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Abstract

We present the development of a Named En-
tity Recognition (NER) dataset for Tagalog.
This corpus helps fill the resource gap present
in Philippine languages today, where NER re-
sources are scarce. The texts were obtained
from a pretraining corpora containing news
reports, and were labeled by native speakers
in an iterative fashion. The resulting dataset
contains ∼7.8k documents across three entity
types: Person, Organization, and Location.
The inter-annotator agreement, as measured by
Cohen’s κ, is 0.81. We also conducted ex-
tensive empirical evaluation of state-of-the-art
methods across supervised and transfer learn-
ing settings. Finally, we released the data and
processing code publicly to inspire future work
on Tagalog NLP.

1 Introduction

Tagalog (tl) is one of the major languages in the
Philippines with over 28 million speakers in the
country (Lewis, 2009). It constitutes the bulk of
Filipino, the country’s official language, by sharing
its lexical items and grammatical structure. De-
spite this fact, there are little to no resources for
Tagalog (Cruz and Cheng, 2022), hampering the
development of reliable language technologies.

In this paper, we present TLUNIFIED-NER,1

a Tagalog dataset for Named Entity Recognition
(NER). The texts were obtained from TLUnified
(Cruz and Cheng, 2022), a pretraining corpora
containing news reports and other types of text.
We focused on NER because of its foundational
role in several NLP tasks (Tjong Kim Sang and
De Meulder, 2003; Lample et al., 2016), especially
in problems that require the extraction of struc-
tured information. TLUNIFIED-NER consists of
∼7.8k documents across three entity types (Per-
son, Organization, Location), modeled closely to

1The dataset is accessible at https://huggingface.co/
datasets/ljvmiranda921/tlunified-ner

the CoNLL Shared Tasks (Tjong Kim Sang, 2002;
Tjong Kim Sang and De Meulder, 2003). Three
native speakers conducted the annotation process,
resulting to an inter-annotator agreement (IAA)
score of 0.81.

We hope that TLUNIFIED-NER will allow re-
searchers to build better NER classifiers for Taga-
log, and thereby inspire future research on Tagalog
NLP through the following contributions:

1. We curated and annotated texts from a large
pretraining corpora to represent the modern
usage of Tagalog in the news domain.

2. We provided performance baselines across a
variety of supervised and transfer learning set-
tings.

2 Related Work

Tagalog language Tagalog is an agglutinative
language within the Austronesian family (Kroeger,
1992). It uses the Latin script for its writing system
with 28 letters in its alphabet. Twenty-six letters
are the same as in English, with the addition of
Ñ/ñ and Ng/ng. Tagalog typically follows the VSO
word order, but VOS and SVO are also accepted
(Schachter and Otanes, 1973). Although Filipino
is the country’s official language, it has little to no
linguistic differences with Tagalog.

Tagalog NER datasets Unfortunately, resources
for Tagalog NER are meager. One major resource
is WikiANN (Pan et al., 2017), a silver-standard
corpora based on a framework designed for 282
other languages. However, the Tagalog portion of
WikiANN is full of annotation errors, often miscon-
struing one entity type as another. Another NER
dataset is the Filipino Storytelling corpora (Cos-
tiniano et al., 2022). Although gold-standard, its
entity labels (e.g., Humans & Body, Natural Envi-
ronment, etc.) are too domain-specific for general
use. Finally, the LORELEI project also provides

https://huggingface.co/datasets/ljvmiranda921/tlunified-ner
https://huggingface.co/datasets/ljvmiranda921/tlunified-ner
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Entity Short Description Examples

Person
(PER)

Person entities limited to humans. It may be a single indi-
vidual or group.

Juan de la Cruz, Jose
Rizal, Quijano de Manila

Organization
(ORG)

Organization entities limited to corporations, agencies,
and other groups of people defined by an organizational
structure.

Meralco, DPWH, United
Nations

Location
(LOC)

Location entities are geographical regions, areas, and
landmasses. Geo-political entities are also included within
this group.

Pilipinas, Manila, CAL-
ABARZON, Ilog Pasig

Table 1: Entity types used for annotating TLUNIFIED-NER (derived from the TLUnified pretraining corpus of
Cruz and Cheng, 2022).

language packs for Tagalog (Strassel and Tracey,
2016), but they’re not publicly-accessible.

TLUNIFIED-NER aims to fill this resource gap
by providing a publicly-assessible gold standard
resource for Tagalog NER.

3 Dataset Collection

The texts were obtained from Cruz and Cheng
(2022)’s TLUnified pretraining corpora. It com-
bines news reports (Cruz et al., 2020), a prepro-
cessed version of CommonCrawl (Suarez et al.,
2019), and several other datasets. We manually fil-
tered this dataset to contain news reports so as to re-
semble the CoNLL Shared Tasks (Tjong Kim Sang,
2002; Tjong Kim Sang and De Meulder, 2003).

The texts are diverse. It contains articles from
different news sites online that ran a published
print media or news channel in Metro Manila from
2009 to early 2020. The topics range from politics,
weather, and popular science among others.

4 Annotation Setup

We used Prodigy as our annotation tool.2 We set
up a web server on the Google Cloud Platform
and routed the examples through Prodigy’s built-
in task router. Figure 1 shows the labeling inter-
face as seen by the annotator. Finally, we used the
ner.manual recipe to highlight spans during the
annotation process. We used three entity labels for
TLUNIFIED-NER as shown in Table 1. Unlike
CoNLL, we decided to exclude the Miscellaneous
(MISC) tag to reduce confusion.

Annotation Process The annotation process was
done iteratively with three annotators (including the
author) who are native Tagalog speakers. Given

2https://prodigy.ai

Figure 1: Prodigy’s annotation interface for a given
text. (Translation: MANILA - The owner of the illegal
billboards that fell on EDSA this Monday, injuring five
people and damaging property, should be caught and
imprisoned according to Senator Miriam Defensor
Santiago.)

a set annotation budget, we paid the annotators
above the country’s minimum daily wage. Each
annotation round spans for two to three weeks, for
a total of six rounds (18 weeks). The annotators
labeled the same batch of examples to ensure high
overlap.

After each round, the annotators hold a retrospec-
tive meeting and discussed examples they found
confusing, inconsistent with the annotation guide-
lines, and noteworthy. This process continued until
we reached ∼10k examples or if we exhausted our
annotation budget. In addition, we also tracked the
training curve to determine the quality of the col-
lected annotations. If the F1-score improved within
the last 25% of the training data, then it is a good
sign that obtaining more labels will result to better
accuracy.

Annotation Guidelines We developed the
annotation guidelines in an iterative fashion.

https://prodigy.ai
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Dataset Examples Tokens PER ORG LOC Length SD BD

Training 6252 198579 6418 3121 3296 1.49 2.66 1.26
Development 782 25069 793 392 409 1.51 2.77 1.37
Test 782 25100 818 423 438 1.48 2.77 1.34

Table 2: Dataset statistics for TLUNIFIED-NER. It shows the number of examples, number of tokens, and span-
level statistics. SD stands for span distinctiveness whereas BD is boundary distinctiveness (Papay et al., 2020).

Metric IAA

Cohen’s κ on all tokens 0.81
Cohen’s κ on annotated tokens only 0.65
F1 score 0.91

Table 3: Inter-annotator agreement (IAA) measure-
ments. We obtained these values by computing for
the pairwise comparisons on all annotator-pairs and
averaging the results.

The Automatic Content Extraction (ACE
2004/05) annotation document (Doddington
et al., 2004) heavily inspired our initial draft.
We co-developed the guidelines after each
annotation round to improve clarity and reduce
disagreements. These guidelines are accessible on
GitHub: https://github.com/ljvmiranda921/
calamanCy/tree/master/datasets/tl_
calamancy_gold_corpus/guidelines

5 Corpus Statistics and Evaluation

Table 2 shows the final dataset statistics for
TLUNIFIED-NER. We also included span- (SD)
and boundary-distinctiveness (BD) metrics (Papay
et al., 2020). They measure the KL-divergence
of the unigram word distributions between the
span (or its boundaries) and the rest of the corpora.
These metrics can be used to gauge the difficulty
of the span labeling task, (e.g., more distinct spans
means it’s “easier” to detect them in the text).

5.1 Inter-annotator Agreement (IAA)
Similar to Brandsen et al. (2020), we measured two
types of Cohen’s κ. The first metric calculates κ
for tokens where at least one annotator has made
an annotation. The second metric computes for all
tokens while ignoring the ‘O’ label. In addition,
we had a third measure: the F1-score using one set
of annotations as reference (Deleger et al., 2012).
We did these computations for each annotator-pair
and averaged the results as shown in Table 3.

Finally, Figure 2 shows the growth of IAA for
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Figure 2: Growth of IAA for each annotation round.

each annotation round. Because of our annotation
process, we were able to label the same batch of
documents and track the agreement every round.

5.2 Benchmark results

We trained several NER models using spaCy’s
transition-based parser (Honnibal et al., 2020). The
state transitions are based on the BILUO sequence
encoding scheme and the actions are decided by a
convolutional neural network with a maxout (Good-
fellow et al., 2013) activation function.

While keeping the NER classifier constant, we
experimented with various word embeddings that
led to the following configurations:

• Baseline: we trained the transition-based
parser “from scratch” without additional in-
formation from static or context-sensitive vec-
tors.

• Static vectors: we used Tagalog fastText vec-
tors (Bojanowski et al., 2017) and included
a simple pretraining process to initialize the

https://github.com/ljvmiranda921/calamanCy/tree/master/datasets/tl_calamancy_gold_corpus/guidelines
https://github.com/ljvmiranda921/calamanCy/tree/master/datasets/tl_calamancy_gold_corpus/guidelines
https://github.com/ljvmiranda921/calamanCy/tree/master/datasets/tl_calamancy_gold_corpus/guidelines
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Word Embeddings Person Organization Location Overall

Baseline (no additional embeddings) 87.85±0.01 74.80±0.02 81.03±0.01 84.57±0.02
fastText (Bojanowski et al., 2017) 91.20±0.02 85.39±0.03 88.38±0.01 88.90±0.01
RoBERTa Tagalog (Cruz and Cheng, 2022) 92.18±0.01 87.30±0.00 90.01±0.02 90.34±0.02
XLM-RoBERTa (Conneau et al., 2020) 91.95±0.04 84.84±0.02 88.92±0.01 88.03±0.03
Multilingual BERT (Devlin et al., 2019) 90.78±0.03 85.08±0.01 88.45±0.03 87.40±0.02

Table 4: Benchmark results on TLUNIFIED-NER across different word embeddings using spaCy’s transition-
based parser (Honnibal et al., 2020). Reported results are F1-scores on the test set across three trials.
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Figure 3: Development set confusion matrix of the
Baseline model predictions in the IOB format.

weights of the model. The pretraining objec-
tive asks the model to predict some number
of leading and trailing UTF-8 bytes for the
words—a variant of the cloze task.

• Transformer-based vectors (monolingual):
we used RoBERTa Tagalog (Cruz and Cheng,
2022), the only pretrained language model for
Tagalog, and finetuned it with our annotations.

• Transformer-based vectors (multilingual):
we tested on XLM-RoBERTa (Conneau et al.,
2020) and multilingual BERT (Devlin et al.,
2019) for transfer learning. These models
include Tagalog in their training pool albeit
underrepresented.

This experimental setup allows us to see the ex-
pected performance when training Tagalog NER
classifiers using standard techniques. Table 4 re-
ports the F1-score on the test set across three trials.

Rel. error reduction

Embeddings set-up ORG LOC

Shared +5% +3%
Context-sensitive +12% +18%

Table 5: Relative error reduction (with respect to the
Baseline) for classifying ORG and LOC entities. Re-
ported results are F1-scores on the development set.

5.3 Error analysis

From our benchmark results, we noticed that most
models are having trouble predicting the Location
or Organization tags. Figure 3 shows the confusion
matrix of the Baseline model on the development
set in the IOB format.

Most of the mistakes came from incorrectly tag-
ging a token with the outside ‘O’ label. However,
we also noticed instances where the model con-
fuses between the lexical and semantic tag of an
entity. For example, in the span, “. . . panukala ng
Ombudsman. . . ” (“. . . proposed by the Ombuds-
man. . . ”), the token Ombudsman might be a Person
or Organization depending on the context. We hy-
pothesize that including context-sensitive training,
which the baseline model lacks, can help mitigate
this issue.

To test this hypothesis, we experimented on two
training configurations. First, we trained a POS
tagger together with our transition-based NER with
shared weights. This process may help provide
extra information to the transition-based parser so
it can disambiguate between entities. Second, we
finetuned context-sensitive vectors from RoBERTa
Tagalog (Cruz and Cheng, 2022) for NER. Table
5 shows the relative error reduction between LOC
and ORG entities. Given these results, we encour-
age researchers to utilize context-sensitive vectors
such as RoBERTa Tagalog (or other BERT variants)
when training models from this corpora.
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Training dataset

Model WikiANN TLUNIFIED-NER

Baseline (no additional embeddings) 19.92±0.03 30.24±0.02
fastText (Bojanowski et al., 2017) 24.41±0.01 45.09±0.02
RoBERTa Tagalog (Cruz and Cheng, 2022) 23.38±0.02 58.90±0.03
XLM-RoBERTa (Conneau et al., 2020) 31.28±0.01 57.67±0.01
Multilingual BERT (Devlin et al., 2019) 29.20±0.03 59.26±0.03

Table 6: Cross-dataset comparison between WikiANN (Pan et al., 2017) and TLUNIFIED-NER. We trained a
model from WikiANN then applied it to TLUNIFIED-NER (and vice-versa). Reported results are F1-scores on
the test set across three trials.

Entity label F1-score

Person (PER) 67.95
Organization (ORG) 00.59
Location (LOC) 35.17

Table 7: Comparing the overlap between the original
(silver-standard) WikiANN annotations against our
reannotated version.

5.4 Comparison to WikiANN

The WikiANN dataset (Pan et al., 2017) is another
resource for Tagalog NER. However, we found
many annotation errors in the dataset, from mis-
classifications to fragmented sentences. We in-
vestigated how TLUNIFIED-NER fares against
WikiANN’s silver-standard annotations.

We finetuned several models similar to Section
5.2 on the Tagalog portion of WikiANN’s training
set and tested it on TLUNIFIED-NER’s test set
(and vice-versa). In order to properly evaluate on
WikiANN, we reannotated the test dataset using the
same annotation guidelines described in Section 4.

Our results in Table 6 suggest that models built
from the TLUNIFIED-NER corpus are more per-
formant than with WikiANN. Additionally, the gap
between WikiANN’s silver-standard annotations
and our corrections is large, as shown in Table
7. We then posit that the gold-standard nature of
TLUNIFIED-NER led to better performance than
WikiANN, which predominantly consists of text
fragments and low-quality annotations.

5.5 Experiments on large language models

Large language models (LLMs) have been shown
to exhibit multilingual capabilities—incidental or
not (Briakou et al., 2023). We investigated this
property by performing a zero-shot prompting ap-

Model F1-score

GPT-4 (OpenAI, 2023) 65.89±0.44
GPT-3.5-turbo 53.05±0.42
Claude v1 (Anthropic, 2023) 58.88±0.03
Command (Cohere, 2023) 25.48±0.11
Dolly v2* (Conover et al., 2023) 13.07±0.14
Falcon* (Almazrouei et al., 2023) 8.65±0.04
StableLM v2* (Stability-AI, 2023) 0.25±0.03
OpenLLaMa* (Geng and Liu, 2023) 15.09±0.48

Table 8: Benchmark results on TLUNIFIED-NER
across a variety of open-source and commercial LLMs.
We used the 7B-parameter variants for models de-
noted with an asterisk (∗) due to budget constraints.

proach on TLUNIFIED-NER’s test set across a va-
riety of commercial and open-source LLMs. Table
8 reports the F1-score across three trials.

Our results suggest that supervised learning
reliably outperforms zero-shot prompting for
TLUNIFIED-NER given our prompt (see Appendix
A.1). However, we acknowledge that these results
are not a definitive comparison between two meth-
ods as prompt engineering is unstable with high
variance (Webson and Pavlick, 2022; Zhao et al.,
2021). In the future, we plan to explore different
prompting techniques such as PromptNER (Ashok
and Lipton, 2023) and chain-of-thought (Wei et al.,
2023) to uncover the language models’ full capa-
bilities.

6 Conclusion

In this paper, we introduced TLUNIFIED-NER,
a Named Entity Recognition dataset for Tagalog.
Unlike other Tagalog NER datasets, TLUNIFIED-
NER is publicly-accessible and gold standard. Our
iterative annotation process, together with our inter-
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annotator agreement, shows that the corpus is of
high quality. In addition, our benchmarking results
suggest that the task is learnable even with a simple
baseline method. We hope that TLUNIFIED-NER
fills the resource gap present in Tagalog NLP to-
day. In the future, we plan to create a more fine-
grained (and perhaps, overlapping) NER tag set
similar to the ACE project and expand on other
major Philippine languages. Finally, the dataset
is available online (https://huggingface.co/
datasets/ljvmiranda921/tlunified-ner) and
we encourage researchers to improve upon our
benchmark results.

Limitations

The TLUNIFIED-NER corpora is comprised
mostly by news reports. Although the texts demon-
strate the standard usage of Tagalog, its domain is
limited. In addition, we only trained a transition-
based parser model for our NER classifier. In the
future, we plan to extend these benchmarks and in-
clude CRFs or other tools such as Stanford Stanza.
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A Appendix

A.1 Zero-shot prompt template
You are an expert Named Entity Recognition (NER)
system. Your task is to accept Text as input and ex-
tract named entities for the set of predefined entity
labels. From the Text input provided, extract named
entities for each label in the following format:

• PER: <comma delimited list of strings>
• ORG: <comma delimited list of strings>
• LOC: <comma delimited list of strings>
Below are definitions of each label to help aid

you in what kinds of named entities to extract for
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each label. Assume these definitions are written by
an expert and follow them closely.

• PER: PERSON
• ORG: ORGANIZATION
• LOC: LOCATION OR GEOPOLITICAL EN-

TITY
Text: {{ text }}

A.2 Reproducibility
All the experiments and models in this pa-
per are available publicly. Readers can head
over to https://github.com/ljvmiranda921/
calamanCy/reports/aacl for all related code and
assets. Note that the XLM-RoBERTa and multilin-
gual BERT experiments may at least require a T4
or V100 GPU.
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