the existence of exactly one path connect-
ing any two given vertices v1, v2 ∈ V—that is,
they have no loops. A directed tree is a tree with
directed edges. A rooted tree is a tree for which a

2We follow the presentation of graph theory of Bondy and
Murty (1976).
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specific node has been designated as the root, and
is graphed with this root at the top or bottom. Any
directed tree, i.e. directed acyclic connected graph,
will have a root: the node that has no edges entering
it.

2.2 Spectral Graph Theory
Mathematicians have explored different ways to
represent graphs, outside of the canonical picture of
nodes and edges. Spectral graph theory, exploring
algebraic representations of graphs by mapping
graphs to various matrix representations, provides
an approach to both explore what sorts of graphical
properties (already observable through the graph–
theoretic depiction) can be captured algebraically,
and what new otherwise–unperceived properties
emerge by virtue of the algebraic representation.

Spectral graph theory explores the link between
algebra and graph theory by examining algebraic
properties of matrix representations of graphs and
how they reflect or represent combinatorial proper-
ties of these graphs.3 We construct a mapping from
a graph G = (V,E) to a matrix M ∈ Fn × Fn,
where F is the field over which the entries of M
are defined4 and mij contains information about
vi, vj , or the edge connecting them. Shifting be-
tween two different mathematical representations,
a graph and a matrix, of the same mathematical
object, allows both graphical/combinatorial and
algebraic exploration of this object, permitting dis-
covery of connections across these subfields that
can be used to capture otherwise unascertainable
properties of the graph.

A number of possible matrix representations are
available for graphs, including the adjacency matrix
AG and diagonal matrix DG (McKay, 1977).

Definition 2.1. Given a graph G = (V,E), we
define the entries of the adjacency matrix AG ∈
N|V | × N|V | as follows:

aij =

{
1 if {vi, vj} ∈ E

0 otherwise

In the case of undirected graphs, the adjacency
matrix will be symmetric (as {vi, vj} ∈ E ⇐⇒
{vj , vi} ∈ E), whereas digraphs’ adjacency matri-
ces are not symmetric.

Definition 2.2. GivenG = (V,E), let the diagonal
matrix DG ∈ N|V | × N|V | be defined as:

3Spielman (2019), Chung (1997) and Godsil and Royle
(2001) form the basis of the following discussion.

4In this paper, we deal with the field of real numbers R.

dii =
∑

j∈|V |
1({vi, vj}),

where the indicator function 1({vi, vj}) is 1
when the edge {vi, vj} exists, and 0 otherwise.

These dii values indicate the degree dvi of each
node vi. So intuitively, DG records the degree of
each vi in the ith diagonal.

Given these two matrix representations of a
graph, we can now define the Laplacian.

Definition 2.3. LetG = (V,E) be a graph with ad-
jacency matrix AG and diagonal matrix DG. The
Laplacian is defined as

LG = DG −AG

In the following example, we give an undirected
binary tree with five nodes and construct its adja-
cency, diagonal and Laplacian matrix representa-
tions.

Example 2.4. Consider the undirected rooted bi-
nary tree G = (V,E) with V = {1, 2, 3, 4, 5},
E = {{1, 2}, {1, 3}, {3, 4}, {3, 5}}:

1

2 3

4 5

AG =




0 1 1 0 0
1 0 0 0 0
1 0 0 1 1
0 0 1 0 0
0 0 1 0 0



, DG =




2 0 0 0 0
0 1 0 0 0
0 0 3 0 0
0 0 0 1 0
0 0 0 0 1




LG = DG −AG =




2 −1 −1 0 0
−1 1 0 0 0
−1 0 3 −1 −1
0 0 −1 1 0
0 0 −1 0 1




An (uncommon) variation on the Laplacian, the
signless Laplacian, is also relevant to this paper.

Definition 2.5. LetG = (V,E) be a graph with ad-
jacency matrix AG and diagonal matrix DG. The
signless Laplacian is defined as

L̂G = |LG| = DG +AG

After mapping the graph to a matrix representa-
tion, such as the Laplacian, we have all the tools of
linear algebra at our disposal.
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2.3 Spectral Theory
Spectral graph theory is based in eigentheory, the
theory of eigenvalues and eigenvectors of matrices.
Definition 2.6. A vector ψ ∈ Rn is an eigenvector
of matrix M ∈ Rn × Rn with eigenvalue λ ∈ R if
it is nonzero and if

Mψ = λψ

For any matrix M and vector v (of the proper
dimensions), the product Mv indicates M acting
as a linear transformation via scaling and rotation.
However, for all eigenvalues λ (a scalar) of M
and their corresponding eigenvectors ψ, the equa-
tion Mψ = λψ signals the ψ are those vectors for
which M does not rotate but only scales by a factor
of λ.

A matrix of dimension n has n (not necessar-
ily unique) eigenvalues. We follow the conven-
tion of denoting this set of eigenvalues of a graph
G’s matrix representation MG, known as the spec-
trum of MG, as Λ(MG) = {λ1, ..., λn}, where the
eigenvalues λ1, ..., λn are ordered from smallest
to largest (that is, λ1 ≤ λ2 ≤ ... ≤ λn). The
multiplicity of an eigenvalue λ in the spectrum of
M , denoted µM (λ), is the number of times that λ
occurs. Within Λ(M), an eigenvalue λ with multi-
plicity k is represented as λk.

Obviously any matrix representation of a graph
changes with node labeling, as the node labels de-
termine the position of node information in the
matrix. However, the spectrum is invariant under
permutation of the rows and columns of the ma-
trix, meaning any permutation of the rows and (the
same) columns of M yielding M ′ has the prop-
erty that Λ(M) = Λ(M ′). Thus, the spectrum of
a graph is a useful way to explore properties of
a graph as isomorphic graphs (graphs which are
identical with a relabeling of nodes) have the same
spectrum.

Spectral graph theory explores properties of
these eigenvalues which have been extracted from
the matrix of a graph to uncover combinatorial
properties of the graph.

3 Spectral properties of undirected
syntactic structures

This paper concerns the spectral properties of three
classes of potentially syntactically–relevant graphs:
binary trees, X–bar trees, and ACC trees.

Because the mathematics of undirected trees has
been more widely studied, we begin with studying

syntactic structures as undirected graphs. This ig-
nores a crucial aspect of the tree structure assumed
in linguistics—namely, the presence of a root node,
and the ordered relationship between pairs of nodes
(i.e. dominance). We completely ignore the issue
of precedence among nodes so that trees are en-
coded entirely on the basis of their hierarchical
relationships.

3.1 Generating classes
First, we define the three classes of graphs repre-
senting the three syntactic classes of binary, X–bar
and ACC trees. Let bin_base be the smallest
non–empty binary tree with three nodes, i.e. the
three–noded path graph where dv = 2 for the root
v. Let (Tα, Tβ) ↑ bin_base denote the simultane-
ous substitution of the trees Tα and Tβ into the left
and right leaves of bin_base, respectively. In
what follows, we assume the trees to be unordered.
Bin(n) is the class of all binary (branching)

trees with n = 2k+ 1 nodes defined recursively as

Bin(2k+ 1) =
k−1⋃

i=1

(Tα, Tβ) ↑ bin_base

over Tα ∈ Bin(2i+ 1), Tβ ∈ Bin(2k− 2i− 1),
where T1 is single_node, the single–noded
tree.

Example 3.1. Let Tγ = single_node and Tδ =
bin_base. So Bin(1) = {Tγ}, Bin(3) = {Tδ},
and

Bin(5) = {(Tγ , Tδ) ↑ Tδ, (Tδ, Tγ) ↑ Tδ}

=

{ 1

2 3

4 5

,
1

2 3

4 5

}

Xbar(n) is the class of all X–bar trees with
n = 3k nodes. Define the base xbar tree as the
path graph with three nodes:5

xbar = ({v1, v2, v3}, {{v1, v2}, {v2, v3}}).

Define two new substitution operations specific
to this syntactic class, Tχ ↑∗spec xbar and Tχ ↑∗comp

xbar as inserting Tχ into the specifier or comple-
mentizer of the base xbar tree by connecting the
root of Tχ to the top/root (XP) node or middle
(X′) node of xbar, respectively, with a new edge.

5This can be understood from Figure 1 as the path with
nodes XP, X′, and X. As SpecXP and CompX are both empty,
the edges denoted by dashed lines in 1 are also absent.
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We denote by (Tχ, Tρ) ↑∗ xbar the simultaneous
insertion of Tχ and Tρ into the specifier and com-
plementizer, respectively, of xbar.

Xbar(3k) =
k−1⋃

i=1

(Ti, Tj) ↑∗ xbar

for Ti ∈ Xbar(3i), Tj ∈ Xbar(3(k− i)).

Example 3.2. Xbar(3) = {xbar} and

Xbar(6) = {xbar ↑∗spec xbar, xbar ↑∗comp xbar}

=

{ 1

2

3

4

5

6

,

1

2

3 4

5

6

}

The natural interpretation of these are a single
XP with a specifier of a single XP, and no com-
plementizer, and a single XP containing a single
complementizer of a single XP, and no specifier.

As presented by Kuminiak (1999), the asym-
metric c–command extensional trees (i.e. those
uniquely determined by their asymmetric c–
command relation) can be generated by two types
of insertion.

1. Add: Add two non–branching quasipendant
vertices to any leaf.

l

−→ l

2 3

4 5

2. Replace: For any nonbranching quasipendant
node k, replace k with the five–noded struc-
ture below, with or without the left leaf node
(4), i.e.

k

l

−→
1

2 3

4 5

Then we can define the class ACC. Note we in-
dex families of trees from this class with number of
insertions, as opposed to the number–of–node in-
dexing we used previously, because each operation
adds a variable number of nodes to the graph. We

specify performing the Add (1) or Replace (2) op-
erations at leaf node l (or in the case of the Replace
operation (2), at l’s quasipendant vertex, removing
l altogether) as as Tα ↑ml Tβ , where T0 is the empty
tree, as

ACC(k) =

k⋃

i=0

Tα ↑ml Tβ

for Tα ∈ ACC(i), Tβ ∈ ACC(k− i), l ∈
L(Tj),m ∈ {1, 2}.

Finally, we note a simple but important fact
about the three defined classes.

Proposition 3.3. For n > 3, the three classes are
disjoint.

When looking at the spectra of large trees from
the three classes, this idea is useful in that it guar-
antees that the three tree sets are non–overlapping.
So, it would be important for the spectra to reflect
this fact.

3.2 Spectra of the three classes
It is known that the signless Laplacian spectrum
and the Laplacian spectrum are identical for bipar-
tite graphs (Abdian et al., 2018).6 We additionally
note that the magnitude of the eigenvectors of LG

and L̂G are equal—the only difference stems from
differences in sign in some of the entries of the
vectors. Thus, we have the following proposition.

Proposition 3.4. For any undirected rooted tree
graph T = (V,E) where T ∈ BIN, XBAR, or ACC,

Λ(LG) = Λ(L̂G).

Further, the eigenvectors of LG and L̂G are identi-
cal modulo sign.

Now, we compare the spectra of the three classes
of syntactic graphs by randomly generating three
equal–sized sets (corresponding to the three syntac-
tic classes) of high–dimensional7 n–noded graphs,
map them each to a matrix representation of di-
mension n, and graph their spectra in order of in-
creasing value according to their percentile rank
with the coordinates (i · 100n , λi).The trees are high–
dimensional so the shape of the spectra is visible.

Each of the three graphs in Figure 2 demonstrate
that each syntactic class has a unique spectrum dis-
tinct from the others: binary trees have the highest

6As such, the graph of L̂G is omitted from this paper.
7We use “dimensional" to refer to the number of nodes in

the graph, as the number of nodes in a graph corresponds to
the number of dimensions of its matrix representations.
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multiplicity of eigenvalues 0 and 1, followed by
X–bar trees, while ACC trees are smoothest.

There are a couple of facts that help analyze
the distribution of the spectrum. Let l(T ) be the
number of leaves of a given tree, and q(T ) be the
number of quasipendant vertices.

Corollary 3.5 (Nosal, 1970; Smith, 1970;
Cvetkovic et al., 1980 p. 258.8). The multiplic-
ity of the eigenvalue 0 in the adjacency spectrum
of a tree T is at least l(T )− q(T ).

The same fact can be said of the eigenvalue 1 in
the Laplacian spectrum:

Corollary 3.6 (Nosal, 1970; Smith, 1970;
Cvetkovic et al., 1980 p. 258). The multiplicity
of the eigenvalue 1 in the Laplacian spectrum of a
tree T is at least l(T )− q(T ).

It turns out that the multiplicity of eigenvalue 1
in the Laplacian spectrum, µL(1), is a tight lower
bound for all three classes. For the binary trees, ex-
perimentation with randomly generated trees points
to the number l(T )− q(T ) as either exactly µL(1),
or 1 or 2 less than µL(1).9 The few trees T gen-
erated experimentally whose multiplicity of eigen-
value 1 in the Laplacian is not equal to l(T )− q(T )
share in common having a maximal full binary tree
subgraph—that is, it is symmetric and every leaf at
a given depth branches until the lowest level. This
is stated in the following conjecture.

Conjecture 3.7. For any rooted binary tree T =
(V,E) with |V | = n, µLT

(1) = l(T )−q(T ) unless
there is some subgraph U of T where, given the
maximum possible k where n > 2k − 1, U is a full
binary tree of size 2k − 1 or 2k−1 − 1. In this case,
l(T )− q(T ) + 1 ≤ µLT

(1) ≤ l(T )− q(T ) + 2.

On the other hand, with respect to the XBAR and
ACC trees, l(T ) = q(T ) (every quasipendant vertex
branches exactly once), and thus l(T )− q(T ) = 0.
Experimentation has shown that µLT

(1) = 1 for
all T ∈ XBAR(n) ∪ ACC(m), meaning that

µLT
(1) = l(T )− q(T ) + 1

for every tree in this class.
So for all three syntactic classes, the lower bound

provided by Corollary 3.6 is extremely tight.
We can directly connect this to the syntactic con-

straints from which we defined these graphs. From
8Useful discussion provided by Dadedzi (2018).
9This is significant given that these trees have over 500

nodes (and subsequently, ove 500 eigenvalues), and yet the
multiplicity of eigenvalue 1 is so close to exactly the quantity
l(T )− q(T ).

Figure 2: The adjacency and Laplacian spectra of a
random sample of 50 trees from each of the three classes
Bin(501), Xbar(501), ACC(170).

the graphical/syntactic perspective, the multiplicity
of the eigenvalue 1 in the Laplacian spectrum of
these trees indicates an integral part of the syntactic
classes’ distinction: whether or not the syntactic
constraints mandate binary branching at quasipen-
dent vertices.

It is known that eigenvalues with high multiplic-
ity within the spectrum of a graph can indicate the
existence of a motif, i.e. repeated subgraph, in the
graph (Banerjee and Jost, 2009). Recall that Corol-
lary 3.6 linked the multiplicity of eigenvalue 1 in
the Laplacian spectra of binary tree graphs to the
number of quasipendant vertices branching into
two leaves. We can then reframe the discussion
around Corollary 3.6 as µL(1) in binary tree graph
spectra being potentially indicative of the motif
bin_base at the leaves of the binary trees.

We now move to discussing the general shape of
the eigenvalue graphs and explore potential reasons
the spectral graphs preserve class distinctions.

He et al. (2000) observe that the Laplacian spec-
trum of k−ary trees resemble a Cantor step func-
tion. The binary branching trees are 3−ary trees
for all non–leaf nodes except the central/root node
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branching 2 = k−1 times, so this substantiates the
observation that the Laplacian spectrum of the class
Bin(501) resembles the Cantor step function.

The Cauchy Interlacing Theorem describes prop-
erties of spectrum of submatrices of matrices in
relation to the matrix, and can be used to under-
stand properties of the spectrum of subgraphs of
graphs as a function of the graph.

Theorem 3.8 (Cauchy Interlacing Theorem,
Haemers, 1995). Let A be an n× n hermitian ma-
trix (i.e. A = A

T : it is equal to its conjugate trans-
pose, which is true for any symmetric matrix over
the field R) with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn,
and B be an m×m submatrix obtained from A by
deleting n−m rows and columns of the same index.
Suppose B has eigenvalues β1 ≥ β2 ≥ · · · ≥ βm,
then

λi ≥ βi ≥ λn−m+i, for i = {1, 2, . . . ,m}.

In other words, the eigenvalues of any subma-
trix of a matrix (where the submatrix is formed by
deleting corresponding rows and columns) are in-
terleaved with the eigenvalues of the matrix. Thus,
we can generalize this to adjacency matrices of
graphs. 10

Proposition 3.9. Let G = (V,E) be a graph
with |V | = n, adjacency matrix AG and cor-
responding spectra Λ(AG) = {λ1, λ2, . . . , λn}.
Let H = (V ′, E′) be a subgraph of G with
|V ′| = m, adjacency AH and spectrum Λ(AH) =
{µ1, µ2, . . . , µm}. Then

λi ≥ µi ≥ λn−m+i, for i = {1, 2, . . . ,m}.

So the eigenvalues of the adjacency matrix of any
subgraph of a graph should be interleaved with the
eigenvalues of the adjacency matrix of that graph.
Recalling that these trees are built off of recur-
sively combining smaller subtrees, this helps give
intuition towards the consistent distinctness of the
spectra as you increase the size of the tree—given
a large tree, the eigenvalues of a subtree of it are
distributed amongst the eigenvalues of the tree, pre-
serving the shape, so inductively this is true as you
decrease the size of the tree.

10Laplacian matrices are more difficult, as the Laplacian of
a subgraph of a graph is not immediately a submatrix of the
Laplacian of the graph: deleting rows and columns results in
a decrease of the degrees reported along the diagonal.

4 Spectral properties of directed syntactic
structures

We now consider what happens when we incorpo-
rate more traditional assumptions concerning syn-
tactic structure and represent syntactic structures
as directed graphs. As above, we explore the spec-
tra of the three classes BIN, XBAR, and ACC as
digraphs. Consider the following tree in Bin(5)
from example 2.4 but with directed edges.

Example 4.1. The directed rooted binary tree
G = (V,E) where V = {1, 2, 3, 4, 5}, E =
{{1, 2}, {1, 3}, {3, 4}, {3, 5}}:

1

2 3

4 5

First, as in Example 2.4, we calculate the Lapla-
cian of the above digraph.

Example 4.2. Let G = (V,E) be given as in ex-
ample 4.1.11 Then

LG = DG −AG =




2 −1 −1 0 0
0 0 0 0 0
0 0 2 −1 −1
0 0 0 0 0
0 0 0 0 0




Observe that both AG and LG are upper triangu-
lar matrices–that is, all the entries below the diago-
nal are 0. In fact, AG is strictly upper-triangular,
as its diagonal too is all 0.12 We state the following
well–known fact about upper triangular matrices.

Proposition 4.3. Let M ∈ Rn × Rn be an upper
triangular matrix. Then its eigenvalues are the
diagonal entries of the matrix.

The following is derived from Proposition 4.3.13

Proposition 4.4. Let M be an n× n strictly upper
triangular matrix. Then it has one distinct eigen-
value 0 with µM (0) = n.

11Note that we say a directed edge {vi, vj} exists if there
is an edge from vi to vj , and not vice–versa, and recall that
the degrees of the nodes here are calculated by using the
outdegree.

12These graphs are acyclic and thus loopless, so there is
never an edge {vi, vi} from a vertex to itself.

13Note that Proposition 4.4 can also be derived by the fact
that a strictly upper triangular matrix is nilpotent, i.e. for a
nilpotent n × n matrix N there exists a k ∈ N such that
Nk = 0, the n × n zero matrix. It is a well–known fact
that all nilpotent matrices have spectra containing one unique
eigenvalue, 0 (with multiplicity equal to the dimension of the
matrix).
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So we can calculate the eigenvalues of these
matrices simply by extracting their diagonal entries.
Thus, Λ(AG) = {05} and Λ(LG) = {03, 22}.

This leads us to the following theorem.14

Theorem 4.5. Given a rooted tree digraph T =
(V,E) where |V | = n, the spectrum of its adja-
cency matrix AT is {0n} and the spectrum of its
Laplacian matrix LT is equal to the outdegree of
each of its nodes (in particular, µLT

(0) = l(T )).
That is,

Λ(AT ) = {0n} and Λ(LT ) = D(T ).

So for any rooted tree digraph, we need only
track of the outdegree of each node in order to
know the spectrum of its Laplacian. Then we have
the following.

Theorem 4.6. Let T = (V,E) be a directed bi-
nary tree with |V | = n. Then the spectrum of its
Laplacian is Λ(LT ) = {0n+1

2 , 2
n−1
2 }.

Next, we state analogous theorems for XBAR and
ACC. The proofs are left to the reader—factors to
consider are included in the proof of the previous
theorem.

Theorem 4.7. Let G = (V,E) be an X–bar tree
with |V | = n. Then the spectrum of its Laplacian
is Λ(LG) = {0n

3 , 1
n
3
+1, 2

n
3
−1}.

Theorem 4.8. Let T = (V,E) ∈ ACC(m) with
|V | = n. Then Λ(LT ) = {0m+1, 1n−(2m+1), 2m}.

Given the important role that the spectrum of a
graph plays in determining what class it falls in,
we might ask the question of whether the spectrum
uniquely determines a specific graphGmodulo ver-
tex relabeling. For the case of the spectrum of the
Laplacian of a directed tree (where the eigenvalues
are the degrees) the answer is no, as the following
example illustrates.

Example 4.9. Consider the following graphs.

Tree Tα: Tree Tβ:

Tα, Tβ ∈ Bin(7),D(Tα) = D(Tβ), but Tα ̸= Tβ .

On the other hand, does the spectra of the Lapla-
cian of these families of graphs, i.e. the outdegrees

14All proofs are contained in the appendix.

of the nodes, uniquely determine whether a tree
belongs to a specific syntactic class? The answer is
yes with respect to any family of binary trees—in
fact, in general for any n–ary trees (where each
node has outdegree of either n or 0).

Proposition 4.10. Let Tn be a family of n − ary
trees, where every non–leaf has an outdegree of
n. For total number of nodes N in the tree T ,
Λ(T ) = {0N+1

n , n
N−1
n } if and only if T ∈ Tn.

This does not hold for any class non–n–ary trees,
i.e. any tree with more than two distinct outdegrees.
Whenever more than one non-zero branching factor
is allowed, spectral uniqueness is lost.15

For instance, XBAR and ACC, two examples
of tree families with three distinct eigenval-
ues/outdegrees (0, 1 and 2), are not uniquely de-
fined by their outdegrees/spectra.

Example 4.11. Consider the following graphs.

Tree Tα: Tree Tβ:

It is clear that Tα ∈ XBAR(12), Tβ ∈ ACC(3),
while Tβ /∈ XBAR(12), Tα /∈ ACC(3). However,
Λ(Tα) = D(Tα) = D(Tβ) = Λ(Tβ). So although
Tα and Tβ are members of distinct syntactic classes,
their Laplacian spectra are identical.

Though the spectra of a rooted tree digraph does
not definitively classify it to a particular syntactic
class (besides n–ary trees), we can say something
interesting about spectra of graphs in tree languages
generated by (directed) regular tree grammars.

Definition 4.12. A regular tree grammar is a tuple
G = (N,Σ, R, S). N is a finite set of nonterminals
and Σ is a ranked alphabet of terminals such that
Σ ∩N =, S ∈ N is the initial nonterminal, and R
is a finite set of rules of the form A→ t with A ∈
N and t ∈ TΣ(N). The tree language generated
by G, denoted L(G), is defined as L(H) where H
is the context–free grammar (N,Σ ∪ {[, ]}, R, S).

15Given any tree with at least two nodes with distinct,
nonzero branching numbers, you can swap their location
(along with the subtrees that they each are the root of) in
the tree and come up with a new, distinct tree from the original
with the same spectrum.
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Assuming that the graphs t ∈ TΣ(N) compris-
ing the right side of the rules are directed, we can
state the following theorem.

Theorem 4.13. Suppose G = (N,Σ, R, S) is a
(directed) regular tree grammar. Define the set
of outdegrees of any rule A → t ∈ R for t ∈
TΣ(N), OD(A), as the set of outdegrees of the
graph structure t excluding any nodes labeled by
nonterminals. Then the spectrum of any tree T ∈
L(G) generated by G is the union of the spectra of
the rules used to generate T , i.e. the union of the
set of outdegrees of each rule. So, for R(T ) as the
set of rules applied to generate T ,

Λ(LT ) =
⋃

R∈R(T )

OD(R)

In other words, one can directly compute the
spectrum of a tree T generated by a directed regu-
lar tree grammar by simply taking the union of the
outdegrees of the rules used to generate T (exclud-
ing any nonterminals, which end up being replaced
by nodes of graphs of other rules).

Thus far, our discussion has been focused on the
eigenvalues of a matrix representation of a graph.
Included in the set of spectral properties of a matrix
are its eigenvectors. We now briefly consider the
eigenvectors of matrix representations of the syn-
tactic classes we have concerned ourselves with.

With respect to adjacency, Laplacian and sign-
less Laplacian matrix representations, the eigenvec-
tors of all three undirected graph classes all contain
both positive and negative signed entries. In com-
parison, for the directed versions of all of these tree
graphs, there is an eigenvector for each eigenvalue
whose non–zero entries are all the same sign.16

Theorem 4.14. For any directed rooted tree graph
T = (V,E) where T ∈ BIN, XBAR, or ACC, for ev-
ery eigenvalue λ of LT there exists an eigenvector
ψ such that every entry of ψ has the same sign.

5 Conclusion

This paper presents a novel way to explore dif-
ferences in syntactic structure. We give the first
results connecting properties of spectra to syntacti-
cally relevant classes of trees. The case study in this
paper considers three specific classes of tree struc-
tures and shows structural syntactic differences are

16As eigenvectors define a linear space, each eigenvector
defines a set of all multiples of that eigenvector by all real
numbers. So this is equivalent to saying an eigenvector’s
entries do not change signs.

perceivable at the spectral level, with a variety of
properties of these trees (which class they belong
to, whether they are directed or undirected, etc.)
reflected in the spectra and eigenvectors.

At present, we have only considered a limited
set of syntactic classes. This leaves a wide variety
of other potentially syntactically relevant graphs,
including those that limit leftward branching, or
non-tree structure graphs allowing multidominance.
Our results leave open further exploration of other
classes of trees that are uniquely characterized by
the spectra of directed or undirected graphs. We
leave this for future work.

One especially exciting result in the current work
concerns the degree to which spectra of a class can
be derived from a regular tree grammar that gen-
erates the class. Just as the Parikh mappings of
strings can be derived from the underlying string
CFG, so too can the Laplacian spectra of directed
syntactic tree graphs be derived from the underly-
ing graph rules. We leave it as an open question to
look at richer classes of tree grammars and alterna-
tive matrix representations.

Our motivation in this work is to identify novel
mathematical tools with which we can look beneath
surface representations of linguistic structures and
explore more fundamental features of their linguis-
tic essence. The current work has utilized spectral
graph theory as one mathematical tool to do just
this, examining the reflection of certain syntactic
features and properties in the spectra. This paper
demonstrates SGT is a way to peel back the sur-
face combinatorial graphical structure we see, and
attempt to understand deeper, more inherent fea-
tures of the syntactic structures. The goal of future
work would be to take this one step further—not
only understanding the ways in which spectra can
reflect syntactically relevant properties, but further
developing the spectral studies of these graphs in
order to use the spectra to identify fundamental
properties about syntactic structure that are inac-
cessible or hidden from view based on the surface
combinatorial structure of these graphs.
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A Appendix: Proofs of Theorems

Theorem 4.5. Given a rooted tree digraph T =
(V,E) where |V | = n, the spectrum of its adja-
cency matrix AT is {0n} and the spectrum of its
Laplacian matrix LT is equal to the outdegree of
each of its nodes (in particular, µLT

(0) = l(T )).
That is,

Λ(AT ) = {0n} and Λ(LT ) = D(T ).

Proof of Theorem 4.5. Suppose T = (V,E) is a
rooted tree digraph with |V | = n. There ex-
ists an enumeration of the vertices such that i =
e(vi) ≤ e(vj) = j for natural numbers i, j iff vi
is the parent of vj . Then, for all directed edges
{vi, vj}, i ≤ j. As (i, j) corresponds to the indices
of the adjacency matrix AT of G, this yields a
strictly upper-triangular adjacency matrix AT : all
edges from i to j will set aij = 1, above the diago-
nal, and aji = 0, below the diagonal.17

Given that the adjacency matrix is strictly upper
triangular, its spectrum is

Λ(AT ) = {0n}

.
The diagonal entries of the Laplacian are deter-

mined by DG, which correspond to the outdegree
17As there are no self-loops in G, meaning no edges

{vi, vi} for all i ≤ n, aii = 0 for all i ≤ n.
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of each of the n nodes. LG is upper triangular:
LG = DG − AG.18 Thus, by Proposition 4.3, the
eigenvalues of LG are equal to the diagonal DG,
which is the outdegree of each of the n nodes.

Theorem 4.6. Let T = (V,E) be a directed bi-
nary tree with |V | = n. Then the spectrum of its
Laplacian is Λ(LT ) = {0n+1

2 , 2
n−1
2 }.

Proof of Theorem 4.6. We can think about a given
binary tree as a construction starting with the small-
est possible binary tree, the 3–noded binary tree,
and then recursively substituting that same binary
tree with 3 vertices to the leaves of the first tree.
Any binary tree with n = 2k + 1 vertices can
be constructed by inserting (n − 3)/2 copies of
this base binary tree, root–to–leaf (i.e. the root of
the tree being inserted inserts into one of the cur-
rent leaves) including the initial starting tree, or
(n− 1)/2 copies of the base binary tree total.

We prove this by induction. For k = 1 with
n = 3 we have T3 = bin_base, which has
one outdegree of 2 (the root/branching node) and
two outdegrees of 0 (the leaves). So Λ(T3) =

{02, 22} = {0 3+1
2 , 2

3−1
2 } = {0n+1

2 , 2
n−1
2 }.

Suppose we have performed k−2 insertions into
this tree T2k−1 (for a total of k − 1 copies of the
binary tree). At each insertion of a new base binary
tree T3 to one of the leaves of the current binary
tree, two additional nodes are gained. The first
tree T3 begins with 3 nodes, and each subsequent
insertion of a new copy of T3 yields two more
nodes (inserting root-to-leaf does not add a count
to the node with the root node, but it does with the
two new leaves). So n = |V | = 2(k − 1) + 1 =

2k − 1. Assume Λ(T2k−1) = {0n+1
2 , 2

n−1
2 } =

{0 2k−1+1
2 , 2

2k−1−1
2 } = {0k, 2k−1}.

To construct Tk, we insert a new copy of the base
tree T3 to one of the leaves of T2k−1. This insertion
forces that leaf to branch, turning its outdegree
from 0 to 2, and then adds two new outdegrees of
0, the two new leaves, resulting in a net gain of
one leaf. We have gained one node with outdegree
2, the formerly-leaf-turned-binary-branch. Thus,
the insertion of a copy of T3 into T2k−1 has a net
degree gain of one 2-degree and one 0-degree. Note
the total number of nodes here is two more than

18Both DG and AG are upper triangular, and the
sum/difference of two upper triangular matrices is upper trian-
gular.

2k − 1, 2k + 1. Thus

Λ(T2k+1) = {0k+1, 2k−1+1} = {0k+1, 2k}

= {0 2k+2
2 , 2

2k
2 } = {0

(2k+1)+1
2 , 2

(2k+1)−1
2 }

= {0n+1
2 , 2

n−1
2 }.

The proof of the class XBAR is identical in struc-
ture: we only need observe that substituting xbar
to the specifier or complementizer positions adds
three nodes to the graph (as we create a new edge)
and increases the node counts by one new outde-
gree 2, one outdegree of 1 and one outdegree of
0.

To prove the case of ACC, we are forced to con-
sider the multiplicity of eigenvalues as a function
of both the number of insertions and the number of
nodes. This is due to the variability in the number
of nodes gained through each different operation.
Operation (1) above creating the five–noded struc-
ture results in a net gain of one outdegree 0, two
outdegrees of 1, and one outdegree of 2. Operation
(2), replacing the quasipendant node and its leaf
with the four– or five–noded structure results in a
net gain of one outdegree 0, one outdegree of 1,
and one outdegree of 2 or one outdegree 0 and one
outdegree 2. This optionality of which structure
you insert, as well as the ambiguity of indexing
this class by number of insertions as opposed to
node number (for this very reason) results in the
variation of multiplicity of eigenvalue 1.

Proposition 4.10. Let Tn be a family of n − ary
trees, where every non–leaf has an outdegree of
n. For total number of nodes N in the tree T ,
Λ(T ) = {0N+1

n , n
N−1
n } if and only if T ∈ Tn.

Proof of Proposition 4.10. Given an n−ary rooted
directed tree T = (V,E) with |V | = n, any non–
leaf branches exactly n times by definition. So
every node either has n children or is a leaf. Thus
by Theorem 4.5, Λ(Tn) = {0N+1

n , n
N−1
n }.

On the other hand, suppose we are given a
rooted tree digraph T = (V,E) with spectrum
Λ(T ) = {0N+1

n , n
N−1
n } for N nodes and n ∈ N.

Since any rooted tree digraph has eigenvalues cor-
responding directly to its outdegrees means (by
Theorem 4.5) T must have N+1

n leaves and N−1
n

nodes with outdegree n. Thus T ∈ Tn.
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Theorem 4.14. For any directed rooted tree graph
T = (V,E) where T ∈ BIN, XBAR, or ACC, for ev-
ery eigenvalue λ of LT there exists an eigenvector
ψ such that every entry of ψ has the same sign.

Proof of Theorem 4.14. Recall that an eigenvector
of any matrix is, by definition 2.6, nonzero. We
provide the intuition behind the class BIN, as the
other two are similar.

Let T = (V,E) where T ∈ BIN(n) is a directed
rooted tree graph where n = 2k + 1 for some
k ∈ N. We know the Laplacian LT is upper trian-
gular. It will have k + 1 rows/columns of zeros,
corresponding to each of the k + 1 leaves.As each
binary tree with n = 2k + 1 nodes has k binary–
branching nodes, LT has k rows/columns with 2 on
the diagonal (i, i) and two entries of −1, at (i, j1)
and (i, j2), where j1, j2 > i. For any (nonzero)
eigenvector

ψ = [ψ1, ψ2, . . . , ψn]
T

where

LTψ = λψ,

the zero rows of LT indexed by integers
l1, l2, . . . , lk+1 give rise to k + 1 equations of the
form

0 = λψli .

On the other hand, the k nonzero rows give rise
to equations of the form

2ψi − ψi+c − ψi+c+d = λψi

for nonzero numbers c, d ∈ N.
It is useful in building intuition to connect the

occurrences of each ψi ∈ ψ in the system of equa-
tions given by the equation

LTψ = λψ

to the behavior of the node in the graph enumerated
with label i.

Let L be the set of integers corresponding to the
labels of the leaves of the tree. For all l ∈ L, ψl

exists as a variable with coefficient −1 in exactly
one equation of the second form, that is,

2ψi − ψj − ψl = λψi,

as every leaf node necessarily is connected to one
binary–branching node, as well as in one equation
of the first form,

0 = λψl.

Every non–leaf, non–root node with label m exists
in two equations, both of the second form: one with
coefficient 2, that is,

2ψm − ψi − ψj = λψm,

and one with the coefficient −1,

2ψi − ψj − ψm = λψi.

The root node r exists in exactly one equation,
the equation of the second form, with coefficient 2:

2ψr − ψi − ψj = λψr.

In what follows, we assume the matrix has been
permuted into the form of the first k rows being the
nonzero rows, that is, 2 in the diagonal followed
later in the row with two entries of −1 (i.e. the
rows corresponding to the binary–branching nodes)
and then k + 1 rows of zeros. Schematically, the
matrix is of the form:

A =




2 a12 . . . a1n

0
. . . . . .

...
2 ak,(k+1) . . . ak,n

...
. . . 0 . . . 0

. . .
...

0 . . . 0 0




A is not only an upper triangular matrix, but also
the last k + 1 rows is an all–zeros rectangle of
dimension (k + 1)× n.

There are two categories of eigenvectors, those
which pertain to eigenvalue 2 and those pertaining
to eigenvalue 0.

Case 1: Suppose λ = 2.
Then there are k + 1 equations of the form

0 = 2ψli ,

yielding
ψli = 0.

By the form of the vector above, the final nonzero
row of the matrix LT , row k, with a 2 in position
(k, k), gives the equation

2ψk − ψj1 − ψj2 = 2ψk

will subsequently have

ψj1 = ψj2 = 0.
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Intuitively, we can understand this row as repre-
senting a binary–branching node in the tree which
branches into two non–branching leaf nodes. There
is, necessarily, at least one of these existing in any
given tree. Then this results in

2ψk − 0− 0 = 2ψk,

yielding ψk being a free variable (where k is not
the label of the root node, assuming k > 1, that is,
2k + 1 > 3).

It is necessary for ψk = 0, and subsequently for
ψj = 0, in the second equation containing ψk,

2ψh − ψk − ψj = 2ψh.

For the leaf nodes, then, it is easy to see that the
fact that for every l ∈ L, ψl = 0 results in free
variables for the k binary–branching nodes, which
all exist in a second equation with coefficient −1,
except for the root node. The reader can verify
that then for every ψi in at least two equations, that
is, every entry of the eigenvector except for the
first (which correlates to the root node and is only
in equations of the second form with coefficient
2), ψi = 0. As eigenvectors must be nonzero,
then, this first entry must assume a nonzero value.
So every eigenvector of eigenvalue 2 must have
eigenvector of the form c · e1 for the first basis
vector e1 and c ∈ R. As 2 has multiplicity k, there
are k eigenvectors of this form.

Case 2: Suppose λ = 0.
Then equations of the first form are

0 = 0ψl

and the second form are

2ψk − ψj1 − ψj2 = 0.

This means that every l ∈ L, ψl becomes a free
variable. The reader can verify that in order for a
given eigenvector to have all entries of either the
same sign or 0, exactly one ψl can be nonzero. Not
only this, but for ψ1 = c for c ∈ R and root with
label 1, for each node i on the path from root to
leaf l with nonzero ψl,

ψi = 2mc

for m being the length of the path from root to i.
This comes from the equations of the second form

2ψk − ψj1 − ψj2 = 0

as, without loss of generality, if j1, j2 ∈ L and
ψj1 = 0,19 then

2ψk = ψj2 .

Each nonzero entry of a given eigenvector thus
corresponds to the labels of nodes which form a
directed path from root to leaf for a chosen nonzero
ψl corresponding to label of a leaf l.

Therefore, each of the k + 1 eigenvectors of
eigenvalue 0 correspond to each possible nonzero
choice of ψl for l ∈ L, and each of these eigenvec-
tors have nonzero entries ψi for every label i on the
path from the root to l for the given nonzero ψl.

In the case where T ∈ XBAR(n) or T ∈ ACC(k),
note that we have the additional row/column case
where there is 1 in the diagonal and thus nonzero,
non–two rows are of the form ψi − ψi+c = 1ψi,
yielding ψi as a free variable and ψi+c = 0.

19The case where both ψj1 = ψj2 = 0 results in ψk = 0,
which percolates into the equation where ψk has coefficient
−1 and the same scenario is repeated.
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Abstract

This paper aims to provide an account based
on Minimalist Grammar (MG) for what are
called parasitic gaps in Japanese, which we
take as a null pronoun. The main goal of this
paper is to provide a syntactic account of the
environment in which a parasitic gap reading
is licensed in Japanese. First, Japanese par-
asitic gaps are compared with English ones,
illustrating the puzzle to be solved. We ar-
gue that the possibility of co-indexing between
a parasitic gap (null pronoun) and wh-phrase
is correlated with the point at which the wh-
phrase enters the derivation. We also show that
scrambling counterbleeds licensing of para-
sitic gaps by using extended Directional Mini-
malist Grammar. The proposed syntactic anal-
ysis has an advantage over a semantic analysis
in that there is no need to postulate vacuous
movement of the subject wh-phrase.

1 Introduction

Minimalist Grammar (MG, Stabler, 1997a,b)
has been mainly applied to Indo-European
languages (especially English), although it
was inspired by Chomsky’s influential work
(Chomsky, 1995), which has been cited in
“minimalist” syntax works on various lan-
guages. In this paper, we attempt to apply
MG to explain a phenomenon in Japanese that
is substantially different from that in English.
This phenomenon is a parasitic gap construc-
tion, which has been vigorously explored in
both the Japanese and English syntax litera-
ture, including one based on MGs. Adopting
the idea that Japanese parasitic gaps are null
pronouns, we propose that the c-command re-
lation in the derivation is key to explaining the
confounding behavior in the co-indexed read-
ing between a pro and wh-phrase in Japanese.

The remainder of this paper is structured
as follows: Section 2 provides a basic back-
ground on the phenomenon of interest. Sec-
tion 3 introduces the basic tools used in the
proposed analysis, i.e., Directional Minimal-
ist Grammar with some extensions. Sec-
tion 4 proposes our generalization on how
the derivation accounts for a possible co-
index configuration. We discuss the proposed
analysis and compare it with formalism in
other MG literature and with other works on
Japanese and English parasitic gaps in Section
5. Section 6 concludes the article with impli-
cations for future research.

2 Background: “Parasitic gaps” in
Japanese

This section provides a general background
on parasitic gaps in Japanese. There are sev-
eral approaches to Japanese parasitic gaps,
but in this paper, we take a null pronomi-
nal account as a starting point. This assump-
tion already suggests that the parasitic gaps in
Japanese are radically different from those in
English. Nevertheless, there is one common
feature between the two languages, namely,
obligatory movement, and we introduce the
puzzle of co-indexation. A short introduction
of other characteristics of Japanese parasitic
gaps follows before providing a formal tool.

2.1 Nature of parasitic gaps in Japanese
and the co-indexation problem

A parasitic gap pg is defined as a gap that re-
quires another gap to be grammatical. A typ-
ical example in English from Engdahl (1983,
5) is shown in (1). The parasitic gap is inside a
syntactic island indicated by square brackets.
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(1) Which articlei did John file ti
[without reading pgi]?

Several languages are reported to have par-
asitic gaps. Japanese is one of them, and there
have been debates over the nature of para-
sitic gaps in Japanese (Abe, 2011; Takahashi,
2006; Yoshimura, 1992). When there is a gap
in Japanese, we have multiple candidates: a
trace of null operator movement, the result of
ellipsis, or a null pronoun pro. In this pa-
per, we take the last approach by Hirayama
(2018), which follows Yoshimura (1992).

An example sentence with a parasitic gap in
Japanese is shown in (2), which has a gap in-
side the subject island. The sentence involves
a movement of wh-phrase dare-o. This in-
terrogative sentence can be used to identify a
poor man criticized by a person they met for
the first time.

(2) Darei-o
who-ACC

[hazimete
for the first time

pgi atta
saw

hito]-ga
person-NOM

ti kenasimasitata
criticized

ka?
Q

‘Who was it that a person who saw pg
for the first time criticized t?’

Note that (2) also has a reading where a para-
sitic gap and dare ‘who’ refer to different in-
dividuals. In this case, a parasitic gap refers to
a contextually salient entity. Throughout this
paper, our focus is on whether a parasitic gap
inside an island and the wh-phrase can refer
to the same entity. In other words, we explore
the environment where a wh-phrase and para-
sitic gap may be co-indexed.

As we will see in detail later, there are nu-
merous differences between parasitic gaps in
Japanese and English, as pointed out by Hi-
rayama (2018). These distinct characteris-
tics suggest that Japanese parasitic gaps are
completely different from English ones, and
Japanese parasitic gaps should not even be
named as such. However, there is one strik-
ing similarity; parasitic gaps are licensed by
overt movement of the wh-phrase in Japanese
as well as in English. The sentence (3a) (En-
gdahl, 1983, 14) is ungrammatical under the

interpretation where the parasitic gap and wh-
phrase refer to the same entity, and this is
due to the wh-phrase which article staying
in-situ. The ungrammaticality under the co-
indexed reading is obtained in the Japanese
example (3b), where the wh-phrase dare-o
‘who-ACC’ stays in-situ. Note that the rep-
resentative example we saw in (2) is derived
from (3b) by moving the wh-phrase from the
base-generated position to the sentence-initial
position.

(3) a. * I forget who filed which
articlesi without reading pgi

b. * [Hazimete
for the first time

pgi atta
saw

hito]-ga
person-NOM

darei-o
who-ACC

kenasimasita
criticized

ka?
Q

(Intended:= (2)

The Japanese example poses a question. In
general, Japanese wh-phrases can stay in situ
but can scope over syntactic islands except
for wh-islands (Shimoyama, 2006), as shown
by (4). In the example, even though the wh-
phrase is in the adjunct island, the whole sen-
tence can be interpreted as a matrix question.

(4) Taroo-wa
Taro-TOP

[Hanako-ga
Hanako-NOM

nani-o
what-ACC

tabeta
ate

kara]
because

okotta
got angry

no?
Q

‘For which x did Taro get mad be-
cause Hanako ate x?

Furthermore, Japanese null pronouns in a
syntactic island can be co-indexed with a
DP in a matrix clause without movement, as
shown in (5). Note that in the English transla-
tion, an overt pronoun is obligatory to obtain
the intended reading.

(5) Taroo-wa
Taro-TOP

[proi tabe-zuni]
eating-without

keekii-o
cake-ACC

suteta.
threw away

‘Taro threw away the cakei without
eating iti/∗∅i.’
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Here is the puzzle: Why is a null pronoun in-
side the island unable to be co-indexed with
the in-situ wh-phrase in (3b)? The semantics
of questions allows the wh-phrase to scope
over the island. Furthermore, no movement
is necessary for a DP to bind a pronoun in
(5). Hirayama (2018) gave an answer to this
question based on the semantics of questions
in Japanese, but in this paper, we try to give
an answer from a syntactic perspective.

2.2 Other properties of parasitic gaps in
Japanese

Hirayama (2018) summarized the difference
between the parasitic gaps in Japanese and
English, as shown in Table 1. Among them,
the first three differences between English
and Japanese are important to account for co-
variation readings of Japanese parasitic gaps
in this paper. They altogether indicate that the
configurational requirement of co-indexation
of a parasitic gap and the wh-phrase is looser
than the environment where English para-
sitic gaps are licensed; the co-indexed read-
ing is obtained as long as the wh-phrase c-
commands the parasitic gap in the surface or-
der.

First, only A’-movement can license En-
glish parasitic gaps, as shown by the ungram-
maticality of the passive sentence in (6) (En-
gdahl, 1983, 13). By contrast, (2) involves
clause-internal scrambling, which can be A-
movement (Saito, 1992), and the co-indexed
reading is available.

(6) * Johni was killed ti [by a tree falling
on pgi].

Next, we have seen that in-situ wh-phrases
can never license parasitic gaps in English.
As shown in the last section, this is the
same in Japanese in most cases. However,
when the subject is the wh-phrase, no move-
ment is necessary to obtain the co-indexed
reading, as shown in (7) (Hirayama, 2018,
7). Furthermore, (7) also indicates that the
anti-c-command condition does not hold in
Japanese. The anti-c-command condition
states that a real trace cannot c-command a

parasitic gap. In other words, the English
translation in (7) is ungrammatical.

(7) Dono
which

gakusee-ga
student-NOM

Hanako-ni
Hanako-by

[Taroo-ga
Taroo-NOM

pgi sagasu
look for

mae-ni]
before

mitukatta
found

no?
Q

‘Which studenti ti got found by
Hanako before Taro looked for pgi?’

To summarize, the co-indexed reading in
Japanese can be licensed as long as the wh-
phrase c-commands pro. The type of move-
ment does not matter. The anti-c-command
condition does not apply in Japanese, and con-
sequently, it is possible for the subject to be
the wh-phrase, and pro may be co-indexed
with it. Next, we introduce the formalism
used in our analysis to account for the char-
acteristics of Japanese parasitic gaps.

3 Directional Minimalist Grammar

A Minimalist Grammar (MG, Stabler,
1997a,b) is a mathematically rigorous lex-
icalized grammar formalism suitable for
implementing modern syntactic theory in
the (early) Minimalist Program (Chomsky,
1995).

An MG contains a set of lexical items, each
carrying a list of features. For example, a
transitive verb praised=D,=D,V carries a list of
features =D,=D,V, where =D is a selector of
some DP and V a category. Intuitively, each
structure-building operation is driven by a fea-
ture; merge saturates a category b with the
corresponding selector =b, combining two ex-
pressions (lexical or phrasal) and building a
new phrasal expression.

Some variants of MG assume adjoin and
scramble (Frey and Gärtner, 2002), which al-
low us to perform the adjunction and scram-
bling operations on that MG. Kobele (2010)
also introduces operations called assume and
discharge.
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Eng Jpn
Must the antecedent be in an A’-position? Yes Could be A-position
Can in-situ wh-phrases license pgs? No Subject wh does not need movement
Does the anti-c-command condition hold? Yes No (the wh must c-command a pg)
Is a pg island sensitive? Yes No
Is there Case-matching Effect? - No
What category can be a pg? NP NP and PP

Table 1: Characteristics of Japanese parasitic gap constructions (adapted from Hirayama, 2018)

3.1 Syntactic object
We assume that every syntactic object is a
pair 〈A, φ〉. A represents a lexeme or binary
branching phrasal tree [ Γ ∆ ], where Γ and
∆ are left and right subtrees (= syntactic ob-
jects), respectively, and φ is a label, namely
an unsaturated feature bundle. We will write
them as Aφ. Let us denote by A = 〈A, ∅〉 a
syntactic object that no longer moves in the
course of the derivation. Let us write A〈Γ〉γ
as a syntactic object that contains an occur-
rence of a syntactic object Γ, where A〈_〉γ is
called a syntactic context, an object equivalent
to the syntactic object A〈Γ〉γ except an empty
placeholder _ which replaces exactly one oc-
currence of Γ. This definition is extended later
in the paper.

3.2 Merge
The standard MG only allows the head-initial
phrase, according to Kayne (1994). However,
the order of Japanese words appears to be
head-final. Therefore, the domain of merge
contains a lexical item that can select its com-
plement on the left side. In other words, each
word specifies a linear order in the result of
merge (Stabler, 2011).

(8) a. merge (AX,γ,B<X,φ) = [ Aγ B ]φ

b. merge (AX,γ,B>X,φ) = [ B Aγ ]φ

In (8), we give the general definition of merge
in the DMG. AX,γ has the leftmost category
X, while B<X,φ has the leftmost selector <X
in (8a) and B>X,φ has the leftmost selector >X
in (8b). They comprise a new syntactic ob-
ject labeled φ through merge, saturating the
leftmost selector feature with a corresponding
category feature. Because Japanese word or-

der is supposed to be strongly head-final, we
mainly use the rule (8a).

3.3 Move
The MG also has an operation called move,
which cashes out the displacement. This op-
eration is driven by some (move) licensor fea-
ture +y and the corresponding licensee fea-
ture -y.

(9) move (A〈B-y,δ〉+y,φ) = [ Bδ A〈ε〉 ]φ
In (9), a syntactic object A carries the left-
most licensor +y, and a subtree B carries the
corresponding leftmost licensee -y. Then, B
moves to the specifier position of A, saturat-
ing A’s +y feature with B’s -y feature and
leaving a phonologically empty element ε. If
δ is not empty, B continues to move.

Covert movement in MG is similar to fea-
ture movement and is defined below (10). In
this paper, a designated licensee -q always
denotes a covert movement feature.

(10) move (A〈B-q,δ〉+q,φ) = [ εδ A〈B〉 ]φ
3.4 First extension: Adjoin and

Scrambling
In addition to merge and move, here we
assume two operations called adjoin and
scramble, which are introduced by Frey and
Gärtner (2002). Like merge and move, these
are binary and unary operations invoked by
different features. In adjoin an adjoin licen-
sor »X selects a category X but does not satu-
rate it.

(11) adjoin (AX,δ,B»X,η) = [ Bη A ]X,δ

scramble is invoked by a feature called
scramble licensee ˜X, which behaves like
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an adjoin licensor, except that deletion of a
scramble licensee is optional.

(12) scramble (A〈B˜X,η〉X,δ) =
[ B(˜X)η A〈ε〉 ]X,δ

3.5 Second extension: Slash-Feature
Percolation

We adopt additional operations proposed by
Kobele (2010) as Slash-Feature Percolation.
In this approach, in addition to merge-move
and adjoin-scramble, we assume two further
operations: assume and discharge. First, a
unary operation assume takes a syntactic ob-
ject with a selector >X and adds a new moving
syntactic object called assumption, which is a
‘dummy lexeme’ [X, δ] carrying a sequence of
(move and scramble) licensees δ.

(13) assume (A<X,φ) = [ [X, δ]δ A ]φ

The syntactic object containing some assump-
tion coming from (13) can be regarded as
some syntactic context Γ〈_〉 whose gap is oc-
cupied with that assumption. Note that if
some syntactic context A〈[γ]-̃y,δ〉φ that con-
tains some assumption whose leftmost feature
is -̃y (a move or scramble licensee) under-
goes move or scramble, then the licensee -̃y
in -̃y, δ is consumed but -̃y in the dummy
lexeme [γ] remains.

The other binary operation discharge takes
a syntactic object with assumption and a cor-
responding object.

(14) discharge (Γ〈[γ,-y]-y〉,Bγ,-y,δ) =
Γ〈B-y,δ〉

This operation replaces an assumption in
some syntactic context with some syntactic
object. However, we must modify this rule
because (i) Kobele (2010, 2012) did not intro-
duce scrambling features and, (ii) as Kobele
(2012) wrote, the assume-discharge frame-
work can cause an explosion of ambiguous
derivations for a single sentence. To avoid
these problems, we propose that discharge
must be applied if and only if a syntactic ob-
ject contains a gap filled with an assumption
that has just deleted some move or scram-
bling licensee via movement and only carries

a single move or scramble licensee [γ, -̃y]-̃y,
where -̃y stands for a move or scrambling
licensee. That is, discharge only targets
some syntactic context with an assumption
that moves to the left edge of the tree.1

(15) discharge ([ [γ, -̃y]-̃y A ]φ,Bγ,-̃y,δ) =
[ B-̃y,δ A ]φ

Definition 3.1. A Directional Minimalist
Grammar with Adjunction, Scrambling,
assume, and discharge GP is a tuple
(Σ,B, F, Λ, c,P), where Σ is a set of
(possibly phonetically empty) words; B a
finite set of category features; F a finite
set of licensing features; Λ a finite set of
lexicon, whose element, a lexical entry, is a
pair of a lexeme; and a sequence of features
φ ∈ (B= ∪ F+)

∗B ∪ B≈ (F− ∪B∼)
∗, where

B= = {>b,<b | b ∈ B} is a finite set of
selection features, B≈ = {»b,«b | b ∈ B}
is a finite set of adjunction features,
F+ = {+f | f ∈ F} is a finite set of
licensor features, F− = {-f | f ∈ F}
is a finite set of licensee features, and
B∼ = {˜b | b ∈ B} is a finite set of
scrambling licensee features, respectively,
c ∈ B a start category, and P a finite set of
unary and binary operations shown below.

P = {move, scramble, assume,
merge, adjoin,discharge}

4 Analysis

Kobele’s unified approach gives us multiple
ways to derive an English sentence such as
Who criticized Diego? For instance, who in
the sentence can be inserted at different tim-
ings, providing three possible derivations. In
the case of Japanese, we argue that the pos-
sibility of co-indexation of the wh-phrase and
pro in the island is correlated with the point at
which it enters the derivation. Our generaliza-
tion is given in (16).

1This restriction may seem to spoil an analysis in the
original work on slash feature percolation (Kobele, 2012).
However, if the overt QR proposed by Hornstein (1995) is
adopted, our proposal does not affect his analysis.
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file: tozi<d,V
v: ε<V,<d,v
Taro-TOP: Taroo-wad,-top
T: ta<v,t
CQ: no<t,+top,+q,c
what-ACC: nani-od,˜t,-q
what-ACC: nani-od,-q

Figure 1: Example of Japanese lexicon

(16) A pro may have the same index as that
of a wh-phrase when the wh-phrase c-
commands it when it first entered the
derivation.

We now show how our grammar can pro-
duce our sentences of interest. The contrast to
be shown is the one seen between (17) and
(18). In (17), there is no movement of the
wh-phrase, and the sentence is ungrammati-
cal under the co-indexed reading. In (18), the
wh-phrase is moved and therefore we can get
the parasitic gap interpretation.

(17) * Taroo-wa
Taro-TOP

[pgi yomazu-ni]
read.NEG-with

nanii-o
what-ACC

tozita
filed

no?
Q

‘Whati did Taro file without read-
ing iti.’

(18) Taroo-wa
Taro-TOP

nanii-o
what-ACC

[pgi

yomazu-ni]
read.NEG-with

ti tozita
file

no?
Q

‘Whati did Taro file without read-
ing iti?’

We introduce our lexicon to derive toy-set
examples of Japanese sentences given in Fig-
ure 1. Here, we ignore case features as they
are irrelevant to our discussion.

We assume a subordinate small clause with
a parasitic gap in (19) to simplify the discus-
sion.

(19) pro read.without: [pro yomazuni]»v

The derivation steps and a derivation tree in
each step of (17), the sentence without scram-
bling, are shown in Figure 2 and Figure 3, re-
spectively.

First, let us show how the derivation pro-
ceeds using derivation trees in Figure 3. (17),
which does not involve the overt movement of
the wh-phrase, cannot have a co-indexed read-
ing. There are two possible derivations to get
this sentence.

The first possibility is the case where the
wh-phrase is merged with the verb first, as
shown in Figure 3. This sentence can never
obtain the co-indexed reading due to (16), i.e.,
the wh-phrase enters earlier than a pro and
cannot c-command it. The derivation itself
can converge, but the sentence does not have
the “parasitic gap” interpretation.

The second possibility is that the object wh-
phrase is assumed. In this case, our defini-
tion of discharge requires the assumption to
be discharged immediately because the wh-
phrase used in this derivation only has the -q-
feature. As a result, we have virtually the
same structure as in Figure 3. Consequently,
the wh-phrase can never c-command the pro
in the subordinate small clause; hence, the
parasitic gap reading is unavailable.

Now let us see the derivation in detail. In
Figure 2, because the wh-phrase nani-o is im-
mediately merged with the verb in step 1, it
cannot c-command the pro until it undergoes
covert movement in step 8. Although we can
apply assume to the verb in step 1, the as-
sumption should only have the -q-feature to
get the desired word order. In this case, our
proposal obligates discharge to be applied
immediately after step 1. That is, the wh-
phrase nani-o cannot wait for the subordinate
clause to be adjoined. In addition, the final
result with the covert movement of the wh-
phrase creates a WCO environment.

Now, let us consider the grammatical case
(18), where the wh-phrase is moved from the
base-generated position. The derivation steps
and a derivation tree in each step of (18) are
shown in Figure 4. and Figure 5 respectively.
To allow pro to be co-indexed with the wh-
phrase, the object DP must be assumed first.
After adjoining the without-clause and merg-
ing T, the assumption is scrambled. After this
clause-internal scrambling, the wh-phrase is
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1. merge(nani-od,-q, tozi<d,V) = [nani-o-q tozi]V
2. merge(1, ε<V,<d,v) = [[nani-o-q tozi] ε]<d,v
3. merge(Taroo-wad,-top, 2) = [Taroo-wa-top [[nani-o-q tozi] ε]]v
4. adjoin(3, pro yomazuni»v) = [[pro yomazuni] [Taroo-wa-top [[nani-o-q tozi] ε]]]v
5. merge(4, ta<v,t) = [[[pro yomazuni] [Taroo-wa-top [[nani-o-q tozi] ε]]] ta]t
6. merge(5, no<t,+top,+q,c)

= [[[[pro yomazuni] [Taroo-wa-top [[nani-o-q tozi] ε]]] ta] no]+top,+q,c
7. move(6) = [Taroo-wa [[[[pro yomazuni] [ε [[nani-o-q tozi] ε]]] ta] no]]+q,c
8. move(7) = [ε [Taroo-wa [[[[pro yomazuni] [ε [[nani-o tozi] ε]]] ta] no]]]c

Figure 2: Derivation of Taroo-wa yomazuni nani-o tozitano?
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Figure 3: Derivation trees for the sentences without
scrambling

discharged. In the final part of the derivation,
the q-feature is checked by covert movement.
On the surface, we have a weak crossover con-
figuration, but the weak crossover violation

is remedied thanks to clause-internal scram-
bling. In summary, clause-internal scram-
bling, as A-movement (Saito, 1992), can li-
cense null pronouns appearing as parasitic
gaps (18) as well as overt pronouns (20).

(20) Taroo-wa
Taro-TOP

nanii-o
what-ACC

[soitui-no
itsi

kabaa-goto]
cover-with

ti tozita
filed

no?
Q

‘Whati did Taro file ti with itsi cover?’

In other words, though wh-configuration
bleeds the licensing of the co-indexed read-
ings of null pronouns, scrambling can coun-
terbleed licensing of parasitic gaps.

Figure 4 shows that because the assumption
is to be scrambled, it has the feature ˜t in step
1 and can wait to be discharged later in the
derivation in step 7. Consequently, the wh-
phrase nani-o can c-command the pro when it
first enters the derivation in the same step.

5 Discussion

Here, we discuss our proposal and compare it
with other previous studies on MGs and par-
asitic gaps. First, the grammar used in this
paper is compared with those in the previous
studies in terms of the plausibility of the ex-
tension. Next, we examine how the proposed
analysis is different from (i) the previous stud-
ies on parasitic gps using MGs and (ii) Hi-
rayama (2018).
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1. assume(tozi<d,V) = [[d,˜t,-q]˜t,-q tozi]V
2. merge(1, ε<V,<d,v) = [[[d,˜t,-q]˜t,-q tozi] ε]<d,v
3. merge(Taroo-wad,-top, 2) = [Taroo-wa-top [[[d,˜t,-q]˜t,-q tozi] ε]]v
4. adjoin(3, [pro yomazuni]»v) = [[pro yomazuni] [Taroo-wa-top [[[d,˜t,-q]˜t,-q tozi] ε]]]v
5. merge(4, ta<v,t) = [[[[pro yomazuni] [Taroo-wa-top [[[d,˜t,-q]˜t,-q tozi] ε]]] ta]t
6. scramble(5) = [[d,˜t,-q]-q [[[pro yomazuni] [Taroo-wa-top [[ε tozi] ε]]] ta]]t
7. discharge(6, nani-od,˜t,-q) = [nani-o-q [[[pro yomazuni] [Taroo-wa-top [[ε tozi] ε]]] ta]]t
8. merge(7, no<t,+top,+q,c)

= [[nani-o-q [[[pro yomazuni] [Taroo-wa-top [[ε tozi] ε]]] ta]] no]+top,+q,c
9. move(8) = [Taroo-wa [[nani-o-q [[[pro yomazuni] [ε [[ε tozi] ε]]] ta]] no]]+q,c

10. move(9) = [ε [Taroo-wa [[nani-o [[[pro yomazuni] [ε [[ε tozi] ε]]] ta]] no]]]c
Figure 4: Derivation of Taroo-wa nani-o yomazuni tozitano?
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Figure 5: Derivation trees for the sentences with scram-
bling

5.1 Comparison with the grammars
proposed in the previous work

We incorporate several operations for syntax
such as scrabling or adjunction, in addition
to merge and move. The increased number
of operations makes the MG’s generative ca-
pacity obscure. However, it is worth mention-
ing that the operations are not motivated only
specifically for Japanese. Frey and Gärtner
(2002) introduce scrambling and adjunction
to treat some phenomena in Indo-European
languages. We adopt these operations for
the analysis of the phenomenon in non-Indo-
European languages. In addition, these oper-
ations do not increase derivational ambiguity
for a single sentence, as they are driven by fea-
tures different from merge and move.

In contrast, assume and discharge pro-
posed by Kobele (2012) seem unwelcome
in some sense that these operations may in-
constantly increase the number of ambiguous
derivations for a single sentence. However,
we reformulated discharge (15) in a more re-
stricted way than the original definition; Our
definition states that discharge must be ap-
plied only to the pair of the syntactic con-
text whose specifier position is occupied by
the dummy object with an unsaturated fea-
ture, and the corresponding object. This leads
to a reduction of some ambiguous courses of
derivations.
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5.2 Comparison with previous work on
parasitic gaps with MG

Stabler (2006) and Kobele (2008) proposed
MG-based analyses (or equivalent formalisms
based) for parasitic gaps in English. Both
adopted a derivational model similar to side-
ward movement. In contrast, our approach is
more representational.

5.3 Comparison with Hirayama (2018)
In Section 2.1, we mentioned the approach of
Hirayama (2018) is semantic. Her analysis
assumes no LF movement of the wh-phrase,
and movement is necessary so that a single
lambda can bind both pro and the trace of
the wh-phrase via Predicate Abstraction, as
schematically illustrated in (21). After the
lambda binds both pro and the trace, the wh-
phrase can manipulate both values simultane-
ously. Without a trace, namely, when the wh-
phrase stays in situ, it cannot affect the value
of pro in the semantic computation process.

(21) who ... λ3 ... [... pro3] ... t3

Hirayama’s analysis is problematic in ex-
plaining the case with the subject wh-phrase.
As mentioned earlier, the anti-c-command
condition does not hold in Japanese. In other
words, the real trace can c-command a para-
sitic gap in Japanese, as seen in (22):

(22) Dono
which

gakusee-ga
student-NOM

Hanako-ni
Hanako-by

[Taroo-ga
Taroo-NOM

pgi sagasu
look for

mae-ni]
before

mitukatta
found

no?
Q

‘Which studenti ti got found by
Hanako before Taro looked for pgi?’

For Hirayama’s semantic analysis to work,
there should be a trace of the wh-subject so
that we can have the configuration in (21).
As she mentions in footnote 9, it is possi-
ble to assume a vacuous clause-internal move-
ment of the subject. However, as this is not a
weak crossover configuration, nothing moti-
vates the vacuous movement.

By contrast, our analysis only refers to
the steps in the derivation to account for the
possibility of co-indexation. In the case of
(22), the subordinate clause has already en-
tered the derivation, so the subject wh-phrase
c-commands it when it enters the derivation.
The subject wh-phrase covertly checks the q-
feature, but there is no need to assume further
scrambling because it is not a weak crossover
configuration.

6 Conclusion

We proposed a DMG-based analysis of par-
asitic gaps in Japanese, using a slash-feature
percolation. Though we had observed several
exotic properties of parasitic gaps in Japanese,
a typical example of non-Indo-European lan-
guages, we have shown an extension of the
‘minimalist’ assumptions to deal with them
precisely. The interaction between discharge
and scramble explains that A-movement can
counterbleed the WCO effect.

The proposed DMG GP contains six op-
erations, which makes the generative capac-
ity of this grammar unclear. However, be-
cause some properties of the parasitic gaps in
Japanese can be explained in the interaction
of these operations, these operations appear
to be necessary to account for some properties
of natural language. More work on a variety
of languages by MG would be needed to seek
“minimalist” grammar.
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Abstract
This work addresses the question of how to
evaluate a state-of-the-art parser on Early Eng-
lish Books Online (EEBO), a 1.5-billion-word
collection of unannotated text, for utility in
linguistic research. Earlier work has trained
and evaluated a parser on the 1.7-million-word
Penn-Helsinki Parsed Corpus of Early Modern
English (PPCEME) and defined a query-based
evaluation to score the retrieval of 6 specific
sentence types of interest. However, significant
differences between EEBO and the manually-
annotated PPCEME make it inappropriate to as-
sume that these results will generalize to EEBO.
Fortunately, an overlap of source material in
PPCEME and EEBO allows us to establish a
token alignment between them and to score the
POS-tagging on EEBO. We use this alignment
together with a more principled version of the
query-based evaluation to score the recovery of
sentence types on this subset of EEBO, thus al-
lowing us to estimate the increase in error rate
on EEBO compared to PPCEME. The increase
is largely due to differences in sentence seg-
mentation between the two corpora, pointing
the way to further improvements.

1 Introduction

The Penn-Helsinki Parsed Corpus of Early Modern
English (PPCEME) (Kroch et al., 2004) consists of
over 1.7 million tokens of text from 1500 to 1712,
manually annotated for phrase structure. It belongs
to a family of treebanks of historical English (Tay-
lor et al., 2003, 2006; Kroch, 2020) and other lan-
guages (Wallenberg et al., 2011; Galves et al., 2017;
Martineau et al., 2021; Kroch and Santorini, 2021)
with a shared annotation philosophy and similar
guidelines across languages, which form the basis
for reproducible studies of syntactic change (Kroch
et al., 2000; Ecay, 2015; Wallenberg, 2016; Galves,
2020; Wallenberg et al., 2021).

While all of these corpora are large for manually
annotated corpora, even relatively common phe-
nomena still occur too rarely to support reliable

statistical models of how they change over time.
We therefore wish to parse and search the much
larger corpora that are becoming publicly available,
such as the Early English Books Online (EEBO)
corpus (Text Creation Partnership, 2019) with its
1.5 billion words of text from 1475 to 1700. How-
ever, EEBO’s potential as a resource for linguistic
research remains unrealized because it is not lin-
guistically annotated and its size renders manual
annotation infeasible. Our goal is therefore to parse
EEBO automatically.

Kulick et al. (2022a) took first steps in this di-
rection by training and evaluating a constituency
parser using the gold trees from PPCEME. This
parser achieved a cross-validated evalb score
(Sekine and Collins, 2008) of 90.53%, suggest-
ing the feasibility of the larger project of parsing
EEBO. In a follow-up paper, Kulick et al. (2022b)
directly evaluated the utility of the recovered parse
trees for the retrieval of sentence types necessary
to study a particular linguistic change in the his-
tory of English. Utilizing a novel alternative to
evalb, termed “query-based evaluation”, the parser
was evaluated by specifically scoring the retrieval
of these sentence types. The resulting precision
scores were promising, warranting further work.

However, Kulick et al. (2022a,b) obtained their
results for PPCEME, not EEBO. While both cor-
pora consist of Early Modern English texts, they
harbor significant differences, making it inappro-
priate to assume that results obtained for PPCEME
generalize to EEBO.

In this work, we therefore extend the parser
evaluation to EEBO itself. An apparently in-
tractable difficulty is the absence of gold parse
trees for EEBO. Fortunately, there is some overlap
between PPCEME and EEBO; specifically, about
42% of PPCEME consists of source texts also
present in EEBO, though possibly based on variant
editions that differ in spelling and punctuation. Us-
ing an improved language model, we train a parser
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Missing words or punctuation:
haue alway resysted hym , and
haue resisted and

Tokenization differences:
In whom , nat withstandyng ,
In whom not with standynge ,

Bullet (illegible) character in EEBO:
I will not let , openlie to
I will not l•• , openlie to

Figure 1: Examples of mismatches in PPCEME (top)
and EEBO (bottom) source texts.

on the non-overlap section of PPCEME and then
parse both the PPCEME and EEBO versions of the
overlap. We create a token alignment between the
two overlap versions, which allows us to evaluate
the parsed EEBO overlap for part-of-speech (POS)
accuracy. We also improve the mechanics of the
query-based evaluation from Kulick et al. (2022b)
and use that, together with the alignment, to evalu-
ate the parser’s performance on the EEBO overlap
text.

The rest of the paper is structured as follows.
Section 2 discusses some important features of the
overlap and the alignment between the two ver-
sions. Section 3 presents the parser model, along
with results on PPCEME based on evalb, which
we include to show improvements due to the new
language model. Section 4 discusses the parsing
of the EEBO overlap and the POS evaluation. Sec-
tion 5 describes the queries and the new alignment-
mediated scoring method, and Section 6 presents
the results. Section 7 summarizes with lessons
learned and suggestions for future work.

2 PPCEME-EEBO Overlap

2.1 Overview
PPCEME consists of material from 232 source
texts, 42 of which have EEBO counterparts (see
Appendix A for details). It might be thought that
PPCEME should form a proper subset of EEBO,
but this is not the case as while EEBO consists of
all English-language material printed before 1700,
many texts in PPCEME - notably private letters
and editions of minor plays - did not appear in print
until after 1700.

Figure 1 illustrates the main differences between
the PPCEME and EEBO versions of the overlap.

source # sents # tokens tokens/sent
PPCEME 39,400 805,475 20.44
EEBO 28,378 813,947 28.68

Table 1: Sentence counts and token counts for the
PPCEME and EEBO versions of the overlap material.

The first example shows how one version may have
tokens that are entirely missing from the other (“al-
way”, “hym”, “,”). The second shows a typical case
of a whitespace tokenization difference - “withstan-
dyng” vs. “with standynge”. Both examples also
show differences in spelling and punctuation. The
third example is a very specific type of spelling
difference. Illegible characters in the source mate-
rial are represented in EEBO by a bullet character.
Here, “l••” has two illegible characters, correspond-
ing to “let” in PPCEME.1

A further significant difference concerns sen-
tence segmentation. Sentence segmentation in
PPCEME was performed manually in accordance
with annotation guidelines based on linguistic con-
siderations. This is not the case for EEBO. The lack
of standardized punctuation conventions for Early
Modern English makes it non-trivial to segment
sentences according to modern punctuation conven-
tions, let alone according to PPCEME’s guidelines.

Figure 2 gives two examples, each of which il-
lustrates a string of text divided into separate sen-
tences (and therefore trees) in PPCEME. The cor-
responding nearly identical text in EEBO is not
so divided. As is evident, PPCEME sometimes
splits on commas (e.g., the comma after rest) and
colons (e.g., the colon after Gold). In contrast, af-
ter word tokenization, we split sentences in EEBO
automatically on question mark, exclamation mark,
and period.2 (The reason that EEBO has no sen-
tence break after quills in the first example is that
it has a comma for PPCEME’s period.) We refrain
from splitting on commas because doing so would
massively overgenerate sentence fragments.

As a result, sentences in EEBO tend to be longer
than in PPCEME. Table 1 shows the number of to-
kens, sentences, and mean sentence length for the
overlap material. The number of tokens is roughly
the same, but EEBO has fewer sentences and so
higher mean sentence length. Appendix A breaks

1PPCEME contains no bullet characters because any illegi-
ble characters were manually resolved in the process of either
data entry or annotation.

2We do not split on periods in common abbreviations,
Roman numerals of the era, and the like.
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|| His Dame comming home and hearing that her man was gone to bed , tooke that night

but small rest , || and early in the morning hearing him vp at his worke merrily

singing , shee by and by arose , || and in seemely sort attyring her selfe , she

came into the worke-shop , || and sat her downe to make quills . || Quoth Iohn ,

Good morow Dame , || how do you to day ? ||

|| No , Nan Winchcombe , I will call her name , plaine Nan : || what , I was a

woman , when she was sir-reuerence a paltry girle , though now shée goes in her Hood

and Chaine of Gold : || what care I for her ? ||

Figure 2: Sentence segmentation in PPCEME (indicated by vertical bars). Each of the two corresponding examples
in EEBO is treated as a single long sentence.

source # aligned # unaligned %
PPCEME

796,704
8,771 98.9

EEBO 17,243 97.9

Table 2: Number of aligned and unaligned tokens, and
percentage of aligned, in PPCEME and EEBO.

down Table 1 by source text, revealing significant
differences for some files, and also compares the
sentence lengths of the PPCEME and EEBO ver-
sion of the overlap to that of PPCEME and EEBO
as a whole.

2.2 Alignment
The rest of the work relies on having a token-to-
token (words and punctuation) alignment between
the PPCEME and EEBO versions of the overlap.
Both versions required some preparatory work be-
fore running our token-alignment algorithm.

For EEBO, we followed the same procedure as
detailed in Kulick et al. (2022a,b) in connection
with using EEBO for language model training, with
sentence segmentation as just described.

In PPCEME, the 42 source texts are generally
represented by non-exhaustive samples. Moreover,
because of how the corpus was constructed over
time, these samples do not always appear in the
order in which they appear in the edition (for in-
stance, parts of a play’s fourth act might be inter-
leaved with the first act). We therefore prepared
a normalized version of the material with the sen-
tences in order, which was then processed further as
described for PPCEME in Kulick et al. (2022a,b).

We then aligned each of the 42 texts at the to-
ken level with our implementation of the Smith-
Waterman algorithm (Smith et al., 1981), using a
similarity measure based on Levenshtein distance
(Levenshtein et al., 1966). To help anchor the align-
ment, we lowered the substitution costs for the

bullet character (to 0.1) and the relatively common
u/v alternation (to 0.2). We also forced the simi-
larity to equal 1 for consistent cases of alternation
between PPCEME and EEBO (e.g. &c/etc., &/and,
and the/ye).

Table 2 summarizes the completeness of the
alignment, showing number of aligned and un-
aligned tokens in PPCEME and EEBO. For exam-
ple, alway, hym and the comma in the first example
in Figure 1 are unaligned PPCEME tokens. In the
second example, withstandyng and standynge are
aligned, so with is an unaligned token in EEBO.
For additional alignment details, including per-text
statistics, consult Appendix B.

3 Model and Evaluation

3.1 Parser Architecture
We use the same parser architecture as Kulick et al.
(2022a,b), but with an improved language model.
The parser model is based on Kitaev et al. (2019),
which represents a constituency tree T as a set of
labeled spans (i, j, l), where i and j are a span’s be-
ginning and ending positions and l is its label. Each
tree is assigned a score s(T ), which is decomposed
as a sum of per-span scores:

s(T ) =
∑

(i,j,l)∈T
s(i, j, l) (1)

The per-span scores s(i, j, l) themselves are as-
signed using a neural network that takes a sequence
of embeddings as input, processes these embed-
dings using a transformer-based encoder (Vaswani
et al., 2017), and produces a span score from an
MLP classifier (Stern et al., 2017). The highest-
scoring valid tree is then found using a variant of
the CKY algorithm. POS tags are recovered using
a separate classifier operating on top of the encoder
output, which is jointly optimized with the span
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section parser POS
dev 92.08 (1.6) 98.23 (0.7)

test 91.77 (0.6) 98.37 (0.3)

Table 3: Cross-validation parser and POS results. Each
result is the mean for the section (dev or test) over the 8
splits (standard deviation in parentheses). All scores are
expressed as percentages.

classifier. For more details, see Kitaev and Klein
(2018).

Our implementation is based on version 0.2.0
of the Berkeley Neural Parser3, with some modifi-
cations for using the PPCEME and EEBO data as
input.4 While the earlier work used ELMo embed-
dings pretrained from scratch on EEBO, here we
use RoBERTa embeddings (Liu et al., 2019) with
continued pre-training for two epochs on EEBO
starting from roberta-base.5 For more details on
training and hyperparameters, see Appendix C.

3.2 Cross-Validation Results on PPCEME
We use the same 8-fold split of PPCEME as in
Kulick et al. (2022a,b), training each of the 8 mod-
els for 50 epochs and using the evalb score on
the dev section as our criterion for saving the best
model. Table 3 gives our parsing and POS re-
sults, combined over the 8 cross-validation splits,
as scored by evalb (matching brackets for the pars-
ing score and POS accuracy for the tagging score).6

The parser scores are all 1.2% higher (absolute)
than the ELMo-based results reported in Kulick
et al. (2022b), with the POS results also showing
a slight increase (an average of 0.08). Kulick et al.
(2022b) point out some differences in annotation
style from the Penn Treebank (PTB) (e.g., lack of
base NPs) that lead to lower parser scores here than
if run on PTB. For details of the cross-validation
splits, see Appendix D.

4 Parsing and POS Accuracy for Overlap

At this point, we have the token alignment between
the PPCEME and EEBO overlap versions, and we

3https://github.com/nikitakit/self-
attentive-parser

4These modifications and other relevant software will
be made available at https://github.com/skulick/
emeparse.

5https://huggingface.co/roberta-base
6For reasons discussed in Kulick et al. (2022b), we use

the modified evalb supplied with the Berkeley parser (Sed-
dah et al., 2014), which does not remove words based on
punctuation tags.

section # files # tokens % of split
train 184 1,041,352 54.58
dev 6 60,960 3.20
overlap 42 805,475 42.22
total 232 1,907,787 100.00

Table 4: Split of PPCEME for evaluating on overlap.

# tokens parser POS
PPCEME overlap

all tokens 805,475 91.64 98.26
EEBO overlap

aligned tokens 796,704 - 95.17
non-punc only 702,464 - 97.25
only w/ bullet 2,057 - 80.12

Table 5: Parser (evalb f1) and POS (accuracy) scores
for PPCEME and EEBO versions of overlap.

have trained and evaluated on all of PPCEME with
cross-validation, showing improved results over
earlier work. Our next step is to train the parser in
order to evaluate on the overlap versions.

We reserve the overlap for testing and partition
the remaining non-overlap PPCEME material into
training and dev sections, as set out in Table 4.

4.1 Scoring the PPCEME overlap
Having trained the parser, we now evaluate it on
the PPCEME version of the overlap. Since we have
gold trees for this material, we can do so with evalb.
The top part of Table 5 shows aggregate evalb and
POS results. Appendix E gives a breakdown by
text, including recall and precision.

The parser score of 91.64% is lower than the
cross-validated results in Table 3. This is hardly
surprising, since the parser is only being given 55%
as much training data.

4.2 Scoring the EEBO overlap
For the EEBO version of the overlap, we have no
corresponding gold trees, and so cannot evaluate
with evalb.7 However, we can - for the first time
- evaluate POS accuracy on EEBO by taking ad-
vantage of the token alignment discussed in Sec-
tion 2.2. 97.9% (796,704) of the tokens in EEBO
are aligned to a corresponding token in PPCEME.
For these tokens, we can take the gold tag in EEBO
to be that of its PPCEME partner. EEBO tokens

7But see the conclusion for a possible modification of
evalb.
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# tokens
tag gold EEBO rec prec f1
N 93,720 92,513 96.82 95.57 96.19
P 91,175 91,190 98.89 98.91 98.90
, 57,992 71,966 76.91 95.44 85.18
D 62,701 62,440 99.49 99.08 99.29
PRO 52,368 52,204 99.34 99.03 99.19
CONJ 42,478 42,154 99.44 98.68 99.06
ADJ 35,769 35,480 95.93 95.16 95.54
NS 30,937 30,974 96.79 96.91 96.85
ADV 24,804 24,477 96.83 95.56 96.19
VB 22,724 22,718 97.39 97.37 97.38
. 36,415 22,274 88.70 54.26 67.33
NPR 19,277 20,210 88.36 92.64 90.45
PRO$ 17,060 17,023 99.37 99.16 99.26
BEP 14,938 14,905 99.14 98.92 99.03
VAN 14,540 14,726 95.43 96.65 96.04
VBP 14,291 14,345 95.88 96.24 96.06
Q 14,044 13,998 98.75 98.43 98.59
MD 13,828 13,709 99.43 98.58 99.00
VBD 13,663 13,653 97.48 97.41 97.44
TO 10,890 10,858 99.54 99.25 99.39
total 796,704 796,704 95.17 95.17 95.17

Table 6: Breakdown by 20 most frequent tags for the
95.17% score in row “aligned tokens” of Table 5. Note
that the total row includes all POS tags.

without an alignment partner are left out of the
scoring.

The results are shown in row “aligned tokens” in
Table 5. The score (95.17%) is lower than the corre-
sponding score for the PPCEME overlap (98.26%).
Table 6 breaks the score down by tag for the 20
most common tags. Appendix F presents more de-
tailed results along two dimensions, breaking down
the bottom (EEBO) part of Table 5 by overlap file
and expanding Table 6 to include all tags.

4.3 Punctuation in EEBO
The third most common tag in Table 6, comma,
and the 11th most common tag, period, have low
scores of 85.18% and 67.33%, respectively. This
is because they are often confused, which in turn
follows from a combination of PPCEME’s POS
annotation style with the differences in sentence
segmentation in PPCEME and EEBO discussed in
Section 2.1. PPCEME tags all tree-final punctua-
tion as period. For example, in the first two lines of
Figure 2, the comma after bed is tagged as comma,
while the one after rest is tagged as period. In con-
trast, the parser assigns comma to both in EEBO -
a reasonable error since in the EEBO version, the

Negative declarative sentences
VERB-NOT-DECL They drank not the ale
DO-NOT-DECL They did not drink the ale

Negative imperatives
VERB-NOT-IMP Drink not the ale
DO-NOT-IMP Do not drink the ale

Direct questions
VERB-SBJ Drank they the ale?
DO-SBJ Did they drink the ale?

Table 7: Sentence types retrieved by query searches.

second comma is not tree-final. Re-evaluating with-
out these two tags (row “non-punc only” in Table
5) raises the accuracy to 97.25%.

4.4 Tokens with Bullet Characters in EEBO
We were also curious about accuracy on tokens
containing a bullet character. As the row “only w/
bullet” shows, the score for such tokens drops to
80.12%, although they are too rare to have a major
effect on the overall score. The bullet character is
completely missing from the training data. Aug-
menting that data to randomly include it would
likely improve the score on these tokens.

5 Queries and Scoring

5.1 Query Types
Kulick et al. (2022b) focused on six sentence types,
which are formulated as queries for tree struc-
tures in the CorpusSearch query language (Randall,
2010). We use the same queries here. Table 7 il-
lustrates the three pairs of sentence types retrieved
by the queries, along with our labels for them (see
Appendix G for a full description of the sentence
types). For each pair, the first sentence type is the
variant dominant in 1500, and the second the vari-
ant dominant by 1700. The leading idea of the
overall project is that large datasets like EEBO will
eventually allow us to decide between competing
conceptual models of the loss of the older variant
- specifically, competition (Kroch, 1989; Zimmer-
mann, 2017) versus drift (Karjus, 2020).

We run the queries over three sets of trees -
PPCEME-gold (the gold trees from the release),
PPCEME-parsed (the parsed trees of the PPCEME
version of the overlap, using the parser trained with
the split described in Section 4), and EEBO-parsed
(the parsed trees of the EEBO version of the over-
lap, using the same parser). This allows us to ad-

226



dress the problem outlined in the introduction -
determining the accuracy of the query-based re-
trieval on parsed EEBO text as compared to parsed
PPCEME text - by comparing query hits on EEBO-
parsed and PPCEME-parsed, respectively, to query
hits on PPCEME-gold.

5.2 Query Scoring on PPCEME
For scoring the query retrieval on PPCEME,

we can use the same approach as Kulick et al.
(2022b) for scoring queries over the PPCEME
cross-validation splits. Since we are comparing
parsed to gold versions of the same text, the sen-
tence segmentation and tokens are identical, and
the comparison can therefore proceed on a tree ba-
sis. Each query hit is considered to have a location
(tree #, index), where the tree number is the tree it
occurs in, and the index is an arbitrary numbering
of the number of hits within a tree (usually just
1). Since the trees are in alignment, the matches
are those for which the query hits from the gold
and parsed trees have the same location, and the
recall/precision/f-measure scores follow.

5.3 The Need for a New Method
However, this approach does not extend to scoring
EEBO-parsed vs. PPCEME-gold, since neither the
sentence segmentation nor the tokens necessarily
match up. Figure 3 illustrates the problem, using
the last two segments from the first example in Fig-
ure 2. The left side shows two gold PPCEME trees,
while the corresponding text on the right comes
from one large EEBO tree, due to the different
segmentation in EEBO.

The lower PPCEME tree shows a VERB-SBJ

query hit covering how do you to day ?, and the
EEBO tree fragment shows a VERB-SBJ query hit
covering Good morrow Dame , how doe you to
day. (The question mark is not part of the hit in
the EEBO version, since there it is outside of the
CP-QUE-MAT clause.)

While the text covered is different, both query
hits correctly label the sentences they find as VERB-
SBJ. But the PPCEME trees are #s 137 and 138
among the PPCEME trees, while the EEBO tree is
#98 among the EEBO trees, and so comparison by
tree number is not possible.

5.4 Alignment-Mediated Scoring
However, we also have the spans of the con-
stituents from the query hits, as indicated
by <3272,3278> for the PPCEME tree and

<3001,3009> for the EEBO tree. These spans
refer to the PPCEME or EEBO overlap section as
a whole, not to the individual trees. We can use
this span information, together with our word align-
ment, to carry out an alignment-mediated scoring
(AMS), as follows:
(1) Given a list of m query hits from the gold trees,
and n query hits from the parsed trees, we form a
m × n array of scores for each pair of hits. The
score for a pair of hits is computed by using the
token alignment to convert the EEBO-parsed span
to a span in PPCEME-gold, and then computing a
simple span overlap, normalized for length. For ex-
ample, in Figure 3, <3001,3009> in the EEBO
tree maps (by the alignment) to <3268,3277> on
PPCEME, and so the span overlap is computed be-
tween the PPCEME hit span <3272,3278> and
the span mapped from EEBO, <3268,3277>.
The span overlap score is 0.55, and this becomes
the score for this pair of hits. Hits in PPCEME and
EEBO that match exactly would have a score of
1.0, and ones with no tokens in common (again,
after using the alignment to compare them) would
have a score of 0.0.
(2) We treat this as a bipartite graph minimum
weight matching problem, where the “weight” for
a pair of trees is one minus the span overlap, com-
puted as just described. In this way the “penalty”
for the overall mapping is minimized. We filter the
results to ensure that all hits have at least one token
in common.

For consistency, we compare PPCEME-parsed
to PPCEME-gold in the same way as EEBO-parsed
to PPCEME-gold (that is, using AMS). This also
demonstrates the validity of the algorithm, since
the results for PPCEME-parsed vs. PPCEME-gold
using AMS are identical to those using the method
from Kulick et al. (2022b).8 Further details of the
algorithm are available in Appendix H.

6 AMS Results and Analysis

6.1 Results and Analysis for EEBO
Table 8 presents scores from the query-based evalu-
ation for PPCEME-parsed and EEBO-parsed, us-
ing AMS to produce the latter results. Our goal
was to estimate the effect on the query results of

8We thus also resolve a lingering doubt from the earlier
work. The earlier scoring method allowed a hit in a parsed
PPCEME tree to “match” a hit in a completely different part
of the corresponding PPCEME gold tree. The current method
rules out such spurious matches, since it relies on the actual
spans, not just the trees in which they occur.
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(IP-MAT
(VBD Quoth)
(NP-SBJ (NPR Iohn))
(, ,)
(QTP (INTJP (ADJ Good)

(N morow))
(NP-VOC (N Dame)))

(. ,))

(CP-QUE-MAT *<3272,3278>|verb-sbj*
(WADVP-1 (WADV how))
(IP-SUB

(ADVP *T*-1)
(DOP do)
(NP-SBJ (PRO you))
(NP-TMP (N (N to)

(N day))))
(. ?))

(a) Two gold PPCEME trees

[...]
(IP-PPL

(VBD quoth)
(NP-SBJ (NPR Iohn))
(, ,)
(CP-QUE-MAT *<3001,3009>|verb-sbj*

(NP-VOC (ADJ Good)
(N morrow)
(NP-VOC (N Dame)))

(, ,)
(WADVP (WADV how))
(IP-SUB

(DOP doe)
(NP-SBJ (PRO you))
(NP-TMP (N (N to)

(N day)))))))
(. ?))

(b) Fragment of one parsed EEBO tree

Figure 3: Example of the query matching problem. (a) shows two gold PPCEME trees with a VERB-SBJ query hit
in the lower tree, at span <3272,3278> covering how do you to day ?. (b) is a fragment of a larger parsed EEBO
tree with a VERB-SBJ query hit at span <3001,3009> covering Good morrow Dame , how doe you to day.

PPCEME-gold PPCEME-parsed EEBO-parsed
query # hits # hits recall prec f1 # hits recall prec f1

Negative declarative sentences
VERB-NOT-DECL 662 680 95.47 92.94 94.19 634 87.16 91.01 89.04
DO-NOT-DECL 329 318 95.44 98.74 97.06 304 89.97 97.37 93.52

Negative imperative sentences
VERB-NOT-IMP 148 135 81.76 89.63 85.51 120 71.62 88.33 79.10
DO-NOT-IMP 31 26 80.65 96.15 87.72 25 77.42 96.00 85.71

Questions
VERB-SBJ 302 266 79.47 90.23 84.51 228 68.54 90.79 78.11
DO-SBJ-ORD 306 282 90.20 97.87 93.88 253 80.72 97.63 88.37

Table 8: AMS results for PPCEME-parsed and EEBO-parsed versions of overlap, as compared to PPCEME-gold
trees.

parsing on EEBO instead of PPCEME. This ta-
ble provides the answer - the f1 scores generally
decrease by about 4-6 points. (The score for DO-
NOT-IMP, which is less frequent, decreases less.)

Comparing the recall and precision scores re-
veals that the decrease is largely due to decreases in
recall. Precision stays relatively stable, while recall
goes down by as much as 10 points (e.g. for VERB-
SBJ, from 79.47% to 68.54%). This means that
parser errors on EEBO are preventing the queries
from finding the structure that is present in the gold
PPCEME trees.

Examination of the parser errors suggests that
longer sentence length is exacerbating a tendency
of the parser (already noted in Kulick et al. (2022b))
to produce nonsensical flat structures with two sub-
jects or two finite verbs (or both). For example,
consider the second sentence in the example of sen-

corpus gold parsed
PPCEME 4 233
EEBO - 934

Table 9: Number of trees with two subjects, as one
example of nonsensical parser error.

tence segmentation in Figure 2. The last segment
what care I for her ? is a VERB-SBJ that is missed
in the EEBO-parsed tree because the parse of the
entire sentence No , Nan Winchcombe ... for her ?
is such a nonsensical structure. Omitting details,
the structure of the parse, with the two subjects and
two finite verbs, is shown in Figure 4.

Parser error analysis can be complex and tedious
(especially here, with the differences in sentence
segmentation), but we can facilitate it by extend-
ing our use of query-based searches from finding
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(CP-QUE-MAT
(INTJ No)
(NP-VOC (NPR Nan) (NPR Winchcombe))
(, ,)
(NP-SBJ (PRO I))
(MD will)
(VB call)
(IP-SMC her name...Nan)
(, :)
(INTJP (WPRO what))
(, ,)
(NP-SBJ (PRO I))
(BED was)
....

Figure 4: Incorrect flat parse on EEBO text.

structures of linguistic interest to finding structures
that should never occur, such as clauses with two
subjects. Table 9 shows the large increase of trees
with such impossible structures in EEBO-parsed,
although the number in PPCEME-parsed is already
higher than desired.9

6.2 Cross-Validated Results on PPCEME
As pointed out in Kulick et al. (2022b), the parses
need not be perfect for query-based search to be
useful, since if an error rate can be estimated, it can
be factored into the linguistic analysis. We have
determined the increase in error rate when querying
on EEBO rather than on PPCEME.

We are also interested in determining the er-
ror rate when querying on PPCEME. Kulick
et al. (2022b) addressed this issue with the cross-
validation query-based evaluation on PPCEME.
However, that was using an older language model,
and while here we presented improved evalb scores
(Table 3), the improvements are not guaranteed to
carry over to the query-based scores.

This other aspect is not our focus here, but it is
part of the overall goal, and so we give some results
in Appendix I, with updated cross-validated query
results on the current version of the parser, along
with some discussion of the impact of using less
training data for the overlap split.

7 Conclusion

Exploiting the existence of an overlap between
PPCEME and EEBO, we have succeeded in scoring
POS tagging on EEBO and extending query-based
evaluation to EEBO. Given these results, could the
trees and POS-tags of a parsed EEBO be used with
confidence? For those wishing to use the POS tags,

9The four occurrences in PPCEME-gold are annotation
errors that have been corrected for the next release.

we have shown that the POS tags can overall be ex-
pected to be of high accuracy (with some variation
for individual tags, and excepting the punctuation
issue discussed in Section 4.2). For the structure-
based queries, we now have the needed estimate
of the decrease in accuracy on EEBO compared to
PPCEME. There are some obvious next steps to
improve the parsing and query results on EEBO,
and so lessen that decrease in accuracy.

The first priority is to address the problem of
sentence segmentation in EEBO. We have shown in
this paper why this is an important issue for parsing
EEBO, and we can use the overlap to measure the
effect more precisely. We will do so by using the
token alignment to “fix” the sentence segmentation
in the EEBO version of the overlap to be consistent
with the sentence segmentation in the PPCEME
version of the overlap, thus allowing us to directly
measure the query accuracy on EEBO without the
distorting effect of the segmentation differences
and thus to estimate the latter effect.

Following this step, we see two possibilities for
addressing the effects of the differences in sen-
tence segmentation in PPCEME and EEBO. One
approach modifies the training data, while leav-
ing the EEBO segmentation as it is, by combining
the PPCEME trees used for training when the text
has a final comma in the text, thus approximat-
ing the EEBO segmentation. The other (preferred)
approach would directly modify the EEBO seg-
mentation by using the existing segmentation in
PPCEME to train a segmenter for EEBO.

The are different directions to pursue after that
point:

Improving the parser architecture. While Sec-
tion 6 discussed the increase in nonsensical struc-
tures from PPCEME to EEBO, there were already
too many (233) with PPCEME. It is possible that
a parser model that moves away from the span-
based approach of the Berkeley neural parser, using
well-defined grammatical structures instead, might
overcome this problem. In particular we plan to
experiment with a Tree Adjoining Grammar (TAG)
or related architecture (Kasai et al., 2018). This
change of architecture would also allow for the re-
covery of the empty categories and co-indexing,
which will be required as the range of linguistic
inquiries expands, with the precise approach used
to accomplish this depending on which architecture
is chosen.

Another aspect of the parser architecture that
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should be improved is the recovery of the function
tags. As mentioned in Appendix C.2, currently we
simply retain the function tags as part of atomic
nonterminals for the training and parsing. While
this approach works surprisingly well, it is poten-
tially problematic for combinations of nontermi-
nal/function tag that do not appear with frequency
in the training data. One possible alternative is to
integrate the function tag recovery in the current
parser model analogously the POS tagging, as a
separate classifier with a joint training loss.

Treebank representation. PPCEME is a phrase-
structure treebank, with the associated linguistic
queries reflecting that structure, and so it was nat-
ural for us to focus on phrase-structure parsing.
However, it would be useful to represent PPCEME
in a dependency format, so that a dependency
parser could be used as well. While it might be
possible to adapt one of the phrase-structure-to-
dependency converters for use on PPCEME and
the parsed EEBO, our preference would be for this
to follow from the use of a TAG-like formalism,
which is in a sense intermediate between a phrase-
structure and dependency representation.

Application to other historical treebanks. As
mentioned in the introduction, PPCEME is just one
of a series of historical treebanks, which share an-
notation philosophy and guidelines. In addition to
applying this work to those other treebanks, they
would in turn serve as an extensive and varied
testbed for evaluating the different parser models.

Query retrieval without parsing. An entirely
different direction from the work described here,
but with the same goal, is to use sentence embed-
dings derived from token embeddings, as in Arora
et al. (2017), to identify the desired sentences di-
rectly, without using a parser at all. For example, it
might be possible to find EEBO sentences “similar”
to a given sentence, akin to an information retrieval
system.

Additional types of annotation. The overlap
and alignment to PPCEME can be used to evaluate
the automatic annotation of other types of anno-
tation on EEBO. For example, if PPCEME were
annotated with lemmas for each token, then a lem-
matizer on EEBO could be tested on the overlap
section by using the existing alignment and treat-
ing the PPCEME lemmas for the aligned tokens as
the gold lemmas. In addition, research in the last

few years on improving word sense disambigua-
tion (Bevilacqua et al., 2021) could be applied to
the parsed EEBO, by using example sentences in
the Oxford English Dictionary10 to map each word
instance to its sense usage.

Modified evalb. Finally, we stated in Section 4.2
that we cannot run evalb on parsed EEBO files
in the absence of gold trees for EEBO. However,
AMS opens up the possibility of doing just that.
Since evalb scores matching brackets, it can be
modified to match brackets using this approach
instead of searching for identical spans. Such a
modification could then even be adopted for ma-
terial that already has matching text and sentence
segmentation, allowing for a “fuzzy” evalb that can
match brackets without an exact match, degrading
the score if desired.
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A Detailed Overlap Section Statistics

A.1 Sentence lengths by file
Table 10 extends Table 1 from Section 2 to the
42 files shared by PPCEME and EEBO. For each
corresponding file (e.g., armin-e2/A21397), it de-
tails the total number of tokens and mean sentence
length for both versions.

A.2 How representative is the overlap section?
In Figure 5 and Table 11 we provide summaries of
the sentence length distributions for both PPCEME
and EEBO, both overall and for the overlap section
alone. From both the summary statistics and ker-
nel density estimates (KDE), it is readily apparent
that the PPCEME overlap is very representative of
PPCEME overall, showing a nearly identical dis-
tribution of sentence lengths. The EEBO overlap
shows less of a match to EEBO overall, with the
overlap section containing a much higher propor-
tion of extremely short sentences relative to EEBO
as a whole.

This striking difference in distributions for
EEBO overlap vs EEBO overall is overwhelm-
ingly an artifact of how the overlap correspondence

was constructed. As discussed in Appendix B,
the EEBO version of the overlap section contains
character names in plays that are counted as two-
word “sentences”. However, when considering
all of EEBO, we only consider sentences with
EEBO contexts (as indicated by the markup in the
EEBO XML files) that are relevant for the query
search (<P> indicating prose and <SP/L> indicat-
ing verse structure within speech.) The EEBO over-
all sentence lengths therefore do not include these
two-word “sentences”. The main point here is that
the segmentation problem discussed throughout
the main text is not peculiar to the EEBO overlap
section. The average sentence length throughout
EEBO is greater than that of PPCEME.

B Alignment Details

B.1 Alignment by Source
Table 12 expands on Table 2 by providing
full alignment statistics for each text. In
addition to raw counts for number of inser-
tions/deletions/substitutions in each text, it also
provides a summary statistic for alignment quality
– token error rate (TER) – which is defined as:

TER = 100 ∗ # insert + # del + # sub
# PPCEME tokens

(2)

where # insert/del/sub are the total count of inser-
tion, deletion, and substitution errors for the text.

B.2 Alignment Algorithm Details
As mentioned in Section 2.2, the sentences of the
PPCEME source texts are not always in the same or-
der as in the corresponding EEBO files, and so we
first focused on a rough correspondence between
the PPCEME and EEBO versions of the overlap,
followed by the word alignment. Since the sen-
tences of the EEBO files were in the proper order,
we rearranged the PPCEME sentences to match
that order. At the same time, some of the meta info
in PPCEME, such as character names in plays, was
filtered out of the the PPCEME source by the initial
preprocessing of PPCEME. As a result, the EEBO
overlap has instances of character names that are
not present in the PPCEME version of the overlap.

We spot-checked cases of unaligned tokens in
both directions, making sure that such cases fell
into the categories discussed in the text (e.g., the
first two cases in Figure 1), or the character names
just discussed. In addition, each pair of aligned
tokens has a Levenshtein distance similarity score,
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PPCEME EEBO
name # sents # tokens tokens/sent name # sents # tokens tokens/sent

0 armin-e2 1,271 18,768 14.77 A21397 358 18,150 50.70
1 asch-e1 496 16,121 32.50 A21975 314 16,010 50.99
2 bacon-e2 480 20,181 42.04 A01516 260 20,209 77.73
3 behn-e3 675 19,335 28.64 A27305 302 19,481 64.51
4 blundev-e2 750 22,619 30.16 A16221 374 22,787 60.93
5 boethpr-e3 1499 32,806 21.89 A28548 1,332 33,176 24.91
6 boylecol-e3 165 7,544 45.72 A28975 78 7,545 96.73
7 brinsley-e2 656 19,710 30.05 A16865 590 19,830 33.61
8 burnetroc-e3 680 21,112 31.05 A30466 356 21,123 59.33
9 clowes-e2 905 22,500 24.86 A19029 427 21,937 51.37

10 coverte-e2 984 20,769 21.11 A19470 446 20,785 46.60
11 deloney-e2 1346 26,738 19.86 A20126 679 27,014 39.78
12 elyot-e1 514 19,157 37.27 A21287 472 19,387 41.07
13 fabyan-e1 507 19,029 37.53 A00525 518 19,023 36.72
14 fisher-e1 466 10,915 23.42 A00771 891 10,918 12.25
15 fitzh-e1 1058 18,813 17.78 A00884 550 19,068 34.67
16 fryer-e3 610 18,970 31.10 A40522 279 19,093 68.43
17 gifford-e2 1230 21,148 17.19 A01716 922 21,642 23.47
18 harman-e1 1115 19,366 17.37 A02657 372 18,026 48.46
19 hooke-e3 539 22,494 41.73 A44323 247 22,464 90.95
20 hooker-a-e2 343 9,025 26.31 A03598 233 9,043 38.81
21 hooker-b-e2 405 8,600 21.23 A03598 258 8,641 33.49
22 hoole-e3 552 21,531 39.01 A44390 364 21,527 59.14
23 jetaylormeas-e3 404 8,682 21.49 A64030 130 8,753 67.33
24 jotaylor-e2 1106 31,202 28.21 A13415 367 31,215 85.05
25 langf-e3 767 18,351 23.93 A49545 355 18,140 51.10
26 latimer-e1 966 17,603 18.22 A05143 698 17,827 25.54
27 markham-e2 253 6,138 24.26 A06913 47 6,192 131.74
28 middlet-e2 2117 19,051 9.00 A07493 3,111 21,624 6.95
29 milton-e3 638 21,307 33.40 A50902 395 21,325 53.99
30 record-e1 1092 23,422 21.45 A10541 620 23,778 38.35
31 shakesp-e2 2332 22,032 9.45 A11954 2,315 24,166 10.44
32 smith-e2 949 18,408 19.40 A12367 457 18,463 40.40
33 stevenso-e1 1512 16,936 11.20 A12969 1,962 17,404 8.87
34 stow-e2 640 17,457 27.28 A13043 353 17,627 49.93
35 turner-e1 581 16,302 28.06 A14053 464 16,320 35.17
36 turnerherb-e1 43 837 19.47 A14059 31 844 27.23
37 tyndnew-e1 2906 39,476 13.58 A68940 1,931 39,654 20.54
38 tyndold-e1 2149 33,901 15.78 A13203 1,209 34,080 28.19
39 vanbr-e3 2081 25,052 12.04 A65075 2,570 27,954 10.88
40 vicary-e1 954 19,510 20.45 A14387 424 19,269 45.45
41 walton-e3 664 12,557 18.91 A67462 317 12,433 39.22

total 39,400 805,475 20.44 28,378 813,947 28.68

Table 10: Overlap between PPCEME and EEBO, with filename, number of tokens, number of sentences, and mean
sentence length.
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Figure 5: Kernel density estimates (KDE) for sentence length in PPCEME and EEBO. KDEs for the overall corpus
and overlap section are plotted on the same figure.

sentence length
source division # sents mean std min 10% 25% 50% 75% 90% max
EEBO overall 33,840,032 41.45 45.57 1 7 14 29 53 88 8,195
EEBO overlap 28,378 28.68 36.89 1 2 6 16 37 69 562
PPCEME overall 94,462 20.20 24.77 1 5 8 13 24 41 957
PPCEME overlap 39,400 20.44 20.01 1 5 8 14 26 43 399

Table 11: Sentence length summary statistics in PPCEME and EEBO. The following statistics are presented for each
corpus (both overall and for the overlap section only): mean/standard deviation, min/max, and 10/25/50/75/90-th
percentiles.
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# tokens
text PPCEME EEBO TER # insertions # deletions # substitutions
00-armin-e2 18,768 18,150 23.22 277 895 3,185
01-asch-e1 16,121 16,010 3.60 50 161 370
02-bacon-e2 20,181 20,209 2.16 69 41 326
03-behn-e3 19,335 19,481 19.73 262 116 3,437
04-blundev-e2 22,619 22,787 9.77 285 117 1,807
05-boethpr-e3 32,806 33,176 2.12 411 41 245
06-boylecol-e3 7,544 7,545 1.50 17 16 80
07-brinsley-e2 19,710 19,830 13.28 274 154 2,190
08-burnetroc-e3 21,112 21,123 1.17 44 33 170
09-clowes-e2 22,500 21,937 7.10 108 671 819
10-coverte-e2 20,769 20,785 3.53 40 24 670
11-deloney-e2 26,738 27,014 13.60 436 160 3,040
12-elyot-e1 19,157 19,387 24.97 630 400 3,753
13-fabyan-e1 19,029 19,023 36.82 421 427 6,159
14-fisher-e1 10,915 10,918 15.72 67 64 1,585
15-fitzh-e1 18,813 19,068 7.94 428 173 892
16-fryer-e3 18,970 19,093 2.31 160 37 242
17-gifford-e2 21,148 21,642 4.59 530 36 404
18-harman-e1 19,366 18,026 29.36 178 1518 3,990
19-hooke-e3 22,494 22,464 1.55 47 77 224
20-hooker-a-e2 9,025 9,043 1.97 45 27 106
21-hooker-b-e2 8,600 8,641 2.38 63 22 120
22-hoole-e3 21,531 21,527 2.16 91 95 279
23-jetaylormeas-e3 8,682 8,753 7.79 175 104 397
24-jotaylor-e2 31,202 31,215 3.98 141 128 972
25-langf-e3 18,351 18,140 5.70 115 326 605
26-latimer-e1 17,603 17,827 28.86 393 169 4,519
27-markham-e2 6,138 6,192 7.41 79 25 351
28-middlet-e2 19,051 21,624 17.35 2665 92 548
29-milton-e3 21,307 21,325 0.82 33 15 126
30-record-e1 23,422 23,778 11.32 554 198 1,899
31-shakesp-e2 22,032 24,166 13.41 2259 125 570
32-smith-e2 18,408 18,463 1.51 82 27 169
33-stevenso-e1 16,936 17,404 13.52 763 295 1,231
34-stow-e2 17,457 17,627 5.31 205 35 687
35-turner-e1 16,302 16,320 4.31 133 115 454
36-turnerherb-e1 837 844 10.99 7 0 85
37-tyndnew-e1 39,476 39,654 13.07 258 80 4,821
38-tyndold-e1 33,901 34,080 8.46 300 121 2,448
39-vanbr-e3 25,052 27,954 19.41 3247 345 1,270
40-vicary-e1 19,510 19,269 19.27 204 445 3,111
41-walton-e3 12,557 12,433 21.34 697 821 1,162
total 805,475 813,947 10.62 17,243 8,771 59,518

Table 12: Token alignment statistics for each text. The first two columns indicate the token counts in the PPCEME
and EEBO versions of the text. The next four columns provide information about the alignment quality with #
insertions, # deletions, and # substitutions indicating the total number of insertion, deletion, and substitution errors
in the EEBO text relative to the PPCEME text given the alignment. TER is a summary statistic defined as in eqn. 2
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hyperparameter value
attention_dropout 0.2
batch_size 32
char_lstm_input_dropout 0.2
checks_per_epoch 4
clip_grad_norm 0.0
d_char_emb 64
d_ff 2048
d_kv 64
d_label_hidden 256
d_model 1,024
d_tag_hidden 256
elmo_dropout 0.5
encoder_max_len 512
force_root_constituent ’auto’
learning_rate 5e-05
learning_rate_warmup_steps 160
max_consecutive_decays 3
max_len_dev 0
max_len_train 0
morpho_emb_dropout 0.2
num_heads 8
num_layers 8
predict_tags True
relu_dropout 0.1
residual_dropout 0.2
step_decay_factor 0.5
step_decay_patience 5
tag_loss_scale 5.0
max_epochs 50

Table 13: Hyperparameters used with the Berkeley Neu-
ral Parser.

modified by common and expected cases for char-
acter differences, as discussed in Section 2.2. We
spot-checked cases where the similarity was be-
low 0.9, which highlighted cases such as those
discussed in Section 2.2 (e.g., & and and). We
then treated these as special cases for the similar-
ity metric and redid the alignment, in an iterative
process.

C Model and Evaluation

Table 13 shows the hyperparameter settings used
in the Berkeley Neural Parser (all default). We
added a parameter max_epochs for the maxi-
mum number of epochs, setting it to 50 for the
cross-validation training reported.

C.1 RoBERTa Pretraining
We downloaded the most recent version of English
roberta-base from Huggingface11 and continued

11https://huggingface.co/roberta-base

pre-training for two epochs on EEBO. EEBO was
preprocessed using the same steps as described in
Kulick et al. (2022a,b), yielding a 1.374 billion
token train set and 115K token validation set. We
used the run_mlm script from Hugging Face with
a batch size of 2 on 5 GPUs for an effective batch
size of 10. Future work will explore improved
performance as a function of larger models and/or
additional epochs.

C.2 Function Tags
Function tags are important for us since the queries
rely upon them to find the structures of linguistic
interest. As in Kulick et al. (2022a,b), we adopted
the approach of Gabbard et al. (2006) to function
tag recovery. The function tags are retained in pre-
processing, and so nonterminals like NP-SBJ are
treated as atomic units. Since the decision whether
to delete is part of preprocessing, this approach
does not require modification to the parser.

C.3 Default Flat Parses
Of the 28,378 sentences in the EEBO overlap sec-
tion, 5 exceeded the 512 subword limit imposed
by the language model and the encoder within the
parser. For such cases, we modified the parser
to output a dummy flat parse, with each token as-
signed the tag XX.

D Cross-Validation Splits

Table 14 summarizes the composition of the
train/dev/test sections across the cross-validation 8
splits; specifically, the total number of files, the to-
tal number of tokens, and the percentage of total to-
kens in each section. Since the partitioning process
is performed at the level of PPCEME source files,
and these files differ substantially in size, there is
some variation in these numbers across the splits.
For this reason, we report standard deviations as
well as means. The final row (“total”) gives num-
bers for a complete split (i.e., the train/dev/test
sections combined); as these are constant across
each split, they have a standard deviation of zero.
As can be seen, overall the splits attain the target
90-5-5 breakdown; e.g., the train section on aver-
age comprises 89.65% of the total tokens with a
standard deviation of 0.54%.

The total number of tokens here (1,944,480) is
greater than the total number of tokens listed in Ta-
ble 4 (1,907,787). This is because some sentences
were removed from the PPCEME overlap files in
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section # files # tokens % of split
train 205.88 (13.34) 1,743,211.25 (10,441.53) 89.65 (0.54)
dev 12.50 (7.15) 101,000.12 (4,081.82) 5.19 (0.21)
test 13.62 (7.91) 100,268.62 (7,832.66) 5.16 (0.40)
total 232 (0.00) 1,944,480 (0.00) 100 (0.00)

Table 14: Mean number of files and tokens for train/dev/test sections across the 8 cross-validation splits (standard
deviations in parentheses). The percentage of tokens in each section is given in column “% of split”.

the course of preprocessing.

E Results for PPCEME Overlap

Table 15 breaks down the scores for each of the
overlap files in PPCEME. The totals for all files
correspond to the number of tokens in Table 4 and
the scores in the top part of Table 5.

F Results for EEBO Overlap

Here we expand in two ways on the POS tagging
results on EEBO from Section 4.2. First, Table
16 breaks down the results in the bottom part of
Table 5 by file. Table 17 shows the complete listing
of overall results by tag, the 20 most frequent of
which were shown in Table 6. The tag XX occurs in
the five overly long sentences mentioned in Section
C.3.

G Full Query Details

We wish to identify certain sentence types that al-
low us to track the rise of auxiliary do over the
course of Early Modern English. For expository
reasons, we present these sentence types in reverse
chronological order.12

G.1 Sentence Types with Auxiliary Do

Modern English is unusual in requiring the auxil-
iary verb do in negative declarative sentences, neg-
ative imperatives, and all direct questions (whether
positive or negative).

DO-NOT-DECL. In negative declarative sen-
tences, the main verb appears in uninflected form.
Such sentences also contain auxiliary do in either
the present or past tense, and the negative marker
not appears between the auxiliary and the main
verb.
(IP-SUB (NP-SBJ (PRO they))

(DOP do)

12We are concerned only with sentences without modal
verbs (can, will, etc.), aspectual auxiliaries have and be, or
main verb be; sentences containing these elements were not
affected by the change.

(NEG not)
(NP-MSR (Q much))
(VB minde)
(NP-OB1 (PRO them))

The IP in this sentence type (and also its histori-
cal counterpart without do) can be an independent
matrix (MAT) clause or, as here, a subordinate
(SUB) clause.
Do-not-imp. Negative imperatives are anal-

ogous, except for the IMP function tag on IP, and
the imperative POS tag (DOI) on the auxiliary.
(IP-IMP (PP (P For)

(NP (NPR$ God’s)
(N sake)))

(DOI do)
(NEG not)
(VB overlay)
(NP-OB1 (PRO me))
(PP (P with)

(NP (ADJ superfluous)
(N Matter)))

(. .))

Do-sbj. Finally, in direct questions, auxiliary
do precedes the subject instead of following it. This
inversion occurs in both positive and negative ques-
tions, and so retrieving this sentence type relies
on the parser correctly identifying the subject via
the SBJ function tag. The annotation guidelines
for PPCEME require direct questions to be anno-
tated as CP-QUE-MAT immediately dominating
IP-SUB. In this context, IP-SUB is understood as
part of the direct question rather than an ordinary
subordinate clause.
(CP-QUE-MAT (WADVP (WADV How))

(IP-SUB (DOP do’s)
(NP-SBJ (D this) (N Sute))
(VB fit)
(NP-OB1 (PRO me)))

(NP-VOC (NPR Dauy))
(. ?))

G.2 Sentence Types Without Auxiliary Do

We now illustrate the historical precursors of the
modern sentence types just discussed. In all 3
old forms, it is the main verb (rather than aux-
iliary do) that appears in a past or present tense
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text # tokens recall prec f1 pos
00-armin-e2 18,768 91.67 92.49 92.08 98.42
01-asch-e1 16,121 89.42 89.96 89.69 98.57
02-bacon-e2 20,181 90.28 91.06 90.67 99.11
03-behn-e3 19,335 92.61 92.69 92.65 99.24
04-blundev-e2 22,619 88.44 90.76 89.58 98.21
05-boethpr-e3 32,806 95.08 95.27 95.17 99.29
06-boylecol-e3 7,544 90.66 91.53 91.09 98.63
07-brinsley-e2 19,710 89.38 89.98 89.68 98.43
08-burnetroc-e3 21,112 93.70 94.05 93.87 99.30
09-clowes-e2 22,500 90.34 91.13 90.73 98.32
10-coverte-e2 20,769 90.83 91.23 91.03 98.39
11-deloney-e2 26,738 93.10 93.43 93.26 98.58
12-elyot-e1 19,157 90.79 91.73 91.26 98.55
13-fabyan-e1 19,029 89.33 89.82 89.57 97.91
14-fisher-e1 10,915 91.13 91.50 91.31 97.27
15-fitzh-e1 18,813 90.51 90.87 90.69 97.74
16-fryer-e3 18,970 88.83 89.29 89.06 97.83
17-gifford-e2 21,148 93.90 94.36 94.13 98.84
18-harman-e1 19,366 90.90 91.80 91.35 98.01
19-hooke-e3 22,494 88.69 88.97 88.83 98.54
20-hooker-a-e2 9,025 91.00 91.79 91.39 98.67
21-hooker-b-e2 8,600 92.13 92.96 92.54 99.09
22-hoole-e3 21,531 89.79 90.27 90.03 98.37
23-jetaylormeas-e3 8,682 93.01 94.03 93.52 99.14
24-jotaylor-e2 31,202 90.72 91.35 91.03 98.50
25-langf-e3 18,351 90.45 90.90 90.67 98.72
26-latimer-e1 17,603 91.40 92.24 91.82 98.53
27-markham-e2 6,138 90.53 91.17 90.85 98.32
28-middlet-e2 19,051 90.09 91.12 90.60 97.25
29-milton-e3 21,307 88.24 89.11 88.67 99.02
30-record-e1 23,422 89.58 89.61 89.59 94.75
31-shakesp-e2 22,032 91.24 91.72 91.48 97.20
32-smith-e2 18,408 94.70 95.07 94.88 99.19
33-stevenso-e1 16,936 84.78 87.10 85.92 93.43
34-stow-e2 17,457 91.66 91.91 91.78 98.75
35-turner-e1 16,302 89.47 90.10 89.78 98.26
36-turnerherb-e1 837 66.55 70.09 68.27 90.20
37-tyndnew-e1 39,476 96.27 96.61 96.44 98.82
38-tyndold-e1 33,901 93.29 93.56 93.42 98.36
39-vanbr-e3 25,052 94.13 94.24 94.18 98.46
40-vicary-e1 19,510 91.36 92.08 91.72 97.89
41-walton-e3 12,557 92.36 92.42 92.39 98.96
total 805,475 91.35 91.94 91.64 98.26

Table 15: Breakdown of aggregate evalb and POS results for PPCEME overlap files shown in Table 5.
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aligned non-punc bullet
sec # not aligned # acc # acc # acc
00-armin-e2 277 17,873 88.27 15,858 91.79 6 66.67
01-asch-e1 50 15,960 97.07 13,250 98.13 2 100.00
02-bacon-e2 69 20,140 97.66 17,696 98.81 52 98.08
03-behn-e3 262 19,219 96.72 16,885 98.74 1 0.00
04-blundev-e2 285 22,502 94.24 20,475 95.64 9 88.89
05-boethpr-e3 411 32,765 97.45 29,068 99.07 2 100.00
06-boylecol-e3 17 7,528 97.48 6,793 98.48 0 0.00
07-brinsley-e2 274 19,556 97.21 17,207 98.01 21 85.71
08-burnetroc-e3 44 21,079 97.46 18,832 99.14 0 0.00
09-clowes-e2 108 21,829 95.74 19,360 98.03 36 91.67
10-coverte-e2 40 20,745 95.86 18,268 98.04 87 83.91
11-deloney-e2 436 26,578 95.79 23,553 98.25 4 100.00
12-elyot-e1 630 18,757 96.83 16,789 97.83 2 100.00
13-fabyan-e1 421 18,602 95.86 17,005 97.39 47 82.98
14-fisher-e1 67 10,851 92.43 9,924 96.37 4 75.00
15-fitzh-e1 428 18,640 94.25 16,134 96.88 5 100.00
16-fryer-e3 160 18,933 95.63 16,626 97.46 10 90.00
17-gifford-e2 530 21,112 96.03 18,571 98.51 6 100.00
18-harman-e1 178 17,848 93.32 16,147 96.64 130 79.23
19-hooke-e3 47 22,417 97.06 19,833 98.34 16 100.00
20-hooker-a-e2 45 8,998 97.18 7,950 98.34 2 100.00
21-hooker-b-e2 63 8,578 97.18 7,513 98.70 12 91.67
22-hoole-e3 91 21,436 97.26 19,128 98.11 18 83.33
23-jetaylormeas-e3 175 8,578 89.83 7,697 92.19 27 22.22
24-jotaylor-e2 141 31,074 95.61 27,332 97.74 401 76.81
25-langf-e3 115 18,025 96.48 16,111 98.41 4 100.00
26-latimer-e1 393 17,434 95.21 15,422 97.22 0 0.00
27-markham-e2 79 6,113 86.52 5,579 87.99 5 80.00
28-middlet-e2 2665 18,959 91.80 16,057 95.39 4 75.00
29-milton-e3 33 21,292 97.24 18,470 98.74 6 100.00
30-record-e1 554 23,224 92.24 20,747 93.41 7 57.14
31-shakesp-e2 2259 21,907 91.40 18,220 95.93 5 60.00
32-smith-e2 82 18,381 96.14 16,035 98.88 2 50.00
33-stevenso-e1 763 16,641 88.40 14,569 90.10 385 64.42
34-stow-e2 205 17,422 96.61 15,386 98.39 54 88.89
35-turner-e1 133 16,187 95.72 14,315 97.88 2 50.00
36-turnerherb-e1 7 837 96.30 747 97.46 0 0.00
37-tyndnew-e1 258 39,396 96.13 34,304 98.36 257 93.00
38-tyndold-e1 300 33,780 95.66 30,471 97.52 241 87.55
39-vanbr-e3 3247 24,707 94.22 20,975 97.24 7 57.14
40-vicary-e1 204 19,065 94.36 16,832 97.08 178 85.39
41-walton-e3 697 11736 92.98 10,330 96.56 0 0.00
total 17,243 796,704 95.17 702,464 97.25 2,057 80.12

Table 16: Breakdown of aggregate POS results for PPCEME overlap files from Table 5. “aligned” includes all
aligned PPCEME tokens (796,704), “non-punc” excludes punctuation tags, and “bullet” includes only words with a
bullet character.
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tag gold EEBO rec prec f1 tag gold EEBO rec prec f1
N 93,720 92,513 96.82 95.57 96.19 ADJR 1,530 1527 93.71 93.53 93.62
P 91,175 91,190 98.89 98.91 98.90 EX 1478 1495 97.26 98.38 97.81
, 57,992 71,966 76.91 95.44 85.18 HV 1382 1368 98.98 97.97 98.47
D 62,701 62,440 99.49 99.08 99.29 INTJ 1378 1457 80.44 85.05 82.68
PRO 52,368 52,204 99.34 99.03 99.19 SUCH 1361 1352 99.70 99.04 99.37
CONJ 42,478 42,154 99.44 98.68 99.06 ADJS 1288 1309 95.19 96.74 95.96
ADJ 35,769 35,480 95.93 95.16 95.54 N$ 1217 1238 87.96 89.48 88.72
NS 30,937 30,974 96.79 96.91 96.85 ALSO 1212 1205 99.59 99.01 99.30
ADV 24,804 24,477 96.83 95.56 96.19 NPRS 1177 1186 82.21 82.84 82.52
VB 22,724 22,718 97.39 97.37 97.38 BAG 1163 1161 99.40 99.23 99.31
. 36,415 22,274 88.70 54.26 67.33 WD 1127 1145 95.81 97.34 96.57
NPR 19,277 20,210 88.36 92.64 90.45 QS 989 1001 97.70 98.89 98.29
PRO$ 17,060 17,023 99.37 99.16 99.26 DOD 887 884 99.66 99.32 99.49
BEP 14,938 14,905 99.14 98.92 99.03 BEN 730 726 99.72 99.18 99.45
VAN 14,540 14,726 95.43 96.65 96.04 DO 728 740 97.16 98.76 97.96
VBP 14,291 14,345 95.88 96.24 96.06 NPR$ 707 695 86.19 84.72 85.45
Q 14,044 13,998 98.75 98.43 98.59 OTHERS 487 506 91.50 95.07 93.25
MD 13,828 13,709 99.43 98.58 99.00 HAG 397 393 98.98 97.98 98.48
VBD 13,663 13,653 97.48 97.41 97.44 WARD 320 323 92.57 93.44 93.00
TO 10,890 10,858 99.54 99.25 99.39 WPRO$ 315 310 99.03 97.46 98.24
C 9,071 9,113 97.52 97.97 97.75 DAN 266 266 98.12 98.12 98.12
WPRO 7,934 7,920 99.12 98.94 99.03 WQ 258 259 91.51 91.86 91.68
NUM 6,419 6,473 94.72 95.51 95.11 NS$ 254 294 67.69 78.35 72.63
VAG 6,181 6,140 95.70 95.07 95.38 FOR 244 259 92.28 97.95 95.03
BED 6,014 6,001 99.60 99.38 99.49 DON 186 184 97.83 96.77 97.30
NEG 5,720 5,691 99.58 99.07 99.33 ADVS 186 150 95.33 76.88 85.12
BE 5,379 5,361 99.22 98.88 99.05 ELSE 133 138 92.03 95.49 93.73
VBN 4,547 4,586 96.14 96.97 96.55 DOI 108 106 94.34 92.59 93.46
FW 4,637 4,332 91.60 85.57 88.48 HVN 89 91 91.21 93.26 92.22
HVP 4,276 4,265 99.11 98.85 98.98 BEI 83 88 81.82 86.75 84.21
RP 4,194 4,182 95.84 95.57 95.70 DAG 55 44 65.91 52.73 58.59
ADVR 3,930 3,880 97.14 95.90 96.52 HAN 52 56 92.86 100.00 96.30
VBI 3,991 3,733 93.65 87.60 90.52 ONES 52 54 94.44 98.08 96.23
WADV 2,874 2,822 98.02 96.24 97.12 NPRS$ 36 33 81.82 75.00 78.26
ONE 2,483 2,478 98.95 98.75 98.85 HVI 27 21 85.71 66.67 75.00
OTHER 2,430 2,441 97.91 98.35 98.13 X 24 80 0.00 0.00 0.00
XX 0 2,242 0.00 0.00 0.00 $ 23 23 65.22 65.22 65.22
HVD 2,064 2,051 99.07 98.45 98.76 OTHER$ 21 22 81.82 85.71 83.72
DOP 2,028 2,026 99.01 98.92 98.96 " 16 9 0.00 0.00 0.00
FP 1,833 1,847 95.34 96.07 95.71 ONE$ 12 13 84.62 91.67 88.00
QR 1,718 1,717 98.66 98.60 98.63 ’ 9 0 0.00 0.00 0.00
OPAREN 1,690 1,703 97.18 97.93 97.55 OTHERS$ 6 4 75.00 50.00 60.00
CPAREN 1,661 1,668 97.24 97.65 97.45 NUM$ 3 0 0.00 0.00 0.00
total 796,704 796,704 95.17 95.17 95.17

Table 17: Complete breakdown by tag of 95.17% score in row “aligned words” in Table 5, extending Table 6. EEBO
tags are mapped to PPCEME (gold) tags using token alignment.
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form, and it occupies the same position as auxiliary
do. Thus, we have negative declarative sentences
(VERB-DECL-NOT) like:
(IP-SUB (NP-SBJ (PRO I))

(VBD sent)
(NEG not)
(PP (P to)

(NP (PRO you))))

negative imperatives (VERB-NOT-IMP) like:

(IP-IMP (VBI let)
(NEG not)
(IP-INF (NP-SBJ (D that))

(VB hurt)
(NP-OB1 (PRO me)))

(. .))

and questions (VERB-SBJ) like:
(CP-QUE-MAT

(WADVP (WADV When))
(IP-SUB (VBP comes)

(NP-SBJ (PRO$ your)
(N Taylor))

(ADVP-DIR (ADV hither)))
(. ?))

G.3 Sample CorpusSearch Query
In order to retrieve the 6 diagnostic sentence types,
we formulate queries in CorpusSearch (Randall,
2010), a query language for querying, editing, and
coding tree structures. Each query is a sequence
of boolean conditions on the parser output. For
instance, the following query retrieves direct ques-
tions with auxiliary do (DO-SBJ).

(CP-QUE-MAT* iDoms IP-SUB*)
AND (IP-SUB* iDoms DOD|DOP)
AND (IP-SUB* iDoms NP-SBJ*)
AND (IP-SUB* iDoms DO|VB)
AND (DOD|DOP precedes NP-SBJ*)
AND (NP-SBJ* precedes DO|VB)

The asterisks on the labels allow the query to
match tokens with further trailing function tags
(say, -SPE to indicate direct speech or -RSP for re-
sumptive subjects). Our formulation of the queries
assumes that the parser has correctly constructed
the relevant clause boundaries.

H Alignment-Mediated Scoring

For the bipartite graph minimum weight
matching problem, we use the scipy implemen-
tation https://docs.scipy.org/doc/
scipy/reference/generated/scipy.
optimize.linear_sum_assignment.
html.

The PPCEME-gold trees that are compared
against are the original “psd” files from the release,

because we wanted to avoid any possibility of pre-
processing of PPCEME affecting the “gold” results.
These “.psd” trees have empty categories and meta
data that affects the spans of the query hits on these
gold trees. For example, the lower gold tree in
Figure 3(a) has a (ADVP *T*-1), and the span
for the VERB-SBJ, <3272,3278> includes that
empty leaf.

As mentioned in Section 2.2, we follow the pre-
processing of the PPCEME files as described in
Kulick et al. (2022b,a), for parsing the PPCEME
files. This preprocessing removes empty cate-
gories and meta data, and so even the AMS evalua-
tion of the PPCEME-parsed files requires a token
alignment, although a trivial one that simply skips
over the empty categories in the alignment from
PPCEME-parsed to PPCEME-gold. Likewise, the
alignment used for the AMS scoring of EEBO-
parsed to PPCEME-gold is a slightly modified
version of the alignment to PPCEME-parsed dis-
cussed in Section 2.2, that aligns to the PPCEME-
gold trees.

I Cross-Validated Results on PPCEME

As briefly discussed in Section 6.2, in addition to
the evalb scores on the cross-validated PPCEME
sections using the the new language model (Ta-
ble 3), we also have query-based evaluation (using
the method in Kulick et al. (2022b)) for the cross-
validation splits. These results are shown in Table
18 and are generally increases over the scores re-
ported in Kulick et al. (2022b).

As discussed in Section 4.1, the parser used on
the overlap section is trained on less data than each
of these cross-validation splits were trained on,
yielding a score of 91.64%, which is lower (as ex-
pected) than the cross-validated results using more
training data (Table 3). In order to obtain a more ro-
bust measure of how the loss in training data affects
the parser, we redid the cross-validation split with
the training section of each split cut to 55% of its
original size. These results are in the bottom half
of Table 19, in which, for convenience, we repeat
the scores from Table 3. The score of 91.64% is
within the expected range.
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DEV EVAL
query # hits recall prec f1 # hits recall prec f1

Negative declarative sentences
VERB-NOT-DECL 720 93.73 (3.5) 92.95 (3.9) 93.32 (3.5) 655 94.05 (3.3) 93.68 (2.8) 93.79 (1.4)
DO-NOT-DECL 339 96.53 (2.3) 98.05 (2.7) 97.23 (0.7) 405 96.26 (4.4) 98.58 (2.4) 97.34 (2.2)

Negative imperative sentences
VERB-NOT-IMP 120 93.08 (8.0) 90.93 (8.5) 91.69 (6.2) 143 78.16 (14.1) 83.91 (12.8) 80.69 (12.6)
DO-NOT-IMP 41 74.34 (45.9) 71.01 (44.2) 72.55 (44.9) 23 80.0 (38.5) 87.5 (35.4) 82.14 (36.4)

Questions
VERB-SBJ 387 89.83 (8.3) 94.65 (4.5) 92.06 (5.9) 190 78.68 (10.2) 87.37 (8.8) 82.18 (5.3)
DO-SBJ 564 92.64 (3.9) 99.01 (1.0) 95.67 (1.9) 329 94.36 (7.1) 99.46 (1.5) 96.75 (4.4)

Table 18: Query-based results for the cross-validation dev and test sections.

DEV EVAL
% train evalb POS evalb POS
100 92.08 (1.6) 98.23 (0.7) 91.77 (0.6) 98.37 (0.3)

55 91.54 (1.7) 98.02 (0.7) 91.35 (0.7) 98.26 (0.4)

Table 19: Cross-validation parser and POS results. Each result is the mean for the relevant section (dev or test) over
the 8 splits (standard deviation in parentheses). Results are reported using both full train section of each split and
55% of the train section.
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Abstract

Aksënova and Deshmukh (2018) conjecture
that if the phonology of a language requires
projection to multiple tiers, the tier alphabets
of those tiers are either disjoint or stand in a
subset/superset relation, but never form a non-
trivial intersection. We provide three counterex-
amples to this claim.

1 Introduction

An important goal of computational phonology is
to determine the complexity of the phonological
patterns of natural language. A recent hypothe-
sis is that these patterns are sub-regular and more
specifically can be described as tier-based strictly
local languages (Heinz et al. 2011, McMullin 2016
i.a.), or slight extensions thereof (Mayer and Major
2018, Graf and Mayer 2018, de Santo and Graf
2019). The general idea is that even non-local
processes can be made local over appropriate rep-
resentations, namely by masking out all irrelevant
intervening elements or alternatively, projecting
only elements participating in a process on a sepa-
rate tier where they are adjacent again. Research in
that area often focuses on a single pattern/process
and a single tier. However, natural languages tend
to have more than one phonotactic restriction or
more than one phonological process; one might
therefore expect that more than one tier is neces-
sary to completely describe the phonology of a
language. Moreover, it is the interaction of distinct
processes that is of particular interest to phonolo-
gists. Aksënova and Deshmukh (2018), building
on work by McMullin (2016), set out to investi-
gate cases where more than a single tier is needed.
They explore the possible relations that the sets of
elements on different tiers can stand in: they can

∗Authors are listed alphabetically. We thank the partic-
ipants of the Leipzig phonology reading group for helpful
comments and discussion, in particular Sören Tebay for sug-
gesting looking into Koryak.

be disjoint ({a, b}, {c, d}), they can stand in a sub-
set/superset relation ({a, b, c}, {b, c}) or they can
non-trivially intersect ({a, b, c}, {c, d}), i.e. their
intersection is neither empty nor the special case of
a sub/superset relation (informally intersection for
the rest of the paper). While being careful to point
out the preliminary nature of their work, they claim
that no natural language phonology requires a sin-
gle element to be present on two tiers where each
tier contains elements the other does not; in other
words that there is no non-empty intersection of
tier alphabets that do not stand in a sub/superset re-
lation. They show that, as a function of the number
of elements considered, the number of ways to cre-
ate two sets with a non-empty intersection grows
much faster than the respective ways to create true
subsets or disjoint sets. As an example, when one
considers all possible ways to create proper sub-
sets, disjoint or intersecting sets for 10 elements,
the number of intersecting sets already makes up
more than 95% of all possibilities. If such a constel-
lation were never to arise, a learner could discard
the majority of combinatorially possible multiple
TSL grammars. However, in this article we provide
three counterexamples to this claim, showing that
there are phenomena where one element plays a
role in two processes that affect otherwise distinct
elements. In Section 2 we provide the necessary
background to the use of TSL in phonology and
the claims about tier alphabet relationships from
Aksënova and Deshmukh (2018). In Section 3,
we provide the data for the three counterexamples
(Sibe, Tsilhqút’hín, Koryak) that require a descrip-
tion involving overlapping tiers. We close with Sec-
tion 4 where we discuss an alternative description
of two of the three languages as Strictly Piecewise
(SP, Rogers et al. 2010); Sibe, however, still resists
a description with a single grammar, be it SP or
TSL. It remains an open issue whether all existing
intersecting TSL phenomena belong to a restricted
subset of all possible intersections.
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2 Background

To familiarize the reader with the TSL-perspective
and the type of data Aksënova and Deshmukh
(2018) deal with, we provide a short summary of
TSL grammars and the examples they give for pro-
cesses that require disjoint and containing tiers. For
more in-depth discussion, the reader is referred to
the original paper.

Tier-based strictly local (TSL) grammars (Heinz
et al. 2011) work by forbidding substrings of a
finite length on a tier. They consist of a tier projec-
tion mechanism that scans the original string and
projects every segment that is a member of a tier
alphabet to a separate tier. There is a set of n-grams
of finite size that is forbidden from occurring in the
string on the projected tier.

Imagine a toy language with the three vowels a,
i and u and an arbitrary consonant inventory. The
language requires that all vowels in a word be either
high (i,u) or low (a), i.e. we forbid the bigrams
*ai,*ia,*au,*ua. The tier alphabet is the set of all
vowels {a,i,u}. The projection mechanism projects
every vowel from that set it encounters to the tier.
A word *blabliblu thus would have the string aiu
on its tier. While iu is an allowed substring, the
combination *ai is not since it is a forbidden bigram
consisting of a high vowel followed by a low one.

Aksënova and Deshmukh (2018) provide an ex-
ample of processes in a language that require two
disjoint tiers, namely vowel harmony and nasal
agreement in Kikongo. Vowels have to agree in
height; the suffixes -il/-el and -ol/-ul have a dif-
ferent realization depending on their environment.
Examples of different realizations of the former
are -leng-el- or -sik-il-, for the latter -tomb-ol- or
-vil-ul-. In nasal harmony, /d/ and /l/ become [n]
if preceded by a nasal in the root, as can be seen
for the suffix -idi: -suk-idi- but -nik-ini-. As a re-
sult, one needs a nasal harmony tier with the tier
alphabet {n,m, d, l}, forbidding bigrams such as
*nd,*nl,*md,*ml. For vowel harmony, there is a
tier with the vowels {e, i, o, u}, forbidding any bi-
gram with mismatching height features. The tier
alphabets of both tiers are disjoint.

(1) {n,m, d, l} ∩ {e, i, o, u} = ∅

A sub/superset relation is instantiated in Imdlawn
Tashlhiyt. Sibilants regressively harmonize in voic-
ing and anteriority. The causative prefix /s-/ sur-
faces as [s] in s:-uga, [S ] in S-fiaSr or [z] in z-
bruz:a. There are blockers for voicing harmony,

namely voiceless obstruents (s:-ukz, not *z:-ukz);
but they do not act as blockers for anteriority har-
mony (S-quZ:i, not *s-quZ:i). As a result, one needs
a tier of all sibilants {s,z,S,Z}, blocking any bi-
grams of mismatching anteriority (*SZ,...), and a
second tier for all sibilants and voiceless obstru-
ents {s,z,S,Z,è,k,f,X,q} to forbid any bigram of ad-
jacent sibilants with distinct values for anteriority
(*sz,*Sz,...) and forbidding any bigrams of voiced
sibilants and voiceless obstruents to model their be-
haviour as blockers (*zk,*zq,...). The tier alphabet
of the second tier is a superset of the first one.

(2) {s,z,S,Z} ⊂ {s,z,S,Z,è,k,f,X,q}

As mentioned above, Aksënova and Deshmukh
conjecture that there are no phenomena whose tiers
have a non-empty, non-containing intersection. We
provide examples of processes that do require in-
tersecting tier alphabets in the next section.

3 Counterexamples

3.1 Sibe

In Sibe (Tungusic, Xinjiang, China), rounding har-
mony affects all vowels. High back vowels are
round if preceded by any round vowel, and non-
high vowels agree in rounding with preceding non-
high vowels. All the Sibe data is from Li (1996)
via Nevins (2005). For the vowel inventory, see
Table 1.

–back +back
–rd +rd –rd +rd

+high i y 1 u
–high E ø a O

Table 1: Sibe vowel inventory

The first effect of rounding harmony is a restric-
tion on a non-round vowel. The high back non-
round vowel is not licit following a round vowel
(Nevins, 2005: 165):

(3) a. fulxu ‘root’, *fulx1
b. Cøgu ‘vegetable’, *Cøg1

The other high vowels, [u] and front high vowels
are not restricted in this way and appear freely after
vowels with the opposite value for round (Nevins,
2005: 166):

(4) a. XOnin ‘sheep’
b. narXun ‘slim’
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Secondly, non-high vowels must agree in rounding
with preceding non-high vowels, as is shown in (5),
(Nevins, 2005: 165-167).

(5) a. OmOl ‘grandson’, *OmEl, *Omal
b. tømXO ’nipple’, *tømXE, *tømXa
c. XErXa ’pine tree’, *XErXø, *XErXO
d. aXa ’rain’, *aXø, *aXO

The latter process is restricted to roots, while the
former extends to suffixes as well, as can be seen
by the examples in (6) and (7).

Following Aksënova and Deshmukh we can es-
tablish a vowel tier with all vowels and the condi-
tions on output forms on said tier (Table 2).

Vowel Tier
T= {i,y,1,u,E,ø,a,O}

1. *[+rd][+high, +back,–rd]
Hr1{*y1, *u1, *ø1, *O1 }

2. *[–high, α rd][–high, −α rd]
Hr2{*Eø, *EO, *øE, *øa, *aø, *aO, *OE, *Oa
}

Table 2: Tier and Filters for rounding harmony

The second relevant process in Sibe is uvularisa-
tion, a long distance vowel-consonant assimilation.
Velars in affixes are turned into uvulars if they at-
tach to a root containing a non-high vowel. In (6),
no non-high vowel is present in the root, so the
affixes surface with a velar. In (7), all root vowels
are non-high and the affix consonant is uvularised
(Nevins, 2005: 169-170):

(6) Velars with [+high] roots
a. Cymi(n)-k1n ‘deep-DIM’
b. ulu-kun ‘deep-DIM’
c. tyry-xu ‘come-PST’
d. t1-x1 ‘sit-PST’

(7) Uvulars with [–high] roots
a. Ca-q1n ‘good-DIM’
b. tOndO-qun ‘honest-DIM’
c. gø-Xu ‘hit-PST’
d. sav-X1 ‘see-PST’

In mixed roots, roots with both high and non-high
vowels, the consonant is always uvular, whether
it is adjacent to the [–high] vowel or not. Con-
sider (8-b) and (8-d), where the low vowel triggers
uvularisation across a high vowel.

(8) Uvulars with mixed roots

a. sula-q1n ‘loose-DIM’
b. XOdu-qun ‘quick-DIM’
c. tykE-X1 ‘watch-PST’
d. ømi-X1 ‘drink-PST’

The tier that is needed to check uvular assimila-
tion includes velars1 and [-high] vowels (Table 3).2

Crucially, it must exclude [+high] vowels since
they are transparent. If they were included, they
would interfere with the locality on the tier and
block uvularisation in mixed roots.

Tier of velars and [–high] vowels
T= {k, g, x, G, E, ø, a, O}

1. *[–high][+velar]
Huv{*Ek, *Ex, *Eg, *EG,*øk, *øx, *øg, *øG,
*ak, *ax, *ag, *aG, *Ok *Ox, *Og, *OG, }

Table 3: Tier and filters for uvularisation

We thus have intersecting tiers where [–high]
vowels are both in the vowel tier as well as in the
uvular assimilation tier but both tiers have elements
that are not in the other tier, i.e. velars and [+high]
vowels.

(9) {i,y,1,u,E,ø,a,O} ∩ {E,ø,a,O,k,g,x,G} ̸= ∅

Note that nothing changes about this fact if the
vowel tier in Table 2 which handles two processes,
rounding harmony for high and for non-high vow-
els, is split into two: both processes require non-
high vowels on their tier, which are crucial for the
intersection.

3.2 Tsilhqút’ín

In Tsilhqút’ín (Athabaskan, British Columbia,
Canada; all data from Cook 1993, 2013 and Goad
1989), anterior sibilants come in pairs; they have
a pharyngealised (or retracted), and a plain ver-
sion. Anterior sibilants agree long-distance in pha-
ryngealisation. The right-most sibilant functions
as the trigger of sibilant harmony and determines
the value for every other sibilant. The other sibi-
lants are targets and agree in their retraction value
with the rightmost one. Consider (10-a), where

1We remain agnostic about which feature distinguishes
velar from uvular dorsals.

2We also need a third superset tier that includes all vowels
and dorsals in order to derive the prohibition on more local
[+high][uvular] sequences. Note, though, that it is not possible
to describe all three processes on that same tier since high
vowels would interfere with the locality of uvularisation and
dorsals would interfere in rounding harmony.
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the rightmost sibilant is a plain [z] and triggers de-
pharyngealisation on the preceding sibilant. (10-b)
shows the reverse pattern (Cook, 1993: 160-161):

(10) a. tE-zQ-i:-ì-tsæ:z → tEzi:ìtsæ:z
‘I started to cook’

b. næ:-sE-næ:-G̃ı:-l-tsQẼsQ →
na:sQ@na:G@̃̃ıltsQ@̃sQ

You are hitting me’

For this process, anterior sibilants must form a tier
to the exclusion of everything else (Table 4).3

Tier of anterior sibilants
T= {s, z, ts, dz, ts’, sQ, zQ, tsQ, dzQ, ts’Q}

1. *[–R][+R]
Hsib1{*ssQ, *szQ, ... *ts’ts’Q}

2. *[+R][–R]
Hsib2{*sQs, *sQz, ... *ts’Qts’ }

Table 4: Tier and filters for sibilant harmony

A second non-local process is retraction or ‘flat-
tening’, where a vowel is retracted4 in context of a
pharyngealised sibilant or a uvular.5 In (11-a) the
uvular [q] triggers retraction of the vowels from /E/
to schwa, and in (11-b) the pharyngealised sibilant
acts as the trigger (Goad 1989: 23; Cook 1993:
161):

(11) a. sQE-l-qwEs → s@lqw@s
‘he coughed’

b. Xæ:tæ:s-gẼsQ → Xa:ta:sQg@̃sQ

‘I’ll twist it out’

For retraction, therefore, a tier is needed that con-
tains the triggers of the process, pharyngealised
sibilants and (labialised) uvulars, and the target,
vowels (Table 5).

We thus have intersecting tiers where pharyn-
gealised sibilants are both in the sibilant harmony
tier and retraction tier, but the former contains also
non-pharyngealised sibilants and the latter vowels

3We use the more abstract feature R for both sibilant har-
mony and retraction, as is usual in the literature on Tsilhqút’ín.

4The featural changes a vowel partakes in under retraction
are complex but irrelevant for this discussion.

5This is a gross simplification of the process. There are
differences regarding the trigger – sibilant induced retraction
is more long-distance than uvular induced retraction – and
regarding directionality: leftward retraction is unblockable,
whereas rightward retraction may be blocked by velars and
long vowels function as icy targets. None of this affects the
intersection that we discuss here. For a thorough discussion of
the data and theoretical implications we refer to Goad (1989);
Mullin (2011); Gleim (2021).

Tier of retraction participants
T= {sQ, zQ, tsQ, dzQ, ts’Q,

å, åw, q, qw, q’, qw’, X, Xw, K, Kw,
i:, I, u:, U, æ:, E}

1. *[–R][+R]
R1{*i:sQ, *i:zQ, ... *EKw}

2. *[+R][–R]
R2{*sQi:, *sQI, ... *KwE }

Table 5: Tier and filters for retraction

and uvulars.

(12) {s, z, ts, dz, ts’, sQ, zQ, tsQ, dzQ, ts’Q } ∩
{sQ, zQ, tsQ, dzQ, ts’Q, å, åw, q, qw, q’,
qw’, X, Xw, K, Kw, i:, I, u:, U, æ:, E} ≠ ∅

3.3 Koryak

In Koryak (Chukcho-Kamchatkan, Kamchatka,
Russia; all data is from Abramovitz 2021) vow-
els in a word must be from one of three sets. The
recessive set {i, u, e, @}, the so-called ‘mixed’ set
{i, u, a, @} or the dominant set {e, o, a, @}. Some
vowels are phonetically identical between sets, but
need to be distinguished phonologically (for a jus-
tification we refer to Abramovitz 2021: ch. 3).
A morpheme always has vowels belonging to one
set only. If a morpheme with mixed vowels, i.e. a
vowel or vowels taken from the ‘mixed’ set, such as
the diminutive -piL or the root maqmi in (13), and
a morpheme with recessive vowels are combined,
recessive /e/ is lowered to [a]. The high vowels and
schwa are not affected (Abramovitz, 2021: 60,58):

(13) e-lowering
a. ujetiki-piL → ujatikpiL

‘little sled’
b. maqmi-te → maqmita

‘with a bow’

If a morpheme with a dominant vowel and a mor-
pheme with a recessive or mixed vowel are com-
bined, recessive and mixed /i/ and /u/ are lowered to
[e] and [o] respectively, and recessive /e/ is lowered
to [a]. Nothing happens to (mixed or recessive) a
or schwa. Consider (14), where the same mixed
and recessive morphemes as in (13) are now put
in a context with dominant vowels (Abramovitz,
2021: 61f):

(14) general lowering
a. ujetiki-piLLaq-Nqo →
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ojatekpeLLaq@Nqo
‘from the small sled’

b. qoja-te → qojata
‘by reindeer’

Vowel harmony in Koryak is obviously less pho-
netically grounded than the processes discussed
above. We will implement it in a TSL grammar
with diacritic features instead of the more usual
phonological ones and leave any discussion of nat-
uralness aside.

We will assume the diacritic features R, M and
D which are part of the vowels’ specifications that
derive these classes. This gives us the vowel inven-
tory in (15). To reduce clutter, recessive vowels do
not carry diacritics.

(15) {e, i, u, @, aM , iM , uM , @M , eD, @D, aD,
oD }

First, we will present a convenient tier for each
process individually and show that the tiers do in-
tersect. After that, we show that the tiers can nei-
ther be reconstructed as a single tier nor as tiers
in a superset-subset relation. The tier that derives
e-lowering (Table 6) must contain all vowels with
the M-diacritic as well as recessive e.

Tier of e and M-vowels
T= {e, iM , uM , aM , @M}

1. *Me, *eM
eL{*eiM , *euM , *eaM , *e@M , *iMe,
*uMe, *aMe, *@Me }

Table 6: Tier and filters for e-lowering

On the tier that derives general lowering (Ta-
ble 7), all dominant vowels, all recessive vowels
except recessive schwa, and i and u with the M-
diacritic must be present, but crucially not a with
the M-diacritic.

Both tiers share e and the high vowels with the
M-diacritic, but only the first contains the non-high
vowels with the M-diacritic; and only the second
the recessive high vowels and the dominant vowels:

(16) {aM, @M, e, iM, uM}∩ {e, iM, uM, i, u, oD,
aD, eD } ≠ ∅

Now, let us consider alternatives with non-
intersecting tiers. If we conflate the two tiers above
into a single tier, which contains every vowel but
recessive schwa, we run into problems with a se-
quence like the one in (17).

Tier of dominant vowels, high vowels and e
T= {e, i, u, iM , uM , eD, @D, aD, oD}

1. *DR, *RD
GL1{*oDe, *oDi, *oDu, *aDe, *aDi, *aDu,
*eDe, *eDi, *eDu, *@De, *@Di, *@Du, *eoD,
*ioD, *uoD, *eaD, *iaD, *uaD, *eeD, *ieD,
*ueD, *e@D, *i@D, *u@D}

2. *DM, *MD
GL2{ *oDiM, *oDuM, *aDiM, *aDuM,
*eDiM, *eDuM, *@DiM, *@DuM, *iMoD,
*uMoD, *iMaD, *uMaD, *iMeD, *uMeD,
*iM@D, *uM@D}

Table 7: Tier and filters for general lowering

(17) e-i-iM

e-i and i-iM are both perfectly fine bigrams, so the
structure as a whole should be fine. However, in
Koryak we actually get an output with a lowered /e/
in such a configuration. The second alternative for
making the Koryak tiers compatible with Aksënova
and Deshmukh’s hypothesis, is to project the ele-
ments that are uniquely in the e-lowering tier, aM

and @M, into the general lowering tier as well. This
yields unwanted results in strings like (18).

(18) i-aM-oD

Again, both i-aM and aM-oD are perfectly fine se-
quences on the general lowering tier. Only by ban-
ning aM from the tier, we get the desired violation
of *ioD. To conclude, the tiers we proposed for
each process individually do derive the data cor-
rectly and are necessarily intersecting.

4 Discussion

The absence of phonological processes that share a
subset of their elements would have been computa-
tionally appealing since it would have eliminated
a large share of logically possible tier alphabet re-
lations. However, as we have demonstrated above,
such processes do in fact exist. This raises the ques-
tion if tiers of two interacting processes can form
any possible intersection of their tier alphabets or
if these intersections are subject to additional re-
strictions that at least somewhat narrow down the
combinatorial possibilities.

One such possibility would be that all phenom-
ena that require intersecting tiers in a multiple TSL
description can be described by a single grammar
from a class that is incomparable to TSL, i.e. a
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class that neither contains nor is contained by TSL.
We want to mention one such class that has previ-
ously been used in the literature, Strictly Piecewise
(Rogers et al. 2010), that works for two of the
processes but unfortunately fails for Sibe. Strictly
Piecewise (SP) is a class that is incomparable to
TSL (see e.g. de Santo and Graf 2019 for an
overview of containment relationships of classes).
Due to the ‘global’ nature of vowel harmony in
Koryak, it is possible to describe both phenomena
discussed in 3.3 with a single SP grammar. Intu-
itively, Strictly Piecewise grammars forbid certain
subsequences of strings, regardless of the number
and nature of intervening elements. As an example,
we can forbid that a dominant vowel is followed by
a recessive vowel at any distance in a word by for-
bidding e.g. the subsequence *oDe (and the reverse
for the equally forbidden co-occurrence). With this,
one can simply list all impossible co-occurrences
of vowels from different classes without worry-
ing about interveners. As far as we can see, this
derives the Koryak data just like the tier-based pro-
cedure above. The same goes for the (simplified
version of) the Tsilhqút’ín data. As already men-
tioned in Rogers et al. (2010), sibilant harmony
can be modelled as SP by forbidding subsequences
of mismatching sibilants. This derives the process
described by our first tier. To add vowel retrac-
tion in the context of pharyngealised sibilants and
uvulars does not interfere with the first process;
we can state further co-occurrence restrictions for
vowel-sibilant/uvular combinations in the same SP
grammar. The joint statement of such restrictions
is not possible in a unified tier-based attempt where
the additional vowels would interfere with the lo-
cality on the tier for sibilant harmony.

A potential conjecture that all processes that re-
quire intersecting tiers can be described by a sin-
gle SP grammar unfortunately fails for Sibe: we
know that the next vowel after [y] cannot be [1]
(*y1), yet (8-c) tykE-X1 is well-formed. This is
because neither yE nor E1 are problematic vowel
sequences due to the opaque nature of E. A sim-
ple SP-grammar cannot describe such blocking ef-
fects. One needs to simultaneously rule out *y1 and
rule in yE1 subsequences. SP cannot distinguish
both cases. Another option are classes that use
more fine-grained projection mechanisms for their
tiers such as input (and/or) output-TSL, I/O-TSL
(de Santo and Graf 2019, Mayer and Major 2018,
Graf and Mayer 2018). Intuitively, one can specify

that a certain segment is only projected if it is pre-
ceded/followed by another specific segment in the
input string (ITSL); or that a segment is only pro-
jected if it then precedes/follows a specific segment
on the tier (OTSL); or a combination of both (IO-
TSL). A reviewer asks whether a single IO-TSL
can be used to describe the Sibe data. One option
would be to project all vowels, but only project ve-
lars if they are then preceded at some distance by a
[-high] vowel on the already existing tier. However,
we have seen in (8) that the relation between the
relevant dorsals and [-high] vowels is non-local.
Whether a finite distance between a [-high] vowel
and a dorsal is possible depends on whether re-
cursive word formation processes (e.g. repeated
affixation) are attested. We follow the practice of
treating non-local processes as unbounded if they
are only constrained by the maximal size of exist-
ing words (as is implicit e.g. in the treatment of the
data from Aksënova and Deshmukh 2018).

Therefore it remains to be seen if the phonolo-
gies of natural languages allow all possible tier
alphabet intersections or if there are hidden restric-
tions such that all intersecting tier alphabets can be
described by a single class of languages incompa-
rable to TSL.
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Abstract

Previous research has established that En-
glish end-weight configurations, where sen-
tence components of greater grammatical com-
plexity appear at the ends of sentences, demon-
strate processing advantages over alternative
word orders. To evaluate these processing ad-
vantages, I analyze how a Minimalist Grammar
(MG) parser generates syntactic structures for
different word orders. The parser’s behavior
suggests that end-weight configurations require
fewer memory resources for parsing than al-
ternative structures. This memory load differ-
ence accounts for the end-weight advantage in
processing. The results highlight the validity
of the MG processing approach as a linking
theory connecting syntactic structures to be-
havioral observations. Additionally, the results
have implications on the structure and process-
ing of languages where an “initial-weight” is
preferred.

1 Introduction

The grammatical weight of a phrase has conse-
quences on sentence processing. One observable
consequence is word order preference. In English,
a direct object (DO) typically follows the verb im-
mediately. When the DO is heavy, the language al-
lows an otherwise awkward order, where the heavy
DO occurs at the end.

(1) a. Emma explained [DO the regulations]
to [IO Jim].

b. Emma explained to [IO Jim] [DO all the
regulations regarding import and ex-
port taxes for pottery].

c. ? Emma explained to [IO Jim] [DO the
regulations].

(Stallings and MacDonald, 2011)

Sentence (1a) shows the order Verb-DO-Indirect
Object (IO). This order is considered natural when
compared with Verb-IO-DO in (1c). But when the

DO is complex – e.g., containing a complex modi-
fier – a Verb-IO-DO order (1b) becomes possible,
if not preferred. Sentences such as (1b) are known
as heavy NP shift (HNPS) sentences.

A similar end-weight preference is found in En-
glish particle verb (PV) constructions. In a PV con-
struction, the particle can either occur right next to
the verb (the joined order) or be separated from the
verb by the object (the separated order). When the
object is heavy, the joined order is preferred. This
is illustrated in (2).

(2) a. ... I looked up [a person who answered
a query I posted on the internet]...

b. *I looked [a person who answered a
query I posted on the internet] up...

(Cappelle, 2005, 19)

Despite clear intuitions of end-weight prefer-
ences in the above examples, the definition and
measurement of grammatical weight are contro-
versial. Without getting too much into each pro-
posal1, two things stand out as important for un-
derstanding grammatical weight, a) the structural
information of the heavy phrase is a better mea-
surement of weight than counts on linear strings
(e.g., number of words, phrases) (among others,
Ross, 1986; Hawkins, 1994; Wasow, 1997), and
b) compared with the weight of a single phrase,
the relative weight of sentence components better
predicts processing phenomena (Hawkins, 1994;
Wasow, 1997; Stallings and MacDonald, 2011).

In this study, I explore whether these weight-
related processing phenomena follow from the cor-
responding syntactic structures. Specifically, a top-
down parser for Minimalist Grammars (MG) is
used to build HNPS and PV constructions and their
word order alternatives. Based on how the parser

1The readers are refereed to Chapter 2 of Liu (2022) for
a brief review of weight measurements and Chapter 2 of Wa-
sow (2002) for a discussion of some of the proposals under
experimental/corpus settings.
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traverses each syntactic tree, a set of complexity
metrics measures memory resource allocation in
the tree-building processes, from which we can
infer the processing difficulties of each word order.

To apply this MG parsing approach, it is nec-
essary to define the MG implementations of the
relevant syntactic proposals and to establish the
complexity metrics based on the parser’s behav-
ior. These are discussed in Section 2. Section 3
presents modeling results. Section 4 discusses the
implications of the current results on the apparent
opposite preference for weight configuration, “ini-
tial weight”, observed in languages like Japanese.

To preview the results, the parsing model sug-
gests that the preferences for HNPS and joined
PV constructions follow from the processing dif-
ficulties associated with the syntactic structure of
competing word orders. The results strengthen the
validity of the MG parsing approach as a linking
theory connecting structural proposals to behav-
ioral data. The results also broaden the empirical
coverage of the processing phenomena the MG
parsing approach is shown to successfully capture
(e.g., center- vs. right-embedding (Kobele et al.,
2013); subject vs. object relative clause in various
languages (Graf et al., 2017), attachment ambigu-
ity in English and Korean (Lee, 2018), gradient
of difficulty in Italian relative clauses (De Santo,
2019)).

2 MG Parsing

On an intuitive level, the MG parsing model used
in this study infers processing difficulties of a given
sentence according to how memory-costly it is to
parse by a parser for MG.

2.1 Minimalist Grammar

Minimalist Grammar (Stabler, 1996) is a lexical-
ized, context-sensitive formalism incorporating the
Minimalist Program (Chomsky, 2014). Such incor-
porations allow the MGs to relatively straightfor-
wardly represent Minimalist syntactic proposals. In
MGs a grammar is a set of lexical items, which are
expressed in feature bundles containing informa-
tion including pronunciation, category, movement
dependencies, etc. Similar to the standard Minimal-
ist Program-styled derivation, these lexical items
are built into sentences (trees) via merge, which
combines lexical items and/or phrases; and move,
which regulates movements.

To illustrate, (3) is a toy MG derivation tree for

the sentence Max packed boxes.

(3) merge[C−]

C :: T+ C− move

merge[T−]

T :: v+ nom+ T− merge[v−]

Max :: D− nom− merge[v−]

v :: V + D+ v− merge[V −]

packed :: D+ V − boxes :: D−

landing
site

In (3), the uppercase features X± are merge
features. The superscripts + and − indicate se-
lector and category for merge, respectively. For
instance, in the bottom of the tree, packed :: D+

V − merges with boxes :: D− and “checks” the
matching D feature. The lowercase features y± are
move features with the superscripts + and − rep-
resenting licensor and licensee. Again in (3), the
subject movement is indicated with matching nom-
inative features nom+ and nom−. The movement
also creates a unary branching at the landing site,
while the mover remains in its merge position. This
creates an order mismatch between the leaf nodes
and the linear string, which will become important
when we discuss MG parsing.

In addition to standard merge and move oper-
ations, MGs comfortably allow rightward move-
ment, an operation proposed for deriving HNPS,
among other things. Torr and Stabler (2016) show
that MGs can be extended to allow rightward move-
ment without affecting the weak expressive power.
The authors derive rightward movement with a null
extraposer bearing rightward movement licensee
feature x∼. The extraposer merges with the shifting
constituent and shifts with it rightward to category
x. For instance, an extraposer causing the heavy
NP to move rightward and adjoin to the vP has the
feature bundle in (4).

(4) Extraposer :: D− D+ v∼

The null extraposer selects the heavy NP, further
projects an NP, and shifts to the right of the nearest
vP category. (5) schematizes the derivation tree
for rightward movement. The matching rightward
movement feature pair is highlighted in shade.
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(5) vP

vP

Max v’

v :: V + D+ v− VP

NP

Extraposer :: D− D+ v∼ NP

all the ...

V’

put PP

in his car

Despite its now unpopularity due to alternative
proposals such as Kayne’s 1994 Linear Correspon-
dence Axiom (LCA), rightward movement is not
discarded by the MGs on formal grounds. More
broadly, this shows how closely MGs can incor-
porate “devices from the syntacticians’ toolbox”
(Graf et al., 2017), which for our purpose also sets
the stage for parsing.

2.2 MG parser and complexity metrics
A top-down MG parser (Stabler, 2013), intuitively,
takes as input a sentence represented in a string of
words and builds the structure based on a set of MG
rules following a top-down, left-to-right order. For
example, (6) is an annotated derivation tree show-
ing a correct parse for the sentence Max packed
boxes. Merge and move nodes are replaced with
their names for better readability.

(6) CP

C TP

T’

T vP

Max v’

v VP

packed boxes

1

2
2

3

2

4
4

5
5

8

5

6
6

7

6

9
9

10

9

11
11

12

11

13

Following conventions in MG parsing studies (Ko-
bele et al., 2013; Graf et al., 2017), the numbers on
the two corners of each node in (6) indicate steps
at which the node is conjectured (superscripted
numbers, or indices) and confirmed (subscripted
numbers, or outdices) by the parser.

Crucially, the top-down MG parser is defined to
be able to temporarily not follow the left-to-right
tree traversal in order to find the leftmost word in
the current linear string. This allows the parser to
handle the leaf nodes and linear string mismatch.
For instance, in (6), the subject movement alters

the linear order of T head and the subject, Max.
Assuming the parser has correctly conjectured a TP
(step 4), and that the mover comes from the right
branch (step 5), it is defined to then go right (step
6) to find the mover while putting in memory every
node it conjectures along the way (in this case, only
the T node). After the parser finds and confirms
the mover, it goes back to work on the nodes that
were stored in memory. The difference of index
and outdex on T thus reflexes how many steps
the node was stored in memory. This contrasts
with a typical top-down parser for CFG, in which
case a parse is abandoned when there’s an order
mismatch between the leaf nodes and the linear
string. Moreover, for a successful parse where the
leaf nodes and the linear string align, the number of
steps a node is held in memory depends solely on
the size of its left sister, which is not as informative.

Using the indices and outdices on a derivation
tree, it is possible to infer the memory usage of
the parser as it builds the tree, based on which we
can model sentence processing difficulties. The
MG parsing model distinguishes several measure-
ments of memory usage based on the indices and
outdices (Graf et al., 2017). Among the measure-
ments, tenure measures how long a node is kept
in memory. The idea of measuring processing load
based on the “time” an item is kept in memory is
discussed in psycholinguistics literature such as
Gibson (1998) among others. And this idea is for-
malized in Joshi (1990); Rambow and Joshi (2015)
and the line of work on modeling human sentence
processing using Tree Adjoining Grammar (TAG).
More recent work has shown that tenure-related
metrics make reliable processing predictions cross-
linguistically (among others, Kobele et al., 2013;
Graf et al., 2017; De Santo, 2019). Based on tenure,
a large set of complexity metrics can be defined.
Here we focus on MaxT, defined in Kobele et al.
(2013) as the following: MaxT = max(tenure-of(n)).
In other words, MaxTmeasures the maximum num-
ber of steps any node is kept in memory.

With complexity metrics such as MaxT, we can
already address one of the two key points to under-
stand grammatical weight – structure information is
a better measurement for weight than word count.
Structural characterization of weight determines
grammatical weight based on the syntax rather than
the number of words or phrases. Consider the fol-
lowing two sentences.

(7) a. Emma explained [all the regulations

252



that she drafted yesterday] to [Jim].
(adapted from Stallings and MacDonald (2011))

b. Emma explained [all the regulations
regarding taxes for pottery] to [Jim].

The objects in (7) are both seven words long. But
the one in (7a) contains a relative clause (RC),
which adds extra processing difficulties (Fraser,
1966; Ross, 1967). Assuming a wh-movement
analysis (Chomsky, 1977) for RCs, Figure 1 are
excerpts of annotated derivation trees showing how
the MG parser builds structures for the sentence
pair.

...

VP

VP

Explained DP

regulations CP

CP

that TP

...

she ...

...

...

drafted Operator

yesterday

PP

to Jim

9

11

11

12

12

13

12

14

18

19

18

20

21

29

21

22

24

30

27

33

27

28

26

34

11

35

35

36

35

37

(a) relative clause tree

...

VP

VP

Explained DP

all ...

for pottery

PP

to Jim

9

11

11

12

12

13

12

14

14

15

24

25

24

26

11

27

27

28

27

29

(b) long NP tree

Figure 1: Excerpts of derivation trees for the sentence
pair in (7).

The RC-modified DP in the tree on the left takes
the parser 22 steps to build, compared to 14 steps
for the DP in the right tree which has the same
length but no RC modification. This results in an
overall MaxT difference of 24 vs. 16 (on the shaded
nodes), predicting that (7a) is more difficult to parse
because of its more complex syntax due to RC
modification. This tenure-based prediction is also
how we model processing differences between end-
weight structures and their word order alternatives,
which we discuss below.

3 Modeling Results

To evaluate processing advantages of end-weight
structures, I compare these structures in a pairwise
fashion with their word order alternatives. Consis-
tent with previous work, each comparison is be-

tween two correctly constructed trees. That is, the
parer is assumed to be deterministic and always
finds the right parse. Any potential processing load
associated with ambiguity and reanalysis is fac-
tored out. This methodological choice highlights
the role of syntactic structure in predicting process-
ing loads in different weight configurations, which
is exactly what we set out to explore.

3.1 End-weight in HNPS

For HNPS, the comparisons are between the object
shift order and the canonical order. A total of four
pairs of sentences are used in the comparisons:

(8) a. Max put [DP boxes] [PP in a car]. (short-DP

short-PP)

b. Max put [PP in a car] [DP boxes]. (short-PP

short-DP)

(9) a. Max put [DP boxes] [PP in a car made
in Stuttgart]. (short-DP long-PP)

b. Max put [PP in a car made in Stuttgart]
[DP boxes]. (long-PP short-DP)

(10) a. Max put [DP all the boxes of home fur-
nishings] [PP in a car]. (heavy NP)

b. Max put [PP in a car] [DP all the boxes
of home furnishings]. (heavy NP shift)

(11) a. Max put [DP all the boxes of home fur-
nishings] [PP in a car made in Stuttgart].

(long-DP long-PP)

b. Max put [PP in a car made in Stuttgart]
[DP all the boxes of home furnishings].

(long-PP long-DP)

Given the behavior data, we expect the parser to
predict an object shift advantage only for the pair
in (10) ((10b) is advantageous). The pair in (8)
contains no heavy constructions, thus no shift ad-
vantage is expected. The pair in (9) contains heavy
PPs, but the canonical order is the end-weight order,
no shift advantage is expected. Moreover, if there
is a relative weight effect, i.e., the shift order is only
preferred when the object is much more complex
than other sentence components, we expect to see
no shift order advantage for the pair in (11), where
both DPs and PPs are complex.

Table 1 summarizes the parser’s prediction for
each weight condition. Overall, MaxT predicts ex-
pected processing preferences in all weight config-
urations: the shift order has a processing advantage
only when the object DP is complex – in fact, more
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Weight config. Shift advantage? Parser prediction
Both light No No
Heavy PP No No
Heavy NP Yes Yes (MaxT: 8 vs. 12)
Both Heavy No No (MaxT: 14 vs. 12)

Table 1: Summary of the predictions for each weight
configuration in object shift constructions

complex than the PP. This is clearer if we look at
the annotated derivation trees in Figure 2.
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Figure 2: Excerpts of derivation trees for canonical
word order (2a) and HNPS order derived via rightward
movement (2b)

First, MaxT found on the shaded nodes predicts
a HNPS advantage. If the heavy NP does not move,
the parser would have to fully build the heavy NP
until it can go back to the earlier branch to continue
work on V ′. This causes a great tenure on the
V ′ node as shown in Figure 2a. In contrast, the
rightward movement alters the linear order of the
two branches and essentially makes the parser to
delay the heavy lifting of building the NP and work
first on the right branch. Since the size of the right
branch is much smaller than its sister, first working
on this branch means less waiting time for the left
branch compared to the opposite order. This results
in a smaller MaxT, as shown in Figure 2b. A MaxT
difference of 8 vs. 12 predicts a HNPS advantage.

It is also transparent to anticipate the relative
weight effect from Figure 2. As the right sibling
of the heavy NP, or in fact, the lower PP grows
in complexity, the shifted order would no longer
be preferred based on MaxT. Indeed, under the
condition where both DP and PP are complex (i.e.,
(11)), the shifted order has a higher MaxT (14 vs.

12), predicting that it is no longer advantageous.

3.2 End-weight in PV

English particle verb construction can be thought
of as an extreme case of relative weight, because
the object is always comparing with a one-word
particle. If the prediction about relative weight
is true, that it is advantageous for processing to
put the relatively complex sentence components at
the sentence end, a joined order for a PV should
always be preferred over a separated order. To give
away the results, the MG parser indeed prefers a
joined order irrespective of DP length. This has
interesting implications on how to interpret MG
models. We will pick this up after presenting the
modeling results.

Similar to the processing model for HNPS, a
total of three pairwise comparisons were made be-
tween joined order and separated order for a PV
construction. For each word order, three DP condi-
tions were included: short DP (2 words), long DP
with prenominal modifiers ([mod-DP], 7 words),
and long DP with post-nominal modifiers ([DP-
mod], 7 words):

(12) short DP

a. Chris put on a hat.

b. Chirs put a hat on.

(13) [mod-DP]

a. Chris put on a very very very very ex-
pensive hat.

b. Chirs put a very very very very expen-
sive hat on.

(14) [DP-mod]

a. Chris put on a hat which Alex made
with love.

b. Chris put a hat which Alex made with
love. on.

The contrast between short and long DPs helps
demonstrate a potential end-weight advantage. The
contrast in two long DP conditions is to confirm
the role structure plays in measuring grammatical
weight. It also tests the claim that for a subset of
PVs, the location of DO modifiers makes a pro-
cessing difference (Lohse et al., 2004). For space
and cohesiveness reasons, we will not discuss the
results of this PV subset.

Assuming a particle stranding analysis for sepa-
rated PVs, and a complex verb raising one for the
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joined order (Larson, 1998; Johnson, 1991), Ta-
ble 2 summarizes the parser’s prediction for each
DP condition of the PV constructions. Overall,
MaxT predicts that a joined order is easier to parse
than a separated one under all weight configura-
tions.

Weight config. Joined advt? MG parser
Short DP No/Unclear Yes (MaxT 5 vs. 6)
[mod-DP] Yes Yes (MaxT 10 vs. 16)
[DP-mod] Yes Yes (MaxT 8 vs. 24)

Table 2: Summary of the predictions for each weight
configuration in particle verb constructions

We first take a look at the end-weight configu-
ration. For instance, the parser builds the two PV
orders under the [mod-DP] condition as shown in
Figure 3.
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Figure 3: Excerpts of derivation trees for PV joined
order derived via complex verb raising (3a) and PV
separated order derived via particle stranding (3b)

In the structure building process, the parser con-
jectures the particle at the same step when it con-
jectures the verb (step 11). For a joined order (left),
the particle is confirmed and flushed out of the
memory after the verb (step 13). For a separated
order (right), the particle is held in memory until
the long DP is fully built. This is memory costly
and is where MaxT is found.

Furthermore, for the separated order the particle
is always held in memory for some time during the
parse, irrespective of the DP size. This predicts that
a separated order is almost always disfavored over

a joined order based on tenure. Figure 4 shows
a joined order and separated order derivation for
short DPs. Under this condition, the extra tenure
on the particle of the separate order still makes it
more difficult to parse than the joined order. This is
unintuitive given that their corresponding sentences
in (12) sound equally natural. I will come back to
this briefly in Section (4).
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Figure 4: Excerpts of derivation trees for PV orders
under the short DP condition

The syntactic assumption for joined and sepa-
rated PV orders both involve head movement, that
of a complex verb and a verb head, respectively
(indicated in the figures with angle brackets). In
Figure 3 the landing site of head movement is as-
sumed to be on the left of the v head, following
Adger (2003). When discussing serial verbs in
German and Dutch, Kobele et al. (2013) note that
when an MG parser builds structures with head
movements, the landing site of the head movements
affects memory recourse allocation. Since v head
is silent, head movement landing on the right of
v is string equivalent to when landing on the left.
So additional comparisons were made assuming
the opposite landing site to see a potential process-
ing effect. An excerpt of the derivation trees is in
Figure 5.

The landing site of head movement does make a
difference in memory cost, but the difference does
not affect preference predictions. From the parser’s
perspective, if the landing site is to the right of the
little v head, the parser can conjecture and confirm
the empty v head right away (at step 10 in Figure 5).
This contrasts with when the landing site is to the
left (Figure 3 and 4), in which case the parser will
have to confirm the verb head/complex verb before
confirming the little v head. This causes tenures on
the little v head for both orders (trivially different
by one step due to the particle). For both directions
of the landing site, the memory resources needed
for building v are almost identical between sepa-
rated and joined orders. Processing predictions are
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Figure 5: Excerpts of derivation trees for PV orders
assuming V-to-v movement landing on the right

unaffected – under both head movement conditions,
MaxT is constantly lower for the joined order.

4 Discussions

In this paper, I have shown that the processing ad-
vantages of end-weight structures such as HNPS
and PV joined order follow from their correspond-
ing syntactic structure: an end-weight structure
is more memory efficient to parse. We arrive at
this conclusion by utilizing MG processing mod-
els which link syntactic structures to behavioral
observations based on a psycholinguistically well-
motivated factor, memory. The results presented
in this study widen the collection of the empirical
phenomena the parsing model can capture. Fur-
thermore, given the rigorous link that underlines
the MG processing model, one can make syntac-
tic predictions based on behavioral data. This is
briefly illustrated below concerning the apparent
opposite weight preference: the initial weight, or
long-before-short preference observed in Japanese
(Yamashita and Chang, 2001).

Japanese is an SOV, head-final language. When
the object becomes long, it tends to appear at the
beginning of a sentence, contrary to English HNPS
(Yamashita and Chang, 2001).

(15) a. [O Se-ga
height-nom

takakute gassiri sita
tall-and big-boned

hanni-o]i
suspect-acc

[S Keezi-ga]
detective-nom

ti Oikaketa.
chased

‘The detective chased the suspect who
is tall and big-boned.’

b. [S Keezi-ga]
detective-nom

[O hanni-o]
suspect-acc

Oikaketa.
chased
‘The detective chased the suspect.’

(adapted from Yamashita and Chang (2001))

Syntactically, object shift such as (15a) is often
considered a case of scrambling. A great num-
ber of proposals have been made on scrambling
cross-linguistically (Ross 1986; Saito 1992; Miya-
gawa 1997; Bošković and Takahashi 1998; Bai-
lyn 2001, among others). The proposals can be
roughly categorized into movement-based deriva-
tion and base-generation. The movement-based
analyses (e.g., Saito, 1992; Miyagawa, 1997) ar-
gue that the scrambled constituent moves leftward
and adjoins to a high specifier position. The base-
generation analysis (Bošković and Takahashi, 1998;
Bošković, 2004), on the other hand, base-generates
the “scrambled” constituent which then checks rel-
evant features in an obligatory LF lowering.

For our processing model, movement-based
derivations do not derive an initial weight pref-
erence. Suppose the parser takes 13 steps to build
the heavy object NP, which is roughly the steps
needed to build the long object in (15a), depending
on one’s analysis of prenominal relative clauses.
We compare excerpts of the derivation trees for
canonical word order and shifted word order in
Figure 6.
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Figure 6: Parsing heavy object structures in Japanese

Figure 6 shows that a shifted structure (6b) is
more difficult to parse in the current parsing model.
This is because the scrambled object linearly pre-
cedes but is structurally beneath the subject. This
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means that the parser first conjectures the subject,
but needs to hold it in memory, find and build the
object, before it can finally return to build the ob-
ject. This comes with great memory cost, making
the initial weight structure difficult to parse, con-
trary to behavior observations.

There are two possibilities to potentially recon-
cile the typological difference of where to put heavy
constituents. First, the unexpected processing pre-
diction for the OSV order in Japanese could be due
to the syntactic assumption, i.e., the object shift
analysis. For the object shift analysis, memory
burdens arise when linear and structural orders do
not match. If the DP merges high in the structure,
as suggested by the base-generation analysis, The
structural relation and linear order of the object and
subject are aligned. The parser would then build
the “scrambled” structure first without holding the
subject in memory.

Second, it could be the case that an initial weight
is preferred for non-syntactic reasons. The link
the MG parsing model establishes is one between
syntactic structure and behavioral data. If the cur-
rent syntactic assumption is well-motivated but
cannot make correct behavioral predictions, one
is prompted to look for non-syntactic reasons. In-
deed, Yamashita and Chang (2001) argue that lan-
guages order their constituents depending not only
on the syntactic form but also on the salience. For
Japanese, the salience of a heavy constituent com-
bined with a word order that is less restrictive than
in English results in an initial weight preference in
Japanese.

It is beyond the scope of this paper to fully test
out these possibilities. The claim made here is a
methodological one. On the one hand, the MG pars-
ing models show how syntactic analyses impact
processing predictions in a quantitative, structure-
based way. When the processing phenomena are
clear, the parsing models are useful in evaluating
syntactic proposals. Such applications have been
reported in Liu (2018) where a rightward move-
ment structure predicts a HNPS advantage while
requiring the fewest assumptions on memory cost
calculations among competing structures like rem-
nant movement and PP movement; and in Pasternak
and Graf (2021) who verifies and broadens the pro-
cessing predictions of an unbounded, cyclic QR
analysis for scope interpretation.

On the other hand, by taking seriously the syn-
tax and its processing predictions, the MG models

shed light on multi-factorial analyses of processing
preference. In Section (3.2) we saw that a joined
PV order is almost always favored by the parsing
model, which might seem unintuitive. However,
based on a speech production experiment, Dehé
(2002) reports a preference for joined order and at-
tributes the preference to the neutral, default status
of the joined order. Our processing model might
offer one way to understand this default status: the
default structure is the one that is easy to process.

Similarly, the opposite effects of syntax and
salience on the initial weight preference in Japanese
have clear predictions regarding how the two fac-
tors would interact in a multi-factorial model.
These multi-factorial analyses are popular in psy-
cholinguistic and corpus linguistics studies which
model processing phenomena using multiple lin-
guistic and non-linguistic predictors (e.g., syntax,
phonology, pragmatics, etc). The MG parsing mod-
els, in addition to offering explanatory accounts
for various processing phenomena, highlights syn-
tactic structure as a predicting factor in isolation,
which helps put into context multi-factorial model-
ing results that are otherwise “difficult to calculate
and even more difficult to interpret” (Gries, 2012,
fn.11).
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Abstract

Models of phonotactics include subsegmen-
tal representations in order to generalize to
unattested sequences. These representations
can be encoded in at least two ways: as dis-
crete, phonetically-based features, or as con-
tinuous, distribution-based representations in-
duced from the statistical patterning of sounds.
Because phonological theory typically assumes
that representations are discrete, past work has
reduced continuous representations to discrete
ones, which eliminates potentially relevant in-
formation. In this paper we present a model
of phonotactics that can use continuous repre-
sentations directly, and show that this approach
yields competitive performance on modeling
experimental judgments of English sonority se-
quencing. The proposed model broadens the
space of possible phonotactic models by remov-
ing requirements for discrete features, and is
a step towards an integrated picture of phono-
tactic learning based on distributional statistics
and continuous representations.

1 Introduction

Phonotactics refers to restrictions on how sounds
can be sequenced in a language. For example, al-
though neither blick [blIk] nor bnick [bnIk] are
real English words, native speakers feel that blick
could be an English word, while bnick could not
because it begins with the prohibited onset *[bn]
(Chomsky and Halle, 1965). Phonotactic restric-
tions vary between languages, meaning that they
must be learned. For example, steek [stik] is a
possible word in English but not in Spanish, be-
cause the latter has a phonotactic restriction on
syllables beginning with [st]. As learners acquire a
language, they become sensitive to the frequencies
of different sequences. This phonotactic knowl-
edge underlies speakers’ intuitions about possible
words in their language.

Experimental studies involving acceptability
judgments have found that speakers have gradient
intuitions about phonotactic well-formedness (e.g.,
Coleman and Pierrehumbert, 1997; Albright, 2009;
Hayes et al., 2009; Daland et al., 2011). For exam-
ple, when considering the nonce words blick [blIk],
bnick [bnIk], and bwick [bwIk], English speakers
typically find blick to be acceptable, bnick to be
poor, and bwick to be intermediate between the two
(Albright, 2009). This has led to the development
of probabilistic models of phonotactics, which
assign a continuous score to words that reflects
their gradient well-formedness (Hayes and Wilson,
2008; Futrell et al., 2017; Wilson and Gallagher,
2018; Gouskova and Gallagher, 2020; Mayer and
Nelson, 2020). Phonotactics is also commonly
treated as probabilistic in models of higher-level lin-
guistic tasks, such as speech perception and word
segmentation (see discussion in Daland, 2015).

1.1 Feature-based generalizations

An additional difficulty for phonotactic models
is the problem of accidental gaps: sequences of
sounds that do not appear in the lexicon but are
judged to be acceptable. Humans do not treat unat-
tested sequences uniformly: in the example in the
previous section, both [bw] and [bn] are unattested
onsets in English, but the former is preferred to
the latter. Phonotactic models thus need to be able
to generalize to unseen sequences in a way that is
consistent with human behavior.

The standard solution is to have models operate
on featural representations, which decompose
segments into sets of feature-value pairs (or, al-
ternatively, a vector of values whose dimensions
are the features). Features allow models to refer
to classes of segments based on shared proper-
ties. In English, for example, the feature vector
[−continuant] characterizes the set of stops and
affricates, [−sonorant] picks out the set of obstru-
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ents, and [−continuant, −sonorant] picks out the
set of obstruent stops/affricates (excluding the nasal
stops). Returning to the example above, although
[bw] and [bn] are both unattested onsets, there
are many onsets that are featurally similar to [bw],
consisting of b[+approximant] sequences like [bj],
[bl], [bô]. There are none that are similar to [bn],
consisting of b[−continuant]. Features allow these
kinds of generalizations to be modeled.

1.2 Whence features?

Phonological features are typically defined with
respect to phonetic properties (e.g., Chomsky and
Halle, 1965). This reflects the strong typological
tendency that sounds with similar phonetic proper-
ties tend to pattern similarly.

More recent research has proposed that features
may be emergent, reflecting shared, language-
specific distributional properties in addition to pho-
netic properties (e.g., Mielke, 2008; Archangeli and
Pulleyblank, 2018; Gallagher, 2019; Archangeli
and Pulleyblank, 2022). There are several motiva-
tions for this perspective.

First, a central desideratum in designing feature
systems is to allow them to reference all and only
the classes of sounds that pattern together cross-
linguistically: namely, those that share some sub-
set of phonetic properties encoded by the feature
system. However, linguists have discovered a sub-
stantial number of phonological classes across lan-
guages that cannot be referenced under standard
feature systems (Mielke, 2008). An example of
one such class is the segments that participate in
a nasalization process in Evenki (Tungusic; Ned-
jalkov, 1997; Mielke, 2008): the sounds /v s g/
become nasalized following a nasal consonant, but
similar sounds such as /b d x/ do not. It is not
possible to provide a set of feature/value pairs that
picks out the class /v s g/ to the exclusion of all
other sounds in the language, which predicts that it
should not pattern cohesively. In similar cases, re-
searchers have proposed modifications to existing
feature systems to account for unexpected classes
(though perhaps not modifications so extreme as
to capture /v s g/; e.g., Rice and Avery, 1989; Mc-
Carthy, 1991; Paradis and LaCharité, 2001).

Emergent feature theory instead proposes that
features may be learned in part from the distribu-
tional patterning of sounds, which means a shared
representation could be learned for irregular classes
like /v s g/ if the language data supported it. This

also turns the focus away from enumerating all of
the features motivated by natural language phonol-
ogy, focusing instead on how features might be
learned from the phonetic and distributional prop-
erties of sounds.

A second, related, motivation for emergent fea-
tures is the variable patterning of the same segment
across different languages. For example, Mielke
(2008) notes that some languages treat /l/ as [+con-
tinuant], and others treat it as [−continuant]. Both
are sensible from the perspective of phonetic sub-
stance, since /l/ is [-continuant] mid-sagittally but
[+continuant] off mid-line. Rather than trying to
determine the “correct” value of [continuant] for
/l/, or perhaps to split [continuant] into a pair of
features corresponding to on and off the mid-line,
emergent feature theory suggests that the featural
representation of /l/ can vary depending on whether
it patterns with [+continuant] or [−continuant]
sounds in a language.

Several computational models have been pro-
posed to test the plausibility of distributional learn-
ing of phonological classes/features (e.g., Gold-
smith and Xanthos, 2009; Mayer, 2020; Nelson,
2022). These papers have tested phonological class
learning under the extreme assumption that the
learner has no access to the substantive phonetic
properties of segments, but only their statistical
patterning. Representations learned from distribu-
tion alone have been shown to capture non-trivial
phonetic distinctions as well as distribution-specific
information (Goldsmith and Xanthos, 2009; Mayer,
2020) and to perform comparably to phonetic fea-
tures in downstream tasks (Nelson, 2022).

The segmental representations in such models
are learned using similar techniques to distribu-
tional word embeddings (Mikolov et al., 2013;
Levy and Goldberg, 2014), which produce real-
valued vector representations. In phonological the-
ory, features serve as an extensional description of
phonological classes, and most models of phono-
tactics assume discrete features accordingly. A
common feature of the models above is that they
use clustering techniques to convert these contin-
uous representations into discrete classes. These
classes can then be converted into discrete featural
representations (Mayer and Daland, 2020).

Although the process of converting continuous
representations to discrete ones aligns with the stan-
dard theoretical treatment, it discards information
and introduces additional degrees of freedom into
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the learning process, in the sense that choices must
be made about how clustering is done and how
features are derived from classes. Several neural
models of phonotactics have used continuous rep-
resentations directly (Mirea and Bicknell, 2019;
Mayer and Nelson, 2020). These recurrent neural
network models perform well but are difficult to
interpret in a theoretically-satisfying way because
they involve many nonlinear transformations of the
input features.

1.3 Overview of this paper

This paper presents a computational model1 that
bridges the gap between distributional learning
techniques and phonotactic models by incorporat-
ing the induction of continuous distributional rep-
resentations into the overall framework of phono-
tactic learning. More specifically, we will show
that (a) the proposed model is flexible enough to
make use of a range of different featural represen-
tations, including the continuous features typically
produced by distributional learning techniques; (b)
the model performs comparably to other models
in the field; and (c) the continuous distributional
representations result in better generalization to
new data than their discretized counterparts, and
outperform phonetic features in some respects.

Sections 2 and 3 describe the proposed model
and three types of featural representation that will
be used to test the model. Section 4 presents a
simple toy example to illustrate the performance of
the model, and Sections 5 and 6 compare the per-
formance of the model on English onsets against
several other models of phonotactic learning. Sec-
tion 7 offers a brief discussion.

2 Model description

Our goal is to develop a model for the probability
of a form in terms of the conditional probability
of a symbol x given its preceding context c, in a
way that leverages potentially real-valued featural
representations of x and c, such as those resulting
from distributional analysis, without needing to
reduce these continuous representations into hard
categories or clusters. To these ends, we adopt
log-bilinear probability models, a generalization
of the widely used log-linear model. Below, we
first describe log-linear models and their relation

1The code and data used in this paper can be found
at https://github.com/hutengdai/vector_
bilinear.

to existing models of phonotactics, then their gen-
eralization to log-bilinear models.

2.1 Log-linear models
In a log-linear model, a form is assigned a proba-
bility as a function of weighted features.2 One ex-
ample is the Maximum Entropy phonotactic model
proposed by Hayes and Wilson (2008), in which
a wordform x is described in terms of a constraint
violation profile: a vector ϕ(x) whose values are
the number of times the wordform violates each
constraint. The probability of x under the model is
then

p(x) ∝ exp
{
w⊤ϕ(x)

}
, (1)

where the weight vector w represents the weight
of each constraint. The vector w is found by op-
timization to maximize the likelihood of a given
dataset of forms.

Such models are called log-linear because the
function in Eq. 1 is linear after taking a logarithm.
In the context of phonotactics, the linear compo-
nent of this model is a Harmonic Grammar model
(Smolensky and Legendre, 2006; Pater, 2009) that
uses numerical constraint weights and assigns each
word a numerical score based on its violation pro-
file. Log-linear models are one way of using these
scores to compute a probability distribution over
words (cf. Boersma and Pater, 2016).

Log-linear models are ubiquitous not only in
computational learning models but also in natural
language processing (e.g., Berger et al., 1996; Della
Pietra et al., 1997). Before the modern renaissance
of neural networks, the dominant paradigm for any
supervised classification task in NLP (for example,
the task of reading in a movie review and then out-
putting the probability that the review is positive)
was to use a hand-crafted featural representation
ϕ(x) of the text input x and to learn optimized
weights w to maximize the likelihood of labels in
training data (Jurafsky and Martin, 2023).

2.2 The current proposal: log-bilinear model
The log-bilinear model extends the log-linear
model to make the weights conditional on the fea-
tures of the context. Instead of finding an optimal
weight vector, in a log-bilinear model one finds
an optimal weight matrix that relates the represen-
tations of the context to the representations of the
outcome. Such models were initially developed in a

2Features in this context refer to properties of the form in
general, not necessarily phonological features.
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language modeling context to predict words given
previous words (Mnih and Hinton, 2007, 2008;
Mikolov et al., 2013; Futrell, 2022).

We apply a log-bilinear model in the setting of
calculating the conditional probability of an indi-
vidual segment x conditional on a context c, given
vector representations of the segment ϕ(x) ∈ RK

and of the context ψ(x) ∈ RL . The model is
defined as

p(x | c) ∝ exp
{
ψ(c)⊤Aϕ(x)

}
, (2)

where A ∈ RK×L is an interaction matrix that
defines how the features of the context ψ(c) relate
to the features of the result ϕ(x). The entry Akl in
the interaction matrix is an association weight for
the kth feature of the context and the lth feature of
the next segment; a high value of Akl means (all
else being equal) that a segment with a high value
of the lth feature is likely to follow in a context
with a high value of the kth feature.

The interaction matrix A is found to maximize
the likelihood of a training dataset consisting of N
context–outcome pairs {⟨cn, xn⟩}Nn=1:

A = argmax
A

N∑

n=1

log p(xn | cn). (3)

The implemented learning algorithm discovers the
interaction matrix using the Adam optimization
algorithm (Kingma and Ba, 2015), starting from a
randomly-initialized A whose entries are all drawn
from a standard Normal distribution.

We model the likelihood of a wordform in terms
of features of segmental bigrams. That is, the
weights learned by the model correspond to the
strength of bigram constraints on the features of
two adjacent segments. The probability for a form
σ1, . . . , σT is then

p(σ1, . . . , σT ) =
T∏

t=1

p(σt | σt−1), (4)

where p(· | ·) is a log-bilinear model with the same
featurization ϕ(·) for the current segment σt and
the context σt−1. This restriction to featural bi-
gram constraints is an implementation detail; the
log-bilinear model works with any vector represen-
tation of context and target. In particular, context
and target representations do not need to be the
same size; the context representation can include
information about multiple segments by increasing
the dimension of ψ(c) and A accordingly.

3 Featurizations

We will illustrate the performance of the log-
bilinear model described above using three types
of featurizations that have been used in the liter-
ature on phonotactic learning: discrete phonetic
features, continuous distributional features, and
discrete distributional features. The purpose of
these comparisons is to (a) demonstrate the flex-
ibility of the model in terms of representational
choices; and (b) show that the continuous distribu-
tional representations contain useful, fine-grained
information that is lost when these representations
are discretized.

3.1 Discrete phonetic features
An obvious choice for the featurization of a seg-
ment σ is the discrete phonetic features that are
commonly used in phonological theory. We adopt
the featurization system from Hayes (2009).

For models where featural representations are
treated as numerical vectors, such as the log-
bilinear model, we adopt a binary featurization
that identifies each dimension of ϕ(σ) with a
phonological feature and its possible values. So
for example, there would be a separate dimen-
sion for the feature-value pairs [+continuous] and
[−continuous] with value 1 if that feature-value
pair applies to the segment σ and 0 otherwise. For
example, the segment [k] would receive the vector
representation

ϕ(k) =







1 +dorsal
0 −dorsal
0 +continuous
1 −continuous
1 +consonantal
0 −consonantal
...

...

. (5)

This leads to a more expressive featurization
than encoding negative values as −1. This would
force the effect of a negative feature value to be
the inverse of the effect of a positive feature value,
whereas the binary featurization allows positive
and negative values to have independent effects.

3.2 Continuous distributional representations
We induce continuous representations based on
their statistical distributions in the training data
by calculating probabilities of segments in dif-
ferent contexts and then converting these into
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Pointwise Mutual Information (PMI; Church and
Hanks, 1990). PMI is an information-theoretic
measurement that compares the joint probability
of two events against the product of their individ-
ual probabilities. PMI and the related Positive
PMI have been used in previous models of dis-
tributional phonotactic learning (Silfverberg et al.,
2018; Mayer, 2020; Nelson, 2022).

PMI is defined as follows:

PMI(x, y) = log2
p(x, y)

p(x)p(y)
. (6)

If p(x) and p(y) are independent this value will be
close to zero, while if they occur together more/less
frequently than chance, it will be positive/negative.
Here we define p(x, y) to be the joint probability
of segment x followed by segment y. We compute
the probabilities using a bigram language model
with Kneser-Ney smoothing (Chen and Goodman,
1999), implemented using the lm module from
the nltk Python library (Bird et al., 2009). This
model produces conditional probabilities of the
form p(y|x), which we convert to joint probabili-
ties p(x, y).

The dimensions of these representations are the
PMI values of the segment in each context in the
training data. Following Mayer (2020), we con-
sider both preceding and following context by run-
ning a pair of language models: one that runs for-
ward to calculate PMI values based on preceding
context, and one that runs backwards to calculate
PMI values based on following context. These
two vectors are concatenated to produce the full
representation.

3.3 Discrete distributional features

We also include discrete distributional featuriza-
tions derived from the continuous representations
in the previous section. This discretization step
allows the distributional representations to be used
in models that assume discrete features.

Converting continuous features to discrete ones
involves two steps: a clustering step where classes
of segments are identified based on similarities
in their continuous representations, and a feature
assignment step where a feature system is derived
from these classes.

We include two clustering strategies: the recur-
sive clustering algorithm described in Mayer (2020)
and the SC COV algorithm from Nelson (2022).
Both of these involve using the continuous embed-

dings to compute graph structures that reflect dis-
tributional similarity between segments, and then
applying graph partitioning techniques to derive
classes of segments. For reasons of space we refer
the reader to the respective papers.

We follow Nelson (2022) in using the inferential
complementary algorithm from Mayer and Daland
(2020) for feature assignment. Mayer and Daland
(2020) presents a suite of algorithms that derive a
feature system from a set of input classes based
on subset/superset relationships between them, dif-
fering in what values are permitted and whether
complement classes of the input classes are in-
ferred. The inferential complementary algorithm
adds complement classes of the input classes with
respect to their parents and assigns both + and −
feature values.3

4 A toy example of the log-bilinear model

We present a simple toy example below to illustrate
the performance of the log-bilinear model using
the continuous distributional features described in
Section 3.2. We define a language over the al-
phabet {C, V, #}, where # is a word boundary.
The language has a restriction on adjacent CC se-
quences, and the training data is {VCV, CVC, CVV,
VVC, VVV} (word boundaries are omitted for clar-
ity). The continuous distributional featurization of
each segment calculated from the training data is
shown in Table 1. Sequences that are unattested
in the training data, such as ## or CC, have large
negative scores, while more commonly observed
contexts have positive scores.

# C V

# -2.492 0.504 0.232
C 0.517 -3.256 0.251
V 0.111 0.118 -0.278

Table 1: Continuous distributional representations of
the segments in the toy language. Each row is a repre-
sentation of a segment, and the columns are the PMI
values of that segment in the context indicated by the
column label. For simplicity’s sake we only present
preceding contexts here, but the full model also includes
dimensions corresponding to following context.

3Nelson (2022) in fact uses a slightly simplified version of
this algorithm: the original algorithm recursively adds com-
plement classes until there are no more to add, while the al-
gorithm in Nelson (2022) adds complement classes once and
then terminates. This potentially reduces the expressivity of
the feature system, but the two approaches are similar enough
that we treat them as a single feature assignment strategy.
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Table 2 shows the scores assigned by the log-
bilinear model to a set of nonce words after it was
fitted to the training data using the representations
in Table 1. The model successfully assigns a lower
probability to words containing a CC sequence.

Word Score

C V C V 5.397
V C V V 5.980
V V V V 6.393
C C C V 8.825
V C C C 8.933
C C C C 10.272

Table 2: Scores assigned by the trained model to nonce
forms. The scores here are negative log probabilities.

5 Model comparison

We evaluate the performance of the log-bilinear
model against several existing models of phonotac-
tics. These models take as input a set of training
data and, in most cases, a set of featural representa-
tions for the segments in the training data. Fitted
models assign scores to word forms that reflect
their probabilities.

The purpose of this comparison is to demon-
strate that the log-bilinear model performs favor-
ably against existing phonotactic models.

5.1 Hayes and Wilson learner
The Hayes and Wilson learner (Hayes and Wilson,
2008) is a Maximum Entropy model of phonotac-
tics. We refer the reader back to Section 2.1 for
a description of how word probabilities are com-
puted based on input constraint violation profiles
and a set of learned weights.

In addition to fitting weights, the Hayes and
Wilson learner also simultaneously learns the con-
straints themselves from the data, up to an up-
per bound specified by the user. Constraints are
implemented as featural n-gram constraints (e.g.,
*[−voi, −son][+voi, −son]). Constraints are dis-
covered by comparing observed vs. expected
counts in the training data and selecting constraints
that penalize structures with unexpectedly low
counts. There is a bias towards constraints that
include fewer features, but more complex interac-
tions are learned when the data support them.

The scores assigned by this model are harmony
values, which are unnormalized log probabilities
(the linear component of the log-linear model).

5.2 MaxEntGrams
MaxEntGrams4 is a variant of the Hayes and Wil-
son learner that offers time and space improve-
ments over the original algorithm by training on an
n-gram model of the training data rather than the
data itself. For a more detailed comparison of the
two models, see Nelson (2022). This model also
produces unnormalized log probabilities.

5.3 Smoothed bigram model
This model is included as a baseline. It defines the
probability of a word as in Eq. 4, but with con-
ditional probabilities estimated from counts with
additive smoothing:

p(σt|σt−1) =
C(σt−1, σt) + 1

C(σt−1) + d
, (7)

where C(σt−1, σt) is the count of the sequence
σt−1σt in the training data, C(σt−1) the count of
σt−1, and d the number of distinct segments. This
score is reported as a log probability.

This model operates on segmental representa-
tions, and thus cannot generalize along featural di-
mensions. Additive smoothing mitigates this some-
what by assigning every segmental bigram an initial
pseudo-count of 1. This ensures that forms con-
taining bigrams that are not in the training data are
assigned low, rather than zero, probabilities.

5.4 Summary of models
We do not consider every possible permutation of
the models and featurizations above, but present
the set shown in Table 3. In particular, we report
only a single combination of the models presented
in Nelson (2022). In addition to comparing the
models themselves, we also focus our analysis on
the dimensions of continuous vs. discrete features
and phonetic vs. distributional features.

6 Model comparison on English onset
sequences

We compare the performance of the log-bilinear
model against the models above on the problem
of learning restrictions on onset clusters in En-
glish. This problem has been extensively studied
in the context of the Sonority Sequencing Princi-
ple (SSP): the cross-linguistic preference for sylla-
ble onsets that monotonically increase in sonority
and codas that monotonically decrease in sonority

4https://github.com/MaxAndrewNelson/
PhoneGraphs
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Model Featurization

Smoothed bigram N/A
Hayes & Wilson Discrete phonetic
Hayes & Wilson Discrete distributional (Mayer)

Bilinear Continuous distributional (PMI)

Bilinear Discrete phonetic
Bilinear Discrete distributional (Mayer)

MaxEntGrams Discrete distributional (SC COV)

Table 3: Models to be tested

(Selkirk, 1984). Sensitivity to the SSP has been
found in many experimental studies, and it has
been argued that it constitutes an innate phonologi-
cal bias (Berent et al., 2008, 2011). Computational
studies have shown that phonotactic learning mod-
els operating on lexical statistics can learn gen-
eralizations about the SSP that align with human
behavior, despite having no biases towards SSP-
conforming onsets (Daland et al., 2011; Mayer and
Nelson, 2020; Nelson, 2022). However, models
that incorporate both prior bias and statistical learn-
ing have been shown to account better for SSP
judgments than either does individually, suggesting
a role for both bias and experience (Jarosz and Rys-
ling, 2017; Jarosz, 2017/8). We do not employ this
dataset here to make any strong claims about the in-
nateness of the SSP, but rather because it has been
used to compare the performance of phonotactic
models in previous work.

The training data for all models was the
English onset corpus from Hayes and Wilson
(2008). This consists of all word-initial onsets
from the CMU Pronouncing Dictionary (Weide
et al., 1998, http://www.speech.cs.cmu.edu/

cgi-bin/cmudict): thus each word type in the
dictionary contributes a single token to the corpus.
Hayes and Wilson sanitize the corpus by removing
“exotic” onsets such as [zw], [sf], and [pw] that are
unlikely to be encountered by language learners,
and by assuming that [j] off-glides are part of the
nucleus. We used this dataset to construct the dis-
tributional embeddings and to fit the parameters of
each model. Following Nelson (2022), the distribu-
tional embeddings were calculated over the set of
unique onsets (or onset types).

We did a hyperparameter search using
cross-validation to determine the learning
rate and batch size used to train the log-
bilinear model. We considered the values

[32, 64, 128, 256, 512, 1024, 2048, 4096] for batch
size and [0.1, 0.01, 0.001, 0.0001] for the learning
rate. A batch size of 64 and learning rate of 0.001
led to the optimal fit.

We restricted the H&W learner to bigram con-
straints, allowed it to learn a maximum of 300
constraints, and used the default maximum Ob-
served/Expected threshold of 0.3.

The models were tested on the experimental data
from Daland et al. (2011). These data consist of
Likert ratings given by 48 participants to a set of
96 nonce words beginning with 48 different onsets.
Daland et al. (2011) group the onsets into three
different classes: attested onsets, which are com-
mon in English, marginal onsets, which are attested
but uncommon, and unattested onsets. Following
Nelson (2022), we train and test on the onsets in
isolation (i.e., the data consist of forms like “sm”,
“pl”, etc.). Each onset is represented by two data
points corresponding to two tails the onset was at-
tached to in the Daland et al. study. The onsets are
shown in Table 4.

Attested Marginal Unattested
tw tr sw gw Sl pw zr mr
Sr pr pl vw Sw tl dn km
kw kr kl Sn Sm fn ml nl
gr gl fr vl bw dg pk lm
fl dr br dw fw ln rl lt
bl sn sm vr Tw rn rd rg

Table 4: Onsets from Daland et al. (2011).

The trained models assigned scores to the test
data according to their onsets. We evaluated model
performance by looking at the correlation of scores
assigned by each model to the Likert ratings pro-
vided by human participants. Following Daland
et al. (2011), we look at correlations within the
attested/marginal/unattested onset groups, as well
as overall correlation. We report both Pearson’s
r, which captures relative differences in well-
formedness but is sensitive to non-linearity be-
tween model scores and human judgments, and
Kendall’s τ , which is not sensitive to non-linearity
but only considers the rank ordering of points (see
Albright, 2009).

The results are shown in Table 5. The two
most successful models are the Hayes & Wilson
learner with discrete phonetic features, and the log-
bilinear model with continuous distributional fea-
tures: these have the two highest overall τ correla-
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Model Featurization
Overall Attested Marginal Unattested

r τ r τ r τ r τ

Smoothed bigram segments 0.877 0.669 0.509 0.244 0.274 -0.004 0.470 0.280

MaxEntGrams discrete dist. 0.753 0.610 0.424 0.282 0.212 0.171 0.583 0.417

H&W discrete phon. 0.740 0.674 0.533 0.261 0.422 0.301 0.459 0.374
discrete dist. 0.818 0.634 0.540 0.244 -0.012 -0.049 0.547 0.421

Bilinear discrete phon. 0.785 0.646 0.446 0.215 0.367 0.247 0.525 0.377
discrete dist. 0.757 0.572 0.520 0.296 0.021 0.067 0.523 0.309
continuous dist. 0.699 0.694 0.611 0.332 0.247 0.201 0.562 0.465

Table 5: Model comparison using Pearson’s r and Kendall’s τ to correlate model scores with acceptability ratings
for English onsets. The correlation value for the top performing model in each category is bolded.

tions and achieve the highest τ correlations in each
of the four categories. Fig. 1 shows the relationship
between model scores and human Likert ratings.

The high performance of the bilinear model with
continuous distributional features when compared
against the same model with discretized distribu-
tional features shows that the continuous features
contain phonotactically relevant information which
is lost under discretization.

It is also interesting to note that the distributional
models achieve the highest correlations for all but
the marginal forms, which are best captured by
models with phonetic features. This may suggest
that the relative importance of distributional vs.
phonetic information varies in different contexts,
but more research will be needed to see if this
observation is borne out more generally.5

7 Conclusion

This paper has presented a log-bilinear model of
phonotactics that can incorporate continuous rep-
resentations of phonological information, bypass-
ing the discretization steps used in previous work.
The results of a modeling study showed that this
model achieves competitive performance in pre-
dicting experimental judgments of English onsets.
This model opens up the space of possibilities for
phonotactic modeling by removing requirements
for discrete representations, allowing greater com-
patibility with standard distributional learning tech-
niques.

5The high performance of the smoothed bigram model
on the overall Pearson’s correlation is likely due to a strong
numerical match with the acceptability ratings of the attested
forms, as noted by Daland et al. (2011): performance on
unattested and marginal categories, and using Kendall’s τ , is
substantially worse.

Figure 1: Comparison of the predictions of the two most
successful models against human Likert ratings.

The log-bilinear model is also compatible with
continuous representations proposed in other con-
texts, such as on the basis of phonetic measure-
ments (Mielke, 2012). The model could be used
to implement a model of phonotactics that oper-
ates directly on these representations, providing
insight into the role of fine-grained phonetic detail
in phonotactic judgments. More generally, differ-
ent feature systems may be compared within the
log-bilinear framework, and the log-bilinear model
itself can be used to generate optimized distribu-
tional vector representations of segments: this is
the method used to create word2vec vectors when
applied to text data (Mikolov et al., 2013; Goldberg
and Levy, 2014).

Finally, the log-bilinear model can be straight-
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forwardly applied to larger contexts than bigram
windows, including autosegmental or tier-based
contexts (Goldsmith, 1976; Heinz et al., 2011), by
appropriately defining the context representation.
The flexibility, relative simplicity, and performance
of this model make it a promising framework for
studying phonotactic learning and representations.
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Stochastic harmonic grammars do not peak on the mappings singled out
by categorical harmonic grammars
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Abstract
A candidate surface phonological realiza-
tion is called a peak of a probabilistic
constraint-based phonological grammar pro-
vided it achieves the largest probability mass
over its candidate set. Obviously, the set of
peaks of a maximum entropy grammar is the
categorical harmonic grammar corresponding
to the same weights. This paper shows that
the set of peaks of a stochastic harmonic gram-
mar instead can be different from the categor-
ical harmonic grammar corresponding to any
weights. Thus in particular, maximum entropy
and stochastic harmonic grammars can peak
on different candidates.

Maximum Entropy grammars (ME; Goldwater
and Johnson, 2003; Hayes and Wilson, 2008) and
Noisy or Stochastic Harmonic Grammars (SHG;
Boersma and Pater, 2016) are both probabilistic ex-
tensions of categorical Harmonic Grammars (HG;
Legendre et al., 1990b,a; Pater, 2009). A growing
body of literature tries to pull apart these two proba-
bilistic frameworks. One line of research compares
ME and SHG in terms of their ability to fit specific
patterns of data given specific choices of candidates
and constraints (Zuraw and Hayes, 2017; Smith and
Pater, 2020; Breiss and Albright, 2022). Another
line of research compares their typological predic-
tions independently of the choice of the constraints,
by characterizing the uniform probability inequali-
ties they predict (Anttila and Magri, 2018; Anttila
et al., 2019; Magri and Anttila, 2023).

This paper compares ME and SHG in terms of
their probability peaks, namely the candidates to
which they assign largest probability masses, as for-
malized in section 1. Obviously, the peaks of the
ME grammar corresponding to some non-negative
weights are the winners singled out by the cate-
gorical HG grammar corresponding to the same
weights, no matter what the constraint set looks
like, as illustrated in section 2. In other words,
ME grammars peak on HG winners. Crucially, this

property does not extend from ME to SHG, as dis-
cussed in section 3. Indeed, section 4 constructs
an example of SHG grammar whose peaks cannot
be described as the HG winners corresponding to
any non-negative weights. In other words, SHG
grammars do not necessarily peak on HG winners.
It follows in particular that ME and SHG grammars
can peak on different candidates.

The proposed counterexample is somewhat con-
trived and no simpler counterexamples seem read-
ily available. It is therefore improbable that we
would ever “stumble” into one such counterexam-
ple by simply “playing” with SHG phonology. This
result about SHG peaks thus shows that only math-
ematical analysis can reveal subtle properties of
probabilistic phonological models—which is one
of the main goals of linguistic theory.

1 Peaks of probabilistic grammars

A phonological mapping is a pair (x, y) consisting
of an underlying form x and a corresponding sur-
face realization y. Gen denotes the set of mappings
relevant for the description of the phonological sys-
tem of interest (Prince and Smolensky, 1993/2004).
Gen(x) denotes the set of candidate surface real-
izations y such that the mapping (x, y) belongs to
Gen. We allow Gen to list countably infinitely
many underlying forms. But we require a candi-
date set Gen(x) to be finite to avoid the technicali-
ties needed to define probability mass functions on
infinite sets.

A categorical grammar G assigns to an under-
lying form x a unique “winner” surface realization
y from the candidate set Gen(x). Thus, we require
categorical grammars to be strict: they specify a
unique surface realization per underlying form. On
the other hand, we allow categorical grammars to
be partial: they might fail to specify any surface
realization for a given underlying form. HG gram-
mars recalled below are indeed usually defined as
strict and partial.
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A probabilistic grammar G assigns to each
mapping (x, y) listed by Gen a number G(y | x)
that is interpreted as the probability that the under-
lying form x is realized as the surface candidate y.
This probabilistic interpretation requires these num-
bers G(y | x) to be non-negative and normalized
across the candidate setGen(x) of each underlying
form x, namely

∑
y∈Gen(x)G(y | x) = 1.

We say that a mapping (x, y) is a peak of a prob-
abilistic grammar G provided y is assigned a larger
probability mass than any other candidate z of the
underlying form x, as stated in (1).

G(y | x) > max
z∈Gen(x)

z6=y

G(z | x) (1)

The set of candidates with peak probabilities
can be interpreted as a categorical grammar. This
categorical grammar is strict, because condition (1)
features a strict inequality, whereby at most one
candidate per underlying form qualifies as a peak.
Furthermore, this categorical grammar is partial,
because multiple candidates can tie for the largest
probability, whereby none qualifies as a peak.

Intuitively, these candidates that are assigned the
largest probability masses are those that are deemed
most important by a probabilistic grammar. The
set of these most important candidates with peak
probabilities thus ought to capture some important
information about the probabilistic grammar. As
a first stub at analyzing a complex probabilistic
grammar, it thus makes sense to analyze the corre-
sponding categorical grammar of peaks.

2 ME peaks are HG winners

To illustrate the definitions in the preceding section,
we consider a set C consisting of a finite number
n of constraints Ck. We denote by Ck(x, y) the
number of violations assigned by constraint Ck to
a mapping (x, y) from Gen. We assign to each con-
straint Ck a non-negative weight wk. A candidate
y is the winner surface realization of an underlying
form x provided it satisfies condition (2). It says
that the candidate y violates the constraints less
than any other candidate z because the weighted
sum of the constraint violations of y is strictly
smaller. The categorical grammar G that singles
out such winner candidates is the HG grammar cor-
responding to the weight vector w = (w1, . . . , wn).
It is strict, because (2) features a strict inequality. It
can be partial, in case two or more candidates tie for

the smallest weighted sum of constraint violations.

n∑

k=1

wkCk(x, y) < min
z∈Gen(x)

z 6=y

n∑

k=1

wkCk(x, z) (2)

We can also use the constraint set C and the
weight vector w to define a probabilistic grammar
though condition (3). It says that the probability
G(y | x) that an underlying form x is realized as a
candidate y is the exponential of the opposite of
the weighted sum of constraint violations of the
mapping (x, y), divided by a quantity Z(x) that en-
sures normalization over the candidate set Gen(x).
The resulting probabilistic grammar G is the ME
grammar corresponding to the weight vector w.

G(y | x) = 1

Z(x)
exp

{
−

n∑

k=1

wkCk(x, y)

}
(3)

The normalization constant Z(x) depends on the
underlying form x but not on the candidate y. Fur-
thermore, the definition (1) of probability peaks
only compares probabilities within the same candi-
date set. It follows that a mapping (x, y) qualifies
as a peak of the ME grammar (3) corresponding
to the weight vector w if and only if (x, y) belongs
to the HG grammar (2) corresponding to the same
weight vector w. In other words, HG grammars
single out the peaks of ME grammars.

3 SHG peaks are not HG winners

Let pw be a uni-dimensional probability density
function that starts at a point w, in the sense that it
is equal to zero at the left of w. Here are some nat-
ural examples of such a density (IS is the indicator
function of the set S):

• the uniform density
punif
w (v) = I[w,w+1](v);

• the exponential density
p

exp
w (v) = exp(w − v)I[w,+∞](v);

• the half-gaussian density

p
gauss
w (v) =

2 exp[−(v−w)2/2]√
2π

I[w,+∞](v)

Given a constraint set C and a non-negative weight
vector w = (w1, . . . , wn), the corresponding SHG
grammar assigns to a mapping (x, y) the probability
of sampling a weight vector v according to pw =
pw1 · . . . ·pwn such that y qualifies as an HG winner
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corresponding to this weight vector v in the sense
of condition (2) above. The assumption that the
weights wk are non-negative and that pwk starts at
wk ensures that the probability of sampling vectors
v with negative components is zero.1

To understand intuitively why SHG peaks are
not necessarily HG winners, let us consider the
following simplest case. Gen lists only two can-
didate surface realizations y and z for an under-
lying form x. The constraint set consists of only
n = 2 constraints. The setW(x, y) of weight vec-
tors v = (v1, v2) such that the weighted sum of
constraint violations of y is smaller than that of z
is the dashed red cone in figure 1 described by the
inequality v2 > αv1, for some α > 0. The SHG
grammar corresponding to a weight vector w is
implemented with the uniform density that concen-
trates the probability mass on the square that starts
at the weight vector w. This square is split into two
halves by the red dashed coneW(x, y). The area of

1 The implementation of probabilistic constraint-based
phonology that I call here “stochastic” HG is slightly differ-
ent from what Boersma and Pater (2016) call “noisy” HG,
because the two implementations differ for the strategy they
adopt to avoid sampling zero weights. In SHG, zero weights
are avoided by sampling according to a density pw that starts
at a positive value w. In NHG, zero weights are avoided by
clipping at zero or by re-sampling (Hayes and Kaplan 2023).
Furthermore, the term “stochastic” HG makes it explicit that
the resulting framework is a probabilistic extension of cat-
egorical HG in exactly the same way that Stochastic OT is
a probabilistic extension of categorical OT (Boersma 1997,
1998). Finally, the term “noisy” is traditionally used to qual-
ify the training data, while “stochastic” is used to single out
algorithms (and thus grammars) that are non-deterministic.

the solid red half of the square that sits within the
coneW(x, y) is the probability mass assigned by
our SHG grammar to the mapping (x, y). The area
of the remaining solid blue half that sits outside of
W(x, y) is the probability mass assigned to (x, z).

The weight vector w in figure 1A sits outside of
the cone W(x, y). Thus, the HG grammar corre-
sponding to w does not contain the mapping (x, y).
Yet, w sits so close to the border of the coneW(x, y)
that the red solid area is larger than the blue solid
area. Thus, our mapping (x, y) is a peak of the
SHG grammar corresponding to the weight vec-
tor w, because (x, y) receives a larger probability
mass than (x, z). In conclusion, a peak of an SHG
grammar might not belong to the HG grammar
corresponding to the same weight vector.

Figure 1B illustrates the reverse scenario. The
HG grammar contains the mapping (x, y) because
the weight vector w sits inside the cone W(x, y).
Yet, w sits so close to the border of the cone that
the mapping (x, y) does not count as a peak of the
SHG grammar because the red solid area is smaller
than the blue solid area. In conclusion, a mapping
of an HG grammar might not be a peak of the SHG
grammar corresponding to the same weight vector.

These mismatches between SHG peaks and HG
mappings are only possible when the border of
the cone W(x, y) is less tilted than the diagonal
because α < 1 as in figure 1A; or it is more titled
than the diagonal because α > 1 as in figure 1B.
These mismatches are not possible when instead
the border of the coneW(x, y) coincides with the
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diagonal because α = 1. In this case, the red solid
area is larger (smaller) than the blue solid area if
and only if the weight vector w sits inside (outside)
of the coneW(x, y), no matter how close w is to
the diagonal border of the cone. As a result, (x, y)
is an SHG peak if and only if it belongs to the HG
grammar corresponding to the same weights. We
will use this observation in subsection 4.1 below.

The considerations developed so far for the uni-
form density based on elementary geometric con-
siderations extend to other densities. To illustrate,
let us consider the exponential density. We start
with the case where the border of the coneW(x, y)
is less tilted than the diagonal as in figure 1A, say
because α = 1/2. We focus on weight vectors
w = (w1, w2) that sit outside of this cone because
they have a negative “distance” ξ = w2−αw1 < 0
from the border of the cone. The SHG probability
mass of our mapping (x, y) is easily computed in
closed form by integrating the exponential func-
tion. Figure 2A plots this SHG probability mass
(on the vertical axis) as a function of the “distance”
ξ < 0 (on the horizontal axis). When ξ is between
log(3/4) ' −0.2877 and zero, the weight vector w
sits outside of the coneW(x, y), whereby the map-
ping (x, y) does not belong to the corresponding
HG grammar. Yet (x, y) is a peak of the correspond-
ing SHG grammar, because the SHG probability
mass of y is larger than 0.5, and therefore larger
than the SHG probability mass of z.

Analogously, let us consider the case where the
border of the coneW(x, y) is more tilted than the
diagonal as in figure 1B, say because α = 2. We
focus on weight vectors w = (w1, w2) that sit in-
side this cone because they have a positive “dis-
tance” ξ = w2 − αw1 > 0 from the border of
the cone. Figure 2B plots the SHG probability
mass of our mapping (x, y) as a function of the
“distance” ξ > 0. When ξ is between zero and
log(16/9) ' 0.5754, the weight vector w sits in-
side the coneW(x, y), whereby the mapping (x, y)
does belong to the corresponding HG grammar.
Yet (x, y) is not a peak of the corresponding SHG
grammar, because the SHG probability mass of y
is smaller than 0.5, and therefore smaller than the
SHG probability mass of z.

These considerations show that the mappings
singled out by the HG grammar corresponding to
some weight vector w are not necessarily the peaks
of the SHG grammar corresponding to the same
weight vector w. Yet, it can be shown (through a

different line of analysis that falls outside of the
scope of this paper), that the mappings singled out
by the HG grammar corresponding to some weight
vector w are always the peaks of the SHG gram-
mar corresponding to a possibly different weight
vector w′. What about the reverse? Despite the mis-
matches between SHG peaks and HG mappings
documented above, is it the case that the peaks of
the SHG grammar corresponding to some weight
vector w are always the mappings singled out by
the HG grammar corresponding to a possibly dif-
ferent weight vector w′? The next section provides
a negative answer to this question by constructing
an SHG grammar whose set of peaks is not an HG
grammar, no matter the choice of the weights.

4 Counterexample

To construct the simplest possible counterexample,
we assume that Gen lists only three underlying
forms x1, x2, and x3 and endows each of them with
only two candidates yi and zi, as in (4)

Gen =

{
(x1, y1) (x2, y2) (x3, y3)
(x1, z1) (x2, z2) (x3, z3)

}
(4)

The constraint set C consists of n = 3 constraints
C1, C2, and C3 that yield the violation profiles in
(5). Actual numbers of constraint violations do
not matter. What does matter for the counterex-
ample are the ratios of the differences between
the numbers of violations of two candidates, as
shown in appendix E. To illustrate, it does not mat-
ter that C1 and C3 assign 33 and 0 violations to
y3 and 0 and 200 violations to z3. What does
matter is that the ratio between the differences
C1(x3, y3)−C1(x3, z3) andC3(x3, z3)−C3(x3, y3)
is equal to 33/200 = 0.165. These large numbers
33 and 200 are needed to express a small value
0.165 as the ratio 33/200 between two integers.

C1 C2 C3

(x1, y1) 0 5 0

(x1, z1) 2 0 0

(x2, y2) 0 0 5

(x2, z2) 0 2 0

(x3, y3) 33 0 0

(x3, z3) 0 0 200

(5)

Finally, the vector w = (w1, w2, w3) of non-
negative weights is chosen carefully as in (6).

w1 = 4.21734890439
w2 = 1.3195643695
w3 = 0.160450555542

(6)
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We implement the SHG grammar with the expo-
nential density. When this SHG grammar is called
for 100,000 times on each of the three underlying
forms x1, x2, and x3, it returns the surface forms y1,
y2, and y3 with the frequencies in (7).

GSHG
w (y1 | x1) = 0.50566

GSHG
w (y2 | x2) = 0.50637

GSHG
w (y3 | x3) = 0.50126

(7)

Since these frequencies are (close to but strictly)
larger than 0.5, the categorical grammar of peaks
of the SHG grammar considered is the grammar G
in (8). Crucially, we will see that this grammar G
is not an HG grammar corresponding to any choice
of non-negative constraint weights.

G =
{
(x1, y1), (x2, y2), (x3, y3)

}
(8)

In conclusion, we have constructed an SHG
grammars whose set of peaks cannot be construed
as any HG grammar. The rest of this section ex-
plains in detail how the counterexample has been
constructed, by motivating the choice of the viola-
tion profiles in (5) and of the weights in (6).

4.1 First step
We need to define the n = 3 constraints in such
a way that the grammar G in (8) is not an HG
grammar. As above, let us denote by W(xi, yi)
the cone of those non-negative weight vectors
v = (v1, v2, v3) that declare yi the winner sur-
face realization of the underlying form xi. A sim-
ple strategy to achieve our goal is to define the
constraints so that these three cones are as in (9).
In fact, the grammar G in (8) qualifies as an HG
grammar only if some non-negative weight vector
v = (v1, v2, v3) belongs simultaneously to all three
cones. And that is impossible. Because a weight
vector that belongs to both cones W(x1, y1) and
W(x2, y2) must satisfy both inequalities v1 > v2
and v2 > v3. By transitivity, it must also satisfy

the inequality v1 > v3. Hence, our weight vector
cannot belong to the coneW(x3, y3).

W(x1, y1) =
{

v
∣∣ v1 > v2

}

W(x2, y2) =
{

v
∣∣ v2 > v3

}

W(x3, y3) =
{

v
∣∣ v1 < v3

} (9)

Unfortunately, the borders of the cones in (9) are
all diagonal. As discussed in section 3 above, we
get no mismatches between SHG peaks and HG
mappings in this case. Thus, I make the borders
non-diagonal by replacing the cones in (9) with
those in (10), where the steepness of the borders is
controlled by the positive coefficients a and α. I use
the same coefficient a for both conesW(x1, y1) and
W(x2, y2), as this choice simplifies the analysis
without compromising the counterexample.

W(x1, y1) =
{

v
∣∣ v1 > a v2

}

W(x2, y2) =
{

v
∣∣ v2 > a v3

}

W(x3, y3) =
{

v
∣∣ v3 > α v1

} (10)

As for the HG-hood of the grammar G in (8),
the replacement of our initial guess (9) with the
refined guess (10) changes nothing because of the
following lemma, verified in appendix A.

Lemma 1 Suppose that the positive coefficients
a, α > 0 satisfy condition (11).

a2α ≥ 1 (11)

No weight vector v = (v1, v2, v3) belongs simul-
taneously to the three cones in (10), whereby the
grammar G in (8) is not an HG grammar.

4.2 Second step
We now want to construct a non-negative weight
vector w = (w1, w2, w3) such that the peaks of the
corresponding SHG grammar are indeed the three
mappings singled out by the grammar G in (8). As
discussed in the preceding subsection, this weight
vector w cannot belong simultaneously to all three
cones in (10). For concreteness, we assume that the
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weight vector w = (w1, w2, w3) does not belong
to the coneW(x3, y3) while it does belong to the
other two conesW(x1, y1) andW(x2, y2).

The assumption that the weight vector w sits out-
side of the cone W(x3, y3) despite the mapping
(x3, y3) being a peak of the corresponding SHG
grammar has two consequences. The first conse-
quence is that the border of the cone W(x3, y3)
must be less tilted than the diagonal, as in figure 1A.
In other words, the coefficient α that controls its tilt-
edness must be small in the sense that α < 1. The
second consequence is that, although the weight
vector w sits outside of the coneW(x3, y3), it can-
not be too far away from it. Equivalently, although
w3 is smaller than αw1 (so that w sits outside of
W(x3, y3)), it cannot be too much smaller (so that
w sits close to W(x3, y3)). Not much smaller in
the sense that the weights w1 and w3 satisfy the
inequality w3 > αw1 −A for some carefully cho-
sen positive constant A > 0. The following lemma
says that we need to choose this constant A equal
to log 2

1+α , as verified in appendix B. Since α < 1,
this position A = log 2

1+α is positive as desired.

Lemma 2 Consider a weight vector w =
(w1, w2, w3) that does not belong to the cone
W(x3, y3) because w3 < αw1. The mapping
(x3, y3) is a peak of the SHG grammar correspond-
ing to this weight vector w provided w satisfies (12).

w3 > αw1 − log
2

1 + α︸ ︷︷ ︸
A

(12)

Condition (11) together with the assumption
α < 1 made above entails that the coefficient a
that controls the tiltedness of the border of the cone
W(x1, y1) is large in the sense that a > 1. Equiva-
lently, the border of the coneW(x1, y1) is steeper
than the diagonal. As a result, the assumption that
the weight vector w sits inside the coneW(x1, y1)
by itself does not suffice to ensure that (x1, y1) is a
peak, as shown in figure 1B. We need to make sure
that the weight vector w sits well inside this cone
W(x1, y1), far away from the border. Equivalently,
w1 is not just larger than aw2 (so that w sits inside
W(x1y1)) but actually quite larger (so that w sits
well inside W(x1, y1)). Quite larger in the sense
that the weights w1 and w2 satisfy the inequality
w1 > aw2 + B for some carefully chosen posi-
tive constant B > 0. The following lemma says
that we need to choose this constant B equal to
a log 2a

1+a , as verified in appendix C. Since a > 1,

this position B = a log 2a
1+a is positive as desired.

Lemma 3 Consider a weight vector w =
(w1, w2, w3) that does belong to the cone
W(x1, y1) because w1 > aw2. The mapping
(x1, y1) is a peak of the SHG grammar correspond-
ing to this weight vector w provided w satisfies (13).

w1 > aw2 + a log
2a

1 + a︸ ︷︷ ︸
B

(13)

A completely analogous reasoning shows that
condition (14) ensures that the mapping (x2, y2) is
a peak of the SHG grammar corresponding to the
weight vector w = (w1, w2, w3).

w2 > aw3 + a log
2a

1 + a
(14)

4.3 Third step

Do the three inequalities (12), (13), and (14) just ob-
tained admit non-negative solutions w1, w2, w3 ≥
0? To answer this question, we use of the following
straightforward fact, verified in appendix D.

Lemma 4 Suppose that a2α > 1, as in (11). The
following three strict inequalities

w3 > αw1 −A
w1 > aw2 +B
w2 > aw3 +B

(15)

admit non-negative solutions w1, w2, w3 ≥ 0 when
their coefficients a, α > 0 and A,B ≥ 0 satisfy
the following condition (16).

1 <
A

α(1 + a)B
(16)

Indeed, the inequalities (12), (13), and (14) have
the shape in (15) with the positions (17).

A = log
2

1 + α
, B = a log

2a

1 + a
(17)

Condition (16) that ensures that the three inequali-
ties (15) admit non-negative solutions boils down
to condition (18) with these positions (17). We
conclude that the inequalities (12), (13), (14) admit
non-negative solutions w1, w2, w3 ≥ 0 when the
coefficients a, α satisfy condition (18).

1

α
log

2

1 + α
− a(1 + a) log

2a

1 + a
> 0 (18)
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4.4 Fourth step
In conclusion, in order for our counterexample
to work, we need to find coefficients a > 1 and
0 < α < 1 that satisfy both conditions (11) and
(18). To this end, figure 3 plots in red (blue) the
pairs of values (a, α) that satisfy (do not satisfy)
condition (18). Furthermore, the black line in fig-
ure 3 describes the equation α = 1/a2. The pairs
of values (a, α) that satisfy condition (11) thus sit
above and at the right of this black line. This fig-
ure thus says that a pair of values (a, α) satisfies
both conditions (11) and (18) as desired provided
it belongs to the narrow band between the black
line and the boundary between the red and blue
regions. The pair (a, α) in (19) belongs indeed to
this narrow band and thus satisfies both conditions
(11) and (18).

a = 2.5, α = 0.165 (19)

When the constraint violation vectors are de-
fined as in (5), the cones W(x1, y1), W(x2, y2),
and W(x3, y3) are precisely the cones described
by the inequalities in (10) with the coefficients a
and α as in (19), because 5/2 = 2.5 = a and
33/200 = 0.165 = α, as verified in appendix E.
Finally, the three inequalities (12), (13), and (14)
corresponding to the coefficients a and α in (19)
admit non-negative solutions w1, w2, w3 such as
those in (6), as shown in appendix F, completing
the explanation of the counterexample.

5 Conclusions

Categorical grammars can usually be analyzed by
exhaustive enumeration and direct inspection of
the mappings they contain. Probabilistic grammars
instead require more sophisticated analytical tools.
A natural idea is to analyze some of the linguistic
information captured by a complex probabilistic
grammars by analyzing it peaks, namely the can-
didates that are deemed most important by that
probabilistic grammar because assigned the largest
probability mass. For a ME grammar, this is easily
done: its peaks are the HG winners corresponding
to the same weight vector. This paper has shown
that the situation is different in SHG: although any
HG grammar can be construed as the set of peaks of
some SHG grammar, the set of peaks of some SHG
grammars cannot be construed as an HG grammar,
no matter the choice of the weights. It follows that
ME and SHG grammars corresponding to the same
weights can peak on different candidates.

Appendix

A Proof of lemma 1
A weight vector v = (v1, v2, v3) that belongs to
both conesW(x1, y1) andW(x2, y2) satisfies both
inequalities v1 > av2 and v2 > av3. Thus in
particular, v satisfies the inequality v1 > a2v3. On
the other hand, a weight vector v that belongs to the
coneW(x3, y3) satisfies the inequality v1 < v3/α.
These two inequalities yield a2v3 < v3/α. Since
this inequality is strict, v3 must be strictly positive
and can therefore be simplified, yielding a2 < 1

α .
This conclusion contradicts the assumption (11).

B Proof of lemma 2
We start by establishing the chain of identities in
(20). Step (20a) below holds because of the defi-
nition of the exponential density. Step (20b) holds
because W(x3, y3) is the cone consisting of the
non-negative vectors v = (v1, v2, v3) such that
v3 ≥ αv1. Step (20c) holds because of the hy-
pothesis w3 ≤ αw1 that w = (w1, w2, w3) sits out-
side of the coneW(x3, y3). Thus, v1 ≥ w1 entails
αv1 ≥ αw1 ≥ w3, whereby max{w3, αv1} =
αv1. The remaining steps only use the identity∫
e−λxdx = − 1

ae
−λx.

∫

W(x3,y3)
pexp
w1

(v1) p
exp
w3

(v3) dv1 dv3 =

(a)
= ew1+w3

∫

v1≥w1,v3≥w3

e−v1−v3IW(x,y)(v1, v3)dv1dv3

(b)
= ew1ew3

∫

v1≥w1

e−v1
∫

v3≥max{w3,αv1}
e−v3dv1dv3

(c)
= ew1+w3

∫

v1≥w1

e−v1
∫

v3≥αv1
e−v3dv3dv1

= ew1+w3

∫

v1≥w1

e−v1
∣∣−e−v3

∣∣∞
αv1

dv1

= ew1+w3

∫

v1≥w1

e−(1+α)v1dv1

= ew1+w3

∣∣∣∣−
1

(1 + α)
e−(1+α)v1

∣∣∣∣
∞

w1

= ew1+w3
1

1 + α
e−(1+α)w1

=
1

1 + α
e−αw1+w3 (20)

The proof of lemma 2 now consists of the chain
of equivalences in (21). Step (21a) holds because
the underlying form x3 has only two candidates
y3 and z3, whereby the probability mass of z3 is
equal to 1 minus the probability mass of y3. Step
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Figure 3

(21b) holds because the probability mass of the
mapping (y3 | x3) according to the SHG grammar
corresponding to the weight vector w is the volume
of the cone W(x3, y3) relative to the product of
three exponential densities that start at the weights
w1, w2, and w3. Step (21c) holds because the def-
inition (10) of the cone W(x3, y3) only looks at
the first and third components. Step (21d) holds
because of the computation in (20) above.

GSHG
w (y3 | x3) > GSHG

w (z3 | x3) ⇐⇒
(a)⇐⇒ GSHG

w (y3 | x3) > 1−GSHG
w (y3 | x3)

⇐⇒ 2GSHG
w (y3 | x3) > 1

(b)⇐⇒ 2

∫

W(x3,y3)
pexp

w (v) dv > 1

(c)⇐⇒ 2

∫

W(x3,y3)
pexp
w1

(v1) p
exp
w3

(v3) dv1 dv3 > 1

(d)⇐⇒ 2
1

1 + α
exp(w3 − αw1) > 1

⇐⇒ w3 > αw1 + log
1 + α

2
(21)

C Proof of lemma 3
Step (22a) holds as steps (21a-c) above. Step (21b)
can be established by reasoning as in (20).

GSHG
w (y1 | x1) > GSHG

w (z1 | x1)
(a)⇐⇒ 2

∫

W(x1,y1)
pexp
w1

(v1) p
exp
w2

(v2) dv1 dv2

(b)⇐⇒ 2

(
1− a

1 + a
exp−w1 − aw2

a

)
> 1

⇐⇒ w1 > aw2 + a log
2a

1 + a
(22)

D Proof of lemma 4
The positions w1 = aw2+εB and w2 = aw3+εB
satisfy the second and third inequalities in (15) as
long as ε > 1. Plugging the latter into the former
yields w1 = a2w3+ εB(a+1). Plugging the latter
into the first inequality in (15) yields (23).

(
αa2 − 1

)
w3 < A− αεB(1 + a) (23)

The assumption a2α > 1 means that the coefficient
of w3 on the left-hand side of (23) is strictly pos-
itive. Hence, (23) admits a non-negative solution
w3 ≥ 0 provided A − αε(a + 1)B > 0. Equiva-
lently, provided ε satisfies (24). And the latter in
turn requires (16), because ε > 1.

1 < ε <
A

α(1 + a)B
(24)

In conclusion, non-negative solutions
w1, w2, w3 ≥ 0 of the inequalities (15) can
be constructed as follows. First, I choose a value
ε that satisfies (24), which exists because of (16).
Then, I construct w1, w2, w3 ≥ 0 backward as
in (25). As desired, w3 is non-negative because
the numerator is non-negative by (24) and the
denominator is positive because a2α > 1 by (11).

w3 =
1

2

A− εα(a+ 1)B

αa2 − 1
w2 = aw3 + εB

w1 = aw2 + εB

(25)

E Computing the cones
The following reasoning shows that, when the con-
straints are defined as in (5), the cone W(x1, y1)
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can be described through the inequality v1 > av2
in (10) with a = 2.5.

v ∈ W(x1, y1)

⇐⇒
3∑

k=1

Ck(x1, y1)vk <
3∑

k=1

Ck(x1, z1)vk

⇐⇒ v1 > 2.5v2

An analogous reasoning holds forW(x2, y2) and
W(x3, y3).

F Computing the weights
When a and α are chosen as in (19), the coeffi-
cients A and B defined as in (17) become A =
0.540426093542 and B = 0.891687359847. And
condition (24) on ε becomes (1).

(1) 1 < ε <
A

α(1 + a)B
= 1.04947406627

Thus, I can choose for instance ε = 1.03. The
weights in (6) are obtained from (25) with a = 2.5,
α = 0.165, and ε = 1.03. These weights thus
satisfy the three inequalities (12), (13), and (14).
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Abstract

Past work (Linzen et al., 2016; Goldberg, 2019,
a.o.) has used the performance of neural net-
work language models on subject-verb agree-
ment to argue that such models possess struc-
ture-sensitive grammatical knowledge. We in-
vestigate what properties of the model or of the
training regimen are implicated in such success
in sequence to sequence transformer models
that use the T5 architecture (Raffel et al., 2019;
Tay et al., 2021). We find that larger models
exhibit improved performance, especially in
sentences with singular subjects. We also find
that larger pre-training datasets are generally
associated with higher performance, though
models trained with less complex language
(e.g., CHILDES, Simple English Wikipedia)
can show more errors when trained with larger
datasets. Finally, we show that a model’s abil-
ity to replicate psycholinguistic results does not
correspondingly improve with more parameters
or more training data: none of the models we
study displays a fully convincing replication
of the hierarchically-informed pattern of agree-
ment behavior observed in human experiments.

1 Introduction

In standard English, subjects and present-tense
verbs covary in number, called subject-verb agree-
ment. Crucially, agreement depends not on linear
proximity to the verb, but structural proximity: the
head noun of the subject determines correct agree-
ment, not any of its dependents:

(1) a. The label on the bottle is...

b. * The labels on the bottle is...

c. The labels on the bottle are...

d. * The label on the bottles are...

Because of this structure-sensitive property of sub-
ject-verb agreement, this phenomenon is a useful
grounds for examining the linguistic representa-
tions that computational language models learn.

Past work examining the performance of lan-
guage models on subject-verb agreement has found
mixed results. Linzen et al. (2016) and Marvin and
Linzen (2018) showed LSTMs do not achieve con-
sistent structure-sensitive generalization on agree-
ment when trained on a language modeling task,
though they perform better with explicit supervi-
sion related to agreement. Goldberg (2019) exam-
ined BERT, an encoder-only transformer model
(Devlin et al., 2018), and found much higher sub-
ject-verb agreement performance.

These prior studies compared language model
probabilities for individual word tokens (e.g., is
vs. are) following a preamble (e.g., the label on
the bottles) to determine whether singular or plural
agreement is more likely. We use a different ap-
proach, studying agreement in models trained to
map an input (non-agreeing) sequence to an output
(agreeing) sequence. This follows a line of work
in which grammatical transformation tasks can be
used to assess sensitivity to grammatical regulari-
ties (McCoy et al., 2020; Mueller et al., 2022; Mul-
ligan et al., 2021). Specifically, we use ablations
of the Text-to-Text Transfer Transformer (T5) se-
quence to sequence (seq2seq) architecture (Raffel
et al., 2019; Tay et al., 2021) to examine the effect
of model size (number of parameters) and model ar-
chitecture (where those parameters are located) on
agreement behavior. As we shall see, bigger models
do better, but some kinds of layers matter more for
performance. We also investigate how pre-training
data influences model performance, examining T5
models that were pre-trained on different datasets
and different amounts of data.

Previous work has demonstrated that pre-train-
ing imparts a bias to make use of hierarchical gen-
eralizations in at least some seq2seq models on
tasks like passivization and question formation in
English and German (Mueller et al., 2022). Like
these tasks, subject-verb agreement is sensitive to
hierarchy and not linear order, as shown in (1).
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However, unlike passivization and question forma-
tion, agreement is not a generalization based on
movement.1 This could potentially impact the mod-
els’ propensity to form hierarchical generalizations
in this domain. Indeed, we find that even though the
overall propensity to use grammatical agreement
increases with model size, even the largest models
we tested showed errors. Moreover, the pattern of
these errors does not match patterns of errors found
in psycholinguistic studies of agreement errors in
humans. People show more sensitivity to structural
proximity when making errors, while the models
we tested showed more sensitivity to linear prox-
imity. We conclude that the most reliable way to
achieve higher performance on agreement in gen-
eral is with larger models, though even the largest
models we tested still do not replicate most human-
like patterns of agreement errors, and thus show
more evidence of linear rather than hierarchical
generalization, at least with regards to agreement
behavior.

We note here that we do not have a full expla-
nation of why certain architectural properties and
kinds of pre-training data have certain affects on
agreement behavior. Rather, our more modest aim
is merely to provide a sketch of the empirical land-
scape in this domain.

2 Methods

2.1 Procedure
Sequence to sequence (seq2seq) language models
take a sequence of (tokenized) words as input, and
produce a sequence of tokens as output. The model
begins generation by producing a beginning of sen-
tence token, and then produces the next most prob-
able token at each generation step given the full
input sequence and the previous tokens generated
in the output sequence to that point.

To assess agreement behavior in these models,
we take advantage of the fact that in English, verbs
in the past tense are not marked for number (with
the single exception of was vs. were, which was
not included in our test set). Thus, we fine-tune the
T5 checkpoints we use on a tense reinflection task
(McCoy et al., 2020; Mueller et al., 2022; Petty and
Frank, 2021; Mulligan et al., 2021). For example:

Source: “The professor liked the dean. PRES: ”

Target: “The professor likes the dean.”

1That is, it is a relation that holds between elements in a
structure, rather than a relation between structures (as move-
ment is typically defined).

This task requires the model to convert a sentence
where number agreement is absent (i.e., the past
tense) to a form where agreement is clearly marked
(the present tense), forcing the model to resolve the
ambiguity. We measure which form of the present
tense verb the model produces.

We fine-tuned all models for 7, 812 weight up-
dates (976.5 epochs) on this tense reinflection task
with a learning rate of 5× 10−5 and a batch size of
128, following Mueller et al. (2022). We saved 15
evenly-spaced checkpoints throughout fine-tuning
to use for evaluation.2

2.2 Materials

Our fine-tuning dataset consists of 1, 098 exam-
ples constructed from sentences randomly drawn
from English Wikipedia (20200501.en) using
Hugging Face’s datasets library.3 We parsed
the sentences using a transformer-based depen-
dency parser provided by the spacy library (en_-
core_web_trf) (Honnibal et al., 2020). These
parses allow us to identify the subject of the sen-
tence and the verb, as well as the verb’s tense. We
created pairs of sentences for fine-tuning as follows:
if the verb is in past tense, we treat the sentence
as the input, and reinflect the verb into the present
tense to produce the desired output; if the verb is
in the present tense, we treat it as the desired out-
put, and reinflect it into the past tense to produce
the input. For reinflection, we used the pattern
library (Smedt and Daelemans, 2012), with addi-
tional manual corrections. We included only exam-
ples that contained no intervening nouns between
the main subject and the main verb according to
the dependency parses, in order to avoid giving
the models evidence during fine-tuning that would
disambiguate the correct target of agreement, even
inadvertently.4

For our test dataset, we created a balanced set of
synthetic past-present example pairs using a PCFG.
Using synthetic test data allowed us to ensure full

2Our code and data are available at: github.com/clay-
lab/seq2seq-agreement-attraction-datasets, github.com/clay-
lab/seq2seq-agreement-attraction.

3We also conducted fine-tuning with larger datasets, up
to 10, 000 sentence pairs. Preliminary investigations showed
little difference between the results with these larger fine-
tuning datasets and the smaller dataset, so we continued to use
the smaller dataset.

4Preliminary investigations showed that including sen-
tences with interveners where the correct target of agreement
was ambiguous in the pre-training data (e.g., the key to the
cabinet is... is compatible with either a hierarchical or a linear
generalization) made little difference to our results.
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accuracy of the target forms during testing, since
naturally occurring data may contain errors that
arise naturally or during parsing. We represent con-
ditions using “S” and “P,” with “S” corresponding
to a singular noun and “P” corresponding to a plu-
ral noun. The linear order of these labels represents
their relative linear order in the sentence prior to
the verb. For instance, the following is a sentence
in the SP condition:

(2) The studentS near the deansP liked the pro-
fessor.

Distractor nouns were embedded in either a prepo-
sitional phrase (PP) or a subject relative clause
(RC), or a combination of two of them, attached to
the preceding noun. Thus, there were test sentences
for each combination of noun numbers (S, P, SS,
SP, PP, PS, SSP, SPS, SPP, PPS, PSP, PSS) and em-
bedding structure (PP, RC (two-noun conditions),
PP+PP, PP+RC, RC+RC, RC+PP (three-noun
conditions)). The test sentences used 10 nouns in
singular and plural forms (student, professor, head-
master, friend, assistant, dean, advisor, colleague,
president, chancellor), 10 verbs in past and present
tense forms (help, visit, like, bother, inspire, recruit,
assist, confound, accost, avoid), 5 prepositions (of,
near, by, behind, with), the definite article (the),
and the overt complementizer (that). Due to the
limited vocabulary and structural simplicity, the S
and P conditions each contained only 64 unique
sentences each. All other conditions contained 256
unique sentences.

We did not ensure that every sentence had a com-
pletely plausible meaning. This is similar to Lasri
et al. (2022)’s approach, who examined BERT’s
performance on subject-verb agreement in sen-
tences without sensible meanings. It is also similar
to Newman et al. (2021), who examined how plau-
sibility of a verb in a particular context influenced
BERT’s ability to predict the syntactically correct
form of an agreeing verb. Both studies found that
implausible carrier sentences and less plausible
verbs in a particular context were associated with
a higher rate of errors. While we did not explicitly
manipulate plausibility, our results can be similarly
interpreted as reflecting models’ performance in
less than completely natural contexts.

2.3 Evaluation
During preliminary investigations with uncon-
strained generation of output, we found that the
seq2seq models we used often failed to produce

Pre-verb noun(s) Structures

S –
P –
SS, SP; PP, PS PP; RC
SSS, SSP, SPS, SPP; PPP, PPS, PSP, PSS PP+PP, PP+RC, RC+PP, RC+RC

Table 1: Summary of test set conditions. The correct
target of agreement was always the first noun.

output that could be used to determine whether
they displayed agreement errors straightforwardly.
This was because the models either failed to pro-
duce the correct preamble (i.e., the string prior to
the main verb); failed to reinflect the verb, leaving
it in the past tense; or produced the wrong verb,
which made it impossible to parse the output with
the CFG used for analysis. For this reason, we used
teacher forcing to make the models produce an
identical preamble up to the main verb, and then
forced them to produce either the singular or plural
present tense form of the target verb.5 This ensures
that every output sentence provides information
about the model’s behavior with regards to agree-
ment, since the output inevtiably reveals whether
the model considers the singular or the plural form
of the verb more likely given the correct preamble.
We ignore the remainder of the output following
the main verb for evaluation purposes.

For each example in our test dataset, we record
whether the model displayed erroneous agreement,
defined as producing the singular form of the verb
when the correct target is plural, or vice versa. Our
plots show the proportion of errors on the y-axis;
thus, higher numbers represent worse performance
and lower numbers represent better performance.
For each model, we consider results for only the
checkpoint that showed the lowest overall propor-
tion of agreement errors.

2.4 Models

We consider several T5 models, drawn from two
sources. The first are checkpoints released with
Tay et al. (2021), in (3). These models differ in
a number of respects with comparison to a “base”
model, including the total number of layers (NL),
the number of encoder layers (EL), the number of
decoder layers (DL), and the number of attention
heads (NH).

(3) a. T5 Efficient Tiny, Mini, Small, and Base6

5This meant that at each generation step, we forced the
models to predict only the correct actual token, and used
that prediction to feed the next generation step, up to the
disambiguating token at the verb.

6These models have the following architectures, which
vary in several regards relative to T5 Efficient Base. Tiny:
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b. Total number of layers (NL): T5 Efficient
Base NL02, NL04, NL08, Base (NL12)7

c. Number of decoder layers (DL): T5 Effi-
cient Base DL02, DL04, DL06, DL08, Base
(DL12)

d. Number of encoder layers (EL): T5 Effi-
cient Base EL02, EL04, EL06, EL08, Base
(EL12)

e. Number of attention heads (NH): T5 Ef-
ficient Base NH08, Base (NH12), NH16,
NH24, NH32

We do not consider other ablations here. This set
of models ranges between 16 million parameters
on the low end (T5 Efficient Tiny) and 364 million
on the high end (T5 Efficient Base NH32). They
were all pre-trained on the same dataset drawn from
the Colossal Cleaned Common Crawl (C4) corpus,
using a span-denoising objective. In total, we con-
sidered 19 T5 Efficient models.

To investigate the effects of pre-training data,
we used models provided by Aaron Mueller (p.c.).
These models each have 63 million parameters,
and were pre-trained on a span-denoising objective.
Different models were pre-trained on data drawn
from different sources, including the CHILDES
database (BabyT5), the C4 corpus (C4), Simple
English Wikipedia (SimpleWiki), and standard En-
glish Wikipedia (WikiT5). The size of the pre-
training datasets ranges from 1 million words to
1 billion words, though not every combination of
dataset size and source is represented.8 Altogether,
these comprised a separate set of 13 models.

3 Results

3.1 Model size and architecture

First, we consider results for some of the T5 Ef-
ficient models (Tay et al., 2021). Figure 1 shows
accuracy by condition and number of parameters.

For this and all future statistical results we re-
port, we fit logistic regressions using R’s glm func-
tion (R Core Team, 2022). Throughout the paper,
for each family of hypothesis tests, we used the
Bonferroni method to correct for multiple compar-
isons. As shown in (1), performance in most condi-
tions was significantly affected by model size, such
that more parameters led to a decreased error rate.

NL04 (EL04, DL04), NH04; Mini: NL04 (EL04, DL04),
NH08; Small: NL06 (EL06, DL06), NH08; Base: NL12
(EL12, DL12), NH12.

7Using the convention from Tay et al. (2021), the number
by “NL” signifies half the total number of layers; e.g., NL02
means there are 2 encoder layers and 2 decoder layers (4 total).

8BabyT5: 1M, 5M; C4: 1M, 10M, 100M, 1B; SimpleWiki:
1M, 10M, 100M; WikiT5: 1M, 10M, 100M, 1B.

The exceptions to this were the single-noun condi-
tions, the PPS PP+PP condition, the PPS RC+PP
condition, the PSS PP+PP condition, and the PSS
PP+RC condition. In all cases, this appears to be
due to the fact that even models with the smallest
number of parameters we considered achieved high
performance in these conditions, leaving little to
no room for further improvement.

We next consider which kinds of parameters
have effects. Naturally, increasing the number of
layers (for example) increases the number of param-
eters. But we can also consider whether increasing
the number of attention heads without increasing
the number of layers is beneficial. Figure 2 shows
the overall proportion of errors for the number of
encoder layers, decoder layers, total layers, and
attention heads per layer.

Both increasing the number of layers, as well
as the number of attention heads per layer, signif-
icantly improves model performance (NL: β =
−0.0780, z = −83.9, p < 2.2 × 10−16; NH:
β = −0.0870, z = −63.1, p < 2.2 × 10−16).
In addition, increases in the number of encoder
layers and in the number of decoder layers both
improve performance as well (EL: β = −0.0948,
z = −64.8, p < 2.2 × 10−16; DL: β = −0.101,
z = −68.7, p < 2.2 × 10−16). We found, how-
ever, that increasing the number of encoder lay-
ers resulted in a significantly greater increase in
performance compared to increasing the number
of decoder layers (EL − DL: β = −0.00593,
z = −2.87, p = 0.00415). The negative slope
for the difference indicates that the magnitude of
the EL effect is greater than the magnitude of the
DL effect. Thus, assigning more parameters to en-
coding layers when increasing model size appears
to carry a greater benefit with regards to overall
agreement behavior in our test dataset.

This effect could in principle have two sources.
One possibility is obvious: increasing the number
of encoder layers provides greater benefits with
regards to our tense-reinflection task and/or sub-
ject-verb agreement. But another possibility is that
models with fewer decoder layers show less reduc-
tion in performance compared to models with more
decoder layers, leaving less room for improvement
as the number of decoder layers is increased. To
investigate this, we can compare the intercepts of
the regressions. We found that the intercept for the
encoder-layer model was −0.661, while the inter-
cept for the decoder-layer model was −0.618. This
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Figure 1: Accuracy by number of parameters and condition. Bars represent 95% CIs on the beta distribution. Colored
stars indicate significance of the corresponding condition with Bonferroni-corrected α.
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Figure 2: Accuracy by ablation type. Stars indicate sig-
nificance with Bonferroni-corrected α.

indicates that the models with fewer encoder layers
are less likely to make errors than the models with
fewer decoder layers, and this difference is signif-
icant (EL − DL intercept: β = 0.0435, z = 2.53,
p = 0.01). Thus, we find evidence that the dif-
ference reflects a genuine advantage for increased
number of encoder layers on our task. We have no
ready explanation for why this should be (in prin-
ciple, agreement could be determined in either the
encoder or the decoder, or equally in both). Nev-
ertheless, we find this result interesting given the
current focus of the field on decoder-only mod-
els like LLaMA (Touvron et al., 2023) and GPT
(Brown et al., 2020; OpenAI, 2023). Our results
suggest that for some tasks, it may be possible to
more efficiently achieve higher performance with a
model that incorporates an encoder.

When considering effects of this sort by condi-
tion (which we do not plot), we again found that in
most conditions, increases in the relevant number
of layers/heads led to improved performance. How-
ever, there were exceptions, summarized in table 2.
In all other conditions, there were improvements
in performance associated with increasing the pa-
rameters of each type. The single clear pattern is
that performance in the plural subject conditions is
less often improved by increasing model size, again
likely due to the low error rate in these conditions
to begin with. It is unclear to us why this should be
the case; we recorded the number of singular and

Ablation(s) Noun(s) Structure(s)

DL, TL S –
EL, DL, TL, NH P –

NH PP PP, RC
NH PS PP

EL, DL PPP PP+PP
NH PPP PP+RC

EL, DL, TL, NH PPS PP+PP
DL, NH PPS PP+RC
EL, DL, TL PPS RC+PP
TL PPS RC+RC

EL, DL, TL, NH PSS PP+PP
DL, TL, NH PSS PP+RC
DL PSS RC+PP, RC+RC

Table 2: Summary of conditions where no improvement
associated with various ablations was found.
plural subjects in our fine-tuning data and found
that 89% of subjects were singular, while 11% were
plural, which if anything should be expected to pro-
duce higher accuracy in the singular subject con-
ditions. For instance, if the model simply assigns
higher probability to the more frequent form, this
should be correct most of the time in the singu-
lar-subject condition. One possibility (suggested
by a reviewer) is that when there are conflicting
signals about agreement, the models default to the
morphologically unmarked plural form.

Another possibility is that this behavior is due
to an artifact of how the models tokenize certain
verbs we used in our test set. In some cases, the
models tokenize a singular verb as two tokens (e.g.,
like and s for likes). Due to how we used teacher-
forcing, this meant that the models were forced to
predict identical tokens up until the disambiguating
token, which for a word like like(s) would be the
token following like. After this, the models were
forced to predict either the singular continuation,
s, or a token that was the beginning of a word (in-
dicated in the sentence piece tokenizer as tokens
that begin with a special unicode character). This
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regimen may have masked cases where the models
predictions were poor before the verb, leading the
model to enter a state where it was being forced
to choose the best continuation for a sequence that
it considers low probability to begin with. In this
case, the following token may have been chosen
erroneously, but in the plural conditions, this would
still look like the model had correctly predicted the
plural verb. Distinguishing between the possibili-
ties will require further investigation.

3.2 Amount and kind of pre-training data

We next consider the effects of pre-training data on
agreement behavior while holding model size con-
stant. We consider T5 models with 63M parameters,
pre-trained on CHILDES (MacWhinney, 2000),
Simple English Wikipedia (simple.wikipedia.org),
English Wikipedia (en.wikipedia.org), and C4 (Raf-
fel et al., 2019). Figure 3 shows the proportion of
errors by dataset type and size for each condition.

Due to the limited number of models we had
available for each source of pre-training data (2 for
CHILDES, 3 for Simple English Wikipedia, and 4
each for C4 and English Wikipedia), we classified
models as having been pre-trained on either simple
English (CHILDES, Simple English Wikipedia)
or standard English (C4, English Wikipedia). We
fit logistic regressions using the glmer function
from R’s lme4 library (Bates et al., 2015) with
random intercepts and slopes for each individual
source of data, with p-values obtained using the
lmerTest library (Kuznetsova et al., 2017). To
address statistical concerns, we used the log10 of
the dataset size in words as a predictor.

When predicting errors across all conditions,
we found a significant main effect of dataset size
(β = −0.18633, z = −6.979, p < 0.001), in-
dicating improved performance as the size of the
pre-training dataset increases. However, there was
no effect of language complexity (i.e., simple vs.
standard English) (β = −0.06758, z = −0.375,
p = 0.707), nor any interaction between complex-
ity and size (β = 0.01620, z = 0.465, p = 0.642).

As before, the effect of dataset size was signif-
icant in most conditions for both types of models.
However, as (3) shows, for models pre-trained on
simple English, more data led to a higher error
rate in the SP, SSP, and SPP conditions. In con-
trast, for models pre-trained on standard English,
all effects found went in the expected direction.
We would urge caution in over-interpreting these

results, since even the largest of the datasets we con-
sider here, at 1 billion words, is much smaller than
the C4 dataset used to pre-train the T5 Efficient
models we consider earlier, which consists of ap-
proximately 156 billion tokens (Dodge et al., 2021).
While the unit of measurement used to report the
size of these datasets differs, it seems clear that the
full C4 corpus is roughly 100 times larger than the
largest dataset used to pre-train these models. A
fuller study of properties of the different corpora
used may shed light on this behavior, though this
is beyond the scope of this paper.

Nevertheless, we find it interesting that in some
cases larger datasets led to increased errors, which
may be due to a kind of overfitting to the simpler
data that made the models less robust to longer
sentences with multiple nouns prior to the main
verb. However, notably, these conditions all have
singular subjects and plural interveners, which is
known to lead to increased agreement errors in
people. This leads us to a consideration of whether
the kinds of agreement errors the models make are
in general like those people make.

3.3 Agreement attraction
Psycholinguistic studies have found some linguis-
tic contexts lead to more agreement errors than
others. A common feature of contexts that lead to
more of these errors is the presence of a noun that
linearly intervenes between the head noun of the
subject (the correct target) and the verb that has
a different number feature from the correct target.
This is a feature in most of our conditions. For ex-
ample, more agreement errors are produced after
preambles like (4b) than after preambles like (4a)
(Bock and Cutting, 1992).

(4) a. The key to the cabinet...
b. The key to the cabinets...

Intuitively, the reason (4b) prompts more errors
than (4a) is due to the plural noun, cabinets. The
noun interferes with the correct target of agree-
ment, key, leading to increased production of an
incorrect plural verb. This kind of error is referred
to as agreement attraction.

Recent work has examined to what extent lan-
guage models replicate patterns of human language
use (e.g., Arehalli and Linzen, 2020; Brennan et al.,
2020; Hao et al., 2020; Wilcox et al., 2021). It is
possible the errors of the models we investigate
reflect a human-like understanding of agreement.
This could be true if errors are disproportionately
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Figure 3: Accuracy by dataset size, type, and condition at each model’s best overall checkpoint. Colored stars
indicate significance of the corresponding condition with Bonferroni-corrected α.

concentrated in contexts where people make rela-
tively more agreement errors. Arehalli and Linzen
(2020) investigated this question with LSTMs pre-
trained on English Wikipedia. They used preambles
taken from psycholinguistic studies of agreement
attraction, and measured the models’ predictions
for is or are as the following token. Their models
replicated some but not all agreement attraction
effects. Like people, their LSTMs showed more
attraction for distractors in PPs than distractors
in RCs, effects of adjacency in coordinate struc-
tures, and sensitivity to clause-external distractors.
However, unlike people, they were more influenced
by linear adjacency than structural proximity, and
showed no effect of notional number nor of argu-
ment vs. adjunct status of the distractor. We exam-
ine the singular-plural asymmetry, structure (PP vs.
RC) and linear adjacency (e.g., SPS vs. SSP) to
determine how similarly the T5 models we tested
behave compared to people.

3.3.1 Singular-plural asymmetry
Bock and Cutting (1992) found that people produce
more agreement errors after (4b) than after (5).

(5) The keys to the cabinet...

In other words, more errors arise with singular sub-
jects and plural interveners (SP) than with plural

subjects and singular interveners (PS).
Figure 4 shows the difference in the proportion

of agreement errors for the SP and PS conditions
by model. A positive value indicates more errors in
SP than in the PS conditions, and thus a singular-
plural asymmetry that goes in the same direction
as observed in psycholinguistic experiments.
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Figure 4: Singular-plural asymmetry by model for the
two-noun conditions. Stars indicate significance ob-
tained from χ2 tests comparing accuracy across the two
conditions with Bonferroni-corrected α.

Most models show the same asymmetry as peo-
ple; the exceptions are BabyT5, SimpleWiki 1M
and 10M, and WikiT5 10M (with only the latter
difference not statistically significant). The overall
pattern is not so surprising given fig. (1), but this
shows the differences by model.

3.3.2 Structural context of distractor
In addition to the morphologically-based singular-
plural asymmery, Bock and Cutting (1992) also
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showed that people were more likely to make errors
when the intervener was embedded in a PP (6a)
compared to when it was embedded in an RC (6b),
a structural asymmetry.

(6) a. The student in the classes...
b. The student who failed the classes...

Figure 5 shows the difference in the proportion
of agreement errors for the PP and RC two-noun
conditions. A positive value indicates more errors
in the PP conditions than in the RC conditions, and
thus a PP-RC asymmetry that matches the results
of Bock and Cutting (1992).
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Figure 5: PP-RC asymmetry by model for the two-noun
conditions. Stars indicate significance obtained from χ2

tests with Bonferroni-corrected α.

In this case, 12 of the 32 models showed a numer-
ical asymmetry in the opposite direction compared
to people.Of these, only the differences for T5 Ef-
ficient Base EL04, EL06, and NH24; and WikiT5
10M are statistically significant. Even for those
models with the expected asymmetry, it is less pro-
nounced than the singular-plural asymmetry is in
most models, with only two models showing a sig-
nificant difference in the expected direction (T5
Efficient Base NH32 and WikiT5 100M).

3.3.3 Linear vs. structural proximity
People are more likely to produce agreement at-
traction errors for distractors that are structurally
closer to the verb compared to distractors that are
linearly closer but structurally more distant. Franck
et al. (2002) found that preambles like (7a) led to
more errors than preambles like (7b).

(7) a. The helicopter for the flights over the
canyon...

b. The helicopter for the flight over the
canyons...

c. S

V

the helicopter

for the flight(s)

over the canyon(s)

As shown in (7c), the noun that mismatches the sub-
ject in number is structurally closer to the verb in
(7a) than in (7b). Figure 6 shows three asymmetries
that are relevant to this question.
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Figure 6: Comparison of multiple-distractor conditions.
Stars indicate significance obtained from χ2 tests com-
paring accuracy across the two conditions with Bonfer-
roni-corrected α.

The top plot shows the accuracy difference be-
tween structural vs. linear closeness for the single-
distractor conditions, e.g., SPS (structurally close)
and SSP (linearly close). All differences are < 0,
indicating that the models’ performance is worse
when distractors are linearly closer to the verb, with
differences for all but two models (T5 Efficient
Base EL02 and NH16) being statistically signifi-
cant. The middle plot shows the difference between
the conditions with a single structurally close dis-
tractor (e.g., SPS) and conditions with structurally
and linearly close distractors (e.g., SPP). Though
the SPP and PSS conditions contain structurally
and linearly close distractors, Franck et al. (2002)
found attraction errors were highest in the single,
structurally close distractor conditions, such that,
e.g., SPS led to more errors than SPP. The models
fail to replicate this pattern, showing worse perfor-
mance in the multiple distractor conditions than
in the single distractor conditions, since all differ-
ences are < 0. All of these differences are statisti-
cally significant. Finally, the lowest row shows the
difference between the single, linearly close dis-
tractor conditions and the multiple distractor condi-
tions. A negative value means that the model shows
more attraction with two distractors compared to
one, unlike Franck et al. (2002)’s results. Nearly all
of the models behave this way; the sole exceptions
are SimpleWiki 1M and WikiT5 1M. However, the
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negative differences for BabyT5 1M and 5M; C4
10M; SimpleWiki 100M; T5 Efficient Tiny, Mini,
Base DL08, Base NH08, Base NH24, and Base
NH32 are not statistically significant; neither of the
positive differences are statistically significant.

In general, unlike what Franck et al. (2002)
found, the models are more likely to make attrac-
tion errors when distractors are linearly adjacent
to the verb compared to when they are structurally
adjacent, and they are more likely to make errors
when there are multiple distractors that intervene
between the subject and the main verb.

A potential confound is that the locus of at-
tachment may be ambiguous in our synthetic data.
While Franck et al. (2002) controlled for this by
word choice (as shown in (7c), where the alterna-
tive “high-attachment” parse of the final modifier
would be semantically anomalous), our synthetic
test dataset did not. As such, the “correct” parse of
the three-noun conditions is potentially ambiguous.
Nevertheless, due to how our PCFG was defined,
high-and low-attachment parses of the final mod-
ifier should be equally plausible. Despite this, we
still found significant differences for most models
when the distractor was linearly adjacent to the
the verb, and when there were multiple distractors.
This suggests to us that the models’ performance
is typically significantly influenced by linear ad-
jacency, since we might have otherwise expected
at worst chance performance. Furthermore, Franck
et al. (2002) found that for people, there was little
difference between the single, structurally close
distractor conditions (e.g., SPS and PSP) and the
multiple distractor conditions (e.g., SPP and PSS),
while the models show significantly higher error
rates with multiple distractors. Thus, despite the po-
tential ambiguity, most models behave consistently
differently from people in this regard.9

4 Conclusion

We examined pre-trained T5 models to determine
how model size, architecture, dataset size, and
dataset type affected subject-verb agreement on
a tense reinflection task. We found that bigger mod-
els performed better, especially in singular-subject
conditions. In contrast, model performance was

9We have also conducted preliminary investigations on
the models’ performance using a span-denoising task on the
actual stimuli used in Franck et al. (2002), and found that
even on those stimuli, the models display essentially the same
sensitivity to linear over structural proximity, though we have
not yet conducted statistical tests.

already high even for small models in the plural-
subject conditions. Increasing the number of layers
as well as the number of attention heads per layer
result in improvements, though adding encoder lay-
ers was associated with greater improvement than
adding decoder layers.

When considering the type and amount of pre-
training data, we found increasing the amount
of pre-training data improved agreement accu-
racy overall. However, for the models trained on
simple English text (CHILDES, Simple English
Wikipedia), bigger training datasets led to worse
performance in singular-subject conditions with
linearly-adjacent distractors (e.g., SP, SSP, SPP),
despite leading to better performance in plural sub-
ject conditions. In contrast, for models trained on
standard English (C4, English Wikipedia), more
pre-training data uniformly led to increased perfor-
mance (when performance with small datasets was
not already high).

The models did not consistently display pat-
terns reminiscent of agreement attraction. While
most models showed a number asymmetry match-
ing what has been found in psycholinguistic work,
other asymmetries found in agreement attraction
errors were not present. Unlike the LSTMs exam-
ined in Arehalli and Linzen (2020) and unlike the
results of Bock and Cutting (1992), only some of
the transformer models we considered produced
more errors in PP than in RC conditions. However,
similarly to Arehalli and Linzen (2020)’s LSTMs,
the transformer models still showed more attraction
for linearly adjacent distractors compared to struc-
turally closer distractors, in addition to showing
worse performance with multiple distractors.

Our results show both the advantages and limita-
tions of increasing the size of models and datasets.
While increases in both of these independently lead
to better performance on subject-verb agreement,
an indirect indicator of hierarchical knowledge of
language, not even the largest models we consid-
ered, nor those pre-trained on the largest amounts
of data, display fully human-like behavior. Instead,
they were still susceptible to linear interference to a
much greater degree than people are (cf. Petty and
Frank, 2021). It appears these perennial issues of
hierarchical vs. linear generalization with regards
to language modeling remain a concern for trans-
formers even now.
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Abstract

Extending prior work in Graf (2018, 2020,
2022c), I show that movement is tier-based
strictly local (TSL) even if one analyzes it as
a transformation, i.e. a tree transduction from
derivation trees to output trees. I define input
strictly local (ISL) tree-to-tree transductions
with (lexical) TSL tests as a tier-based exten-
sion of ISL tree-to-tree transductions. TSL
tests allow us to attach each mover to all its
landing sites. In general, this class of transduc-
tions fails to attach each mover to its final land-
ing site to the exclusion of all its intermediate
landing sites, which is crucial for producing
output trees with the correct string yield. The
problem is avoided, though, if syntax enforces
a variant of the Ban on Improper Movement.
Subregular complexity thus provides a novel
motivation for core restrictions on movement
while also shedding new light on the choice
between copies and traces in syntax.

1 Introduction

Subregular syntax (Graf, 2018; Graf and De Santo,
2019) is a recent research program that explores
whether syntactic dependencies, when modeled
over suitable representations, fall within very re-
stricted classes in the subregular hierarchy of for-
mal (string or tree) languages. The program has
many parallels to subregular phonology (see Heinz
2018 and references therein), which has shown
that phonology is very restricted in its expressivity:
I) well-formedness conditions in phonology are
strictly local (SL), tier-based strictly local (TSL)
(Heinz et al., 2011; McMullin, 2016), or some natu-
ral extension of TSL (Graf and Mayer, 2018; Mayer
and Major, 2018; De Santo and Graf, 2019), and
II) a large number of phonological mappings from
underlying representations to surface forms are in-
put strictly local (ISL) (Chandlee, 2014; Chandlee
and Heinz, 2018), with only some falling into more
complex classes (Jardine, 2016; Heinz, 2018). The
limited nature of phonology furnishes new learning

algorithms and novel explanations of typological
gaps, and subregular syntax seeks to replicate this
success for syntax.

A lot of attention in subregular syntax has been
devoted to the operations Merge and Move in Min-
imalist syntax and Minimalist grammars (Stabler,
1997, 2011). Merge establishes head-argument re-
lations, whereas Move relates a subtree to multi-
ple positions in the structure. Graf (2018) showed
that the constraints that regulate the application of
Merge and Move in the syntactic derivation are SL
for Merge and TSL for Move, which mirrors the
central role of these two classes in phonology. But
Merge and Move are structure-building operations
and thus inherently transductive: a syntactic deriva-
tion is translated into a specific output structure.
Recently, the ISL string transductions from sub-
regular phonology have been generalized to trees
(Graf, 2020; Ji and Heinz, 2020; Ikawa et al., 2020),
and it is fairly easy to see that Merge can be con-
strued as an ISL tree transduction.1 However, ISL
tree transductions cannot handle the long-distance
dependencies induced by Move (the long-distance
nature of Move is also why the constraints on Move
are TSL but not SL). An upper complexity bound
on Move exists in the form of deterministic multi
bottom-up tree transductions (Kobele et al., 2007),
but a tighter, subregular bound remains to be estab-
lished.

This paper provides a subregular class of trans-
ductions for Move by enriching (deterministic) ISL
tree-to-tree transductions with a specific TSL mech-

1The three generalizations in Graf (2020), Ji and Heinz
(2020) and Ikawa et al. (2020) are all distinct and probably
incomparable. Graf (2020) generalizes the context-based def-
inition of ISL in Chandlee and Heinz (2018), Ji and Heinz
(2020) takes as their vantage point the finite-state machine
definition of ISL in Chandlee (2014), and Ikawa et al. (2020)
starts with the logic-based perspective of ISL string trans-
ductions. Despite these differences, all three can handle the
mapping from dependency trees to phrase structure trees mod-
ulo movement. For the rest of the paper, I will use the term
ISL tree transductions to refer to the specific version defined
in Graf (2020).
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anism that makes it possible to attach movers to
their landing sites. This is sufficient to implement
a copy-based version of movement, which is com-
monly assumed in Minimalist syntax. Producing
a structure with the correct string yield, however,
requires the ability to distinguish final landing sites
from intermediate ones so that movers can be at-
tached only to the former while the latter are filled
with traces. The extended version of ISL tree trans-
ductions in this paper cannot draw this distinction
in the general case, but it is possible in the special
case where the distinction is lexically inferrable
(in subregular terms, it is SL-1): given a mover m
with a set S := {f1, . . . , fn} of features that tell
us which movement steps m undergoes, inspection
of S is sufficient to determine which fi is the final
movement step. This is a relaxed variant of the Ban
on Improper Movement (BoIM), and I conjecture
that this output-oriented BoIM is satisfied in all
natural languages.

The paper proceeds as follows. The background
section in §2 starts with a general overview of the
assumed syntactic formalism, in particular feature-
annotated lexical items, dependency trees, and tree
tiers (§2.1). This is followed in §2.2 by a discussion
of the ISL tree-to-tree mappings in Graf (2020),
which are then extended with lexical TSL tests in
§3 to capture basic cases of movement. As we
will see in §4, this is sufficient to attach movers
to all their landing sites. But correct linearization
requires placing each mover only in its final land-
ing site, which is a harder problem and prompts
my conjecture that all languages satisfy the output-
oriented BoIM. A few remaining issues with this
overall system are discussed in §5. While care
has been taken to make the paper as approachable
as possible, it necessarily presupposes a certain
amount of familiarity with subregular linguistics,
in particular subregular syntax. The reader may
want to consult Graf (2022a,b) for a less technical
introduction.

2 Background

2.1 Features, dependency trees, and tiers

Subregular syntax measures the complexity of syn-
tax not over strings but over specific types of tree
representations. Following Graf and Kostyszyn
(2021) and Graf (2022c), I take syntactic deriva-
tions to be encoded in the form of dependency trees
where each node is a feature-annotated lexical item
(LI) in the spirit of Minimalist grammars (Stabler,

1997, 2011).

Definition 1 (Lexical item). Every lexical item is
a member of Σ × Sel∗ × Lcr∗ × Cat × ℘(Lce),
where Σ is the set of phonetic exponents, Sel is the
set of selector features F+, Lcr is the set of licensor
features f+, Cat is the set of category features F−,
and Lce is the set of licensee features f−. y
Category and selector features (by convention in
upper case) regulate the application of Merge to
establish head-argument relations. Licensor and
licensee features (in lower case) trigger Move, with
licensor features appearing on the target of move-
ment while licensee features mark the phrase that
is moving. The order of features on an LI indicates
the order of the operations in which it participates.
In contrast to standard MGs, licensee features are
unordered so that a mover with licensee features
f−1 , . . . , f

−
n targets, for each f−i , the closest prop-

erly dominating node with f+i (1 ≤ i ≤ n). The re-
moval of order for licensee features does not affect
weak generative capacity — this is an easy corol-
lary of the single movement normal form theorem
for MGs (Graf et al., 2016).2 To reduce clutter,
we omit {} for LIs with no licensee features. In
line with MG convention, I use a double colon to
separate the LI’s phonetic exponent from its feature
annotation.

Example. The noun movie corresponds to the LI
movie :: N− with phonetic exponent movie and cat-
egory feature N−. The empty T-head — commonly
assumed in Minimalist syntax as furnishing the sur-
face position for subjects — is ε :: V+nom+T−.
This means that after selecting a VP, the empty T-
head provides a landing site for subject movement
via nom+, at which point it becomes a full TP that
can be taken as an argument by another LI. The LI
′s :: N+D+D− {nom−, wh−} is a possessive marker
that takes an NP as its complement, a DP as its
specifier, is then selected by another LI with D+,
and finally undergoes two movement steps: subject
movement via nom−, and wh-movement via wh−.
The order of the two movement steps is not fixed
and depends on whether the closest properly domi-
nating LI with a matching licensor feature carries
nom+ or wh+.

Definition 2 (Dependency tree). Let Lex be a fi-
2The definition of LIs above also differs from that of stan-

dard MGs in that it does not allow any licensor features to
appear before any selector features. This is just a matter of
convenience and nothing in this paper hinges on this additional
restriction.
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nite set of LIs, and Lex(i) ⊆ Lex the set of all LIs
in Lex with i selector features. The set D of (freely
combined) dependency trees over Lex is defined
recursively: l ∈ D for all l ∈ Lex(0), and for all
d1, . . . , dn ∈ D and l ∈ Lex(n), l(dn, . . . , d1) ∈ D.
If m is the mother of node n and n has exactly i
right siblings, we say that n is the (i+ 1)-th argu-
ment of m. y
Example. A dependency tree for a simple VP is
shown below with its corresponding bare phrase
structure tree. Each mother-daughter relation in the
dependency tree encodes a head-argument relation
established via application of Merge.

laughed :: P+D+V−

the :: N+D−

clown :: N−

at :: D+P−

me :: D−

VP

DP

the clown

V′

laughed PP

at me

In general, dependency trees have to satisfy ad-
ditional linguistic conditions. The root must carry
category feature C−, and ifm’s i-th selector feature
is F+, then its i-th argument must carry category
feature F−. These constraints regulate the appli-
cation of Merge and are of little interest for the
purposes of this paper. The constrains on Move,
on the other hand, merit detailed discussion as they
illustrate the use of tree tiers.

Definition 3 (Tiers). Let d ∈ D be a dependency
tree over Lex, and let T ⊆ Lex be a tier alpha-
bet. Given a node x, the predicate T (x) is true
iff x is an LI in T . The T -tier of d is defined in
terms of T -dominance (/+T ), T -mother-of (/T ), and
T -left-sibling (≺T ), which in turn are expressed
in terms of proper dominance in d (/+), reflexive
dominance in d (/∗), and the left sibling relation in
d (≺).

x /+T y ⇔T (x) ∧ T (y) ∧ x /+ y
x /T y ⇔x /+T y ∧ ¬∃z[x /+T z ∧ z /+T y]

x ≺T y ⇔∃z[z /T x ∧ z /T y]∧
∃z, z′[z /∗ x ∧ z′ /∗ y ∧ z ≺ z′]

In order to ensure that every tier is a tree, we stip-
ulate that there is a unique node o such that ev-
ery node on tier T is either identical to o or is
T -dominated by o. We also stipulate that each leaf
is the mother of a distinguished element n. y
Example. The tier alphabet nom of the nom-tier
contains all LIs with nom− or nom+, and nothing

else. Similarly, the tier alphabet wh of the wh-tier
contains all and only those LIs that carry wh− or
wh+. The corresponding tier mother-of relations
/nom and /wh are shown in Fig. 1 with dashed and
dotted lines, respectively, for the dependency tree
for Who said that the clown laughed at me. As
shown in the same figure, these tiers can also be
depicted as separate projections of the dependency
tree.

Intuitively, tiers capture a specific kind of rela-
tivized locality (related to but distinct from Rizzi’s
(1990) notion of Relativized Minimality). If x is
the T -mother of y, then x is the closest node that
properly dominates y and belongs to a fixed subset
T of Lex. For movement, each tier factors out all
LIs that are not pertinent to that type of movement.
In order for a dependency tree to be well-formed,
the following two conditions must hold for every
f-tier, where f is some movement type (nom, wh,
and so on): I) if x carries f−, then its tier mother
carries f+, and II) if x carries f+, exactly one of
its tier daughters carries f−.

Mathematically, these conditions are expressed
for each tier T via a licensing function fT that maps
every l ∈ T to a string language over T . Tier T is
well-formed iff it holds for every node n of T with
label l and tier daughters d1, . . . , dn that d1 · · · dn
is a string in fT (l).3 For example, if l is an LI with
f+, then fT (l) is the set of all strings over T that
contain exactly one LI with f−. That every LI with
f− has a tier mother with f+ follows indirectly
from the fact that only LIs with f+ may have LIs
with f− in their daughter string.

The complexity of the conditions on Move is
measured in terms of the complexity of the string
languages used in the licensing functions. A con-
straint C on a set D of dependency trees over Lex
is in the class TSL[TSL] (where TSL is short for
tier-based strictly local) iff there is some T ⊆ Lex
such that I) fT maps every l ∈ T to a TSL-string
language in the sense of Heinz et al. 2011 (“the
daughter strings are TSL”), and II) for every d ∈ D,
C is satisfied in d iff the T -tier of d is well-formed
(“C is local over tree tiers”). The two constraints
above on movement are TSL[TSL] in this sense
(see Graf and Kostyszyn, 2021).

3The use of a string-based licensing function is necessary
because tree tiers are unranked. There is no upper bound
on how many daughters may have, and hence the licensing
relations between a mother and its daughters has to be modeled
as a licensing relation between a mother and its string of
daughters.
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ε :: T+wh+C−

ε :: V+nom+T−

said :: C+D+V−

who :: D− {nom−, wh−} that :: T+C−

ε :: V+nom+T−

laughed :: P+D+V−

the :: N+D− {nom−}

clown :: N−

at :: D+P−

me :: D−

nom-tier

o

ε :: V+nom+T−

who :: D− {nom−, wh−}

n

ε :: V+nom+T−

the :: N+D− {nom−}

n

wh-tier

o

ε :: T+wh+C−

who :: D− {nom−, wh−}

n

Figure 1: Left: dependency tree for who said that the clown laughed at me, with dashed lines representing /nom
and dotted lines representing /wh; Middle and Right: corresponding depictions as tree tiers

2.2 ISL tree-to-tree mappings

With our syntactic representations and the notion
of tree tiers firmly in place, it only remains for
us to define deterministic input strictly local (ISL)
tree-to-tree transductions before we start our inves-
tigation of movement as a subregular transduction
in §3.

Deterministic ISL transductions, also called ISL
mappings, were first defined in subregular phonol-
ogy for the string-to-string case (Chandlee, 2014,
2017; Chandlee and Heinz, 2018). The ISL string-
to-string mappings were subsequently generalized
to (non-deterministic) tree-to-tree transductions in
Graf (2020). An ISL tree transduction τ is specified
by a finite number of rewrite rules. The left-hand
side consists of a tree with one distinguished node
h that is to be rewritten — the rest of the tree just
provides the strictly local context in which this spe-
cific rule must be applied to h. The right-hand side
consists of a tree with indexed ports 21, 22, . . . ,
2n (n ≥ 0) such that each 2i is filled with the
output of τ for the i-th daughter of h. Figure 2
gives a simple example for mapping a dependency
tree without movement (and with at most two ar-
guments per LI) to its corresponding bare phrase
structure tree — the reader is advised to study this
example carefully before moving on to the formal
definition.

We first put in place some common concepts
from the tree transducer literature. A Σ-tree is a
finite tree over alphabet Σ. We assume that all
Σ-trees have a finitely bounded branching factor.
Given a Σ-tree t, each node n in t is given a unique
Gorn address a(n) (Gorn, 1967): a(n) = ε if n is
the root of t, and otherwise a(n) = ui, where u

is the Gorn address of the mother of n and i is the
number of left siblings of n. A Σ-tree context c is
the result of replacing n ≥ 1 leaves in a Σ-tree with
distinguished symbols drawn from a set of ports,
which are denoted with 2i, i ≥ 1. Given such a
context c and Σ-trees or Σ-tree contexts t1, . . . , tn,
c{1 : t1, . . . , n : tn} is the result of replacing 2i

in c with ti.
In order to determine the configurations in which

ISL rewrite rules may apply, we introduce the no-
tion of a tree disassembly.

Definition 4 (Tree dissassembly). A disassembly
of tree t at addresses b, ba1, . . . , ban is an (n+ 2)-
tuple that consists of I) t with the subtree s at b re-
placed with 21, II) s with the subtrees at addresses
ba1, . . . , ban replaced with 21, . . . , 2n, and III)
the subtrees at addresses ba1, . . . , ban. y

Example. Consider the tree t below, with each
node followed by its Gorn address in parentheses.

A(ε)

B(0)

C(00)

D(1)

E(10)

F(100)

G(11) H(12)

I(120) J(121)

K(2)

The disassembly of t at addresses 1, 10, and 120
consists of the following trees/contexts:

A

B

C

21 K

D

21 G H

22 J

E

F

I

Next we define what ISL rewrite rules may look
like and how a given rule may apply within a tree.
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A) l :: F−δ ⇒ l B) l :: γF−δ ⇒ FP

l 21

C) l :: γF−δ ⇒ FP

21 F′

l 22

Input

laughed :: P+D+V−

the :: N+D−

clown :: N−

at :: D+P−

me :: D−

Individual Outputs

VP

21

DP

the 21

clown

V′

laughed 22

PP

at 21

me

Output

VP

DP

the clown

V′

laughed PP

at me

Figure 2: ISL rewrite rules for converting movement-free dependency trees to bare phrase structure trees (top)
with example (bottom); boxes around nodes indicate which nodes should be rewritten, γ is a non-empty string of
selector features, δ is a (possibly empty) set of licensee features, and matches any node

Definition 5 (ISL rewrite rule). An ISL rewrite
rule is a triple r := 〈i, a, o〉 where the input en-
vironment i is a Σ-tree, a is the Gorn address of
some node in i, and the output context o is a Σ-tree
context. Suppose w.l.og. that i has exactly n leaf
nodes at addresses a1, . . . , an (n ≥ 1) and let i′

be the result of replacing each node at address aj
with 2j (1 ≤ j ≤ n). Then r matches tree t at ad-
dress b iff t has a disassembly 〈u, i′, u1, . . . un〉 at
addresses b, ba1, . . . , ban such that both of the fol-
lowing hold: I) t = u{1 : i′{1 : u1, . . . , n : un}},
and II) for 1 ≤ j ≤ n, the node at address aj in i
has the same label as the node at address baj in t.
A node at address ba in t can be rewritten by r iff
r matches t at address b. y
Example. Consider a rewrite rule r := 〈i, a, o〉,
with a = 0 and i as shown below (together with its
counterpart i′):

laughed :: P+D+V−

the :: N+D− {nom−}

clown :: N−

at :: D+P−

laughed :: P+D+V−

the :: N+D− {nom−}

21

22

i)

i′)

Note that the ports of i′ have addresses a1 := 00
and a2 := 1. We show that i matches the depen-
dency tree t in Fig. 1 at address b = 00100. We
first disassemble t at addresses b, ba1 = 0010000,

and ba2 = 001001. This yields four trees/contexts
u, v, u1, u2. For space reason, we only show the
subtree of u rooted in that :: T+C−.

that :: T+C−

ε :: V+nom+T−

21

clown :: N−

laughed :: P+D+V−

the :: N+D− {nom−}

21

at :: D+P−

me :: D−

22

u) v)

u1) u2)

As v is identical to i′, it holds that t = u{1 : v{1 :
u1, . . . , n : un}} = u{1 : i′{1 : u1, . . . , n : un}}.
It is also the case that the nodes of i at addresses a1
and a2 have the same labels as the nodes in t at ad-
dresses ba1 = 0010000 and ba2 = 001001. Taken
together, this means that r matches t at address b.
Consequently, r can rewrite as o the node at address
ba = 001000 in t, which is the :: N+D−. Note
that if the root of i had a third daughter labeled,
say, maliciously, i would no longer match t at any
address.

Definition 6 (Deterministic ISL transduction).
Given a set R of ISL rewrite rules, we say that R
is deterministic iff there are no two rewrite rules
〈i1, a1, o1〉 and 〈i2, a2, o2〉 in R such that o1 6= o2
and there exists a Σ-tree t and node n of t such
that n can be rewritten by both rewrite rules.

For each deterministic set R of ISL rewrite rules,
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R(t, n) denotes the unique output context o for
node n in tree t (if no such o exists, R(t, n) is un-
defined). We extend this to t in a recursive fashion:
if t contains only node n, then R(t) := R(t, n),
and if t := n(s1, . . . , sz) (each si a Σ-tree), then
R(t) := R(t,m){1 : R(t, d1), . . . , z : R(t, dz)}.
A tree-to-tree transduction τ with domain D is de-
terministic input strictly local iff there is a finite
deterministic set R of ISL rewrite rules such that
τ(t) = R(t) for all t ∈ D. In this case, we also
call τ an ISL (tree-to-tree) mapping. y

3 Movement as a subregular
transduction

Move cannot be captured with ISL tree-to-tree map-
pings. The problem is not with the determinism of
those mappings. In the formalism used in this pa-
per, Move is a deterministic operation in the sense
that the landing sites of a mover can be inferred de-
terministically from LIs’ feature annotations (and
as a result the definition of ISL mappings in this pa-
per can safely avoid many complexities in the def-
initions of non-deterministic ISL transductions in
Graf 2020). But while movement is deterministic,
it is also unbounded — a mover and its target site
can be arbitrarily far apart. Since ISL transductions
must be definable in terms of a finite set of rewrite
rules, and since each rewrite rule 〈i, a, o〉 is lim-
ited to the finite structural context given by i, ISL
transductions cannot handle such unbounded de-
pendencies. For example, we may want to rewrite
a node n that carries wh+ as a phrase whose spec-
ifier is filled by a wh-mover, but our rewrite rules
provide no means to refer to this mover unless it
happens to be very close to n. In order to capture
movement, ISL rewrite rules must be able to refer
to nodes that can be arbitrarily far away.

Tiers provide a natural solution to this problem.
We already saw in §2.1 that tiers play a key role in
movement — even though movement is unbounded
over dependency trees, it is local over tiers. All we
have to do is to incorporate this tier-based locality
into ISL transductions.

Suppose, then, that we enrich our rewrite rules
with another type of ports, called tier ports. If we
are to rewrite a node n that is part of some f-tier,
then its output context can include f-tier ports. The
left-hand side of rewrite rules now also specify
a specific test, and a tier port can only pick out
the node that passes this test (the node must be
unique!). The use of tier tests in the rewrite rules

is why I call this new class of transductions ISL
tree-to-tree mappings with TSL tests.

In this paper, the TSL tests are particularly sim-
ple as each one corresponds to a fixed set of LIs
that pass the test. Just like the licensing function of
TSL in §2.1 could define string languages of vari-
ous complexity levels all the way up to recursively
enumerable, the tests for tier ports can be of arbi-
trary complexity. But at least for movement, the
maximally restricted class of lexical tests (in sub-
regular parlance, SL-1 tests) is sufficient. Hence
this paper restricts itself to the even weaker sub-
class ISL tree-to-tree mappings with lexical TSL
tests.

Let us consider how this system captures simple
cases of movement. To this end, we add a new
rewrite rule to the set in Fig. 2.

D) l :: T+wh+C−

wh : wh−

⇒ CP

2wh
1 C′

C 21

This rule targets C-heads that select a TP and pro-
vide a landing site for wh-movement. Every such
C-head is rewritten as a CP where the complement
is filled by the output of the first daughter in the de-
pendency tree, whereas the specifier is filled by the
output of the unique node x such that the C-head is
the wh-tier mother of x and x carries wh−. This is
sufficient to connect movers to their landing sites.

Rule D uses two new notational devices: dashed
lines for the tier mother-of relation, and tier ports.
The dashed line in D leads to a special node that
starts with the name of a tier (wh in this case), fol-
lowed by a colon, and the set of LIs on this tier
that can be picked out by the tier port 2wh

1 . Here
wh− is used as a shorthand for the set of all LIs that
carry wh−. The tier port 2wh

1 is to be filled with the
output of the unique node that is a wh-tier daughter
of the node to be rewritten and carries wh−.

In a more elaborate case where the C-head also
attracts some other kind of f-mover, the rule would
look as follows.

E) l :: T+wh+f+C−

f : f− wh : wh−

⇒ CP

2f
1 CP

2wh
1 C′

C 21

A fully worked out example is shown in Fig. 3 for
the sentence who said that, where the subject who
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first undergoes subject movement to Spec,TP and
then wh-moves to Spec,CP.

Quite generally, adding lexical TSL tests to ISL
tree-to-tree mappings only requires three minor
tweaks. First, each rewrite rule is extended to also
include a finite (and possibly empty) collection of
TSL tests. Second, the notion of a rewrite rule
matching a tree at a given address b is expanded to
also require partial tier matches: if the rule speci-
fies that the node at address a is an f-tier mother
of an element that passes some test φ, then the
node at address ba in the dependency tree must be
part of the f-tier and must have exactly one node x
among its f-tier daughters such that x passes test
φ. Finally, the definition of R(t) is amended to in-
clude substitution into tier ports. The full definition
that incorporates all these changes is given in the
appendix.

Inspection of the example in Fig. 3 quickly re-
veals that the solution laid out above does not quite
work as expected for movement. It attaches every
mover to all its landing sites, and as a result the bare
phrase structure tree contains multiple instances of
who. In other words, the rewrite rules above im-
plement a copy-theory of movement, but they do
not capture the fact that moved phrases are only
pronounced in their final landing site. A solution
is readily available, though, provided one can tell
the final movement step of a mover just from its
feature make-up.

4 Linearization and the output-oriented
BoIM

Our previous solution for movement runs into prob-
lems because movement actually consists of two
steps: attaching the mover to all its landing sites,
and delinking it from all positions that are not its
final landing site.

Delinking itself is fairly simple from the perspec-
tive of ISL transductions. Consider the example
below for delinking the moving who in Fig. 3 from
its base position under said.

F) said :: D+D+V−

nom−

⇒ VP

t V′

said 21

Here nom− is a shorthand for any LI carrying nom−.
The rewrite rule thus replaces the left daughter with
a trace provided it undergoes subject movement.
Note that since we only care about well-formed

dependency trees where every licensee feature has
a matching licensor feature on some other node,
the fact that the left daughter carries nom− guar-
antees that it will undergo subject movement and
hence should not be linearized as an argument of
the verb. The feature make-up of the LI thus deter-
mines whether its base position should be replaced
with a trace.

Things are trickier, though, when we consider
intermediate landing sites such as Spec,TP for who.
Since licensee features are not ordered, we can-
not tell whether who :: D− {nom−, wh−} first un-
dergoes nom-movement or wh-movement. The as-
sumption that licensee features are unordered is
crucial for the tier-based perspective of movement,
it cannot be easily done away with. It seems, then,
that our delinking trick for base positions does
not carry over to intermediate landing sites like
Spec,TP. We cannot tell from the local context of
the T-head whether the subject mover with nom−

will move on to a higher position via wh-movement,
or if it has already done so and will thus stop in
Spec,TP. One may be tempted to try ideas like
merging the nom-tier and the wh-tier into a single
tier, but these do not work either because then a
mover and its landing site may no longer stand in
a mother-daughter configuration. While a math-
ematical proof is still outstanding, it seems that
there is no way in the current system to correctly
distinguish final from intermediate landing sites.

Linguists will point out, though, that Spec,TP
cannot be the final landing site for who due to
the Ban on Improper Movement (BoIM): once a
mover undergoes an instance of A′-movement like
wh-movement, it can no longer undergo any A-
movement steps such as subject movement. The
BoIM rules out sentences like the illicit who won-
ders [t John saw t], where who first wh-moves to
Spec,CP of the embedded clause before undergoing
subject movement into the matrix clause.

In light of the BoIM, it is readily apparent from
the feature make-up of who :: D− {nom−, wh−}
that it first undergoes nom-movement and then wh-
movement. Consequently, the purely feature condi-
tioned delinking strategy still works and one could
something like rule G below for rewriting the T-
head. Rule H for rewriting the C-head looks al-
most exactly the same except that we insert the
mover and not a trace. In both rules, {nom−, wh−}
matches every LI that carries at least those two
licensee features.
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Input

ε :: T+wh+C−

ε :: V+nom+T−

said :: D+D+V−

who :: D− {nom−, wh−} that :: D−

Individual Outputs

CP

2wh
1 C′

C 21

TP

2nom
1 T′

T 21

VP

21

who

V′

said 22

that

Output

CP

who C′

C TP

who T′

T VP

who V′

said that

Figure 3: The dependency tree for who said that is rewritten into the corresponding bare phrase structure tree.

G) ε :: V+nom+T−

nom:{nom−, wh−}

⇒ TP

t T′

T 21

H) ε :: T+wh+C−

wh:{nom−, wh−}

⇒ CP

2wh
1 C′

C 21

At least in the case of subject movement and wh-
movement, then, ISL tree-to-tree transductions
with TSL tests allow us not only to associate a
mover with all its landing sites, but also to produce
linearized output structures with the correct string
yield.

In order for this solution to extend to all of syn-
tax, however, a stronger property has to be in place.

Definition 7 (Output-oriented BoIM). For no LI
l with set

{
f−1 , . . . , f

−
n

}
of licensee features may

there be well-formed dependency trees t1 and t2
such that I) both t1 and t2 contain l, and II) l’s final
movement step is fi in t1 and fj in t2 (i 6= j). y
In other words, for every LI l one can always pre-
dict its final movement step based purely on inspec-
tion of the LI itself.

I conjecture that the output-oriented BoIM is a
universal property of movement across languages.
This is prompted by two observations. First, a
preliminary analysis of the MG corpus (Torr, 2017)

suggests that the output-oriented BoIM holds for
the trees in that treebank. In fact, the licensee
features used in that corpus seem to obey an even
stronger restriction: for every LI l that carries, say,
f− and g−, it is always the case that l undergoes
f-movement before g-movement. While corpora
represent just a finite slice of a possibly infinite
range of licit configurations, it is encouraging that
the conjecture clears this first hurdle with ease.

The second argument is more indirect: While the
syntactic literature has noted potential exceptions
to the BoIM, those do not directly carry over to
the system used here. Consider the case of hyper-
raising in Zulu (see Zyman 2023 and references
therein). Here a DP undergoes A-movement from
a position in the embedded clause to some posi-
tion in the matrix clause, yielding a configuration
similar to the illicit English sentence Mary seems
[that will go home]. Minimalists assume for in-
dependent reasons that Mary, rather than moving
directly from the embedded subject position to the
matrix subject position, has to stop in Spec,CP
of the embedded clause. As the latter is an in-
stance of A′-movement, hyperraising seems to in-
volve an A′-movement step to Spec,CP followed
by A-movement to the subject position of the ma-
trix clause. But this A′-movement step is driven
by theoretical considerations related to successive
cyclic movement, which is treated very differently
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in MGs and subregular syntax. The phenomena that
are used to motivate successive cyclic movement,
e.g. wh-agreement in Irish, can be captured with-
out such movement in TSL syntax (Graf, 2022c).
Without successive cyclic movement, though, hy-
perraising is no longer a counterexample to the
standard BoIM, let alone the output-oriented BoIM
that is needed in this system of ISL transductions
with lexical TSL tests.

If the output-oriented BoIM turns out to be
empirically robust, then the limits of ISL tree-to-
tree transductions with TLS tests provide a novel
motivation for the otherwise mysterious BoIM
(which would then be a stronger implementation of
the output-oriented BoIM). Subregular complexity
might offer a computational third-factor explana-
tion (Chomsky, 2005) for one of the most robust
universals of syntax.

5 Remarks and open issues

The discussion so far has assumed that all move-
ment steps are overt. Minimalist syntax and MGs
both allow for covert movement steps, which do
not affect linearization. In such systems, the final
landing site of LI l with respect to linearization
may be distinct from the landing site of its final
movement step. This does not introduce any new
challenges, though, as long as the following con-
dition is met: for every set S :=

{
f−1 , . . . , f

−
n

}
of

licensee features and every type of output structure
(e.g. phrase structure tree, LF), one can tell directly
from S whether fi-movement (1 ≤ i ≤ n) creates
a copy or a trace at the landing site.

Another issue arises with successive cyclic
movement. A common approach in MGs posits that
successive cyclic movement is not feature-triggered
but rather a result of the output mapping inserting
traces and/or copies at specific positions along a
movement path. ISL mappings with lexical TSL
tests struggle with this because a node that is not
on tier T cannot use T to test whether it is along a
movement path. At the same time, putting, say, all
C-heads on a tier T together with all wh-movers
does not help either as the T -daughter of some C-
head may then just be another C-head rather than
the desired wh-mover. Instead of a transduction-
based model of successive cyclic movement, one
based on tier constraints may be more promising
(cf. Graf, 2022c).

Finally, the complexity of copies vs. traces mer-
its further exploration. Kracht (2001) observes that

one can freely translate between copies and traces,
but we saw that copy-based movement is simpler
than trace-based movement because the latter re-
quires additional restrictions on movement. Simi-
larly, transductions with copying are more complex
than linear transductions, yet the latter are suffi-
cient for trace-based movement. This suggests that
the subregular notions of complexity crosscut tradi-
tional ones in unexpected ways that may sometimes
favor more complex machinery in one area in order
to reduce complexity in another. These connections
could only be hinted at in this paper but are ripe
for future exploration from a mathematical perspec-
tive, e.g. in terms of DAG transductions (Drewes,
2017) as dependency trees with tier relations are
essentially DAGs with labeled edges.

Conclusion

I have introduced (deterministic) ISL tree-to-tree
transductions with TSL tests as a new class of sub-
regular transductions that expands the ISL tree-
to-tree transductions of Graf (2020) with the tier-
based view of movement in Graf (2018, 2022c)
in order to provide a subregular model of move-
ment as a mapping from syntactic derivations (rep-
resented via dependency trees) to output structures.
This class of transductions is still conceptually sim-
ple while offering enough expressivity to easily
relate each mover to all its landing sites. The trans-
ductions in this class are too weak to distinguish fi-
nal from intermediate landing sites, which is essen-
tial for obtaining the correct string yield from a syn-
tactic derivation. However, it seems that a variant
of the Ban on Improper Movement restricts syntax
in just the right way to draw the necessary distinc-
tion between final and intermediate landing sites
based purely on the feature make-up of the mover.
It remains to be seen whether the output-oriented
BoIM proposed here is indeed empirically viable,
but the possibility is tantalizing as it promises a
computational grounding for one of the best-known
and most robust syntactic constraints.
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Definition of ISL mappings with lexical
TSL tests

We now allow tree contexts to also contain tier
ports, which are ports that are indexed with the
name of a tier, e.g. 2T

i . We also amend our tree
substitution notation to allow for the use of tier
ports: c {Ti : t} is the result of replacing tier port
2T

i in context c with t. The indices of tree ports
will be interpreted slightly differently from stan-
dard ports. Whereas 2i refers to the (output of the)
i-th daughter of the node being rewritten, 2T

i will
refer to the (output of the) node picked out by the
i-th TSL test over tier T .

A lexical TSL test over tier T is a formula of
the form φT (n, x) := n /T x ∧ x ∈ U , where
U is some subset of T . To avoid various com-
plications related to non-determinism, we only
consider the special case where φT (n, x) is de-
terministic over some set L of trees. That is to
say, for every t ∈ L and node n of t, there is at
most one x such that φT (n, x) is true. We also
call φT (n, x) L-deterministic. Slightly abusing
notation, we let φT (t, n) denote the unique node
x (if it exists) such that φT (n, x) holds in t. Fi-
nally, we define Φ as a finite family of lexical
TSL tests φT1,1, . . . , φT1,z1 , . . . , φTk,1, . . . , φTk,zk

indexed by pairs of tier names and positive natural
numbers.

An ISL rewrite rule with lexical TSL tests over
tiers T1, . . . , Tk is a pair 〈r,Φ〉 such that r :=
〈i, a, o〉 is an ISL rewrite rule (where omay contain
tier ports). We say that 〈r,Φ〉 is L-deterministic iff
every φT,i ∈ Φ is L-deterministic. Given such an
L-deterministic rule ρ := 〈r,Φ〉 and tree t ∈ L, ρ
matches t at node n with address b iff I) r matches
t at address b, and II) for every φT,i ∈ Φ, φT,i(t, n)
exists. As with ISL rewrite rules, a node at address
ba in t can be rewritten by ρ := 〈〈i, a, o〉 ,Φ〉 iff ρ
matches t at address b.

A set R of ISL rewrite rules with TSL tests
over tiers T1, . . . , Tk is L-deterministic iff
{r | 〈r,Φ〉 ∈ R} is a deterministic set of ISL
rewrite rules and every r ∈ R is L-deterministic.

Note that this excludes any setR containing at least
two rules that only differ in their TSL tests.

Given such an L-deterministic set R, R(t, n)
denotes the unique output context o for node n
in tree t ∈ L. We extend this to t in a recursive
fashion: If t contains only node n, then R(t) :=
R(t, n). If t := m(d1, . . . , dz), then R(t) is

R(t,m){1 : R(t, d1), . . . , z : R(t, dz),

T11 : R(t, φT1,1(t,m)), . . . ,

T1z1 : R(t, φT1,z1(t,m)), . . . ,

Tk1 : R(t, φTk,1(t,m)), . . . ,

Tkzk : R(t, φTk,zk(t,m))}

A tree-to-tree transduction τ with domain D is
deterministic input strictly local with lexical TSL
tests iff there is a finite set R of ISL rewrite rules
with TSL tests such that R is deterministic over
D and τ(t) = R(t) for all t ∈ D. In this case,
we also call τ an ISL (tree-to-tree) mapping with
lexical TSL tests.
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Abstract 

Segmentation of texts into discourse and 

prosodic units is a ubiquitous problem in 

corpus linguistics and psycholinguistics, 

yet best practices for its evaluation – 

whether evaluating consistency between 

human segmenters or humanlikeness of 

machine segmenters – remain  

understudied.  Building on segmentation 

edit distance (Fournier & Inkpen 2012, 

Fournier 2013), this paper introduces a 

new measure for evaluating similarity 

between two segmentations of the same 

text with multiple, mutually exclusive 

boundary types, accounting for varying 

identifiability and confusability between 

these types. We implement a dynamic 

programming algorithm for calculation 

specifically geared towards this type of 

segmentation problem, apply it to a case 

study of intonation unit segmentation 

measuring inter-annotator agreement, and 

make suggestions for interpreting results. 

1 Introduction 

In computational corpus linguistics and 

psycholinguistics, many types of annotation and 

experimental tasks can be seen as segmentation 

problems, where a text is broken up into segments. 

These segments can be morphemes, tokens (i.e. 

tokenisation), prosodic, syntactic and interactional 

units (such as intonation units, sentences, 

utterances and turns), as well as larger segments 

of discourse like topics. 

When multiple annotators, whether human or 

machine, have annotated the same text, the 

question arises as to how to measure the degree of 

divergence. There are multiple motivations for 

this question. Methodologically, we often want to 

evaluate annotation schemes and annotator 

training་ (e.g. Lin 2009), as well as humanlikeness 

of computational segmentation models. 

Theoretically, comparing the consistency of 

different types of segmentation sheds light on 

human perception of boundaries, such as how 

boundaries are perceived (e.g. Troiani et al. 2023). 

This paper focuses on one type of problem: 

segmentation using a set of mutually exclusive 

boundary types. Punctuation prediction (Lu & Ng 

2010), for example, can be seen as this task: a text 

is divided using a set of mutually exclusive 

punctuation marks. Consider, as an example, the 

following unpunctuated, 5-word text: 

London Bridge is falling down  

We assume that each word is potentially followed 

by a punctuation mark, so there are 5 possible 

spots to place boundaries. Under this situation, 

there cannot be more than one punctuation mark 

between two words (unlike an application where, 

for example, one segments a text into both 

sentences and paragraphs, and hence a space may 

be both a sentence boundary and a paragraph 

boundary). Assuming there are three candidate 

punctuations, comma, period and question mark, 

the sets of choices are thus (∅ represents no 

boundary): 

 
Figure 1: Schematic illustration of the type of 

segmentation problem explored in this paper, where 

each potential boundary can be one of a fixed set of 

mutually exclusive boundary types. 

In the computational literature, various metrics 

for evaluating segmentation differences have been 

proposed and examined (e.g. Beeferman et al. 

Text segmentation similarity revisited: A flexible  

distance-based approach for multiple boundary types 
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1999, Pevzner & Hearst 2002, Lamprier et al. 

2007, Franz et al. 2007, Peshkov et al. 2013, 

Peshkov & Prévot 2014). To our knowledge, 

however, none are specifically geared towards this 

type of problem. An additional complication of 

this paper is that our method must work for both 

monologic and dialogic texts, which none of the 

previous methods have focused on. 

In this paper, building on Fournier & Inkpen 

(2012) and Fournier (2013), we propose a new 

metric, flexible segmentation similarity ( 𝑆𝑓 ), 

allowing not just for gradient similarities between 

boundary types, as discussed also by Fournier 

(2013), but also for differentiating insertion and 

deletion of different boundary types. We also 

discuss a simulation-based approach to calculate 

Cohen’s 𝜅  inter-annotator agreement for this 

measure. We apply the method to a case study of 

intonation unit (IU) segmentation, where part of 

the NCCU Taiwan Mandarin Corpus (Chui & Lai 

2008) was manually segmented into IUs, and each 

IU boundary was classified according to boundary 

intonation preceding it. 

2 Previous work 

Many evaluation metrics have been applied to 

segmentation, including match percentage (Lin 

2009), conventional measures of classification 

performance like precision, recall, F1 value and 

accuracy, windows-based approaches like 𝑃𝑘 

(Beeferman et al.  1999) and WindowDiff 

(Pevzner & Hearst 2002), and edit distance-based 

methods (Fournier & Inkpen 2012, Fournier 2013). 

Our measure builds on the last approach due to 

significant disadvantages of the rest. 

2.1 Problems with non-edit distance-based 

metrics 

The pros and cons of these methods are widely 

discussed in the literature (e.g. Beeferman et al. 

1999, Pevzner & Hearst 2002, Lamprier et al. 

2007, Franz et al. 2007, Fournier & Inkpen 2012, 

Peshkov et al. 2013, Peshkov & Prévot 2014), but 

several problems stand out. Firstly, conventional 

classification performance measures and match 

percentage fail to account for ‘near-misses’ 

(Pevzner & Hearst 2002), where two annotators 

place the ‘same’ boundary in different but close 

locations. This is often the case in intonation unit 

boundary identification: different boundary-

marking acoustic cues can be spread across 

multiple words, creating fuzzy boundaries (Barth-

Weingarten 2016: 6-7).  Treating the problem as 

simple classification unduly penalises such cases. 

For example, Troiani et al. (2023) find that 

English speakers have very poor performance on 

segmenting Kazakh texts into intonational 

boundaries when the many near-misses are 

ignored; this was likely due to uncertainty about 

which part of the recording corresponded to which 

part of the transcript. 

Secondly, conventional classification 

performance measures and windows-based 

metrics are asymmetric (Fournier 2013): We 

evaluate one annotation set against another; 

switching the places of the two annotations results 

in different numbers. So these measures can only 

compare one annotation against a gold standard, 

but not when there is no ground truth (e.g. 

between two equally-trained human annotators). 

Thirdly, all non-edit-distance-based measures 

do not account for multiple boundary types, which 

often arise in corpus linguistics, and treat all 

mistakes as ‘equal’, ignoring differences in 

difficulty between boundary types (cf. Qian et al 

2016 in the tokenisation context). 

2.2 Edit distance-based metrics 

The edit distance-based approaches Segmentation 

Similarity (S) (Fournier & Inkpen 2012; 

henceforth F&I) and Boundary Similarity (B) 

(Fournier 2013) are the closest to our proposed 

measure, as they account for near-misses, are 

symmetric, and allow multiple boundary types. 

They are briefly reviewed here with our simplified 

notation, which will be used throughout this paper. 

In the following, we will refer to the elements 

between which boundaries can be added as tokens. 

This may be roughly words in tasks like 

intonation unit segmentation, or a larger unit like 

turn-constructional units in turn segmentation, 

sentences in topic segmentation, and so on. For S 

and B, the number of potential boundaries 𝑁 is the 

number of tokens minus 1. The potential 

boundaries in a text will be denoted 

𝑏1, 𝑏2, … , 𝑏𝑁−1 ; for example, in the Figure 1 

example, 𝑏1 is between London and Bridge, 𝑏2 

between Bridge and is, and so on. The actual 

boundaries from annotator i will be denoted 

𝑏𝑖,1, 𝑏𝑖,2, … , 𝑏𝑖,𝑁−1 . Since these measures deal 

with non-mutually exclusive boundary types, each 

of 𝑏𝑖,1, 𝑏𝑖,2, … , 𝑏𝑖,𝑁−1  is a set of boundaries. For 

example, when simultaneously annotating turn 
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and sentence boundaries, one potential boundary 

could be both a turn boundary and a sentence 

boundary. 

For calculating S, one set of annotations is 

transformed into another, minimising the number 

of operations taken. There are three possible 

operations: a) adding boundaries, b) deleting 

boundaries, and c) transposing boundaries, i.e. 

moving a boundary to a different position, in order 

to align it with a boundary placed by another 

annotator. Thus, if one annotator put a boundary 

in 𝑏1,1 but not in  𝑏1,2, and another put a boundary 

of the same type in  𝑏2,2 but not in  𝑏2,1, then we 

can transpose the boundary from 𝑏1,1  to 𝑏1,2  to 

match the second annotator. This only takes one 

operation, as opposed to deleting in 𝑏1,1  and 

adding it to 𝑏1,2, which takes two, thus preventing 

the problem of overpenalising near-misses. 

The similarity is then calculated thus: 

𝑆 =
𝑁 − #(edits)

𝑁
= 1 − 

#(edits)

𝑁
  

S is thus a ratio in [0, 1]: the larger S is, the closer 

the annotations. F&I also mention the possibility 

of scaling the number of boundaries ‘moved’ in 

transposition so that e.g. 2 transpositions might 

count for fewer than two edits. 

B differs from S in two ways. Firstly, the 

normalisation is different. The score is normalised 

by the number of edits plus the number of correct 

boundaries. This in essence means the number of 

total boundaries perceived by the two annotators, 

assuming that transposed boundaries are the ‘same’ 

boundary across annotators. This prevents biasing 

annotators towards a smaller number of 

boundaries, i.e. longer segments. This is useful for 

tasks like intonation unit segmentation: in 

languages like English and Mandarin, intonation 

unit boundaries in spoken language are typically 

denser than punctuation boundaries in written 

language. Annotators may be influenced more by 

orthography if biased towards fewer boundaries. 

Secondly, instead of the number of edits, the 

distance between the two annotations is calculated 

more flexibly by assigning different costs to 

different edit operations. Although addition and 

deletion retain the cost of 1, B allows for 

substitutions between boundary types. For B, 

boundary types are organised on an ordinal scale, 

and the cost of substituting one boundary for 

another is their distance on their ordinal scale 

normalised by the total number of boundary types. 

The formula for B is as follows: 

𝐵 = 1 −  
𝐶𝑡𝑜𝑡𝑎𝑙

#(edits) + #(correct boundaries)
  

where 𝐶𝑡𝑜𝑡𝑎𝑙 is the total cost of operations. 

Although S and B are excellent measures of 

similarity between different annotations, they still 

have disadvantages. Firstly, although B allows for 

different similarity between different boundary 

types, recognising that some boundaries may be 

more confusable than others, it makes the strong 

assumption that these differences are gradable on 

an ordinal scale, which is problematic for 

intonation unit segmentation (see Section 4). 

Secondly, by setting addition and deletion cost 

by default to 1, it ignores the fact that some 

boundaries may be easier to identify than others. 

Deleting an easy boundary should cost more than 

deleting a difficult one. 

Finally, S and B are excellent for written and 

monologic texts, but are unsuited for multi-party 

conversations where tokens are not organised in a 

single linear sequence, since two people’s speech 

can overlap. Our proposed method addresses all 

three of these weaknesses. 

3 Proposed method 

3.1 Definition of 𝑺𝒇 

Like Segmentation Similarity (S) and Boundary 

Similarity (B), we evaluate similarity first by 

transforming one annotation to the other and 

calculating the cost, normalising this, and then 

subtracting the similarity from 1 to get a distance. 

We present two options for normalising: following 

𝑆 in using the number of potential boundaries (𝑆𝑓) 

and following B in using the number of edits plus 

correct boundaries (𝑆𝑓
𝐵) (pace Fournier (2013), we 

argue (Section 4) that both normalisation 

approaches can be useful in different situations): 

𝑆𝑓 = 1 −
𝐶𝑡𝑜𝑡𝑎𝑙

𝑁
 

𝑆𝑓
𝐵 = 1 −

𝐶𝑡𝑜𝑡𝑎𝑙

#(edits) + #(correct boundaries)
 

The calculation of 𝐶𝑡𝑜𝑡𝑎𝑙  departs substantially 

from S and B. We allow for user-defined addition, 

deletion and substitution costs using the similarity 

matrix 𝑀𝑇 . The values in the matrix are the 

similarity (on the interval [0, 1]) between the two 

different boundary types. One minus the value is 

the cost of substitution between these two 

boundary types. The final row and column are for 

the lack of a boundary. Here is a sample matrix 

with two boundary types 𝑇 = {𝑝, 𝑞}: 
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𝑀𝑇 = (

1 𝑠𝑝𝑞 𝑠𝑝∅

𝑠𝑞𝑝 1 𝑠𝑞∅

𝑠∅𝑝 𝑠∅𝑞 1
) 

Here, 𝑠𝑎𝑏 is one minus the cost of substituting a 

for b, and ∅ refers to the lack of a boundary. Thus, 

1 − 𝑠∅𝑞  is the addition cost of 𝑞, and 1 − 𝑠𝑝∅  is 

the deletion cost of 𝑝. When a symmetric score is 

desired, e.g. comparing two human annotators, the 

matrix must be symmetric as well, i.e. 𝑠𝑥𝑦 =

𝑠𝑦𝑥  ∀𝑥, 𝑦 ∈ 𝑇 ∪ {∅} . This means substituting x 

for y has the same cost as substituting y for x, and 

insertion and deletion have identical costs. By 

default, this matrix is the identity matrix 𝐼, i.e. all 

substitutions, additions and deletions have a cost 

of 1. An example of user-defined 𝑀𝑇 will be given 

in Section 4; in cases where existing annotations 

by expert annotators are available, confusion 

matrices from those raters can be used instead to 

determine 𝑀𝑇  in evaluating similarity between 

novice annotators’ work. In the rest of this paper, 

addition and deletion will be treated as special 

cases of substitution involving ∅. 

Transposition cost can also be set flexibly for 

different boundary types, represented by 𝑐𝑡 , a 

vector with as many entries as there are boundary 

types. In this paper, we will set transposition cost 

at half of insertion/deletion cost, i.e., 𝑐𝑡 =
1

2
(𝟏 −

[𝑠𝑝∅  𝑠𝑞∅]
𝑇

). A glossary of notation is in Table 1. 

𝑆𝑓 , 𝑆𝑓
𝐵 Flexible segmentation distance 

normalised respectively with N and 

#(𝑒𝑑𝑖𝑡𝑠) + #(𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠) 

𝐶𝑡𝑜𝑡𝑎𝑙 Total cost of transforming between 

annotations 

∅ No boundary 

N Number of potential boundaries 

𝑏𝑖 ith potential boundary 

𝑏𝑖,𝑗 Annotator j’s annotation of 𝑏𝑖 

𝑇 Set of boundary types 

𝑀𝑇 Similarity matrix for 𝑇 

𝑠𝑝𝑞  Similarity between p and q 

𝑡1[𝑥] xth element of boundary list 𝑡1 

𝑡1[−𝑥] 𝑡1 without the xth element 

𝑡1[𝑥: 𝑦] xth to yth elements of 𝑡1 

𝑐𝑡 Vector of transposition costs 

tr(𝑡1, 𝑥, 𝑦) boundary list 𝑡1 with the xth and yth 

elements swapped 

𝜅 Cohen’s kappa 

𝑆𝑓
𝑐ℎ𝑎𝑛𝑐𝑒 Chance-level similarity 

Table 1: Glossary of notation used in this paper. 

3.2 Algorithm for calculating 𝑺𝒇 

Our algorithm first separates the text by 

conversational participants, since tokens from the 

same participant cannot overlap, and thus can be 

taken as one whole running text. We calculate the 

cost for each participant separately, then take the 

sum. Also, in our use cases, the end of the text 

also has a boundary type, so number of potential 

boundaries N is equal to the number of tokens. 

For each participant, we first identify all the 

potential boundaries where both annotators put a 

boundary, regardless of whether their types match. 

Our boundary types are mutually exclusive, so 

when two people put different boundaries in the 

same place, they can be safely assumed to have 

identified the ‘same’ boundary, and just classified 

it differently. We treat these as substitutions and 

store the total cost of these operations. 

We then further split the text into smaller lists 

of boundaries at those points where both 

annotators have a boundary. Consider the 

following situation: 

 𝑏1 𝑏2 𝑏3 𝑏4 𝑏5 𝑏6 

Annotator 1 𝑝  𝑝   𝑞 

Annotator 2 𝑞  𝑝 𝑝  𝑝 

We will split the text at the points 𝑏1,  𝑏3 and  𝑏6, 

leaving two boundary lists: [𝑏2] and [𝑏4 𝑏5].1 We 

discard the boundary lists where both annotators 

have no boundaries since such lists are necessarily 

identical. In this case, we discard  [𝑏2], retaining 

only the single list [𝑏4 𝑏5] . For the remaining 

boundary lists, we trim all the common leading 

and trailing ∅s in both lists, since it is pointless to 

move boundaries to those locations; this leaves 

only [𝑏4] in the example. 

We then calculate the similarity between the 

two annotators for each of these segments. For 

each segment, we run a recursive algorithm, 

called parDist, to find the minimum cost of 

transforming one annotation to the next. At each 

step, we first trim any common leading and 

trailing ∅s again. We then choose the next step 

depending on properties of the two boundary lists: 

• If the two boundary lists have size 1, 

then we simply return the substitution 

cost (which is 0 if they are the same 

boundary, and >0 otherwise). 

 
1 We assume that annotators will not place a single 

boundary of indeterminate location in more than one spot; 

thus, Annotator 2 is committing to there being two distinct 

boundaries at 𝑏4  and 𝑏5. 
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• If the length is >1, we look for positions 

where both boundary lists have a 

boundary. If one such position exists, we 

perform a substitution at it, then perform 

parDist on the remaining contiguous 

portion(s) of the boundary list. For 

example, if the lists have five elements 

and this substitution happens at the 

fourth element, then we run parDist 

again on two boundary sub-lists: the first 

three elements and fifth element. If the 

substitution on this list happens at the 

first element, then we run parDist on the 

segment from the second to fifth item. 

• If there are no positions where both 

boundary lists have a boundary, but both 

lists have at least one non-∅ boundary, 

then we attempt both transposition and 

substitution and take the minimum. For 

transposition, we attempt to move the 

first non- ∅  boundary in the second 

boundary list so that it matches up with 

an element in the first boundary list, then 

run parDist on the resultant boundary 

lists. For substitution, we simply replace 

the first element of the second boundary 

list with the first element of the first 

boundary list, then run parDist on the 

remaining boundaries. We take the 

transposition cost if it is smaller, and 

vice versa. 

• Finally, if one of the boundaries consists 

of all 0s, then we perform substitution 

until all the differences are eliminated. 

A rough presentation of parDist in pseudocode  

is presented in Algorithm 1, where 𝑡1 and  𝑡2 are 

the two annotations, 𝑡1[1]  refers to the first 

element of the boundary list, 𝑡1[−1] refers to the 

boundary list without the first element, 𝑡1[𝑥: 𝑦] 
refers to the xth to yth elements of 𝑡1 , and 

tr(𝑡1, 𝑥, 𝑦) refers to 𝑡1  with the xth and yth 

elements swapped. Figure 2 illustrates the 

algorithm  with a concrete example. 

function parDist(𝒕𝟏, 𝒕𝟐): 

remove all common leading and trailing ∅s from 𝑡1 

and 𝑡2 

if length(𝑡1) ≤ 1: 

    return 1 − 𝑠𝑡1[1],𝑡2[1]  

else: 

   if 𝑡1[1] = 𝑡2[1]: 
      return parDist (𝑡1[−1], 𝑡2[−1]) 

   else if(𝑡1[1] ≠ ∅ & 𝑡2[1] ≠ ∅): 

     return 1 − 𝑠𝑡1[1],𝑡2[1]  

 + parDist (𝑡1[−1],  𝑡2[−1]) 

   else if ∃ 𝑖 such that 𝑡1[𝑖] ≠ ∅ & 𝑡2[𝑖] ≠ ∅: 

      take the smallest 𝑖 
      return 1 − 𝑠𝑡1[𝑖],𝑡2[𝑖]  

         + parDist (𝑡1[1: 𝑖 − 1],  𝑡2[1: 𝑖 − 1]) 
        + parDist (𝑡1[𝑖 + 1: length(𝑡1)], 

 𝑡2[𝑖 + 1: length(𝑡1)]) 
   else if 𝑡1[1] = ∅ & ∃ 𝑖 such that 𝑡1[𝑖] ≠ ∅: 

     take the smallest 𝑖 
     return min(1 − 𝑠𝑡1[1],𝑡2[1]    

        + parDist(𝑡1[−1], 𝑡2[−1]), 

       𝑐𝑡[𝑡2[1]] ⋅ (𝑖 − 1)  

        + parDist(𝑡1,  tr(𝑡2, 1, 𝑖))) 
   else if 𝑡2[1] = ∅ & ∃ 𝑖 such that  𝑡2[𝑖] ≠ ∅: 

      take the smallest 𝑖 
      return min(1 − 𝑠𝑡1[1],𝑡2[1]   

        + parDist(𝑡1[−1], 𝑡2[−1]), 

       𝑐𝑡[𝑡2[𝑖]] ⋅ (𝑖 − 1) 

         + parDist(𝑡1, tr(𝑡2, 1, 𝑖))) 
   else: 

       return 1 − 𝑠𝑡1[1],𝑡2[1]   

+ parDist(𝑡1[−1],  𝑡2[−1]) 
Algorithm 1: Pseudocode for parDist  

 
Figure 2: An illustration of parDist, assuming 𝑀𝑇 =
𝐼 (i.e. substitutions including insertion and deletion 

cost 1), transpositions cost 0.5, and 𝑇 = {𝑝, 𝑞, 𝑟} . 

Firstly, all positions with a boundary in both 

annotations are considered substitutions. There are 

then two options: Either move the r of the second 

annotation to the right, or delete it. In the first case, 

the p must then be deleted, resulting in a cost of 3.5. 

In the second case, one can then either bring the p to 

the left then substitute it for an r (cost = 4.5), or add 

an r and delete the p (cost = 5). The minimum cost 

of all these possibilities is then 3.5. 

The actual implementation of the algorithm 

involves several components omitted from the 

pseudocode for a cleaner presentation. Two of 

these components aim at storing information 

about the process. Firstly, the number of actions 

hitherto performed is stored and accumulated 

across iterations of parDist to calculate the 
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denominator of 𝑆𝑓
𝐵 . Secondly, information about 

each operation – including the operation type, old 

and new boundary type, and old and new 

location – can be stored for later access so they 

can be used for analysing machine segmentation 

errors or points of inter-annotator disagreement 

(Section 4 has an example). 

Two other components aim at speeding up 

computation. Firstly, the function stores the 

minimum cost so far among the total costs that 

have been calculated. When the cumulative cost in 

the branch of possibilities currently being 

explored has exceeded the stored minimum, the 

function returns NA, thereby aborting the branch, 

instead of continuing the calculation. Secondly, 

every time parDist is calculated, the resulting cost 

and number of operations are stored in a two-

dimensional dictionary with 𝑡1  and 𝑡2  (stored as 

strings) for keys. Before each instance of parDist, 

the algorithm looks up the dictionary and simply 

takes the result from there if the operation has 

been done before. These result in significant speed 

gains, especially when calculating similarity 

between simulated annotations for inter-annotator 

agreement (see Section 3.3). 

A property of this algorithm is that a boundary 

may be both transposed and substituted if the cost 

of doing so is lower than insertion plus deletion. 

For the calculation of #(𝑒𝑑𝑖𝑡𝑠) in the 𝑆𝑓
𝐵 formula, 

such edits will only be counted once, in the spirit 

of normalising by the total number of boundaries. 

A consequence of this property is that the 

algorithm differs from one which decomposes the 

process of similarity calculation into a two-step 

process, where boundaries are first aligned 

ignoring boundary type, and then substitution 

costs are calculated. This is because substitution 

cost can affect whether a boundary in 𝑡1  which 

corresponds to ∅  in 𝑡2  is simply deleted, or 

transposed to match with a nearby boundary by 

the other annotator. 

Our algorithm was implemented in R (R Core 

Team 2022). It takes input data formatted as an R 

data.frame, and outputs 𝑆𝑓 and 𝑆𝑓
𝐵, along with 

a record of each operation that took place. We 

additionally wrote a function to convert files in 

the .rez format imported from Rezonator (DuBois 

et al. 2020) into the required format for the 

function. The algorithm is available as an R 

package (https://github.com/rezonators/ 

segsimflex). 

3.3 Inter-annotator agreement 

The similarity score measures how similar two 

annotations are, but how similar counts as ‘good’? 

Converting the similarity to inter-annotator 

agreement (IAA)  (Passonneau & Litman 1993, 

Hearst 1997) allows us to directly measure 

agreement among annotations. We use Cohen’s 𝜅, 

which compares the actual similarity between the 

annotations against chance-level similarity. 
Following the definition of Cohen’s 𝜅 , we 

calculate chance-level similarity based on the 

assumption that each boundary is a categorical 

random variable where each category is a 

boundary type or no boundary. The annotations 

are independent and identical within annotators 

and independent but non-identical across 

annotators. For example, with two boundary types 

p and q, the categories are {p, q, ∅}, and each 

annotator has their own 𝑃(𝑝) , 𝑃(𝑞)  and 𝑃(∅) 

values. Category probabilities are estimated with 

the maximum likelihood estimator, i.e. the 

proportion of that category within the annotation. 

Based on these estimated null distributions, we 

then estimate chance-level similarity 𝑆𝑓
𝑐ℎ𝑎𝑛𝑐𝑒 

using the expected value of the similarity score. 

We use a simulation approach since it is difficult 

to find a closed form for it. At each simulation 

step, we draw a boundary type for each annotator 

at each boundary, then calculate the similarity 

score. The average similarity over k simulation 

steps is the estimated expected value of the 

similarity score. Cohen’s 𝜅 is then calculated thus: 

𝜅 =
𝑆𝑓 − 𝑆𝑓

𝑐ℎ𝑎𝑛𝑐𝑒

1 − 𝑆𝑓
𝑐ℎ𝑎𝑛𝑐𝑒

  

Hence, a negative score means below-chance 

performance, a positive score is above-chance, 

and perfect performance results in 𝜅 = 1. 

Both 𝑆𝑓 and 𝑆𝑓
𝐵 can be used for 𝜅. If 𝑆𝑓 is used, 

then the form of 𝜅  used here resembles the 

standard form of 𝜅 in classification tasks, except 

with gradient similarity between categories and an 

added possibility of transposition. Nevertheless, 

𝑆𝑓  may still be advisable at least in some 

situations (see Section 4.4 for discussion). 

A common criticism of 𝜅  in classification 

contexts (Byrt, Bishop & Carlin 2010) is that large 

differences in raters’ individual category 

distributions will deflate chance-level agreement 

and push 𝜅 up. In cases where this is expected to 

be a substantial problem, 𝑆𝑓
𝑐ℎ𝑎𝑛𝑐𝑒 can instead be 
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calculated using an overall estimation of category 

probabilities that pools together both raters’ 

annotations, turning the IAA into Scott’s 𝜋. 

Another common criticism is that a situation 

with unbalanced categories will lead to drastically 

higher expected proportion of agreement and thus 

lower 𝜅 values than one with balanced categories. 

This phenomenon is likely to occur with 𝑆𝑓-based 

𝜅, since non-boundaries are much more common 

than boundaries, but it is not necessarily 

problematic: A text with many non-zero 

boundaries is ‘harder’ to get right than a text with 

few non-zero boundaries, so if the aim is 

measuring rater performance (rather than the 

quality of the annotation itself), texts with more 

non-zero boundaries should have higher IAA than 

those with fewer non-zero boundaries but a 

comparable level of similarity. If the phenomenon 

is problematic, 𝑆𝑓
𝑐ℎ𝑎𝑛𝑐𝑒 can instead be calculated 

based on the assumption that all boundary types 

(including no boundary) have equal probability, 

turning the IAA measure into Bennett’s S. 𝑆𝑓
𝐵 -

based 𝜅  ignores non-boundaries in normalising 

agreement, and thus is less likely to be subject to 

this phenomenon; if unevenness among boundary 

types is an issue, one may modify Bennett’s S 

such that 𝑆𝑓
𝑐ℎ𝑎𝑛𝑐𝑒 is calculated by getting a pooled 

estimate of the probability having no boundary 

from the two raters, then assuming the distribution 

of boundary types is uniform. 

4 Case study: intonation unit 

segmentation 

To illustrate the proposed measure, we apply 

our proposed measure to exploring inter-annoator 

agreement in a prosodic segmentation task. 

4.1 Data and problem 

We are manually segmenting the NCCU 

Taiwan Mandarin Corpus (Chui & Lai 2008) into 

intonational units (IUs), a unit of prosody 

corresponding to short bursts of speech (roughly 

corresponding to intonation phrases or breath 

groups in other prosodic frameworks). So far, we 

have annotated texts TM001, 004, 009, 016, 025, 

036, 049. Before IU segmentation, we tokenised 

the texts to obtain potential boundary locations, 

following principles in Huang et al. (1997, 2017). 

Two independent coders perform IU 

segmentation using four main boundary types, 

called endnotes, representing broad classes of 

prosodic contours near the end of the IU, each of 

which signals a type of transitional continuity 

(DuBois et al. 1993, DuBois 2020): Rising 

intonation indicating appeal, as in questions and 

uptalk (denoted by ?), continuing intonation 

indicating continuation of the prosodic sentence (a 

comma ,), falling intonation indicating finality (a 

period .), and a boundary marker for truncated IUs, 

i.e. IUs that ended before completion (a dash --). 

Some boundaries were uncategorised, usually 

because the IU consisted solely of elements with 

no discernable prosody, e.g. laughter or tsk-tsk; 

these are denoted as semicolon (;). Earlier on in 

the process, texts were segmented by manually 

editing text files; later, we performed 

segmentation using the Rezonator program 

(DuBois et al. 2020). Figure 3 shows the same 

tokens from one of the texts, TM001, as 

segmented differently by the two annotators who 

worked on this text. We calculate similarity scores 

and IAA on these texts to evaluate the quality of 

our annotation training and workflow and identify 

avenues for improvement. 

(a)  

(b)  

Figure 3: Example annotations in TM001. (a) and (b)  

are from two different annotators. The first boundary 

was deemed final by the first annotator, and 

continuing by the second. The word 但 dàn ‘but’ was 

put in a separate IU by the first annotator, but not the 

second. 

4.2 Parameter values 

For each pair of annotators, we calculated four 

values: 𝑆𝑓 and 𝑆𝑓
𝐵 with an identity distance matrix, 

and the same values with the following custom 

similarity matrix: 

 
Rising and falling intonation have the most 

dissimilar pitch contour of the four, hence a 

similarity of .25. Truncated intonation differs from 
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all others in not following a complete prosodic 

gestalt, and resembles continuing in having no 

rise/fall; hence the similarity with continuing is.5, 

and the similarity with the rest is .25. Rising and 

falling endnotes are substantially different 

intonationally from an IU-medial word, so their 

similarity with no boundary is 0; continuing and 

truncated IUs have less clear pitch cues and hence 

are harder to detect consistently, and receive .25 

similarity. For simplicity, unclassified boundaries 

are ignored by treating them as identical to all 

other boundaries. Transposition costs are set at 

half the insertion/deletion cost for each endnote. 

One may ask why we use these hand-crafted 

‘theoretical’ values, instead of deriving values 

from empirical confusion matrices. This is 

because we want these values to reflect only 

difficulty in prosodic perception. However, actual 

boundary perception can be affected by 

grammatical structures derived from lexical 

content (Kuang et al. 2022). For example, in 

Hegemonic American English, statements often 

end with rises, and questions with falls (e.g. 

Bolinger 1999), and this is attested in our 

Mandarin data too. Though we tell annotators to 

consider only prosody, not content, they may still 

be affected by syntax and lexis, e.g. putting a 

question mark (?) after a syntactic/pragmatic 

question even though it has falling intonation. 

Such errors, even if common, need to be counted 

more heavily than errors caused by acoustic 

similarity. A possible alternative is to use 

confusion matrices from expert annotations 

assumed to not contain the syntax-based errors, 

which we do not pursue in this study because we 

do not yet have such datasets. 

4.3 Results 

Similarity scores are shown in Figure 4. As 

expected, I-based scores are lower than 𝑀′𝑇-based 

ones, and 𝑆𝑓  > 𝑆𝑓
𝐵  regardless of the similarity 

matrix, with 𝑆𝑓  values nearing 1. The variation 

between texts is small within each measure, 

especially for 𝑆𝑓; there is greater variation in 𝑆𝑓
𝐵. 

The 𝜅 values are shown in Figure 5, where it is 

clear that 𝑆𝑓
𝐵-based 𝜅’s remain substantially lower 

than 𝑆𝑓 -based ones and I-based than 𝑀′𝑇 -based 

ones. Overall, IAA scores are substantially lower 

than raw similarity scores, which is expected since 

they take into account the fact that chance-level 

similarity can be quite high. There is also less 

divergence between different measures for IAAs 

than raw similarities, suggesting that there is less 

difference as to how much each measure diverges 

from the chance-level value of that measure. 

  
Figure 4: Various similarity metrics applied to texts 

 
Figure 5: 𝜅 values for various similarity metrics. 

 
Figure 6: Distribution of operations performed on 

endnotes. ‘Match’ means full match, ‘del’ means 

deletion, ‘tr’ means transposition; the rest are 

substitutions between boundary types. Transposition 

plus substitution operations are not attested, and thus 

not shown. 

Figure 6 shows the distribution of operations 

performed on each type of endnote in the 

annotations. The rate of full matches (i.e. both 

position and boundary type match) is quite low; 

falls are matched less than 50% of the time, the 

rest even less. Yet deletions and especially 

transpositions are rare, indicating high consistency 

for boundary positions: continuations have the 

most deletions, and even there the rate is less than 

20%. Most of the errors are inconsistencies 

between boundary types. Truncations often 

correspond to continuations and sometimes to 

falls by other annotators. Falls and continuations 

are often confused for each other, while appeals 

correspond to falls around 70% of the time. 
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4.4 Discussion 

The distributions of operations explain many of 

the patterns seen in the similarity score measures. 

Because most of the operations are substitutions 

between boundary types, once 𝑀′𝑇  is used and 

correspondences between easily confusable 

boundary types are thereby downweighed, the 

similarity score rises drastically compared to 𝐼 -

based similarities. The dramatic disagreement 

with respect to boundary types may be attributable 

to a) lexical tone, which complicates perception as 

listeners must calibrate their perception of final 

pitch trajectories to the individual lexical tones; 

and b) the fact that words near IU boundaries, 

especially final particles, are often spoken very 

rapidly. Additionally, many appeal endnotes (?) 

were marked as falling (.) by the other annotator; 

manual inspection reveals some situations where 

the pitch contour is clear, but the one of the 

annotators decided between . vs ? based on syntax 

or pragmatics instead. Future annotator training 

will emphasise the importance of ignoring non-

prosodic factors and calibrating intonational 

judgements according to lexical tones. 

Notably, even when we consider Cohen’s 𝜅, a 

marked divergence between 𝑆𝑓  and 𝑆𝑓
𝐵  remains. 

This is likely partially due to inherent weaknesses 

with using 𝑆𝑓
𝐵  for 𝜅 . In calculating chance-level 

similarity, the simulated annotations will have a 

comparable number of boundaries to the original 

annotations, because of how the distribution we 

simulate from is defined. But random placement 

of boundaries results in many mismatched 

boundaries, and hence a larger number of 

boundaries than actual annotations, which will 

have much more matches. This artificially inflates 

𝑆𝑓
𝐵,𝑐ℎ𝑎𝑛𝑐𝑒

 compared to 𝑆 𝑓
𝐵 , deflating 𝑆 𝑓

𝐵-based 𝜅. 

Thus 𝑆𝑓  may be the more suitable choice in 𝜅 

calculation, and the moderate agreement indicated 

by 𝑆𝑓 -based 𝜅  is a better indication of our 

annotation performance. This matches intuitively 

with the fact that boundary locations are mostly 

matched, while agreement on continuations and 

falls (the most common contours) are fair. The 

property of 𝑆 𝑓
𝐵 discussed here may not have been 

noticed by Fournier (2013), who argued for B 

over S, because he focused on cases with full 

misses (insertion/deletion) and near-misses  

(captured by transpositions). He did not explore 

datasets like ours where substitutions between 

boundaries with largely matched positions are the 

primary operation. 

Although we believe the B-based denominator 

is not optimal in this case, we do not claim that N 

is preferable in every scenario. For example, when 

one’s main goal is to compare across texts to 

evaluate the difficulty of computationally 

detecting boundaries in each one, normalising 

with N unduly favours texts with sparser 

boundaries (longer segments). In ongoing work, 

we applied the measure to a case of evaluating a 

machine segmenter against different texts to 

determine the difficulty of segmenting different 

text types, and preliminary results show that 𝑆𝑓 

can give misleading results where 𝑆𝑓
𝐵  does not. 

We believe it is best to choose the denominator 

according to the specific dataset and problem. 

5 Conclusion 

In this paper, we introduced flexible segmentation 

similarity 𝑆𝑓 , a new edit distance-based measure 

of segmentation similarity involving multiple 

mutually exclusive boundaries with fully flexible 

transposition, substitution, and addition/deletion 

costs. We justified its properties, presented an 

algorithm for computation, and extended it to 

inter-annotator agreement. We applied it to a case 

of intonation unit segmentation, where we 

evaluated consistency between manual 

segmentations and found ways to improve 

annotator training. We argued that, contrary to 

Fournier (2013), the number of boundaries is not 

always the best choice of denominator in 

calculating segmentation similarity for inter-

annotator agreement when there is high agreement 

on boundary location but low agreement on 

boundary type. We hope our measure will find 

other use cases, especially where gradient 

differences between boundary types are needed. 
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Abstract

In this paper, we apply distributional methods
to Czech data to compare the predictions of
two views of inflectional paradigms, as sys-
tems of orthogonal morphosyntactic feature
oppositions, or as systems of multilateral con-
trasts between pairs of morphologically related
words, not necessarily reducible to orthogonal
features.

We define two predictive tasks that probe what
it means for two pairs of paradigm cells to
contrast in the same features: in the first, we
train a classifier to discriminate between two
paradigm cells; in the second, we train a fam-
ily of models to predict the vector of the word
in one cell from that of the word in another
cell. By varying the choice of training and
test data, we show that (i) a model trained on
data that contrast in a manner orthogonal to its
test data performs on average at chance level,
while (ii) a model trained on data that contrast
in a manner parallel to its test data performs
on average better than chance but still worse
than a model trained on the same pair of cell
used for testing. This is incompatible with the
predictions of a reductive view of paradigms as
systems of feature contrasts.

1 Introduction

The notion of an inflectional paradigm is an invalu-
able tool for linguistic description and has played
an increasing role in linguistic theory in the last
few decades. Explicit reference to paradigm struc-
ture has been claimed to be necessary to account
for phenomena as diverse as patterns of syncretism
(Zwicky, 1985; Stump, 1993; Baerman et al., 2005),
competition between synthetic and periphrastic ex-
pression of morphosyntactic categories (Ackerman
and Stump, 2004; Kiparsky, 2005; Bonami, 2015),

and universal constraints on the shape of inflection
systems (Carstairs-McCarthy, 1994; Ackerman and
Malouf, 2013). While many of these claims have
been met with scepticism by some (see e.g. papers
collected in Bachrach and Nevins 2008), there is
general agreement that some form of paradigmatic
organisation plays a role in morphology, if only
through the existence of collections of pairs of ex-
pressions that differ by contrasting in the same mor-
phosyntactic features. Hence although morpholo-
gists may differ in how they think of paradigms,
they will agree that there is something in common
between the way man relates to men and dog re-
lates to dogs. That something in common is what
we will call a paradigmatic relation.

That being said, there is variation in the liter-
ature regarding the way paradigms are defined,
and differences between these formulations are sel-
dom discussed. A common position, ultimately
grounded in Jakobson (1958) and cogently articu-
lated by Wunderlich and Fabri (1995, p. 266), holds
that “A paradigm is an n-dimensional space whose
dimensions are the attributes (or features) used for
the classification of word forms”. In other words,
paradigms can be reduced to a system of orthogonal
contrasts in morphosyntactic feature values.1 This
claim is appealing when we look at some very-well
behaved inflection systems. Consider the paradigm
of an Italian adjective in Table 1. Every cell in
that paradigm can be defined as the combination of
a number and a gender value. If this holds in gen-
eral, it suggests that paradigm structure is entirely

1Note that we follow Matthews (1991) in calling ‘mor-
phosyntactic’ whatever features are relevant to the organi-
sation of inflectional paradigms. Some of these will be se-
mantically relevant, others not. Our usage departs from that
of Corbett (2012), who would call some of the features we
discuss here ‘morphosemantic’.
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MAS FEM

SG buono buona
PL buoni buone

Table 1: Paradigm of Italian BUONO ‘good’.

IND IMP
PRS PST

FI
N

IT
E

1 eat ate —
SG 2 eat ate eat

3 eats ate —
1 eat ate —

PL 2 eat ate eat
3 eat ate —

N
FI

N PART eating eaten
INF eat

Table 2: Paradigm of English EAT as a system of orthog-
onal oppositions. Periphrastic forms ignored.

derivative of a system of feature oppositions.
This view of paradigms becomes less appeal-

ing as soon as we move away from well-behaved
declension systems. In conjugation systems, it of-
ten is the case that orthogonal feature oppositions
are unhelpful. English conjugation provides an
extreme example of that situation. Table 2 is our
best attempt at presenting the paradigm of an En-
glish verb as a system of orthogonal oppositions.
Multiple problems arise: some feature oppositions
are neutralised (no tense distinction in the imper-
ative or infinitive), and some paradigm cells are
non-existent (no 1st or 3rd person imperatives).
Most importantly, there is a disconnect between
the shape of the paradigm as motivated by feature
oppositions and the inventory of forms filling that
paradigm: with the exception of BE, no lexeme
uses more than 5 distinct forms to fill 17 cells, and
arbitrary collections of cells exhibit systematic syn-
cretism — e.g. all non-3rd present form, imperative
forms, and the bare infinitive.

The observation of such discrepancies naturally
leads one to revise their expectations as to the
paradigmatic organisation. Spencer (2013), Boyé
and Schalchli (2016), and Stump (2016) make
slightly different proposals for distinguishing differ-
ent notions of paradigms. Bonami and Strnadová
(2019), building among others on Štekauer (2015)
and Blevins (2016, chap. 5), take another route
illustrated for English verbs in Figure 1. Under this
view, contrasts in content between sets of pairs
of words, materialised in the figure by vertical
alignments across morphological families, are the

PLAIN

PST

PST.PTCP PRS.PTCP

PRS.3SG

eat

ate

eaten eating

eats

drink

drank

drunk drinking

drinks

Figure 1: English verbal paradigms seen as a system of
basic contrasts in content.

primitive notion from which paradigms are defined.
Analysis of such paradigms in terms of orthogonal
features is a further step that may be more or less
useful and insightful depending on the system un-
der examination. Crucially, paradigms (horizontal
planes in Figure 1) and paradigm cells (vertically
aligned collections of words) exist independently
of such a featural analysis.

In this paper, we explore empirically the pre-
dictions of the two basic conceptualisations of
paradigm structure outlined above. Focusing on
cases where a feature-based definition of paradigms
seems warranted as in Table 1, we ask to what ex-
tent the featural composition of the paradigm can
be trusted. For example, is the contrast between
masculine singular and plural really the same as
the contrast between feminine singular and femi-
nine plural? To answer that question, we explore
contrasts between pairs of words (nouns or adjec-
tives) in Czech using distributional vectors familiar
from distributional semantics. Note that distribu-
tional vectors typically capture both syntactic and
semantic contrasts between words. While this is
sometimes an embarrassment when disentangling
the two is important, it is fine for our purposes, as
paradigmatic contrasts may be semantically potent
or not.

Section 2 provides a precise definition of what
it means for two pairs of cells to encode contrasts
that are parallel, orthogonal or neither. We then
use this definition to lay out predictions on the
expected structure of the distributional vector space
under the assumption that paradigms are defined by
features. In Section 3 we present two experiments
testing these predictions: in the first experiment,
we train classifiers to discriminate between vectors
of words from two paradigm cells, while in the
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F.SG.NOM F.SG.GEN F.SG.ACC

F.PL.NOM F.PL.GEN F.PL.ACC

M.SG.NOM M.SG.GEN M.SG.ACC

M.PL.NOM M.PL.GEN M.PL.ACC

case

nu
m

be
r

ge
nd

er

Figure 2: Illustrative organisation of a paradigm as a sys-
tem of orthogonal featural contrasts. In this example,
we have three features, namely case, number and gender,
represented as three geometric dimensions. Paradigm
cells are represented as points in 3D space combining
a particular value for each feature.

second experiment, we train a model to predict the
vector of a word in one paradigm cell from that of
the word in another paradigm cell. In both cases,
we compare the quality of prediction of models
trained on data from the same pair of cells, from a
parallel pair of cells, or from an orthogonal pair of
cells. Section 4 discusses the implications of our
findings for morphological theory, and Section 5
outlines avenues for future work.

This paper presents a terminological difficulty,
as the term ‘feature’ has different meanings in the
context of descriptive and theoretical morphology
and in the context of computational linguistics and
machine learning. To alleviate that difficulty, we re-
frained from using the term at all when discussing
machine learning, talking of predictors or variables
instead; and we prefixed feature with morphosyn-
tactic wherever there was potential for ambiguity.

2 Predictions

In this section, we define ways of comparing how
inflected forms of the same lexeme differ in mean-
ing and use this to derive predictions of the claim
that paradigms reduce to featural contrasts.

For the sake of exploring the featural organi-
sation of paradigms, we assume that each cell in
a paradigm can meaningfully be mapped to a mor-
phosyntactic description which we formalise as
a functional relation between a set of features F
and a set of values V , where no two features can
map to the same value.2 Given two paradigm

2We follow Stump and Finkel (2013) in assuming that the
list of paradigm cells can be a proper subset of the set of all
such functional relations, leaving room for the description of
systems such as that exemplified with English conjugation
above. The requirement that no two feature map to the same

(a) parallel (b) orthogonal (c) neither

Figure 3: Types of relations between pairs of cells.

cells a and b, we note S(a, b)
def
= {v | f : v ∈

a ∧ ¬f : v ∈ b} the set of feature values specific
to a when compared to b. We then say that two
pairs of contrasting cells (a, b) and (a′, b′) are par-
allel if S(a, b) = S(a′, b′) and S(b, a) = S(b′, a′).

We likewise note C(a, b)
def
= {f |∃v∃w[f : v ∈

a ∧ f : w ∈ b ∧ v ̸= w]} the set of features along
which a and b contrast, and then call two pairs of
cells orthogonal if they do not share any contrast,
i.e. C(a, b) ∩ C(a′, b′) = ∅.

For purposes of illustration, we will use the ex-
ample laid out in Figure 2 of a system with two bi-
nary features (number and gender) and one ternary
feature (case), and represent visually each feature
as a geometric dimension. The definitions of paral-
lelism and orthogonality are illustrated in Figure 3.
Note that we can find parallel pairs of contrasts
where the contrasting cells have no feature in com-
mon (bottom left). Note also that our notion of
parallelism does not extend to situations where the
two contrasts involve the same features but differ-
ent values (middle right): in that situation, contrasts
are neither parallel nor orthogonal.

Given these definitions, we can now derive our
predictions. Let us assume that we have satisfactory
representations of the content of inflected words
in a language (combining semantic and syntactic
information). Let us also assume that paradigmatic
relations are fully reducible to some correct de-
scription in terms of feature contrasts. Then, given
two pairs of words (v, w) and (v′, w′) filling cells
(a, b) and (a′, b′) of some paradigm:

• If (a, b) and (a′, b′) are parallel, then the con-
tent of v and w should differ in exactly the
same way as the content of v′ and w′ differ.
Hence if we define a predictive task which
relies on capturing the relationship between

values is purely motivated by mathematical elegance, and
could easily be dropped.
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cells a and b, it should be immaterial whether
we train our system on data from cells a and b
(what we call intrinsic prediction) or cells a′

and b′ (what we call extrinsic prediction).

• If (a, b) and (a′, b′) are orthogonal, then the
contrast between the content of v and w is
unrelated to the contrast between the content
content of v′ and w′. Hence if we define a pre-
dictive task which relies on capturing the re-
lationship between cells a and b and train our
system on data from cells a′ and b′, we should
witness dramatically poor performance, at the
chance level.

In Section 3, we test these predictions on data
from Czech nouns and adjectives. Czech nouns
inflect for 2 numbers (singular, plural) and 7 cases
(nominative, genitive, dative, accusative, vocative,
locative, instrumental), leading to a 2-dimensional
system with 14 cells, while adjectives also inflect
for 4 genders (masculine animate, masculine inani-
mate, feminine, neuter) and 3 grades (positive, com-
parative, superlative), leading to a 4-dimensional
system with 168 cells. In the interest of tractabil-
ity, we restrict attention to the positive grade of
adjectives and the three main structural cases (nom-
inative, genitive, accusative). This leads for nouns
to 6 cells in 2 dimensions, and for adjectives to
24 cells in 3 dimensions — see Tables 3 and 4 for
examples. We also leave out from consideration
orthogonal contrasts forming a corner, as in the
top example of column (b) in Figure 3, as sharing
of a cell between the two pairs is likely to affect
performance.

3 Experiments

3.1 Data
We use distributional representations of Czech
word vectors from the vector spaces provided by
Kyjánek and Bonami (2022). These models were
trained by applying word2vec (Mikolov et al.,
2013) to the SYN v9 corpus (Křen et al., 2021),
a large corpus of contemporary edited text com-
piled, lemmatised and tagged by the Czech Na-
tional Corpus team (4,719M tokens; 7.3M lem-
mas; 362M sentences). Vectors were trained on
the concatenation of tokens and POS tags, and
hence in effect represent a form filling a partic-
ular paradigm cell. For instance FEM.NOM.SG

and NEU.NOM.PL malá from Table 3 get separate
representations. This is crucial for our purposes:

POSITIVE GRADE

MA MI FEM NEU

NOM malý malý malá malé
GEN malého malého malé malého
DAT malému malému malé malému

SG ACC malého malý malou malé
VOC malý malý malá malé
LOC malém malém malé malém
INS malým malým malou malým

NOM malí malé malé malá
GEN malých malých malých malých
DAT malým malým malým malým

PL ACC malé malé malé malá
VOC malí malé malé malá
LOC malých malých malých malých
INS malými malými malými malými

COMPARATIVE GRADE

MA MI FEM NEU

NOM menší menší menší menší
GEN menšího menšího menší menšího
DAT menšímu menšímu menší menšímu

SG ACC menšího menší menší menší
VOC menší menší menší menší
LOC menším menším menší menším
INS menším menším menší menším

NOM menší menší menší menší
GEN menších menších menších menších
DAT menším menším menším menším

PL ACC menší menší menší menší
VOC menší menší menší menší
LOC menších menších menších menších
INS menšími menšími menšími menšími

SUPERLATIVE GRADE

MA MI FEM NEU

NOM nejmenší nejmenší nejmenší nejmenší
GEN nejmenšího nejmenšího nejmenší nejmenšího
DAT nejmenšímu nejmenšímu nejmenší nejmenšímu

SG ACC nejmenšího nejmenší nejmenší nejmenší
VOC nejmenší nejmenší nejmenší nejmenší
LOC nejmenším nejmenším nejmenší nejmenším
INS nejmenším nejmenším nejmenší nejmenším

NOM nejmenší nejmenší nejmenší nejmenší
GEN nejmenších nejmenších nejmenších nejmenších
DAT nejmenším nejmenším nejmenším nejmenším

PL ACC nejmenší nejmenší nejmenší nejmenší
VOC nejmenší nejmenší nejmenší nejmenší
LOC nejmenších nejmenších nejmenších nejmenších
INS nejmenšími nejmenšími nejmenšími nejmenšími

Table 3: Paradigm of Czech MALÝ ‘small’. Cells used
in the experiments are highlighted in boldface.

SG PL

NOM holka holky
GEN holky holek
DAT holce holkám
ACC holku holky
VOC holko holky
LOC holce holkách
INS holkou holkami

SG PL

NOM cíl cíle
GEN cíle cílů
DAT cíli cílům
ACC cíl cíle
VOC cíli cíle
LOC cíli cílech
INS cílem cíli

Table 4: Paradigms of two Czech nouns: feminine
HOLKA ‘girl’ and masculine inanimate CÍL ‘goal’. Cells
used in the experiments are highlighted in boldface.
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since syncretism is rampant in Czech inflection,
distributional representations of raw strings would
be useless to make comparisons across paradigm
cells. We used the tagging distributed with the cor-
pus, which was obtained automatically using the
MorphoDiTa tool (with a reported accuracy over
95%, Straková et al., 2014). In our experiments,
we use a 100-dimensional vector space trained as
a continuous bag of words (CBOW) model.3 We
also used the inflectional morphological dictionary
MorfFlexCZ 2.0 (Hajič et al., 2020), which con-
tains 125.3M triplets of word form and its respec-
tive lemma and tag, to sample vectors of tokens
with relevant morphosyntactic categories. Note
that MorfFlexCZ and the SYN corpus share the
same tagset.

For the first experiment, we sampled 500 random
word vectors for each paradigm cell under investi-
gation, allowing us to have combined datasets for
classification of size 1000. We included only word
vectors for words that occurred at least 50 times
in the SYN v9 corpus. This led to 24 datasets for
adjectives corresponding to the 24 paradigm cells
highlighted in Table 3. For nouns we created sepa-
rate datasets for each of the genders, leading again
to 24 (= 4 genders × 6 paradigm cells) datasets.

For the second experiment, we needed datasets
consisting of ordered pairs of vectors for forms
of the same lexeme for two particular cells in the
paradigm. We used MorfFlexCZ to identify rele-
vant pairs and randomly sampled datasets of 1,000
pairs; again, we included only vectors with a fre-
quency of 50 or more. For adjectives, with 24
paradigm cells under examination, we ended up
with 24× 23 = 552 datasets. For nouns, we again
created separate datasets for each gender. With
6 paradigm cells under examination, this led to
4× 6× 5 = 120 datasets.

3.2 Experiment 1
In our first experiment, we want to assess how
hard it is to discriminate two paradigm cells when
trained on data from the same or other cells. To this
end, we train classifiers to discriminate between
two paradigm cells and apply it to data from the
same pairs of cells, parallel pairs of cells, and or-
thogonal pairs of cells.

More specifically, we design two-step experi-
ments. First, we conduct intrinsic classification,

3We also experimented with models trained by the skip-
gram method or having 400-dimensional vectors, but this led
to no qualitative difference in the results.

meaning that we train a classifier to discriminate
a given contrast realised by a pair of paradigm
cells, and we apply it to words inducing the same
contrast. An example of this would be training to
discriminate FEM.SG.ACC and FEM.PL.ACC forms
of adjectives, and testing the classifier on the forms
of other lexemes in the same two cells. Second, we
investigate the interoperability of the morphosyn-
tactic feature by means of an extrinsic classification
task. An example of this would be training to dis-
criminate FEM.SG.ACC and FEM.PL.ACC forms of
adjectives, and testing the performance of the clas-
sifier on its ability to discriminate words in two
other cells, e.g. FEM.SG.GEN and FEM.PL.GEN.
We hypothesise a classifier trained to discriminate
the contrast between two cells should also be able
to discriminate between two other cells provided
the two pairs of cells are parallel.

Concretely, for each relevant predictor pair of
cells (a, b), we train a classifier to discriminate vec-
tors of words in cell a from vectors of words in cell
b. We used gradient boosting (Friedman, 2001a;
Mason et al., 2000) applied to decision trees as
our classification method. Predictors are the 100
dimensions of the vectors, and boosting trees pa-
rameters are set to 500 estimators, a learning rate of
0.01, a max depth of 2, a random state of 0, and the
deviance loss function. In total, we trained 60 clas-
sifiers for nouns, to be used in 60 and 86 intrinsic
and extrinsic classification tasks respectively; and
276 classifiers for adjectives, used in 276 intrinsic
and 7824 extrinsic classifications tasks. The much
higher number of tasks for adjectives is due to their
larger paradigm size due to gender agreement, cf.
Tables 3 and 4.

For intrinsic classification tasks, we performed
10-fold cross-validation, and report aggregated ac-
curacy across the 10 folds. For extrinsic classifi-
cation, there was no avoidable risk of over-fitting,
as the training and test datasets are inherently dis-
joint.4 Note that, since our samples are balanced,
chance performance is at 0.5. We use this as our
baseline for evaluation. Figure 4 summarises our
results.

Classifiers for both nouns and adjectives achieve
very high performance at intrinsic classification,

4As a reviewer notes, the test data is included in the training
corpus for the vector space, and hence can in principle have
some influence on the results. There is no way of avoiding
that potential problem with the methods used here, as we do
need vectors from the same space for test items for evaluation
purposes.
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Figure 4: Distribution of accuracy of classifications (Experiment 1) for nouns (left) and adjectives (right). The
dashed grey line represents baseline performance at 0.5.

with a median accuracy of 0.98 and 0.99 respec-
tively and a standard deviation of 0.02 and 0.005
respectively. Performances are significantly lower
for extrinsic classification, although the use of clas-
sifiers for parallel contrasts still leads to above-
chance level performance for a vast majority of
models, with a median accuracy of 0.72 for nouns
and 0.71 for adjectives. On the other hand, extrin-
sic classification for orthogonal contrasts barely
achieves chance-level performances. Median ac-
curacy is at 0.46 for nouns and 0.51 for adjec-
tives. There is a lot of variation around this median,
which is not surprising given the high number of
models we trained, but the distribution of accuracy
across orthogonal classifiers is clearly symmetric
and centred on 0.5, suggesting that any structure
that individual classifiers pick out is due to lucky
sampling.

3.3 Experiment 2
In our second experiment, we predict the vector
of a word in the target paradigm cell ( #»v predicted)
from that of the word in another paradigm cell
( #»v predictor), and evaluate the quality of our predic-
tion by comparing it to the actual vector #»v actual.
This is represented graphically in Figure 5, where
M denotes the model deriving the prediction.

Multiple ways of constructing the model M are
found in the literature. A simple approach relies
on adding to the predictor vector the offset vector
relating two words standing in the same relation
(Mikolov et al., 2013) or averaging over such offset
vectors (Drozd et al., 2016; Mickus et al., 2019).
Marelli and Baroni (2015) propose instead to use
a linear transformation to predict the target vector

v⃗predictor

v⃗predicted
v⃗actual

M

θ

Figure 5: Evaluation of vector prediction. Performance
of model M is assessed by the cosine of the angle θ
between the actual vector for the target word and the
vector predicted by M for the that based on the predictor
vector of a related word.

— that is, they predict the value of each dimension
of the target vector using a linear combination of
the values of all dimensions in the predictor vec-
tor. They argue that this should allow capturing at
least some aspects of affix polysemy. Bonami and
Naranjo (2023) use a variant of this approach using
principal component analysis to reduce the number
of independent variables in the linear models.

In this paper we follow closely the methodology
of Marelli and Baroni (2015), using Gradient Boost-
ing Tree regression models (Friedman, 2001b) in-
stead of linear models.5 For each morphological
contrast, we train 100 models per pairwise com-
bination of paradigm cells as there are 100 vector
dimensions in the input vector space models. In to-

5We also tested linear regression models, but the gradient
boosting tree method achieved better evaluation results.
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Figure 6: Distribution of quality (cosine similarity) of vector predictions (Experiment 2) for nouns (left) and
adjectives (right). Grey lines indicate the average cosine similarity between members of the same lemma.

tal, we trained 100×(120+552) = 67, 200 models
(×10 because of cross-validation) to predict all vec-
tor dimensions of words from the paradigm cells
under analysis. We then evaluate the performance
of our models in both intrinsic and extrinsic predic-
tions, using the average cosine similarity between
predicted and actual vector (cos( #»v predicted,

#»v actual))
as our measure of quality. While the evaluation
of the intrinsic predictions assesses discriminating
power for predicting word vectors, i.e., the predic-
tion of the same contrasts as the one on which the
model was trained, the evaluation of the extrinsic
predictions assesses the stability of predicting word
vectors in different contexts, i.e., the prediction of
contrasts different from the one used for training
the model.

Results are presented in Figure 6. We get very
high scores for intrinsic prediction, ranging be-
tween 0.92 and 0.98. Cross-validated models
have barely lower performance (median difference
0.012, max. 0.02), indicating that there is no
over-fitting to speak of. The extrinsic predictions
achieved vastly lower cosine similarities than their
intrinsic counterparts, with a gap of more than 25%
between the best-performing extrinsic prediction
and the worst-performing intrinsic prediction. As
in Experiment 1, results for both orthogonal and
parallel prediction are quite spread out, but there
is a clear central tendency to have higher perfor-
mance for parallel prediction than for orthogonal
prediction.

We contextualise the results of trained models
in two ways. Our first approach is to compute the
average pairwise cosine similarity between vec-
tors of words belonging to the same lemma, for
the paradigm cells of interest, and for each part of

speech. This gives us an indication of what would
be the performance of a model that perfectly cap-
tured the fact that the target vector conveys the right
lexical semantics, but does not capture anything
about the contribution of morphosyntactic features.
These are materialised by grey lines in Figure 6.
It is most relevant to compare that number to the
performance of intrinsic models: here we see very
clearly that these models do capture much more
than just the lexical semantics associated with be-
longing to the same lemma.

For orthogonal and parallel prediction, this com-
parison is hard to interpret, given the high variabil-
ity of the quality of prediction across tasks of the
same type. We suspect that this variability is due
at least in part to the fact that some test sets are
inherently easier or harder to predict due to the
structure of the vector space. We hence develop
a baseline that is directly sensitive to the test set,
and we compare the results of our cross-validated
models to those from the baseline. The simplest
baseline would be to create a predicted vector from
random numbers; however, sampling random num-
bers might lead to vectors that are out of the vec-
tor space model. Therefore, we instead pick ran-
dom word vectors from the vector space model and
use them as predicted word vectors. To mitigate
knowledge that such randomly picked word vectors
might encode, we pick randomly 20 word vectors
for each pair of word vectors and calculate the
average of cosine similarities between the actual
vector #»v actual and individual randomly picked word
vectors ( #»v predicted1 , . . . ,

#»v predicted20). The resulting
cosine similarity for a given contrast is computed as
the average of the averages achieved by individual
pairs of word vectors.
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Figure 7: Comparison of our models to the baseline.
The black line stands for equal values on the x and y
axis.

Figure 7 shows pairwise comparisons between
baseline and model performance. The clear con-
clusion is that both intrinsic and parallel prediction
clearly outperform the baseline. A few orthogonal
models perform at the baseline level, but most still
clearly beat the baseline. To put these results in
perspective, it is important to remember that, while
orthogonal models are trained on irrelevant mor-
phosyntactic contrasts, they still see pairs of forms
of the same lexeme. To the extent that the vectors
disentangle lexical semantics from morphosyntac-
tic features, they should still be able to predict
lexical semantics correctly — by not changing the
values of the relevant dimensions. It is hence ex-
pected that performance should be above baseline
on average; the fact that it is not always suggested
that lexical semantics and morphosyntactic features
are not clearly separated by the vectors.

4 Discussion

Our two experiments lead to similar results that we
discuss in the following paragraphs.

First, intrinsic prediction works very well: classi-
fiers learning to discriminate two paradigm cells on
the basis of the corresponding word vectors reach
very high accuracy, even under cross-validation;
and a model learning to deduce the vector in one
cell from the vector in another cell makes predic-
tions that are very close to the actual vectors, and
go well beyond capturing the fact that words be-
longing to the same lemma tend to be similar. To-
gether, these indicate that the word vectors we use
do capture the relevant syntactic and semantic dif-
ferences between paradigm cells with a high degree

of accuracy.
Second, orthogonal prediction leads to poor per-

formance: training a model on a contrast orthogo-
nal to that found in the test data is, unsurprisingly,
a bad idea. This is most clearly established for the
classification task of Experiment 1, where we see
that most models have a performance close to the
baseline, while a few models got lucky or unlucky,
in a symmetric fashion. In the vector prediction
task of Experiment 2, performance is still on av-
erage much better than the random baseline, due
to the fact that orthogonal models, unlike the base-
line, have the capacity to accurately predict some
aspects of distributions that are due to being forms
of the same lexeme.

The third and most important result is that
found in the situation of parallel prediction, where
a model is trained on one pair of cells implementing
a feature contrast and tested on a different pair of
cells implementing the same feature contrast. Here
we find that, in both experiments, performance is
measurably higher (on average) than with orthog-
onal models, but markedly lower than in intrinsic
prediction. This last result is in direct contradiction
to the predictions laid out in Section 2. If contrasts
between paradigm cells were fully reducible to con-
trasts in feature values, then parallel pairs of cells
should contrast in exactly the same way, and hence
parallel prediction and intrinsic prediction should
lead to comparable performance.

These results lead to a nuanced view of the role
of morphosyntactic features in the analysis of in-
flectional paradigms. First, paradigm structure is
not fully reducible to a system of orthogonal feature
contrasts, pace Wunderlich and Fabri (1995) and
many others. Paradigm cells have irreducible dis-
tributional properties that cannot be deduced from
their featural analysis. Note that this is compatible
with the view articulated by Bonami and Strnadová
(2019), where each paradigm cell is characterised
by the full set of its contrasts with all other cells.
Second, morphosyntactic features do capture rele-
vant similarities between pairs of cells: if they did
not, parallel predictions should fare no better than
orthogonal predictions.

Of course, one may dispute the extent to which
these results are relevant to the featural analysis of
paradigms. Our results are compatible with a sit-
uation where distributional vectors are influenced
by morphosyntactic features, which are nicely or-
ganised in orthogonal dimensions, plus some other
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factors, which are not. We see no empirical way of
dismissing such an analysis. However, we submit
that it does not affect our conclusion: whatever the
relevant factors are, it remains that paradigm cells
have properties that are not reducible to orthogonal
features.

Let us finish by noting that the nuanced conclu-
sion (features capture some but not all paradigm
structure) is most congruent with what Blevins
(2006) calls an abstractive model of morphology.
Under this view, surface words and the surface re-
lations they entertain are the basic primitive, and
objects such as stems and affixes are abstractions
that may (but need not) be defined out of words and
their relations. Arguably, morphosyntactic features
can also be seen as such useful abstractions, that
do not define paradigmatic relations but highlight
some of their properties.

5 Outlook

We end by discussing areas of future research based
on the results presented in this paper.

First, this paper did not explore what it is ex-
actly that makes contrasts across parallel pairs of
paradigm cells different; for instance, we did not
look into whether some feature contrasts are easier
or harder to predict, or more or less parallel across
pairs of cells. We leave such questions for future
research. We also leave for the future detailed anal-
ysis of particular parallel contrasts: we could e.g.
examine distributional similarities and differences
for a set of nouns in the NOM.SG, ACC.SG, NOM.PL

and ACC.PL, and see whether these explain the per-
formance models on this particular set of contrast.

Second, we focused in this paper on cases where
the assumption of orthogonality of features was
maximally convincing. A different use of the same
methodology would be to explore situations where
the literature is disputed as to what the feature
contrasts actually are and attempt to settle the dis-
pute by assessing how fruitful a feature analysis is
in terms of capturing distributional parallelism or
orthogonality. Obvious targets include Jakobson
(1958)’s three-dimensional analysis of the Russian
case systems, as well as many later proposals in-
spired by it; or the vexed question of the indepen-
dence of person and number (see e.g. Siewierska
2004).

Third and finally, we have not explored whether
and how different morphosyntactic features differ
in their degree of parallelism across contrasts. We

have reasons to believe that they could. Much re-
cent literature has highlighted the multidimensional
and gradient nature of the distinction between in-
flection and derivation (Booij, 1996; Bauer, 2004;
Corbett, 2010; Spencer, 2013); in particular, seman-
tically potent inherent morphosyntactic features,
such as the number of nouns, are more derivation-
like that purely morphosyntactic and contextual
features, such as grammatical case. Previous re-
search has shown that inflectional and derivational
morphological relations as a whole difference in the
predictability of their distributional consequences
(Bonami and Paperno, 2018), and found some dis-
tributional reflexes for the existence of a gradient
(Copot et al., 2022). Degree of parallelism might
be another relevant distributional property: we may
expect, for instance, there to be less parallelism
of the number feature across cases than of cases
across the number feature.
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Abstract

The current study investigates whether a Long
Short-Term Memory (LSTM) network can
learn the wh-island constraint in Dutch in a way
comparable to human native speakers. After
establishing with an acceptability judgement
task that native speakers demonstrate a clear
sensitivity to wh-island violations, the LSTM
network was tested on the same sentences. Con-
trary to the results of the native speakers, the
network was not able to recognize wh-islands
and to block gap expectancies within them.
This suggests that input and the network’s in-
ductive biases alone might not be enough to
learn about syntactic island constraints, and
that built-in language knowledge or abilities
might be necessary.

1 Introduction

In the past decade, artificial neural networks
(ANNs) have commonly been used for tasks within
the research area of Natural Language Processing,
such as machine translation and reading compre-
hension. This is a remarkable fact for many the-
oretical linguists, because these networks do not
possess the traits considered necessary for language
acquisition, such as built-in linguistic knowledge
(Chomsky, 1986). Still, recent research has shown
that ANNs are able to accurately learn about, for
example, number agreement (i.a., Goldberg, 2019;
Gulordava et al., 2018), and garden paths (i.a.,
Frank and Hoeks, 2019; Futrell et al., 2019; van
Schijndel and Linzen, 2021). However, not all syn-
tactic phenomena can be learned successfully yet,
such as different forms of long-distance dependen-
cies and constraints on these dependencies (Futrell
et al., 2019; Wilcox et al., 2022).

One of the first computational investigations on
the learnability of long-distance dependencies con-
cerned subject-verb agreement (Gulordava et al.,
2018; Linzen et al., 2016). These successful in-
vestigations showed that, when Recurrent Neural

Networks (RNNs) are presented with the sequence
‘The key to the cabinets. . . ’, they assign a higher
probability to the correct singular verb form ‘is’
than to the incorrect plural verb form ‘are’. Subject-
verb agreement is a syntactic phenomenon that fre-
quently occurs in the set of sentences the network
is trained on. This makes it easy for the RNN to
learn this phenomenon from only the input in com-
bination with its inductive biases, i.e., without any
built-in syntactic knowledge necessary. However,
to strengthen the claim that RNNs can acquire dif-
ferent long-distance dependencies in this manner,
it is important to also investigate dependencies not
often seen in the training data set. On the one
hand, if these dependencies cannot be learned by
the RNN, this suggests that some built-in syntac-
tic knowledge is necessary to learn about these
long-distance dependencies. On the other hand, if
the RNN can learn these dependencies, it demon-
strates that the input and the network’s inductive
biases suffice, even if the phenomenon itself only
infrequently occurs in the input. Island constraints
provide an example of such an infrequent long-
distance dependency and are central to the current
study.

1.1 Island constraints
Filler-gap dependencies are constrained by the type
of structure that can contain a gap. Previous re-
search has shown that the filler-gap dependency in
(1b) is perceived as unacceptable by most native
English speakers in contrast to (1a) (Hofmeister
and Sag, 2010).1

(1) a. Whati did John buy _i?
b. *Whati do you wonder [wh-phrase

whether John bought _i]?

1Gaps are represented by underscores and the wh-filler and
gap are coindexed with i. Moreover, unacceptability is marked
by an asterisk (*).
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Numerous structures (e.g., the wh-phrase in
(1b), but also subjects, adjuncts and complex
noun phrases) therefore seem to be gap-resistant
(Sprouse and Hornstein, 2013; Sprouse et al., 2012).
In the literature, these are referred to as islands
(Ross, 1967), and the unacceptability caused by a
filler-gap dependency in an island configuration is
called an island effect. The current paper will focus
on wh-islands.

There have been various investigations into the
sensitivity of ANNs to the (wh-)island constraint,
but most, if not all, focused on English. This is
a problem because recent literature suggests that
recurrent neural networks may have a performance
advantage for English-like structural input (e.g.,
Dyer et al., 2019; Davis and van Schijndel, 2020),
while the language learning system must be univer-
sal. Therefore, it is important to find out whether
these neural networks can successfully learn about
grammatical constraints such as islands in other
languages as well (e.g., Kobzeva et al., 2023).

The possible performance bias for English-like
structural input suggests that performance of the
network will be inflated in right-branching lan-
guages such as English (i.e., with a basic word
order of SVO), but undermined in left-branching
and possibly mixed-branching languages (i.e., with
a basic word order of SOV; Li et al., 2020).

Dutch employs mixed-branching, which means
that a Dutch sentence with a matrix and an em-
bedded clause makes use of two different branch-
ing directions; the basic and left-branching word
order SOV in the embedded clause and the right-
branching word order SVO in the matrix clause
(due to V2; Koster, 1975). Crucially, in Dutch, the
gap precedes the verb in the embedded clause, as in
(2), whereas it follows the verb in English. This dif-
ference in word order due to different branching di-
rections makes it interesting to investigate whether
neural networks can learn grammatical constraints
in Dutch. The current research thus focusses on
Dutch as this language is typologically different
from English in its word order, but shares many
features as well (e.g., morphological complexity).

While there have not yet been any investigations
about the performance of neural networks on island
constraints in Dutch, there has been some work on
the sensitivity of native speakers of Dutch to the
wh-island constraint. Beljon et al. (2021) showed
with an acceptability task that Dutch native speak-
ers are indeed sensitive to the wh-island constraint.

However, as this is one of only few studies to gather
data on islands in Dutch, the current study will try
to replicate these findings in a new acceptability
judgement task. In addition, to find out whether
a neural network performs comparably, a Long
Short-Term Memory (LSTM) network is tested on
the same sentences the speakers had to judge. The
design of the test sentences was largely based on
previous computational research examining island
constraints in English, which we discuss below.

1.2 Island constraints and neural networks

Different computational investigations have been
performed to examine whether neural networks can
learn to be sensitive to island constraints. While
Chowdhury and Zamparelli (2018) suggest that the
networks are affected by processing factors, e.g.,
the syntactic complexity of islands and the position
of this complex structure, Wilcox et al. (2018) ar-
gued that LSTMs can correctly learn the syntactic
wh-, adjunct and complex noun phrase (CNP) is-
land constraints. Wilcox et al. (2019) designed a
control study to test whether a processing expla-
nation could explain the results of Wilcox et al.
(2018), and showed that LSTMs are able to learn
syntactic constraints on filler-gap dependencies in-
stead of simply being sensitive to their complexity.
However, they also suggest that the networks are
not completely human-like and that they are not
able to learn all constraints successfully yet.

Wilcox et al. (2022) decided to combine all the
knowledge gathered in these previous studies into
the largest investigation to date on the network’s
learning ability of filler-gap dependencies and is-
land constraints. This investigation used the same
experimental design as Wilcox et al. (2018) and the
control study introduced by Wilcox et al. (2019)
to control for any complexity effects; we used the
same design and control in the current research and
will discuss them in section 2. Wilcox et al. (2022)
showed that wh-, adjunct, CNP, left branch, and
coordinate structure islands could all successfully
be learned by different types of neural networks.
Important to note is that these results could not be
due to processing factors, as the control study used
ruled out this option.

In sum, previous investigations show different
results. A general agreement about whether neu-
ral networks are able to learn island constraints
does thus not exist (yet), and it seems that island
constraints are one of the hardest phenomena to
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learn for neural networks (Warstadt et al., 2019).
This makes it important to investigate why some
island constraints (e.g., subject islands) are not suc-
cessfully learned yet. Moreover, for the island
constraints that are already successfully learned
in English, it is necessary to investigate whether
they can also be successfully learned in other lan-
guages. The wh-island constraint is, for example,
successfully learned in various studies in English
(e.g., Wilcox et al., 2022, 2019, 2018), making it
interesting to see whether this success is limited to
the English language only or whether it can also
be achieved in other languages. Therefore, the cur-
rent research specifically focused on the wh-island
constraint in Dutch.

2 Methods

To investigate the performance of the native speak-
ers and the LSTM network on the wh-island con-
straint, we constructed experimental and control
items that the speakers judged in an acceptability
judgement task and that the network assigned sur-
prisal values to.2 Both the speakers and the network
were presented with exactly the same sentences to
optimize the comparison.

2.1 Experimental design
The experimental design in the current study was
largely based on the interaction design introduced
in Wilcox et al. (2018). This interaction design
is based on two predictions assumed to be made
by the grammar: (1) gaps require fillers, and (2)
fillers require gaps. Consequently, the independent
variables PRESENCE OF GAP and PRESENCE OF

FILLER were crossed, for example in (2) for regular
filler-gap dependencies.

(2) Ik
I

weet
know

(wat/dat)
(what/that)

jij
you

zag
saw

dat
that

de
the

bakker
baker

(koekjes/_)
(cookies/GAP)

maakte
made

in
in

de
the

bakkerij.
bakery

‘I know (what/that) you saw that the baker
made (cookies/_) in the bakery.’

If Dutch speakers indeed assume that fillers require
gaps, filled argument positions (koekjes ‘cookies’
in (2)) should be less acceptable and more surpris-
ing when a wh-filler (wat ‘what’ in (2)) is present.
Moreover, if Dutch speakers assume that gaps re-
quire fillers, gaps should be less acceptable and

2The acceptability judgement task was preregistered. The
preregistration can be accessed via https://doi.org/
10.17605/OSF.IO/23TEQ

more surprising when no wh-filler (dat ‘that’ in (2))
is present.

Not only regular filler-gap dependencies were
investigated, but also sentences with wh-island con-
figurations. Therefore, the factor PRESENCE OF

ISLAND was added into the interaction design as
well, resulting in the four additional wh-island con-
ditions illustrated in (3). The square brackets in (3)
indicate the wh-island.

(3) Ik
I

weet
know

(wat/dat)
(what/that)

jij
you

je
REF

afvraagt
wonder

[of
whether

de
the

bakker
baker

(koekjes/_)
(cookies/GAP)

maakte
made

in
in

de
the

bakkerij].
bakery

‘I know (what/that) you wonder whether the
baker made (cookies/_) in the bakery.’

When the gaps and fillers appear in island config-
urations, the predictions change. First of all, a
gap inside an island configuration should never be
acceptable and it should be surprising for the net-
work. Second, adding to the predictions made by
Wilcox et al. (2018), the presence of a filler will
increase the surprisal even more; a gap should not
be expected within an island, but coming across
a wh-filler at the start of the sentence should give
rise to the expectation of a gap somewhere else.
When this expectation is violated by not encoun-
tering a gap somewhere outside of the island, the
filler cannot be linked back to a gap, causing the
acceptability rating of that sentence to decrease and
the surprisal value to increase. This effect should
occur in sentences with and without gaps inside the
island.

In total, 32 of these experimental item sets were
made. The neural network saw all the conditions
of each item set (and thus 256 experimental items
in total), but each human participant saw only one
condition per item set (and thus 32 experimental
items in total).

2.2 Control items

As it is argued that humans and neural net-
works may simply not be able to thread infor-
mation through syntactically complex construc-
tions (i.e., islands; Keshev and Meltzer-Asscher,
2018; Wilcox et al., 2022, 2019), expectations for
gendered pronouns were used to investigate this
possibility (similar to the control study designed
by Wilcox et al., 2019). To this end, the factors
GENDER MATCH and PRESENCE OF ISLAND were
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crossed, which resulted in four conditions: a match
and mismatch condition for non-islands as in (4a)
and for wh-islands as in (4b).

(4) a. Ik
I

weet
know

dat
that

de
the

(meester/juffrouw)
(teacher.MASC/teacher.FEM)

denkt
thinks

dat
that

de
the

leerlingen
students

hem
him

begrijpen.
understand

‘I know that the (male teacher/female
teacher) thinks that the students under-
stand him.’

b. Ik
I

weet
know

dat
that

de
the

(meester/juffrouw)
(teacher.MASC/teacher.FEM)

zich
REF

afvraagt
wonders

[of
whether

de
the

leerlingen
students

hem
him

begrijpen].
understand
‘I know that the (male teacher/female
teacher) wonders whether the students
understand him.’

It is predicted that the sentences in which the se-
mantic gender of the noun phrase (e.g., meester
(MASC) or juffrouw (FEM) ‘teacher’) matches the
gender of the pronoun (hem ‘him’ or haar ‘her’)
will be judged as more acceptable and will be less
surprising than sentences in which these do not
match. However, if there is any trouble in threading
information through island configurations, an inter-
action is expected between GENDER MATCH and
PRESENCE OF ISLAND; the gendered expectation
effect, i.e., the difference between the sentences
with matching and non-matching genders, will be
reduced within island configurations. On the other
hand, if the native speakers and neural network can
work within complex structures, no interaction ef-
fect is expected to arise, meaning that the gendered
expectation effect will arise in all configurations.

In total, 32 of these control item sets were made.
The neural network saw all the conditions of each
item set (and thus 128 control items in total), but
each human participant saw only one condition per
item set (and thus 32 control items in total).

2.3 Filler items

In addition to the experimental and control items,
the human participants were also presented with 64
filler items covering the full range of acceptability;
21 acceptable (e.g., regular declarative statements),
22 moderately acceptable (e.g., anglicisms), and 21

unacceptable filler items (e.g., subject-verb agree-
ment errors and word salads). The items and accept-
ability category (acceptable, moderately acceptable
and unacceptable) were based on the filler items
used in Beljon et al. (2021) and Kovač and Schoen-
makers (2023). The unacceptable filler items were
used in the current research to identify participants
who appear not to perform the acceptability judge-
ment task faithfully.

2.4 Acceptability judgement task

Participants were presented with 128 sentences (32
experimental, 32 control and 64 filler items) one
at a time and were instructed to imagine that these
were produced by a native speaker of Dutch that
they know well, e.g., a close friend. They were
then told to judge these sentences on how good
they sound in Dutch (specifically hoe goed vindt
u de zin klinken? ‘how good do you think the
sentence sounds?’) on a scale ranging from 1 (Erg
slecht ‘very bad’) to 7 (Erg goed ‘very good’), and
to base their judgement on their first intuition. Each
participant started with 3 filler items to familiarize
them with the task. The experiment lasted 15 to 20
minutes and each participant received £3.00.

Ninety-three native speakers of Dutch, recruited
from Prolific, entered the online experiment in
Qualtrics. However, 29 were excluded from anal-
yses; 6 because they did not complete the experi-
ment and 23 because they rated more than 2 agree-
ment errors and/or word salads with a rating of 4 or
higher on the 7-point scale. The data of the remain-
ing 64 participants (Mage(SD) = 31.78(9.26);
range: 20-55; 27 females and 34 males) were anal-
ysed.3

2.5 The neural network

One LSTM network was trained on a set of sen-
tences extracted from the NLCOW2014 corpus,
which comprises individual sentences of Dutch
texts collected from the World Wide Web (Schäfer,
2015). Only the first slice, with approximately 37
million sentences, was used in the current research.
First, a vocabulary was created by extracting the
20,000 most frequent words of the first slice and
adding the set of word types used in the experimen-
tal, control and filler items of the current experi-

3This specific number of participants, 64, was
based on a power analysis performed on unpublished
data from a master’s thesis. The thesis can be ac-
cessed via https://theses.ubn.ru.nl/items/
a17d0411-2ed1-49b7-89cc-043540f94e00
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ment, if these were not already in the most frequent
word list. This resulted in a vocabulary consist-
ing of 20,194 word types. Subsequently, only and
all corpus sentences with only words from the vo-
cabulary were selected from the first slice, and
these served as training sentences.4 The total set of
training sentences comprised 8,940,314 sentences
(144,196,081 tokens).

The LSTM network employed by Frank and
Hoeks (2019) was used in the current study without
any optimization of the architecture. It was trained
on next-word prediction for 5 epochs. First, the
words in the vocabulary went through a 300-unit
word embedding layer. The word vectors were then
passed to a 600-unit recurrent layer and a 300-unit
non-recurrent layer. Last, the vectors were passed
to the softmax output layer.

To check if the network was well-trained, 2 addi-
tional syntactic tests were performed. These tests
explored whether the network learned correctly
about (a) subject-verb agreement and (b) object-
verb order in the embedded clause, a distinctive
feature of Dutch (cf. section 1.1). Both are neces-
sary syntactic skills for the network to be able to
process a Dutch embedded sentence and any depen-
dencies in it. These tests showed that the network
learned both correctly. A more detailed discussion
of the items used and the results can be found in
Appendix A.

To evaluate the LSTM’s performance, the sur-
prisal values were collected that the network as-
signed to the words in the experimental and control
sentences. For the experimental items, surprisal
was measured at (a) the verb immediately follow-
ing the gap or at the filled argument position, e.g.,
maakt ‘makes’ for sentences with a gap and koekjes
‘cookies’ for sentences without a gap in (2) and (3)
(i.e., single-word surprisal values), and (b) summed
over all words immediately following the gap or
including the filled argument position, e.g., maakt
in de bakkerij ‘makes in the bakery’ for sentences
with a gap and koekjes maakt in de bakkerij ‘made
cookies in the bakery’ for sentences without a gap
in (2) and (3) (i.e., summed surprisal values). For
the control items, following Wilcox et al. (2019),
surprisal was measured summed over the entire
sentence, and additionally at the critical pronoun
hem ‘him’ or haar ‘her’.

4Sentences with only one word or with more than 50 words,
and sentences with a punctuation token that was not a period,
comma, exclamation mark or question mark were excluded.

2.6 Data analysis

To compare the performance of Dutch native speak-
ers and the LSTM network, surprisal values are
compared to acceptability judgements following
the suggestion in Pearl and Sprouse (2015); less
probable words and sentences, and thus higher sur-
prisal values, correspond to lower acceptability.

Before the statistical analysis, the raw acceptabil-
ity judgement scores were converted to z-scores per
participant using all items, to correct for individual
differences in scale use. Additionally, all indepen-
dent variables were coded using sum contrast cod-
ing, and a box-cox transformation was performed
on the standardized judgement scores and the sur-
prisal values so that the transformed data was as
close to normally distributed as possible.

For both the analysis of the standardized scores
and the (single-word and summed) surprisal values,
two linear mixed-effects (LME) models were fitted;
one for the experimental items and one for the con-
trol items. First, for the experimental items, one
LME model was fitted to the standardized scores,
one to the summed surprisal values and one to the
single-word surprisal values with PRESENCE OF

GAP, PRESENCE OF FILLER, PRESENCE OF IS-
LAND, and their interactions as fixed effects, us-
ing the lmer function from the lmerTest package
(Kuznetsova et al., 2017) in R. Second, for the
control items, one LME model was fitted to the
standardized scores, one to the summed surprisal
values and one to the single-word surprisal values
with GENDER MATCH, PRESENCE OF ISLAND, and
their interaction as fixed effects. The random effect
structure for all models was based on the minimal
Akaike Information Criterion (AIC). Significance
values for the coefficients from all models were cal-
culated using the Satterthwaite approximation in
lmerTest (Kuznetsova et al., 2017). The interaction
effects were further examined using contrasts from
the emmeans package (Lenth, 2022) in R.

3 Results

3.1 Wh-island violations

The final model for the judgements included ran-
dom intercepts for items and participants. The final
model for the single-word surprisal included a ran-
dom intercept and slope for the interaction between
PRESENCE OF GAP and PRESENCE OF FILLER for
items, and the final model for the summed surprisal
only a random intercept for items.
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Figure 1: Mean standardized acceptability judgements
(left) and mean single-word negative surprisal values
(right) for every combination of PRESENCE OF GAP and
PRESENCE OF FILLER for non-islands (top) and wh-
islands (bottom). Dashed lines in the acceptability plot
(left) represent the mean acceptability of the acceptable
(top line; AF) and unacceptable (bottom line; UF) filler
items. Error bars represent standard errors.

The results of the acceptability judgement task
(left) and the LSTM network (right) are shown in
Figure 1. On the y-axis of the surprisal plot, the
negative surprisal values are used to facilitate the
comparison with the judgement plot.

In the acceptability judgement task, a three-way
interaction effect was found between PRESENCE OF

GAP, PRESENCE OF FILLER, and PRESENCE OF IS-
LAND (β = −.01, SEβ = .00, p < 001). For both
regular filler-gap dependencies and wh-islands, ac-
ceptability decreased in sentences with a filled
gap when a filler was present (Mnon-island(SD) =
−.61(.65), Misland(SD) = −.60(.69)) as opposed
to when it was not (Mnon-island(SD) = .56(.63),
Misland(SD) = .65(.62)) (pnon-island < .001,
pisland < .001). However, the acceptability of
regular filler-gap dependencies and wh-islands
differed when there was a gap. In sentences
with a gap, the presence of a filler increased
acceptability for regular filler-gap dependencies
(Mfiller(SD) = −.47(.70), Mno filler(SD) =
−.75(.57)), but decreased it in a wh-island config-
uration (Mfiller(SD) = −.92(.45), Mno filler(SD) =
−.67(.66)) (pnon-island < .001, pisland < .001).

For the LSTM network, no three-way interac-
tion effect was found between PRESENCE OF GAP,

Figure 2: Mean standardized acceptability judgements
(left) and mean single-word negative surprisal val-
ues (right) in non-islands and wh-islands with gender
matches and gender mismatches. The dashed line in
the acceptability plot (left) represents the mean accept-
ability of the acceptable filler items (AF). Error bars
represent standard errors.

PRESENCE OF FILLER, and PRESENCE OF ISLAND

(psingle-word = .521, psummed = .634), but only a
two-way interaction between PRESENCE OF GAP

and PRESENCE OF FILLER (single-word model:
β = −.16, SEβ = .02, p < .001; summed
model: β = −.05, SEβ = .01, p = .002).
This means that the same patterns in surprisal
were found for the regular filler-gap dependencies
and wh-islands.5 Specifically, surprisal increased
in sentences with a filled gap when a filler was
present as opposed to when it was not (non-island:
Mfiller(SD) = 13.21(2.64), Mno filler(SD) =
12.82(2.46); island: Mfiller(SD) = 13.63(2.27),
Mno filler(SD) = 13.16(2.21)) (pnon-island = .138,
pisland = .035), and surprisal decreased in sen-
tences with a gap when a filler was present
as opposed to when it was not (non-island:
Mfiller(SD) = 12.13(2.96), Mno filler(SD) =
12.92(2.34); island: Mfiller(SD) = 12.78(2.53),
Mno filler(SD) = 13.34(2.06)) (pnon-island < .001,
pisland = .024).

3.2 Gendered expectation control
The final model for the judgements included a ran-
dom intercept and slope for GENDER MATCH for

5Only the means and standard deviations of the single-
word surprisal are reported as these showed the strongest
effects.
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items and a random intercept for participants, and
the final models for surprisal included a random
intercept and slope for PRESENCE OF ISLAND for
items.

The results of the participants and the LSTM net-
work on the control items are illustrated in Figure
2. The negative surprisal values were used in the
surprisal plot.

For the control items, the native speakers and
the LSTM showed the same results. A main effect
was found of GENDER MATCH on the standardized
acceptability judgements (β = 1.65, SEβ = .20,
p < .001) and on the summed and single-word sur-
prisal values (single-word: β = −.23, SEβ = .02,
p < .001; summed: β = −.05, SEβ = .02,
p = .009), but no interaction effect between GEN-
DER MATCH and PRESENCE OF ISLAND was found
on the standardized acceptability judgements (p =
.340) or the surprisal values (psingle-word = .597,
psummed = .691). Figure 2 shows that the sentences
with a match in gender were more acceptable and
less surprising than the sentences with a gender
mismatch, and that this effect was the same for
non-islands and islands.

4 Discussion

The current research investigated whether an
LSTM network showed a similar sensitivity to wh-
island violations in Dutch as native speakers do.
After establishing whether the wh-island constraint
exists in Dutch in an acceptability judgement task,
an LSTM network was tested on the same mate-
rials and within the same experimental design to
examine whether it showed similar results.

The acceptability judgement task showed that
the wh-island constraint exists in Dutch, in line with
the results by Beljon et al. (2021). Native speakers
correctly showed for regular filler-gap dependen-
cies that gaps require fillers and that fillers require
gaps, and showed to be sensitive to wh-island vio-
lations; island configurations were only acceptable
without any gaps or fillers present. These findings
cannot be explained by islands being too hard to
process as the control experiment showed that gen-
der expectations could be maintained within these
structures.

The network showed similar results for the reg-
ular filler-gap dependencies; it learned that gaps
require fillers and that fillers require gaps. Remark-
ably, however, the same pattern was found within
the wh-island configuration, contrary to the native

speakers; fillers still required gaps, even when that
gap then occurs within an island configuration. An
LSTM network, trained on nearly 9 million Dutch
sentences, does thus not seem to recognize the wh-
island configuration in Dutch. These findings can-
not be explained through processing effects, as the
network could maintain gender expectations within
island configurations.

While the discrepancy between human judge-
ments and network predictions could be explained
by certain design choices of the current research
(e.g., the use of judgements and of complex sen-
tences with three sentence-embedding layers), the
results could also have been influenced by the ar-
chitecture of the network, the training procedure,
or the word order of Dutch. These factors will be
discussed in turn below.

4.1 Acceptability judgements vs. surprisal
While previous research has shown that surprisal is
indicative of real-time human language processing
(Smith and Levy, 2013), and can thus be compared
with human reading times, not much research has
compared surprisal values with acceptability judge-
ments yet, giving rise to the concern as to whether
this is even possible. Acceptability judgements
have been shown to be gradient (see Francis, 2021
for a discussion), which suggests that the knowl-
edge underlying these judgements is probabilistic
in nature instead of categorical (Lau et al., 2016).
Moreover, multiple previous investigations have
argued that acceptability is a concept comparable
to probability, as mentioned in section 2.6 (Pearl
and Sprouse, 2015; Wilcox et al., 2022). Based on
this previous literature, there should be no reason
to assume that the judgements and the surprisal
values in the current research are not comparable.

4.2 The architecture of the network
The discrepancy between human judgements and
network predictions in the current research could
be explained by the specific network architecture
used. While the current LSTM network does not
seem successful in Dutch, other LSTM architec-
tures have been shown to be successful in English;
Wilcox et al. (2022) show that two LSTM networks
can learn different island constraints successfully
in English. The two LSTM networks used were the
JRNN as presented in Jozefowicz et al. (2016) and
the GRNN as presented in Gulordava et al. (2018).
In the JRNN, the input and softmax embeddings
are replaced by character convolutional neural net-
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works (CNN), making it difficult to compare with
the current LSTM. Moreover, the GRNN does not
seem comparable either as it differs from the cur-
rent LSTM in the number of hidden layers. These
architectural differences could explain the results
obtained for Dutch. For future research, we will
thus investigate whether (a) a network more com-
parable to those used in Wilcox et al. (2022) for
English can be successful in Dutch, and (b) the
current LSTM would be successful in English.

4.3 Quantity and quality of the training data
set

The difference between the human and network’s
results can also be due to (the size of) the data set
the network is trained on. Wilcox et al. (2022)
trained the GRNN on 90 million tokens and the
JRNN on roughly 1 billion tokens. The current
training data set comprised approximately 114 mil-
lion tokens. The networks used in Wilcox et al.
(2022) did not show any qualitative differences in
learning success, which seems to suggest that there
is no reason to believe that the size of the current
data set influenced the network’s learning success.
While the quantity of the current training data set
should thus not be of concern, the quality of the
data set could have had an effect.

If the training data sets of the GRNN and the cur-
rent LSTM are compared, we can identify a differ-
ence in syntactic complexity. The GRNN in Wilcox
et al. (2022) was trained on English Wikipedia text,
while the current training data set comprised sen-
tences extracted from the World Wide Web. It is
a well-known fact that Wikipedia text is syntacti-
cally quite complex with long and deeply embed-
ded sentences (Yasseri et al., 2012). The current
data set seems to have fewer complex sentences
as, for example, more coordination conjunction
is found in the longer sentences (with more than
45 words) instead of subordinating conjunction.
This might mean that the number of complex sen-
tences is smaller in the current data set than in
Wikipedia text. This feature could have influenced
the network’s performance on the experimental
items. We followed Wilcox et al. (2022) in the
design of the items by using three embedding lay-
ers, which might suit Wikipedia text better in syn-
tactic complexity. However, Wikipedia text seems
less natural than the current data set, which raises
the question to what extent it can be considered
natural language input. Future research could use

less complex experimental sentences to evaluate
the network trained on the current data set, or use
a data set more comparable to the one by Wilcox
et al. (2022) to train the current model.

Rather than the syntactic complexity of the train-
ing data set, it could also be the case that the in-
formation in the input (training) data might just
not have been good enough to learn about the wh-
island constraint, as many syntacticians have sug-
gested before (Chomsky, 1965; Pearl and Sprouse,
2013). This could suggest that something else is
needed than just external input to learn about the
wh-island constraint, for example some built-in lan-
guage knowledge or abilities. While more research
is necessary before we can say anything about
the need for built-in language knowledge or abili-
ties, our results do suggest that the domain-general
learner used in the current study (i.e., the LSTM
network trained on nearly 9 million Dutch sen-
tences) is not able to recognize the wh-island con-
figuration. Moreover, this domain-general learner
has been shown to perform differently than the hu-
man speakers, who have been argued to have innate
domain-specific knowledge about grammatical con-
straints (e.g., Chomsky, 1986).

4.4 The Dutch word order
The last factor that could have influenced the re-
sults of the current study is word order. The pos-
sible performance bias for English-like structural
input could mean that performance can be inflated
in right-branching languages such as English, but
undermined in left-branching and possibly mixed-
branching languages such as Dutch (Li et al., 2020).
In the current research, combinations of Dutch ma-
trix and embedded clauses were used, and thus a
combination of left- and right-branching directions.
Crucially, in Dutch, the gap precedes the verb in the
embedded clause, which is the other way around
in English. This word order difference caused by
the difference in branching direction used could
have affected the network’s results. The current
research, however, did not test this hypothesis di-
rectly. By replicating the English study by Wilcox
et al. (2022), we will be able to compare the net-
work’s performance in Dutch and English directly.
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In conclusion, in the current research it was shown
that an LSTM network does not seem able to rec-
ognize the wh-island configuration in Dutch and to
block gap expectancies within this configuration,
unlike native speakers of Dutch. This suggests
that input alone might not be enough to learn about
island constraints, and that built-in language knowl-
edge or abilities might be necessary. Moreover, it
could also suggest that the mixed-branching lan-
guage Dutch is, in contrast to the right-branching
language English, more difficult to grasp for a neu-
ral network. Future research is needed to explore
the different explanations for the current results.

The data and code can be accessed via https:
//doi.org/10.17605/OSF.IO/KT3HE.

5 Abbreviations
REF referential pronoun
MASC masculine
FEM feminine
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A Appendix

To investigate the performance of the LSTM net-
work on the two additional tests, 15 item sets per
phenomenon were created largely based on the item
sets used in the main experiment. Each item set
consisted of an acceptable and an unacceptable sen-
tence. An example minimal pair for subject-verb
agreement can be found in (5) and for object-verb
order in (6).

(5) a. Hij
he

weet
knows

dat
that

de
the

mevrouw
lady

dacht
thought

dat
that

de
the

jager
hunter

herten
deer

doodt
kills

tijdens
during

de
the

jacht.
hunt
‘He knows that the lady thought that
the hunter kills deer during the hunt.’

b. *Hij
he

weet
knows

dat
that

de
the

mevrouw
lady

dacht
thought

dat
that

de
the

jagers
hunters

herten
deer

doodt
kills

tijdens
during

de
the

jacht.
hunt
*‘He knows that the lady thought that
the hunters kills deer during the hunt.’

(6) a. Ik
I

weet
know

dat
that

jij
you

denkt
think

dat
that

de
the

bakker
baker

koekjes
cookies

maakt
makes

in
in

de
the

bakkerij.
bakery

‘I know that you think that the baker
makes cookies in the bakery.’

b. *Ik
I

weet
know

dat
that

jij
you

denkt
think

dat
that

de
the

bakker
baker

maakt
makes

koekjes
cookies

in
in

de
the

bakkerij.
bakery

*‘I know that you think that the baker
makes cookies in the bakery.’

First, for subject-verb agreement, it was predicted
that the network would assign higher surprisal val-
ues to the singular verb (doodt ’kills’ in (5)) when it
followed a plural subject (jagers ’hunters’ in (5b))
than when it followed a singular subject (jager
’hunter’ in (5a)). Second, for object-verb order, the
network should assign higher surprisal values to the
object-verb combination (koekjes maakt ’cookies
makes’ in (6)) when the verb incorrectly precedes
the object.

For each phenomenon, an LME model was fit-
ted to the surprisal values with ACCEPTABILITY
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as fixed effect using the lmer function from the
lmerTest package (Kuznetsova et al., 2017) in R.
The random effect structure for both models was
based on the minimal Akaike Information Crite-
rion (AIC). Significance values for the coefficients
from the models were calculated using the Satterth-
waite approximation in lmerTest (Kuznetsova et al.,
2017). The final models ultimately included a ran-
dom intercept for items.

For both phenomena, a main effect of ACCEPT-
ABILITY was found (agreement: β = 1.20, SEβ =
.10, p < .001; order: β = 1.47, SEβ = .25,
p < .001); the acceptable conditions (agreement:
M = 9.22, SD = 2.07; order: M = 22.57,
SD = 4.65) were assigned lower surprisal val-
ues than the unacceptable conditions (agreement:
M = 11.61, SD = 1.95; order: M = 25.52,
SD = 3.60).
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Abstract

A traditional concept in phonological theory
is that of the underlying form. However, the
history of phonology has witnessed a debate
about how abstract underlying representations
ought to be allowed to be, and a number of argu-
ments have been given that phonology should
abandon such representations altogether. In
this paper, we consider a learning-based ap-
proach to the question. We propose a model
that, by default, constructs concrete represen-
tations of morphemes. When and only when
such concrete representations make it challeng-
ing to generalize in the face of the sparse statis-
tical profile of language, our proposed model
constructs abstract underlying forms that al-
low for effective generalization. As a case
study, we consider the highly agglutinative lan-
guage, Turkish. We demonstrate that the un-
derlying forms that our model constructs ac-
count for the complexities of Turkish phonol-
ogy resulting from its multifaceted vowel har-
mony. Moreover, these underlying forms en-
able the highly-accurate prediction of novel sur-
face forms, demonstrating the importance of
some underlying forms to generalization.

1 Introduction
A traditional conception of phonological theory in-
volves abstract underlying representations (URs)
together with phonological processes (stated as
rules or constraints) mapping between this abstract
level of representation and a concrete, surface-
level representation. Debates in the 1960’s and
1970’s questioned how abstract URs should be al-
lowed to be (Hyman, 2018, p. 597), with a partic-
ularly famous article by Kiparsky (1968) arguing
that the positing of non-concrete representations
should only be done when motivated. Any percep-
tion of this debate as fading in subsequent years is
probably better attributed to the field moving on to
other questions than it is to a satisfactory resolution
of the debate (Anderson, 2021).

Indeed, some phonologists have taken the posi-
tion that URs should not be used in phonological
theory because doing so is “(i) wrong, (ii) redun-
dant, (iii) indeterminate, (iv) insufficient, or (v) un-
interesting,” as Hyman (2018, p. 591) summarized
the objections. Meanwhile, much of the work on
learning phonology has either focused on surface
restrictions (e.g., Hayes and Wilson 2008) or con-
tinued to assume URs (e.g., Tesar and Smolensky
1998; Boersma 1997), abstracting away from the
question of how (and if) such representations are
constructed (see Jarosz 2019 for a summary).

One of the main justifications for the use of un-
derlying representations is to capture generaliza-
tions. For example, the form of the English plural
affix—[z], [s], or [@z]—depends on the stem-final
segment, but is predictable from the stem-final seg-
ment, as in (1).

(1) [dAg-z]
[kæt-s]
[hOrs-@z]

Positing an underlying /-z/ derived by process
into [z], [s], or [@z] allows this generalization to be
captured. However such an analysis is not neces-
sary. The allomorphs could each be listed along
with a set of sounds each occurs after, or the ap-
parent relationship between singulars and plurals
could be ignored altogether and both forms could
simply be memorized.¹

How then are we to choose from these analy-
ses? Is the desire to capture a generalization suf-
ficient motivation to choose the /-z/ analysis? In
this work we propose a learning-based approach to
this question. Specifically, we propose a computa-
tional model that assumes, by default, that underly-
ing forms are fully concrete. The model attempts
to formmorphological generalizations out of sheer

¹As one reviewer pointed out, evidence of overgeneraliza-
tion (e.g., MacWhinney 1978) suggests that memorization is
not an empirically-tenable hypothesis in all cases.
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necessity to deal with the sparse statistical profile
of language (Yang 2016, ch. 2; Chan 2008).

The question then becomes learning-based:
when does surface-alternation of a morpheme
prevent the learner from forming morphologi-
cal generalizations from concrete representations?
In some—but critically not all—cases, surface-
alternations are pervasive enough to drive the
learner to resort to abstract URs in order to effec-
tively generalize. We present the model in § 2.

We evaluate the model on natural-language cor-
pora of the highly agglutinative language Turkish,
demonstrating both when abstract URs are nec-
essary for generalization and when they are not
(§ 3). When combined with a recent model for
learning local and non-local alternations, the pro-
posed model achieves high accuracy generalizing
to held-out test words (§ 3.4).

2 Model
2.1 Model Input
The input to the model is a set of morphologically-
analyzed surface forms. An example input of nine
forms is shown in Tab. 1. These word forms are
processed by the model incrementally, modeling
the growth of a learner’s lexicon.

While morphological segmentation is an impor-
tant area of study in its own right, we believe it
is a justified assumption given experimental evi-
dence that infants can effectively morphologically
segment nonce words. These results have been ob-
served for French-learning 11mo-old (Marquis and
Shi, 2012) and English-learning 15mo-old (Mintz,
2013) infants. The finding is corroborated by
results for 15mo Hungarian-learning infants, de-
spite the high-level of agglutination in Hungarian
(Ladányi et al., 2020).

2.2 Model Output
The output of the model is a lexicon, which con-
tains a representation for each morpheme, and a
lexicalized list of any input word forms not decom-
posable into those morphemes. The representation
of a morpheme may be concrete or abstract.² As
discussed by Ettlinger (2008, sec. 4.3.4), a UR can
be called abstract because it lacks the phonetic de-
tail of an actual speech sound (e.g., /D/ as an alveo-
lar stop lacking a voicing specification), or because

²We treat surface and underlying representations, whether
concrete or abstract, as sequences of segments, where each
segment is a set of distinctive features.

Surface Form Morphological Analysis

1. [buz-lAr] ‘ice-PL’
2. [kWz-lAr] ‘girl’-PL
3. [el-ler] ‘hand-PL’
4. [jer-ler-in] ‘place’-PL-GEN
5. [søz-ler] ‘word-PL’
6. [dAl-lAr-Wn] ‘branch’-PL-GEN
7. [sAp-lAr] ‘stalk-PL’
8. [jyz-yn] ‘face’-GEN
9. [ip-ler-in] ‘rope’-PL-GEN

Table 1: An example Turkish input consisting of
morphologically-analyzed surface forms.

it contains different segments from a surface form.
For simplicity, we will refer to the representation
constructed in the lexicon as a UR, regardless of its
abstractness. This assumes, following prior work
(§ 4), that each morpheme has a single UR. Future
work will consider scenarios where this may not be
the case.

2.3 Model Description
By default, the model creates a concrete UR for
each morpheme. Prior work (§ 4) often resorts to
phonological processes to produce the various sur-
face forms of a morpheme at the first instance of
surface alternation. Our model differs from this
approach by treating underlying forms as concrete
even after the first instance of surface alternation.
Instead of immediately collapsing surface forms
into a single, abstract UR, our model simply lexi-
calizes all word forms inwhich amorpheme occurs
as something other than its most frequent form. It
is only when the resulting lexicalization becomes
unsustainable (see § 2.4) that the model then con-
structs abstract underlying forms from which the
surface realizations are derived by morphophono-
logical process.

The pseudocode for the algorithm is shown in
(2).³ As discussed in § 2.1, the input to the model
is an incremental stream of morphologically-
analyzed surface forms. Whenever the model re-
ceives a new surface form (2; step 1), it initially
creates a concrete underlying form for each mor-
pheme, storing the most frequent form of the mor-
pheme concretely (2; step 3), and lexicalizes any
wordforms that contain a different form of the mor-
pheme (2; step 8). However, if too many word-

³Code is available at https://github.com/cbelth/underlying-
forms-SCiL
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Meaning UR Plural Form

PL /lAr/ N/A

‘ice’ /buz/ Stem-PL‘girl’ /kWz/

‘hand’ /el/ /el-ler/

Table 2: When the first three words from Tab. 1 enter
the lexicon, the stems and plural affix are all stored con-
cretely (left two columns). The plural form of the ‘ice’
and ‘girl’ stems are predictably decomposable into their
concrete stems and the PL affix (denoted with the bold-
face concatenation), so those forms need not be stored
in the lexicon. However, with /-lAr/ as the UR of the
plural, the plural form of ‘hand’ cannot be so decom-
posed, so it is instead lexicalized.

forms in the lexicon are exceptions—where the
measurement of “too many” occurs as described
in § 2.4—the model instead constructs an abstract
UR (2; step 5) and then learns a phonological pro-
cess, via a separate model (see § 2.6), to account
for the resulting alternation.

(2) Input: Incremental stream of morphologi-
cally analyzed SRs
1. While surface form in input do
2. – For morpheme in segmentation do
3. — Morpheme UR← most freq form
4. — If too many alternative forms do
5. —– Construct abstract UR
6. —– Learn phonological process
7. — Else do
8. —– Lexicalize exceptions

For example, consider the PL suffix after the first
2 (of 9) inputs listed in Tab. 1 have entered the
learner’s lexicon. At this point, the model will be
storing the only attested surface form [-lAr] as the
concrete UR /-lAr/.

When the third word enters the lexicon, our
model will lexicalize the form ‘hand-PL’ as /el-ler/,
rather than immediately constructing an abstract
PLmorpheme. This is shown in Tab. 2, where each
stem and the plural affix have concrete underlying
forms, and the plural form of ‘ice’ and ‘girl’ are
formed by suffixing the plural to the stem, but the
plural form of ‘hand’ is lexicalized.

By the time all 9 words enter the lexicon, how-
ever, there will be 4 instances of [-lAr] and 4 of
[-ler], making it no longer sustainable to keep a
concrete underlying form. The difference between

these two scenarios and, more generally, the deci-
sion of when to create an abstract underlying form,
is made by the Tolerance Principle (Yang, 2016),
as described next.

2.4 When is Abstraction Needed?
In order to detect when the amount of surface al-
ternation that prohibits generalization from con-
crete representations, the model uses the Tolerance
Principle (TP), proposed by Yang (2016). The TP
is a cognitively-grounded tipping point, which hy-
pothesizes that children form productive general-
izations when the number of exceptions to a pro-
posed generalization results in a real-time process-
ing cost lower than that without the generalization.
The exact derivation of the TP is provided by Yang
(2016, ch. 3), but rests critically upon the empirical
observation of linguistic sparsity. The TP has had
much prior success in computational modeling,
lexical, and experimental studies (Schuler et al.,
2016; Yang, 2016; Richter, 2018; Koulaguina and
Shi, 2019; Emond and Shi, 2021; Richter, 2021;
Belth et al., 2021; Payne, 2022; Belth, 2023).

Our model’s default treatment of underlying
forms as concrete can be stated as a morpheme-
specific rule. In the example above, where only the
first 2 words of Tab. 1 have entered the lexicon, the
rule for the PL form would be (3), which predicts
that the PL morpheme is realized as [-lAr].

(3) If PL then [-lAr]

The TP threshold, which evaluates a linguistic
rule (generalization), is stated in (4), where 𝑛 is the
number of items the rule applies to and 𝑒 is the
number of exceptions to the rule.

(4)
𝑒 ≤ 𝑛

ln 𝑛
Thus, our model tracks—for each morpheme—

the number of observed words in which the mor-
pheme appears (n) and the number of those where
surface alternation leads the morpheme to be real-
ized as something other than its hypothesized con-
crete form (e).

If the (4) threshold is met, then the UR remains
concrete and the word forms where the suffix is re-
alized as something else are lexicalized⁴ as excep-
tions. For example, when the 3rd item in Tab. 1

⁴By lexicalization, we mean that the word form is stored
in the lexicon verbatim instead of being decomposed into the
underlying morphemes. See Tab. 2 for an example.
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Morphemes Word Forms

Meaning UR PL Form GEN From PL, GEN Form

PL /lAr/ N/A N/A N/A
GEN /in/ N/A N/A N/A

‘ice’ /buz/
Stem-PL

?? ??
‘girl’ /kWz/ ?? ??
‘stalk’ /sAp/ ?? ??

‘hand’ /el/ /el-ler/ ?? ??
‘word’ /søz/ /søz-ler/ ?? ??
‘face’ /jyz/ ?? /jyz-yn/ ??
‘place’ /jer/ ?? ?? /jer-ler-in/
‘branch’ /dAl/ ?? ?? /dAl-lAr-Wn/
‘rope’ /ip/ ?? ?? /ip-ler-in/

Table 3: The left two columns contain morphemes—meaning and form (UR); the right three columns contain word
forms. Boldface denotes word forms that can be predictably decomposed into concrete underlying forms, while
‘/-/’ notation denotes word forms that must be lexicalized. The ‘??’ denotes word forms that are unknown. Once
all nine words from Tab. 1 enter the lexicon, most forms (6 of 9) cannot be predictably decomposed into concrete
underlying forms, so the model constructs abstract URs, as described in § 2.5.

enters the lexicon, the realization of PL as [-ler]
violates (3). However, with only three word forms
containing PL this one exception can be lexical-
ized, since 1 ≤ 3/ln 3.

On the other hand, if the (4) threshold is
violated—i.e., 𝑛 > 𝑛

ln 𝑛—then themodel constructs
an abstract underlying form. For example, when
the 9th item of Tab. 1 enters the lexicon, the real-
ization of PL as [-ler] becomes the 4th of 8 forms in
which PL is realized as [-ler] instead of the [-lAr]
predicted by (3). Because 4 > 8/ln 8, the model
will construct an abstract UR for the PLmorpheme.

This is shown in Tab. 3, where the plural is real-
ized as [-lAr] in 3 plural forms and 1 plural, geni-
tive form, but there are 4 forms that must be lexi-
calized because they instead have the [-ler] form.⁵

Constructing abstract URs introduces discrepan-
cies between URs and SRs for any word forms con-
taining the morpheme, so our model then passes
the (UR, SR) pairs implicit in its lexicon⁶ to a
model that learns phonological alternations to ac-
count for the newly-introduced discrepancies. The
process of constructing abstract URs is described
in § 2.5 and the process of learningwhat conditions
the alternations is described in § 2.6.

⁵Note that the PL, GEN of ‘branch’ is lexicalized because
the GEN affix is realized in a form other than [in], not because
of the PL affix, which is why that form does not get counted
as an exception in the TP calculation for the PL affix.

⁶See § 2.6 for a description of how the set of (UR, SR)
pairs is computed.

2.5 Constructing Abstract URs

The model’s first step in constructing an abstract
UR for a morpheme is to create the set of forms
that the morpheme is realized as. For example, the
forms of the GEN affix attested in Tab. 1 are [-in] /
[-Wn] / [-yn], and of the PL affix are [-lAr] / [-ler].

Next, the model aligns each of the forms. This
is trivial for fixed-length affixes (e.g., the case of
the PL affix). If the length of the forms are not
all the same, then the model counts the lengths of
the morpheme’s realizations. For example, the da-
tive affix can be realized as [-A] or [-e], but may
contain an affix-initial [j] when attaching to a mor-
pheme that ends in a vowel. The model thus counts
the number of words in which [-A] or [-e] (length
1) is the realization, and the number in which [-jA]
or [-je] is the realization (length 2), and chooses
the most frequent length as the length of the UR.
If a shorter length is chosen, the extra segment(s)
are treated as epenthesized; if the longer is chosen,
they are treated as deleted. For simplicity, we as-
sume that these segments epenthesize or delete on
the left, which is a simplification. This process is
not guaranteed to generalize to other languages, so
future work will develop a more robust alignment
process by more tightly combining the problems of
abstract UR construction and rule construction.

Once the forms are aligned, the UR is con-
structed one segment at a time. Each segment is
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set to match in features where all realizations of
the affixmatch; features that alternate across forms
are unspecified underlyingly. For example, [-lAr] /
[-ler] will lead to /-lAr/, where A is the low, un-
round vowel with backness unspecified, because
both forms agree in the initial and final segments,
but the vowel alternates on backness. Similarly, [-
in] / [-Wn] / [-yn] will result in /-Hn/, where H
is the high vowel with backness and roundness un-
specified, since [i] and [y] differ in backness from
[W] while [i] and [W] differ from [y] in roundness.

2.6 Learning Alternations

When the number of words where the morpheme’s
surface alternation requires the word be lexical-
ized becomes too great, the model constructs an
abstract UR for the morpheme. This abstract UR
introduces a discrepancy between the abstract UR
and its surface realization. The model thus con-
structs a set of (UR, SR) pairs from the lexicon,
which it passes to a model that learns a phonologi-
cal process to derive the various surface forms.

For example, when the 9th item from Tab. 1
causes /lAr/ to no-longer be sustainable as the PL
affix UR, the lexicon is as described in Tab. 3.
The surface form for the PL forms of the roots
‘ice’, ‘girl’, and ‘stalk’ are computed by con-
catenating /lAr/ to the stem (i.e., Stem-PL), and
the remaining six known surface forms, which
were lexicalized, are extracted directly from the
lexicon. Since the PL is being collapsed into
/lAr/, each word’s UR is computed by replac-
ing the surface realization of the PL affix with
this new UR. Thus, the (UR, SR) pairs at this
point would be {(/buzlAr/, [buzlAr]), (/kWzlAr/,
[kWzlAr]), (/sAplAr/, [sAplAr]), (/ellAr/, [eller]),
(/søzlAr/, [søzler]), (/jyzyn/, [jyzyn]), (/jerlArin/,
[jerlerin]), (/dAllArWn/, [dAllArWn]), (/iplArin/,
[iplerin])}.

Learning phonological processes from UR-SR
pairs is an active area of study, and many mod-
els have been proposed (see Jarosz 2019 for an
overview). In this work we chose Belth (2023)’s
model, which is a cognitively-grounded model that
provides a unified ability to learn local and non-
local alternations, which is important, given Turk-
ish’s non-local vowel harmony combined with lo-
cal processes like voicing assimilation (see § 3.1).

Belth (2023)’s model is grounded in humans’
strong tendency to track adjacent dependencies.
For example, artificial language experiments have

repeatedly demonstrated that learners more easily
learn local phonological processes than non-local
ones (Baer-Henney and van de Vijver, 2012) and,
when multiple possible phonological generaliza-
tions are consistent with exposure data, learners
systematically construct the most local generaliza-
tion (Finley, 2011; White et al., 2018; McMullin
and Hansson, 2019).

The Belth (2023) model learns rules to predict
the surface form of alternating segments—in this
case those that are underlyingly abstract. To do
so, the model tracks only dependencies between
alternating segments and the segments adjacent to
them. If these adjacent segments fail to allow the
surface form to be accurately predicted, the model
deletes any adjacent segments that prevent the sur-
face form from being predicted, and repeats. The
iteratively deleted segments accumulate into a dele-
tion set, the complement of which is interpreted as
a tier. The learned rules are applied locally over
the tier projection. Because segments are deleted
only when adjacent dependencies fail to make the
surface form predictable, local processes are a spe-
cial case, and thus local and non-local processes
are learnable by a unified model.

3 Evaluation

This section provides a case study of our proposed
model on the highly agglutinative language, Turk-
ish. In § 3.1 we describe some relevant details of
Turkish. We then describe the setup of our evalua-
tion in § 3.2. Finally, we present qualitative results
in § 3.3 and quantitative results in § 3.4.

3.1 Turkish

Turkish phonology receives attention often be-
cause of its apparently complex vowel harmony
system. It exhibits both primary front/back har-
mony and secondary rounding harmony, which
is parasitic on height: only [+high] vowels har-
monize for roundness. Moreover, Turkish has
a number of exceptional suffixes whose vowels
do not participate in harmony, and even half-
harmonizing suffixes, which have multiple vow-
els, some of which harmonize and some of which
do not. These harmony processes occur alongside
other processes, such as local voicing assimilation.
The Turkish vowel inventory is shown in (5).
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(5)

front back
unround round unround round

high i y W u

low e ø A o

The primary harmony process is observed in af-
fix vowels that alternate between [+back] when the
preceding vowel is [+back] and [−back] when it
is [−back], as in (6) (examples from Nevins 2010,
p. 28; Kabak 2011, p. 3).

(6) [dAl-lAr-Wn]
[jer-ler-in]
[ip-ler-in]

branch-PL-GEN
place-PL-GEN
rope-PL-GEN

The secondary rounding harmony involves suf-
fixal [+high] vowels matching in roundness to the
vowel to the left, as in (7) (examples from Nevins
2010, p. 29; Kabak 2011, p. 3). This harmony oc-
curs regardless of whether the vowel to the left is
[+high] (7a) or [−high] (7b).

(7) a. [ip-in]
[jyz-yn]
[kWz-Wn]
[buz-un]

b. [el-in]
[søz-yn]
[sAp-Wn]
[jol-un]

rope-GEN
face-GEN
girl-GEN
ice-GEN
hand-GEN
word-GEN
stalk-GEN
road-GEN

Some suffixes have vowels that do not partici-
pate in harmony. For example, the suffix [-ki] can
attach to a temporal or spatial nominal root to yield
adjectival forms as in (8), where the suffix surfaces
with the vowel [i] regardless of the final vowel of
the stem (examples from Oflazer 1994, p. 144).
The PL suffix, which alternated in (6), here har-
monizes with the [i] vowel (8b), thus surfacing as
[e].

(8) a. [ønÃe-ki] ‘(the one) before’
[jArWn-ki] ‘(the one) tomorrow’

b. [ønÃe-ki-ler] ‘(the ones) before’
[jArWn-ki-ler] ‘(the ones) tomorrow’

The situation gets more complex, as some suf-
fixes are half harmonizing, meaning they have two
vowels with one harmonizing and one not.⁷ An

⁷The term half harmonizing is from Nevins (2010), but
one reviewer pointed out that, in principle, other fractions of
vowels (1 of 3) could harmonize.

example is shown in (9a), where the first vowel
of the abilitative (ABIL) suffix harmonizes with
the vowel to the left, but the second vowel is
always [−back] [i] even when the first vowel is
[+back] (Kornfilt, 2013). The aorist (AOR) suffix
vowel then harmonizes with the abilitative’s non-
harmonizing second vowel [i] in (9a). The exam-
ple (9b) demonstrates that the AOR suffixal vowel
surfacing as [i] in (9a) is indeed due to harmony,
as it harmonizes in (9b) with [o].

(9) a. [jAz-Abil-ir] ‘write’-ABIL-AOR
[jyz-ebil-ir] ‘swim’-ABIL-AOR

b. [ol-ur] ‘become’-AOR

Vowel harmony often goes in hand with other
phonological processes, such as voicing assimila-
tion. This can be seen, for example, in the locative
(LOC) suffix, which exhibits vowel harmony, but
begins with an alveolar stop, which assimilates in
voicing to the segment to its left, as in (10) (exam-
ples from Dobrovolsky 1982; Çöltekin 2010; Ko-
rnfilt 2013).

(10) [byro-dA] ‘office’-LOC
[ev-de] ‘house’-LOC
[Ãep-te] ‘pocket’-LOC

In the remaining subsections, we demonstrate
how our proposed model elegantly accounts for
these complexities in Turkish (§ 3.3), and how this
allows for novel surface forms to be accurately pre-
dicted (§ 3.4). First, though, we introduce the setup
and data we used for our experiments (§ 3.2).

3.2 Setup and Data
To simulate learning in Turkish, we constructed
two Turkish datasets consisting of frequency-
annotated and morphologically-analyzed surface
forms (see below). To simulate one learning tra-
jectory, we sampled words with replacement from
the corpus, weighted by frequency. Each time a
new word form is sampled, the learner adds it to
its lexicon. We then investigate the underlying
forms of each morpheme, seeing which are con-
crete and which are abstract (§ 3.3). We then eval-
uate how accurately the model, combined with a
model for learning alternation rules, allows novel
surface forms to be predicted (§ 3.4).

We constructed two datasets, called Mor-
phoChallenge and CHILDES. The first used data
from MorphoChallenge (Kurimo et al., 2010),
which contains a large Turkish corpus annotated
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with word frequencies. To generate morpholog-
ical analyses of words, we used Çöltekin (2010,
2014)’s finite state morphological analyzer, which
is designed for Turkish. This is similar to the
process used in the MorphoChallenge, but is pub-
licly available.⁸ We dropped any word in Mor-
phoChallenge that had fewer than 25 occurrences
or for which the morphological analyzer failed
to provide an analysis. We also removed forms
with affixes that are analyzed by Çöltekin (2010,
2014) as having multiple underlying forms. For
example, the highly irregular aorist suffix is some-
times described as having four underlying forms:
/-Ar/, /-Hr, /-z/, /-null/. Future work will con-
sider scenarios where multiple URs are necessary.
This resulted in 22,315 frequency-annotated and
morphologically-analyzed surface forms, which
we transcribed into IPA.

The second dataset is derived from the child-
directed speech in the Aksu (Slobin, 1982) and
Altinkamis corpuses of the CHILDES database
(MacWhinney, 2000). We computed the frequency
of each word in the corpuses and used the same
process as above to morphologically analyze each
word. This dataset is much smaller, so we did not
exclude words with low corpus counts from this
dataset. The resulted in 1,727 frequency-annotated
and morphologically-analyzed surface forms, tran-
scribed into IPA.

Note that some Turkish suffixes exhibit dele-
tion/epenthesis to avoid CC or VV clusters. These
additional processes are at present ignored, be-
cause the implementation provided by Belth
(2023) was designed for harmony and disharmony.
Future work will extend the implementation to
epenthesis and deletion by incorporating Belth (In
Press)’s model, which handles such processes.

3.3 Suffixes: Abstract and Concrete
Remarkably, the apparent complexity of Turkish
vowel harmony, discussed in § 3.1, vanishes when
we investigate the output of our model.⁹ As be-
fore, we will let A denote the Turkish low, un-
round vowel with backness unspecified (extension-
ally, {e, A}) and H be the Turkish high vowel with
both backness and height unspecified (extension-
ally, {i, y, W, u}). Moreover, we will use D to
denote the alveolar stop with voicing unspecified
(extensionally, {d, t}).

⁸https://github.com/coltekin/TRmorph
⁹This analysis is performed on a random, frequency-

weighted 80% sample of the MorphoChallenge dataset.

We will walk through the complexities exempli-
fied by (6)-(10) one-by-one. First, the PL suffix in
(6), which has a low unrounded vowel, participates
in front/back harmony, but not rounding harmony
because it is not a [+high] vowel. Our model con-
structed the underlying form /-lAr/ for this suffix,
capturing the fact that it only harmonizes for back-
ness.

The GEN suffix in (6)-(7) has a [+high] vowel
and participates in both primary and secondary har-
mony. Our model constructed the underlying form
/-Hn/ for this suffix, which captures the surface al-
ternation of this morpheme.

Next, the [-ki] suffix in (8) does not participate
in harmony, and our model consistently represents
it with a concrete form /-ki/.

For the abilitative suffix in (9), our model ab-
stracts the first, harmonizing vowel, but keeps the
second, non-harmonizing vowel concrete -/Abil/.

Lastly, the UR for the locative suffix in (10)
is constructed with both segments abstract /-DA/,
capturing both the voicing assimilation of the ini-
tial alveolar stop and the vowel harmony of the sec-
ond segment.

These underlying forms allow Belth (2023)’s
model to learn two rules, which allow for the accu-
rate prediction of novel surface forms. On the re-
sulting (UR, SR) pairs, Belth (2023) learns a vowel
harmony rule, which targets both /A/ and /H/ vow-
els, and enforces harmony with respect to their un-
specified values: [back] for /A/ and both [back]
and [round] for /H/. The model automatically con-
structs a vowel tier and enforces harmony locally
over that tier (see Belth 2023 for details). Belth
(2023)’s model also learns a local voice assimila-
tion rule, which causes /D/ to take its [voice] value
from the segment to its left.

It is worth noting that others—in particular
Nevins (2010)—have similarly argued that Turk-
ish vowel harmony can be elegantly accounted for
with an underspecification approach. Our model
builds on Nevins (2010)’s observations by provid-
ing an explicit computational model that constructs
underlying forms, which turn out to be consistent
with this analysis.

As a further analysis, we show the 10 most fre-
quent affixes in a 1Kword sample of the CHILDES
corpus in Tab. 4, along with the UR that our model
constructed for each. Of the 10 affixes, 7 have been
collapsed into abstract forms. However, there are
3 forms (P1S, lH, P2S) that were quite frequent,
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Affix UR Abstract

PL /-lAr/ Y
P3S /-H/ Y
P1S /-m/ N
GEN /-Hn/ Y
DAT /-A/ Y
ACC /-H/ Y
LOC /-DA/ Y
VN:INF /-mA/ Y
lH /-lW/ N
P2S /-n/ N

Table 4: Top 10 most frequent affixes in a ran-
dom, frequency-weighted sample of 1K words from
the CHILDES dataset, and the URs that our model
learned. See http://coltekin.net/cagri/trmorph/trmorph-
manual.pdf for a description of affix names.

but are still able to be stored concretely. The P1S
and P2S affixes do not have alternating segments in
Turkish, so it is expected that these would be con-
crete. The “lH” affix, as captured by its name, can
surface with any high vowel. However, in the train-
ing data, the [-lW] form occurs 25 out of 32 times,
so the 7 words where it surfaces as something else
are lexicalized (7 <= 32/ln 32).

3.4 Quantitative Evaluation
We also evaluated how the model enables gener-
alization, when paired with a model for learning
phonological alternations. We used our model in
tandem with Belth (2023)’s model to learn to map
a stem and morphological analysis of a surface
form to an actual surface form. For example, given
the stem [dAl] and morphological analysis Stem-
PL-GEN, our model’s underlying forms for -PL
and -GEN are concatenated to the stem to form a
UR, to which the generalizations learned by Belth
(2023) can then be applied to predict a surface
form, such as [dAllArWn].

We ran the model on both datasets, simulating
incremental learning by sampling words with re-
placement and weighted by frequency, and adding
them to the lexicon when sampled. As this pro-
cess incrementally adds words to the lexicon, our
model operates as described in (2). In 250-word
increments (i.e., every time the lexicon grows by
250 unique words), we evaluated the model by us-
ing the rules learned by Belth (2022)’s model—on
our learned underlying forms—to predict the sur-
face form of all the words not in the lexicon. We

carried out 5 simulations on each dataset, using dif-
ferent random seeds for sampling on each.

The results are shown in Fig. 1, where the 𝑥-axis
shows the incremental growth of the learner’s lex-
icon (i.e., the training size), and the 𝑦-axis shows
the accuracy at predicting novel surface forms at
that point during training. The accuracy is com-
puted over all surface forms not currently in the
training data. Each subfigure is for one of the two
datasets. The MorphoChallenge results (Fig. 1a)
are reported up to a size of 3K words, so the test
results are on 10s of thousands of novel words.

The model’s performance appears to be consis-
tent with acquisition studies. Altan (2009) found
that Turkish-speaking children as young as 2;0
extend vowel harmony to nonce words. Studies
across languages reveal that a child’s vocabulary
is quite modest at this age, with an upper bound
around 1K words (Fenson et al., 1994; Hart and
Risley, 1995; Szagun et al., 2006; Bornstein et al.,
2004). The model’s performance on both datasets
is above 90% accuracy when its vocabulary con-
tains 1K words.

3.4.1 Error Analysis
Of the errors, around 52% result from the model
having a concrete form of an affix, which it then
errantly predicts for a novel word that exhibits al-
ternation in that affix. For example, there are in-
sufficient forms in the training data to make /Wp/
as the concrete CV:IP affix prohibitive (𝑒 = 5 <=
𝑛 = 13/ln 13), even though vowel harmony leads it
to sometimes surfaces with other high vowels. As
a result, novel words like [gel-ip], which take the
[ip] form of the affix are mispredicted.

About 47% of the errors are the result of
vowel harmony or consonant assimilation being
predicted for a novel form that exceptionally does
not involve harmony. For example, the word
[sAAt-ler] ‘watch-PL’ is predicted by our model to
be [sAAt-lAr] because the UR for the plural suffix is
/lAr/, as it systematically harmonizes. According
to a Wiktionary search,¹⁰ the root [sAAt] is of Ara-
bic origins. Because Arabic has a different vowel
system, vowels in Arabic loan words may conform
to the Turkish vowel system when entering Turk-
ish, and thus sometimes behave oddly. Indeed, Al-
tan (2009) observed that children may overextend
vowel harmony to such words.

The remaining 1% of errors result from very low

¹⁰https://en.wiktionary.org/wiki/saat#Turkish
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(a) MorphChallenge (b) CHILDES

Figure 1: Our proposed model’s accuracy (averaged over 5 simulations) at predicting novel surface forms. The
𝑥-axis shows the growth of the learner’s lexicon (i.e., the training size).

frequency affixes which are simply unattested in
the training data.

4 Prior Work

Tesar (2014) and Hua et al. (2020) focus on the-
oretical analyses of the nature of the problem of
learning URs. O’Hara (2017); Rasin et al. (2018);
Ellis et al. (2022) proposed computational mod-
els, but evaluate on small, phonology-textbook-like
data, not large, natural-language corpora.

Cotterell et al. (2015) also predominately mod-
els textbook-like problems, but presents some lim-
ited analysis on more realistic corpora. However,
these corpora only involve very simple morpho-
logical paradigms involving a single suffix, and
present to the model a fairly curated subset of the
corpus that isolates the relevant morphophonolog-
ical process.

Richter (2021) studies the question of when al-
lophonic surface segments are collapsed into an
abstract underlying segment, focusing on the En-
glish flap [R] allophone of /T/. While Richter
(2021) focuses on allophones, our proposed model
is inspired by it and can be viewed as extending
the same principles to morphophonological alter-
nations.

Of these prior models, we were only able to get
access to code for Cotterell et al. (2015) and Rasin
et al. (2018), which we were unable to get to run
on our large datasets. In future versions of this
work, we intend to implement some of these exist-
ing models in order to compare their performance
and behavior to that of our proposed model.

5 Conclusion

This work proposed a learning-based account of
underlying forms, taking the highly agglutinating
language of Turkish as a case study. The proposed
model starts with concrete underlying representa-
tions and constructs abstract URs only in cases
where doing so helps to form generalizations that
deal with the sparsity of morphological forms in
the learner’s input.

The model constructs abstract underlying forms
when they are critical for generalization, but allows
for concrete forms when abstraction is unecessary.
This flexibility is at the core of the model’s suc-
cess, as evidenced by the fact that the represen-
tations of Turkish suffixes in § 3.3 are minimally
abstract. For example, the half-harmonizing suf-
fixes consist of concrete segments except for the
single, harmonizing vowel. Similarly, exceptional,
non-harmonizing suffixes remain fully concrete.

When combined with a model for learning lo-
cal and non-local alternations, the proposed model
achieves >95% accuracy predicting the surface
form of held-out test words.

This work presents a preliminary case study in
Turkish. Future work will evaluate the model on
other languages. Moreover, the algorithm takes
as inputmorphologically-segmented surface forms.
As discussed in § 2.1, there is experimental evi-
dence that children are able to perform morpholog-
ical segmentation. In future work, we will attempt
to bring the problems together, jointly segmenting
surface forms, learning underlying forms, and mor-
phophonological grammars.
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Abstract

Both syntax and prosody seem to require struc-
tures with unbounded branching, something
that is not immediately provided by multiple
context free grammars or other equivalently ex-
pressive formalisms. That extension is easy,
and does not disrupt an appealing model of
prosody/syntax interaction. Rather than com-
puting prosodic and syntactic structures inde-
pendently and then selecting optimally cor-
responding pairs, prosodic structures can be
computed directly from the syntax, eliminat-
ing alignment issues and the need for bracket-
insertion or other ad hoc devices. To illustrate,
a simple model of prosodically-defined Irish
pronoun displacement is briefly compared to
previous proposals.

Since phonological structures do not show a prin-
cipled bound on length, those structures must allow
unbounded branching or unbounded depth or both.
There is significant controversy about how the bal-
ance is struck (Selkirk, 1996, 2011; Ito and Mester,
2012). Idsardi (2018) suggests that the issue can
be largely set aside if the appearance of phono-
logical structure derives entirely from the syntax,
with a transduction that concatenates segmental
material and inserts ‘boundary symbols’. But Yu
(2021) points out that boundary symbol insertion
should not be accidental, stipulated; if there are no
prosodic constituents, then we need another expla-
nation of ‘boundary’ distribution. Rigorous studies
of these matters are often based on grammars and
automata that do not provide mechanisms for un-
bounded branching. This absence may obscure part
of our picture of the syntax-prosody interface.

For syntax, Chomsky (1961, 1963, 2018) ob-
serves that standard rewrite grammars do not pro-
vide unbounded branching:

The failure of strong generative capacity of
[phrase structure grammar] . . . is a failure of
principle, as shown by unstructured coordina-
tion: e.g., “the man was old, tired, tall,. . . , but

friendly”. Even unrestricted rewriting systems
fail to provide such structures, which would
require an infinite number of rules. The more
serious failure, however, is in terms of ex-
planatory adequacy. (Chomsky, 2018, p.132)

Chomsky’s remarks about this are discussed in Las-
nik (2011) and Lasnik and Uriagereka (2022, pp.15-
20). Lasnik (2011) notes that Chomsky and Miller
(1963, p. 298) actually consider this context free
rule for adjective coordination:

Predicate→ Adjn and Adj (n ≥ 1).
However, as Lasnik notes:

Chomsky and Miller indicate that there are
“many difficulties involved in formulating this
notion so that descriptive adequacy can be
maintained. . . ”. But they do not elaborate on
this point. It would surely be interesting to
explore this. . . (Lasnik, 2011, p.361)

That option is explored here.
Inspired by Kleene (1956), unbounded branch-

ing can be added to phrase structure rewrite gram-
mars by allowing the Kleene star * on the right
side of any rule.1 Yu (2022), reviewed in §1, pro-
poses that prosodic constituency and dependencies
can be specified by multi bottom up tree transduc-
ers or, equivalently, multiple context free gram-
mars. These can also be extended with * on the
right side of any rule, accommodating unbounded
prosodic branching. In recent syntax too, the evi-
dence supports unbounded branching. Neeleman
et al. (2023) defends unbounded branching for co-
ordination, and briefly reviews the long history of
such proposals. McInnerney (2022b) argues for
unbounded branching in adjunction. And Chom-
sky (2021, p.20) recently proposes a *-extension
of merge, in his rule ‘D’.

1This idea is used in finite state toolkits (Beesley and Kart-
tunen, 2003; Hulden, 2009; Gorman and Sproat, 2021), and
*-extended context free grammars are commonly used to de-
fine programming languages (Wirth, 1977; Albert et al., 2001;
Martens and Niehren, 2005; Jim and Mandelbaum, 2010; Bor-
sotti et al., 2023). Pattis (1994) argues that context free gram-
mars with unbounded branching should be taught on the first
day of your first class in Computer Science.
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ι(xy)← ω(x) φ(y)
φ(xy)← ω(x) φ(y)
φ(xy)← φ(x) φ(y)
φ(x)← ω(x)
ω(xy)← σ(x) ω(y)
ω(is)←
ω(cuma)←
ω(é)←
ω(’na)←
ω(shamhradh)←
ω(gheimhreadh)←
ω(nó)←

ι

ω

is

φ

ω

cuma

φ

φ

ω

é

φ

φ

ω

‘na

φ

ω

shamhradh

φ

ω

nó

φ

ω

‘na

φ

ω

gheimhreadh

ι

φ

σ

is

ω

σ

HL(cu)

σ

ma

φ

φ

ω

σ

LH(é)

ω

σ

na

ω

σ

HL(shamh)

σ

radh

φ

ω

σ

no

ω

σ

na

ω

σ

HL(gheimh)

σ

readh

a. MCF grammar b. Derivation from grammar a c. Derivation with ι(~x)← φ+(~x) and pitch accents

Figure 1: *-MCF prosody for (1)

A *-extension of minimalist grammar is pro-
posed in §2, providing an analog of Chomsky’s
rule D. And since the primary causal influences in
prosody and syntax differ, it is natural to define
them separately. But this creates a puzzle about
how the respective influences interact in linguistic
performance. A syntax-prosody interface inspired
by Bennett et al. (2016) is proposed, one that al-
lows prosodically conditioned pronoun postposing
of weak pronouns in Irish. These pronouns can
appear middle of a coordinate structure, suggest-
ing a non-syntactic placement. With a syntax for
Irish coordination that allows unbounded branch-
ing, postposing of these weak elements can occur
in the generation of prosodic structure.

1 *-Prosodic structure

Yu (2021) points out that many phonologists ar-
gue for structures with branching constituencies
that finite state automata do not provide. And Yu
(2022) observes that certain multiple dependen-
cies, sometimes marked with arcs in representa-
tions of phonological structure (Pierrehumbert and
Beckman, 1988), can be captured and made ex-
plicit in ‘finite state multi bottom up tree transduc-
ers’ (MBOTs) or, equivalently, in ‘multiple context
free grammars’ (MCFGs). A simple MCFG is pre-
sented in Figure 1a using the logic-based notation
of Kanazawa et al. (2011). Each rule is a condi-
tional, with the back arrow ← pronounced “if”,
and with variables over strings on the right that get
concatenated on the left side of each rule. The first
rule Figure 1a says “xy is an ι if x is a ω and y is a
φ”. The last says “the string nó is an ω”.

Here, we also extend MCFGs with the Kleene
star and plus. Any category C on the right side of a
rule can be starred, C∗, meaning that it may occur
0 or more times, where the strings of this sequence
are adjacent in the sequence ~x. We also allow C+

which is the same as C followed by C∗. So the rule

ι(~x)← φ+(~x)

says “the strings of ~x, concatenated, are an ι if they
are the strings of one or more occurrences of φ”.
An instance of that rule is applied at the root of
Figure 1c. And the rule from Chomsky, mentioned
in the introduction, is:

Predicate(~x and y)→ Adj+(~x) Adj(y).

That says “~x, concatenated with and, concatenated
with string y, is a Predicate if ~x are the strings of
1 or more Adj, and y is also an Adj”. We will
also write LH(é) to indicate that é has the pitch
accent LH, and similarly for HL. These extensions
do not change MCFG expressive power (Appendix
A). MCFGs are ‘multi’ in allowing categories to
classify multiple strings – relevant in §3.

Example. Consider the Irish (1) from Bennett
et al. (2016), in which we added syntactic bracket-
ing for the coordinate structure:

(1) is
COP.PRES

cuma
no.matter

[é
it

[‘na
PRED

shamhradh]
summer

[nó
or

[‘na
PRED

gheimhreadh]]]
winter
‘It doesn’t matter if it’s summer or winter’

Assuming the syntactic structure in Figure 4 (ex-
cluding the conjunct ‘na fhómar), the prosodic
structure expected following the syntax-prosody
mapping principles of Match Theory (Selkirk,
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2011; Elfner, 2012) is shown in Figure 1b. In brief,
optimality-theoretic MATCH constraints enforce
that clausal projections correspond to intonational
phrases (ι), maximal projections to phonological
phrases (φ), and heads to prosodic words (ω). How-
ever, Bennett et al. (2016, (104)) propose that the
prosodic structure in fact phrases pronoun é to-
gether with the first conjunct ‘na shamhradh in a
single φ, like in Figure 1c.

Briefly, to explain this, they propose that
prosodic markedness constraints are ranked above
MATCH constraints, following Elfner (2012, §4.2).
The key prosodic markedness constraints are:
(i) EQUALSISTERS (Bennett et al., 2016, (48)),
which assigns a violation when sisters are not of
the same prosodic category (Myrberg, 2013), (ii)
STRONGSTART (Bennett et al., 2016, (55)), which
penalizes φ- and ι-phrases with leftmost daughters
that are “prosodically dependent”, i.e., syllables
(σ), and (iii) BINARITY, which penalizes nodes
that are not binary branching. Here we assume that
BINARITY is applicable only to φ-nodes, following
Elfner (2012, §4.2), and that EQUALSISTERS is
applicable only to nodes above the prosodic word
(since Myrberg (2013) and Bennett et al. (2016)
consider only above the level of the prosodic word).
In addition, Bennett et al. (2016, p. 198) assume
that a prosodic word must contain a stressed sylla-
ble, which we can encode as an inviolable CULMI-
NATIVITY constraint.

While the tree in Figure 1b incurs no MATCH

constraint violations, it incurs five EQUALSISTERS

violations due to 〈ω, φ〉 daughter pairs, as well as
three BINARITY violations due to unary branches
to é, shamhradh, and gheimhreadh; moreover, is
and ‘na (but crucially, not é) are stressless cli-
tics and thus incur violations of CULMINATIV-
ITY. In contrast, the prosodic tree in Figure 1c
incurs a number of MATCH violations, but no BI-
NARITY violations and only single STRONGSTART

and EQUALSISTER violations due to the phras-
ing of the daughters is and cuma. The structure
in Figure 1c with pronoun é linearized preceding
the conjuncts is only optimal when é occurs in its
strong, stressed form. When é occurs in its weak,
unstressed form, it cannot form a prosodic word on
its own—only a syllable. If the ω node over é in
Figure 1b was deleted, leaving just a σ, violations
of EQUALSISTERS and STRONGSTART would be
incurred.

2 *-Minimalist grammar

Minimalist grammars (MGs) are weakly equivalent
and closely related to MCFGs (Harkema, 2001a;
Michaelis, 2001) and can be similarly extended
to unbounded branching, leaving weak expressive
power unchanged (Appendix A). Here we adapt the
version of MG in Kobele (2021), which has only
positive and negative feature occurrences, where
expressions are formed by merging expressions in
which each negative occurrence is ‘mated’ with a
positive occurrence.

We use only one polarity relation following Ko-
bele (2021) and others.2 Initially, let a minimalist
grammar (MG) be a finite set of lexical items that
associate phonological forms with feature-based
formulas as follows:

feature ::= V |D |A |C |wh | . . .
| feature+ |feature∗ |X

non-empty-conj ::= feature | feature . non-empty-conj
conj ::= ε | non-empty-conj

formula ::= conj ( non-empty-conj
lexical-item ::= phonological-form : formula

In any formula, features in the antecedent conjunc-
tion on the left are are negative; those in conse-
quents positive. When an antecedent is empty, in-
stead of ε( a.b or ( a.b, we often write a.b.

*-Merge. We extend the usual definition of bi-
nary merge to to allow any number of constituents
to be combined in one step:

M(A,B,C1, . . . , Cn) = {A,B,C1 . . . , Cn}.

At least 2 constituents are required, so it
is sometimes convenient to write A,B, ~C for
A,B,C1, . . . , Cn (n ≥ 0). Sets are unordered, of
course, but order would be redundant since, as will
become clear, heads and subcategorized elements
are distinguishable by their labels.

Labels. Derivations begin with numerations,
which are defined here as finite sequences of lexical
and derived elements. Merge applies to numeration
elements, replacing them. And the merge steps of
a successful derivation produce complexes which
can be assigned a label by function `. A lexical or
derived structure A whose first unmated feature is

2MGs often use 2 canceling pairs (=x selects x, and +x
licenses -x), but here we use 1. A head (negative occurrence
of x) ‘mates’ or ‘cancels’ a non-head (positive occurrence of
x). Eliminating the move/merge distinction arguably makes
scope reconstruction less surprising (Sportiche, 2017; Chom-
sky, 1995, §3.5). Cf. CMGs (Stabler, 2011), e-MGs (Chesi,
2021), and Horn linear logic (Kanovich, 2015).
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Labels are defined with 3 cases (lexical items, internal merge, and external merge, respectively):

`(A) =





A : {α( β} if A is a lexical item w : α( β

A : γ if A = {B,C, ~D}, C : F ∈ `(B), γ = m(`(B), {C : F}) is defined, and &(`(C), ~D)

A : γ otherwise, if A = {B,C, ~D}, γ = m(`(B), `(C)) is defined, and &(`(C), ~D)

Tentatively, &(α, ~D) iff every element of ~D has label α.
And the ‘mating’ function calculates the labels of complexes, for the third case of `:

m(S[f.α( β], T [B : {f.γ}]) =
{
{α( β} ∪ S ∪ T if γ = ε and smc(S ∪ T )
{α( β,B : γ} ∪ S ∪ T if γ 6= ε and smc({B : γ} ∪ S ∪ T ),

where X[α] is a set X containing formula α and then X is the result of removing that element, and where smc(X) iff
no two formulas in X have the same first unmated feature.

Figure 2: MG label checking

ε:TM(C

ε:V(TM

is:A(V

cuma:pred(A

é:D

ε:Pred.D(pred

‘na:D(Pred shamhradh:D ‘na:D(Pred fhómar:D nó:X X+(X

‘na:D(Pred gheimhreadh:D

Figure 3: Left, structure for (2): a set in which leaves are lexical items, internal nodes are sets, arcs are ∈ relations.
A dotted arc is added to indicate PF head movement, independent of syntax-derived set. Right, the corresponding
dependency tree (with feature-checking arcs).
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ε

TMP

TM
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is

TM

ε

VP

Vi

is

AP

A

cuma

predP

DP

é

pred’

pred

ε

&P

PredP

Pred

‘na

DP

shamhradh

PredP

Pred

‘na

DP

fhómar

&’

&

nó

PredP

Pred

‘na

DP

gheimhreadh

Figure 4: X-bar tree for derivation of Figure 3.

negative f can mate with a lexical or derived struc-
ture B whose first unmated feature is positive f .
Labeling maps a lexical item or derived set A to a
pair A : F , where F is the set that contains the for-
mula of the head, but with mated feature removed,
together with the pairs ~B : ~G of subconstituents
~B with unmated positive features ~G, as detailed in
Figure 2.

As in previous MGs, ` requires embedded pos-
itive elements to satisfy the ‘shortest move con-
straint’ (smc): `(A,B) is undefined if A,B have
any first positive feature in common. The mating
m then applies to the labels. Writing N [A,B, ~C]
when A and ~C are in numeration N and either (i)
~B ∈ N or (ii) B ∈ `(A), let N [M(A,B, ~C)] be
the result of letting {A,B, ~C} replace A,B and ~C
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in N .3 We call steps using labeling condition (i)
external merge and steps using (ii) internal merge
or move. Note that a move-over-merge condition
is imposed in the definition of the labeling ` in
Figure 2 – it’s the last, ‘otherwise’ case.4

The labeling of pairs A,B is extended to the
labels of A,B, ~C by requiring each element of C
to have the same label as B, and assigning the
complex the same label it would have if ~C were
empty. In lexical entries, f+ is a special feature
that allows labeling of ~C, with 1 or more elements
with first negative feature f. For convenience, in
any lexical item, we also allow variable X to be
instantiated with any single feature.

Derivations. Now a rule R, building syntactic
structures from elements of a numeration, can be
formulated like this:

N [A,B, ~C]

N [M(A,B, ~C)]
(R) if `(M(A,B, ~C)) is defined.

A structure is complete when it has exactly one
unmated feature, that feature is on its head, and
it is positive. And a derivation from numeration
is complete when we have derived a single com-
plete structure. The grammar defines the set of
complete structures derived from numerations of
its elements. For any feature c, let Lc be the set of
sets of non-empty phonological forms at the leaves
of completed structures with that feature.

Linearization. Unlike rule R, parsers construct
derivations from numerations of zero or more non-
empty and often ambiguous phonological forms,
and linear order matters. For any grammarG define

G(x) =

{
{A ∈ G| A = x : F} if x is phonological
{x} otherwise.

Tentatively, let’s adopt the Kayne-like idea that
first-mated elements are pronounced to the right
of the head later-mated elements on the left, with
elements pronounced only in their derivationally
latest positions.5

3Appendix C has a complete implementation of R. With
compilers that avoid ‘destructive’ operations, ‘replacement’
of A,B, ~C by {A,B, ~C} need involve no deletion, but rather
a change in how the elements are accessed (Wadler, 1992).

4Following Kobele (2021). Sometimes merge-over-move
is assumed (Epstein et al., 2012; Chomsky, 2000, p.106), but
that has been challenged on empirical grounds (Shima, 2000;
Castillo et al., 2009; Abels, 2012, §4.3.1). Careful discussion
of the these alternatives, and their interaction with the smc and
island constraints, is beyond the scope of this brief study.

5See e.g. Kayne (2020, 1994); Collins and Kayne (2020);
Johnson (2017); Biberauer et al. (2014); Nunes (1999).

Order is further complicated by ‘head move-
ment’, which we assume is non-syntactic,
morphologically-driven (Harizanov and Gribanova,
2019; Chomsky, 2021, i.a.). A morphological fea-
ture of a selecting head can attract the head of a
selected complement to its left.

Let’s call this rule K:

N [x, y, ~z]

N [M(A,B, ~C)]
(K) if

A ∈ G(x), B ∈ G(y), ~C ∈ G(~z),

`(M(A,B, ~C)) is defined, and
if this is B’s last mating, then

( if this is A’s first mating,
then A,B, ~C are adjacent in N ;
else, ~C,B,A are adjacent ), and

a morphological feature of A can attract
the phonetic head of first merged B.

A simple model of rule K is implemented by the
minimalist grammar mechanisms of Stabler (2001)
and Stanojević (2019).6

In the long tradition of generalizations about lin-
ear precedence, this idea is among the simplest.7

MGs adopting this idea are very expressive, defin-
ing a mildly context sensitive class of languages
(Michaelis, 2001; Harkema, 2001b).

Example, continued. Consider this 3-coordinate
elaboration of the previous example:
(2) is

COP.PRES
cuma
no.matter

é
it

‘na
PRED

shamhradh,
summer,

‘na
PRED

fhómhar
autumn,

nó
or

‘na
PRED

gheimhreadh
winter

‘It doesn’t matter if it’s summer, autumn or winter’

We assume that the head movement shifts the cop-
ula from V to a tense-modality position TM below
the complementizer C (McCloskey, 2022). And we
assume that a predP small clause is the complement
of the adjective. Then a structure similar to the one
proposed by Bennett et al. can be defined by this
lexicon, indicating the morphological feature of the
empty head-raising TM by underlining it:
ε: TM ( C ε: V ( TM is: A ( V
cuma: pred ( A ε:Pred.D ( pred
‘na: D ( Pred nó: X X+( X
shamhradh: D fhómar: D gheimhreah: D

6A further extension is proposed for coordinate structures
by Torr and Stabler (2016): when all coordinates have the
same head, they can all be ‘adjacent’ to the selecting head
in the sense required for head movement in (K). And note
that Figure 2’s requirement that coordinates have identical
types is too strong. Relaxing that condition to handle ellipsis,
etc., the higher order structures of type logics are valuable
(Kubota and Levine, 2021, and references cited there). Even
in that powerful system, it is not yet clear how to avoid lexical
redundancies and other issues (Morrill and Valentín, 2017).
Kobele (2019) extends a minimalist grammar with similarly
higher-order structures, but further exploration of these issues
is left for future work.

7Cf. e.g. Shieber (1984); Daniels and Meurers (2004);
Abels and Neeleman (2012); Cinque (2017); Kusmer (2020);
Stanojević and Steedman (2021); Roberts (2021).
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From any numeration that contains exactly 1 oc-
currence of each of these elements, we can derive
the complete structure depicted by Figure 3 left,
where internal nodes are sets with downward arcs
to their respective elements. Figure 3 also shows
the corresponding dependency graph, and Figure 4
an X-bar structure.8 Clearly, with numerations of
elements from this 10 element lexicon, we can de-
rive not only (2) but also (1) and an infinite number
of other structures of category C, with any number
of coordinates.

3 The meeting point

Bennett et al. (2016) note that there are variants
of (1) in which pronoun é is prosodically weak
and postposed, with prosodic structures shown in
Figure 5: 9

(3) is
COP.PRES

cuma
no.matter

‘na
PRED

shamhradh
summer

é
it

nó
or

‘na
PRED

gheimhreadh
winter

(4) is
COP.PRES

cuma
no.matter

‘na
PRED

shamhradh
summer

nó
or

‘na
PRED

gheimhreadh
winter

é
it

For a syntactician, (3) is a puzzle. Why and how
could a pronoun be displaced into the middle of
a coordinate structure? Bennett et al. suggest that
this happens for reasons that were already needed
in the account of (1). Because the pronoun é is
prosodically weak, it doesn’t adjoin at the left edge
of the first conjunct in (1) like in Figure 1c, where
it would incur both STRONGSTART and EQUAL-
SISTER violations. Instead, it avoids violating
STRONGSTART via postposing. In fact, the Ben-
nett et al. OT account of (1) extends almost imme-
diately to (3) and (4) once we allow the prosody to
consider candidates with displacement. Here we
show that proposal has a transparent and efficient
computational implementation.

A common idea is that the relation GEN pairs
each syntactic structure input with all possible
prosodic trees, or all prosodic trees that yield the

8Standard sets related by membership are multidominance
structures, but they are simpler than some multidominance
structures of earlier proposals (Gärtner, 2002, 2014; Citko,
2011). MG dependency graphs are used by Kobele (2021),
Salvati (2011), Stabler (1999), inspired by proof nets (Moot
and Retoré, 2012; Moot, 2002; Girard, 1987). And for com-
puting X-bar structure, see e.g. Stabler (2013, App.B).

9Cf. Chung and McCloskey (1987); McCloskey (1999);
Duffield (1995); Adger (1997, 2007); Mulkern (2003, 2009);
Elfner (2012); Bennett et al. (2016); Windsor et al. (2018);
Kusmer (2020).

same string of pronounced elements. Then MATCH

can require that each syntactic XP correspond to
a φ in the prosodic structure. But the number of
possible trees can be very large, and how are corre-
sponding (XP,φ) pairs found? Counting each XP
and requiring a corresponding number of φ is un-
necessarily nonlocal and inefficent. Requiring that
each XP have an φ dominating the same words is
worse – many XPs can have the same words, so
how do we keep track of them?

A natural idea is to represent the set of candi-
dates for any input with a finite state transducer. A
tree transducer is simply a device that traverses an
input tree, going into one of finitely many states
at each point. Bottom-up transducers traverse the
input from the leaves up to the root. Traversing the
input, the output tree is extended in each step by
rules that depend on the current state and the next
symbol of the input tree. A transducer that is ‘multi’
has states that can have several output subtrees at
once, allowing it to move things up through the
tree, to be assembled into the structure later. We
also allow our transducers to be ‘extended’, which
means that a rule can look at more than just one
symbol of the input at a time, allowing simpler
rules. So we use XMBOTs, finite state extended
multi bottom up tree transducers (Engelfriet et al.,
2009).

In a transduction from an input to an output tree,
an alignment is established by the operation of
the transduction itself. Traversing an input XP, the
transducer will either output the corresponding φ or
not, and the latter case can be penalized. And more
generally, when all the constraints are themselves
definable by finite state transducers, an important
result from string-based OT carries over to the set-
ting: a guarantee that optimal structures can be
computed efficiently (Ellison, 1994; Eisner, 1997;
Albro, 1997; Heinz et al., 2009).10 In this setting,
instead of considering each candidate one-by-one,
we apply constraints to the finite state grammar that
generates all the candidates. Large candidate sets
are then unproblematic, so we can allow candidates
with displacement, and candidates that skip levels
in the prosodic hierarchy.11

10See Daland (2014) and Heinz and Idsardi (2017) for brief
comparison of this computational model with others promi-
nent in phonology.

11This tree-based strategy, expressing GEN and constraints
with composable finite state transducers, was suggested by
Graf (2012a,b), and is the natural option here. In contrast,
Kalivoda (2018, (179)), Bellik and Kalivoda (2017, Appendix)
and Kalivoda and Bellik (2020, §4) define GEN as a set of
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Figure 5: Prosody for (1), (3), (4): attaching é left of sister’s 1st daughter, right of that daughter, and right of sister

Engelfriet et al. (2009) point out that MCFGs
are just MBOTs that compute string yields, and
so the *-extension of XMBOTs is similar. And
for any two linear XMBOTs, we can construct a
single XMBOT that computes their composition.
When GEN is an XMBOT, and each constraint is an
XMBOT that marks some structures every time the
constraint is violated, then we can compose GEN

with the top-ranked constraint for an XMBOT that
still generates all candidates but with additional
marks on the steps that violate constraints. Then,
using Dijkstra’s algorithm, paths that produce more
constraint violations than necessary can be pruned
to generate only structures that are optimal with
respect to that first constraint. Iterating this step
to apply constraints from the most highly ranked
to the lowest, pruning suboptimal paths in each
result, the algorithm stops when there is only one
remaining candidate or when all constraints have
been evaluated. This exactly simulates a tableau
evaluation, and is guaranteed to be efficient even
when the candidate sets are large or infinite.12

For illustration, let’s take a few steps in the

pairs. They require that the order of pronounced elements in
the input and output are the same, so prosodic displacements
are not among the candidates. Bellik et al. (2021, fn3) clarifies
that their trees also do not include level-skipping, apparently
disallowing e.g. φ parents of σ in Figure 1b,c. Kusmer (2020,
§6.1) defines GEN to allow the (much larger) set of pairs in
which all orders of pronounced elements appear among the
output candidates, and does not confront the computational
problem. Dolatian et al. (2021) does propose using a trans-
ducer to map from syntax to prosody, but does not use OT.

12Frank and Satta (1998) credit Paul Smolensky with noting
that this kind of approach, with a pruning step that does not
require any finite bound on violations, can be non-finite-state,
unlike e.g. ‘lenient composition’ (Karttunen, 1998). A referee
conjectures that our constraints are ‘global’ (Jäger, 2002),
guaranteeing finite-stateness. And other regular versions of
OT might extend naturally to prosodic trees, e.g. Lamont
(2022). We leave these broader issues for later work.

derivation of a prosodic structure, beginning with
the familiar X-bar structure in Figure 4, except, as
in §1, we leave out indices and the middle coordi-
nate. For this example, we use 4 states qω, qφ, qι, qε,
with qι the final state. For nonempty head category
X (that is, for V,A,Pred,&) with phonetic content P,
we have the rule:

X

P

→
qω

ω

P

For phrasal category XP with phonetic content P:

XP

P

→

qφ

φ

ω

P

For any category X:

X

ε

→ qε

That set of rules, applied bottom up, replaces all
the terminal elements of Figure 4 by states with
subtrees.

For internal nodes, variables x0, x1 range over
subtrees. For non-head categories X ,

X

qω

x0

qφ

x1

→
qφ

φ

x0 x1

X

qφ

x0

qφ

x1

→
qφ

φ

x0 x1

And for any category X

X

x0 qε

→ x0

X

qε x0

→ x0

X

x0

→ x0
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Finally, we add a 9th rule:

X

qω

x0

qφ

x1

→
qι

ι

x0 x1

These rules suffice to map the X-bar tree to the
prosodic structure in Figure 1a, along with many
other candidate structures. (See Appendix C.)

To guarantee closure under composition, note
that these rules are linear in the sense that each
variable on the left appears at most once on the
right. And note that the rules are nondeterministic,
because the left side of the last rule – a rule for ι
– is identical to the left side of one of the rules for
φ. Among the properties of these rules that are lin-
guistically important: phonetically empty structure
is discarded; and MATCH-governed alignments are
completely transparent. That is, rules that process
heads but do not introduce an ω are violating, as
are rules processing XP without introducing a φ,
and rules that process clauses without introducing
ι. And of course we can track alignments in more
complex rule sets where the alignments are not
quite so transparent.

Figure 1b is good for MATCH, but violates other
constraints that may be ranked more highly, like
BINARITY. We can easily see which rules create
non-binary structures. So if, for a given input, it is
possible to avoid those rules, we can throw them
out – the algorithm informally described above au-
tomates the discovery of such non-optimal offend-
ers. More importantly, XMBOTs, because they are
‘multi’, can move also things around. That is, in
effect, they can delay the construction of the φ dom-
inating the conjuncts in the structures of Figure 5
until the pronoun comes into view. This allows the
more optimal, displaced alternatives in the middle
and right trees of Figure 5 to be constructed when
é is weak, since these alternatives are available.

All the constraints mentioned in the §1 sketch of
the Bennett et al. (2016) proposal can be defined
as XMBOTs. So efficient computation of optimal
prosody from *-MG derivations is guaranteed.13

13Dolatian et al. (2021) points out that the stress rule pro-
posed for coordinate structures by Wagner (2010) is not com-
puted by any XMBOT. The empirical basis of Wagner’s pro-
posal could be challenged, or, as Dolation et al. speculate,
Wagner’s stress rule could be implemented by allowing a very
restricted copying. We leave this for future work.

4 Parsing and future work

Seki et al. (1991) present an MCFG parsing al-
gorithm that is succinctly reviewed by Kallmeyer
(2010, §7.1), who says “The idea is that once all
the predicates in the right side of a rule have been
found, we can complete a left side”. To allow star
and plus categories C∗, C+ on the right side, there
are two cases. Non-empty categories are expand
as possible in the chart, exactly as if there were
rules with any number of Cs. Empty categories, on
the other hand, can introduce cycles in the chart of
completed constituents, just as right recursion over
empty categories does.

*-MGs with Rule K can also be parsed directly.
In the bottom-up MG parsing of Harkema (2001b,
§4.4), for example, the required adjustment is al-
most identical to the one for Seki’s MCFG parser.
Instead of arbitrarily many MCFG rules, Harkema
has merge, treated in 5 cases, but the complete rules
are essentially the same. So for starred features in a
merge rule, any number of constituents is allowed
to match. An implementation is linked in fn. 17.

For any MG structure, we compute optimal
prosodic structure by *-extended transductions,
with ‘unranked’ trees. There are already tree trans-
ducer libraries (Bahr, 2012; May and Knight, 2006;
Genet and Tong, 2001; Rival and Goubault-Larrecq,
2001), but an up-to-date tree-based toolkit designed
specifically for linguists would be useful, analo-
gous to the finite state string toolkits mentioned
in fn. 1. This would provide an efficient way
to explore a large range of proposals about syn-
tax/phonology interaction, even in cases where
large or infinite candidate sets need to be assessed.

Looking at unbounded coordination in Irish also
raises linguistic issues that are left for future work.
Consulting Irish linguists, it seems, at least to some,
that the pronoun in the 3 coordinate case can be ini-
tial or final, but nowhere inside the coordinate struc-
ture.14 It seems unlikely that BINARITY should
hold in this and longer, list-like coordinations.

More generally, it is not clear that this is the right
way for syntax to meet prosody, but the formal
model perhaps makes some aspects of the situation
clearer. And the *-extension of MG syntax should
be unified with previous ideas about ‘persistent’
features (Stabler, 2011; Graf and Kostyszyn, 2021),
and with the broader TSL program (Heinz et al.,
2011; Graf, 2022).

14We are grateful for advice, judgements and references
from James McCloskey, Dónall Ó Baoill, and Ryan Bennett.
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A Weak equivalence of *-extensions:
Sketch

Since *-MG extends MG, it is trivially true
that L(* − MG) ⊇ L(MG), and similarly
for *-L(MCFG). Since L(MG) = L(MCFG)
(Harkema, 2001a; Michaelis, 2001), L(*−MG) ⊆
L(MCFG) can be established by showing L(*−
MG) ⊆ L(MCFG). When labeling allows un-
bounded branching in the MG, a corresponding
*-MCFG rule can be formulated. To construct a
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Figure 6: A set (leaves are lexical items, internal nodes
are sets, arcs are ∈ relations, with a dotted arc for
head movement), dependency tree (with solid feature-
checking arcs and dotted adjunct arc), and X-bar tree
(for linguists) for (5a).

weakly equivalent MCFG, we simply replace un-
bounded branching with corresponding right recur-
sive rules and prove the language is unchanged.

B Adjuncts and wh-movement

The approach used for coordination in the text is
easily adapted to McInnerney (2022b)’s proposal,
mentioned in the introduction, that unboundedly
many adjuncts can be merged as sisters of the head
they modify. His analysis is motivated in large part
by a labeling theory that aims to reduce stipulated
features, but as a place-holder for that kind of re-
vision, here we simply extend our feature-based
labeling to adjuncts.15 It suffices to extend the
definition of &(γ, ~C) in Figure 2 with one that is
true whenever each element of C has a label of an
admissible adjunct of γ.

In some dialects of Irish, when there is an Ā-
extraction, as in the relative clause of (5a) from
McCloskey (2002, (9)), the complementizer is pro-
nounced differently than when there is resumption
instead of extraction, as in (5b):16

(5) a. an
the

ghirseach
girl

a
aL

ghoid
stole

na
the

síogaí
fairies

‘the girl that the fairies stole away’

b. an
the

ghirseach
girl

a-r
aN-[PAST]

ghoid
stole

na
the

síogaí
fairies

í
her

‘the girl that the fairies stole away’

As a step towards MG implementation, let the
relevant EPP/operator feature of aN be Op, in a
relative clause adjoined as sister to the head N, in
the structure for (5a) of Figure 6. Any number of
additional adjuncts could occur as sister to the noun
and relative clause.

C Implementation

Implementations of nondeterminism can be
easy in programming languages like SWI
Prolog that provide backtracking search.
Represent {A,B} with the term [A,B] and
phon : a1 . . . ai ( ai+1 . . . ai+j with
[phon]-[a1,...,ai]-[ai+1,...,ai+j].
Then this 10 clause prolog implementation of R

15See McInnerney (2022b,a) on binding phenomena and
other considerations that motivated the more common hierar-
chical analyses of adjunction. Cf. also Milway (2022); Graf
(2018); Hunter (2015, 2011); Fowlie (2014).

16See McCloskey (2002, 2017); Oda (2012) and references
cited there for careful discussion. Agreement and other rele-
vant considerations are beyond the scope of this brief paper;
see e.g. Ermolaeva and Kobele (2021) on agreement in an
MG-based framework, Vu et al. (2019) on case.
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calls itself recursively until complete structure A is
generated from numeration X0, if possible:17

r([A], A) :- l(A, []-[_]-[]).
r(X0, X) :- select(A, X0, X1), l(A, [F0|AN]-AP-AC0),

( nonvar(F0), F0=p(F) -> P=true ; F0=F, P=fail),
( select([F|BP]-B, AC0, AC) -> X2 = X1, BC = []
; select(B, X1, X2), l(B, []-[F|BP]-BC), AC=AC0
), m(B, [F|AN]-AP-AC, []-[F|BP]-BC, ABF),
’&’(P, F, X2, X3, Cs), mrg(A, B, Cs, ABCs),
r([ABCs|X3], X).

mrg(A, B, Cs, [A,B|Cs]).
l(_-A-B, A-B-[]).
l([A,B], D) :- l(A, AF), l(B, BF), m(B, AF, BF, D).
m(B, [F0|AN]-AP-AC, BF, AN-AP-ABC) :-
(nonvar(F0), F0=p(F) -> true ; F0=F),
(select([F|BP]-B0, AC, AC1) -> B0=B,
(BP = [] -> AC1 = ABC ;
BP = [G|BP1], smc([[G|BP1]-B0|AC1], [], ABC, []))

; BF = []-[F]-BC, smc(AC, BC, ABC, [])
; BF = []-[F,G|BP]-BC, smc([[G|BP]-B|AC], BC, ABC, [])).
’&’(_,_,X,X,[]).
’&’(true,F,X0,X,[C|Cs]) :-
select(C,X0,X1), l(C,[]-[F]-[]), ’&’(true,F,X1,X,Cs).
smc([], D, D, _).
smc([[F|C]-A|L], M, [[F|C]-A|N], Fs) :-

\+member(F, Fs), smc(L, M, N, [F|Fs]).

Derived structures here are lists not sets, but order
of elements is irrelevant except for for identifica-
tion of the head, and that is always determined by
features alone. All syntactic structures in the text
can be computed by this implementation. For ex-
ample, this session computes the structure shown
in Figure 3:

?- r([[]-[tm]-[c],[]-[v]-[tm],[is]-[a]-[v],
[cuma]-[lpred]-[a],[]-[pred,d]-[lpred],
[na]-[d]-[pred],[shamhradh]-[]-[d],
[na]-[d]-[pred],[fhomar]-[]-[d],
[na]-[d]-[pred],[gheimhreadh]-[]-[d],
[no]-[X,p(X)]-[X],[e]-[]-[d]],A).

A = [
[]-[tm]-[c],
[

[]-[v]-[tm],
[
[is]-[a]-[v],
[

[cuma]-[lpred]-[a],
[

[
[]-[pred,d]-[lpred],
[

[
[no]-[pred,p(pred)]-[pred],
[

[na]-[d]-[pred],
[gheimhreadh]-[]-[d] ] ],

[
[na]-[d]-[pred],
[fhomar]-[]-[d] ],

[
[na]-[d]-[pred],
[shamhradh]-[]-[d] ] ] ],

[e]-[]-[d] ] ] ] ] ].

As discussed in §4, efficiently implementing rule
K, for parsing, requires more bookkeeping. In the
deductive format of Stabler (2011, §A), for rule K,
the feature checking rules for external merge (EM)

17This code (with some explanatory comments!) is avail-
able at https://github.com/epstabler/star, along with display
tools, a parser for rule K (in python), and tree transducers.

with f+ where t is smc-respecting union:

s::f+α(β,γ1 t·f,γ2
st:α(β,γ1tγ2

(EM1+)

s::f+α(β,γ1 t·f,γ2
st:f+α(β,γ1tγ2

(EM1++) if t 6= ε

s:f+α(β,γ1 t·f,γ2
ts:α(β,γ1tγ2

(EM2+)

s:f+α(β,γ1 t·f,γ2
ts:f+α(β,γ1tγ2

(EM2++) if t 6= ε

s·f+α(β,γ1 t·fδ,γ2
s:α(β,γ1tγ2t{t:δ}

(EM3+) if δ 6= ε.

Note that the Kleene + introduces indeterminacy,
reflected here by the two rules for each of EM1
and EM2. The second case for external merge of a
‘mover’, EM3, and movement rules for these cases
require a treatment of ATB movement – left for
future work. The rules for f∗ are the same, except
that f∗ is also ‘checked’ by 0 positive occurrences.
See link in fn 17 for a working implementation.

The extension to rules for head movement can
follow Stabler (2001); Stanojević (2019). The ex-
amples in the paper and the rules shown here only
consider negative occurrences of f+ and f∗. Posi-
tive occurrences may subsume previous proposals
about ‘persistent features’, relevant for successive
cyclic movement – left for future work.

The first steps toward a GEN transduction for
prosody, discussed in §3, are also easily imple-
mented. Represent a tree with root A and daugh-
ters B,C,D by the prolog term A/[B,C,D]. Then
a relation that pairs the X-bar structure in Figure 4
– without coindexing and without the second coor-
dinate – with the prosodic structure in Figure 1b, is
computed by the following implementation:

head(X) :- member(X, [c,tm,v,a,lpred,pred,b]).
phrase(XP) :- atom_chars(XP, L), last(L, p).
gen(T, Out) :- rule(T, Out).
gen(X/L,T) :- maplist(gen,L,S), rule(X/S,T).
rule(_/[qw/[X0], qphi/[X1]], qi/[i/[X0, X1]]).
rule(X/[Ph/[]], qw/[w/[Ph/[]]]) :- head(X).
rule(X/[Ph/[]], qphi/[phi/[w/[Ph/[]]]]) :- phrase(X).
rule(_/[], qe).
rule(_/[qw/[X0], qphi/[X1]], qphi/[phi/[X0,X1]]).
rule(_/[qphi/[X0], qphi/[X1]], qphi/[phi/[X0,X1]]).
rule(_/[qe, X0], X0).
rule(_/[X0, qe], X0).
rule(_/[X0], X0).

Representing the reduced Figure 4 by a prolog term,
as the first argument to gen, this code computes
the prolog term for Figure 1b as the first of many
candidate structures.
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