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Abstract

Large language models (LLMs) that are tuned
with instructions have demonstrated remark-
able capabilities in various tasks and languages.
However, their ability to generalize to underrep-
resented languages is limited due to the scarcity
of available data. Additionally, directly adapt-
ing new languages to instruction-tuned LLMs
can result in catastrophic forgetting, which
leads to the loss of multitasking ability. To
address this issue, we propose InstructAlign
which uses continual crosslingual instruction
tuning to enable LLMs to align new unseen lan-
guages with previously learned high-resource
languages. Our results demonstrate the effec-
tiveness of InstructAlign in enabling the model
to understand low-resource languages with
limited parallel data while preventing catas-
trophic forgetting. Our work contributes to
the advancement of language adaptation meth-
ods, particularly for adapting instruction-tuned
LLMs to underrepresented languages. We will
release our code publicly upon acceptance.

1 Introduction

Instruction-tuned Large language models (LLMs)
have demonstrated their generalization capability
of solving various tasks expressed in natural lan-
guage without requiring any explicit training on
the corresponding task (Brown et al., 2020; Smith
et al., 2022; Rae et al., 2022; Thoppilan et al.,
2022; Chowdhery et al., 2022; Scao et al., 2022;
Zeng et al., 2022). This generalization capability
is further improved with various tuning methods,
such as instruction tuning (Sanh et al., 2022; Wei
et al., 2022a; Chung et al., 2022; Muennighoff et al.,
2022). However, LLMs and their instruction-tuned
variants face difficulties in generalizing across var-
ious languages, leading to a disparity in perfor-
mances(Xue et al., 2021; Gehrmann et al., 2022;
Scao et al., 2022; Chowdhery et al., 2022; Yong
et al., 2023; Zhang et al., 2023; Asai et al., 2023;
Kabra et al., 2023). Moreover, these models have

limited language coverage, mostly in the Indo-
European language family as indicated in Figure 1.
For instance, BLOOM (Scao et al., 2022) and
BLOOMZ (Muennighoff et al., 2022), the largest
community-driven open-source multilingual pre-
trained LLM, only covers 46 languages during pre-
training, excluding some high-resource languages
with hundreds of millions of speakers, such as Ger-
man, Japanese, Korean, and Russian, as well as
many more low-resource languages with millions
of speakers, such as Serbian, Finnish, Amharic,
Sinhala, Lao, Javanese, Sundanese, etc.

Expanding the language repertoire of LLMs is
essential for promoting inclusivity and diversity
in Natural Language Processing (NLP) technol-
ogy, particularly for languages that are underrepre-
sented and low-resource. Recent studies, including
Wilie et al. (2020); Cahyawijaya et al. (2021); Aji
et al. (2022); Adelani et al. (2021, 2022); Kakwani
et al. (2020); Kumar et al. (2022); Ebrahimi et al.
(2022); ?); Cahyawijaya et al. (2023b,a); Song et al.
(2023) have emphasized the importance of this is-
sue. To address this concern, previous research
(Yong et al., 2022) has demonstrated that continual
pretraining (Chau et al., 2020; Muller et al., 2021;
Ebrahimi and Kann, 2021) and parameter-efficient
fine-tuning (PEFT) methods, like MAD-X (Pfeiffer
et al., 2020) and (IA)3 (Liu et al., 2022), can be uti-
lized to swiftly integrate the knowledge of unseen
languages into LLMs using monolingual corpora of
the new languages by conducting masked language
modeling (MLM) (Devlin et al., 2019). However,
these methods become ineffective when applied
directly to instruction-tuned LLMs due to catas-
trophic forgetting (French, 1993) which prevents
them from solving general natural language tasks
after the language adaptation phase (Yong et al.,
2022). Moreover, adapter-based approaches, such
as MAD-X (Pfeiffer et al., 2020), result in the loss
of multilingual inference capability due to modu-
larity (Adilazuarda et al., 2023).
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Figure 1: The number of languages supported by existing LLMs (green region) per language family1. Existing
LLMs only support a fraction of languages around the globe. Most of them are within the Indo-European language
family, while most other language families are underrepresented or even unexplored.

To solve this problem, we introduce InstructAl-
ign, a continual instruction tuning framework to
seamlessly align newly adapted low-resource lan-
guages (L2) with the pre-trained high-resource lan-
guages (L1) of an instruction-tuned LLM through
crosslingual alignment. InstructAlign compels
LLMs to perform crosslingual alignments between
pre-trained and novel languages through alignment-
based crosslingual instruction tuning, enabling the
model to grasp L2 with only a limited amount of
parallel data. To further prevent catastrophic for-
getting, InstructAlign incorporates experience re-
play (Chaudhry et al., 2019b; Rolnick et al., 2019),
which adds past data during the instruction tuning.

In summary, our work presents the following
major contributions:

• We propose InstructAlign, a crosslingual con-
tinual instruction tuning method that allows
instruction-tuned LLMs to understand L2 with
minimal degradation on L1 while retaining
their zero-shot prompting capability.

• We propose alignment-based crosslingual in-
struction tuning, which enables LLMs to align
L2 to L1 allowing better L2 acquisition with
only a limited amount of parallel data.

• We evaluate the effectiveness of InstructAl-
ign on Indonesian local languages datasets,
and demonstrate that InstructAlign can sig-
nificantly improve the performance on L2 by
5-10% F1 while maintaining the original per-
formance on L1 and its multitask capability.

• We analyze the correlation between the per-
1We gather the language and language family information

from URIEL (Littell et al., 2017; Malaviya et al., 2017).

formance of L2 and other unseen languages
(L3), suggesting the zero-shot generalization
of InstructAlign to L3 particularly when the
languages are related. 2

2 Related Work

2.1 Instruction Tuning in LLMs

Early works (Wei et al., 2022a; Chung et al.,
2022; Sanh et al., 2022; Ouyang et al., 2022) have
shown the effectiveness of instruction-tuned LLMs,
which significantly improves the zero-shot gener-
alization capability over the corresponding non-
instruction-tuned LLMs by a huge margin. Since
then, various instruction-tuned LLMs have been
released, including T0 (Sanh et al., 2022), In-
structGPT (Ouyang et al., 2022), FLAN-GPT (Wei
et al., 2022a), FLAN-T5 (Chung et al., 2022),
FLAN-PaLM (Chung et al., 2022), mT0 (Muen-
nighoff et al., 2022), BLOOMZ (Muennighoff
et al., 2022), Alpaca (Taori et al., 2023), etc. How-
ever, most of these models are only pre-trained on
a single or few languages, with the exception of
mT0 and BLOOMZ which are adapted from mod-
els pre-trained on 101 languages, i.e., mT5 (Xue
et al., 2021), and pre-trained on 46 languages, i.e.,
BLOOM (Scao et al., 2022), respectively. In this
work, we utilize BLOOMZ (Muennighoff et al.,
2022) as the backbone in of InstructAlign.

2We use the terms L1, L2, and L3 to denote the first,
second, and third language acquisition (Hammarberg, 2001,
2014). In our context, L1 denotes the pre-trained languages
in LLMs, L2 denotes the newly adapted languages, and
L3denotes other languages that have not been seen after tuning
with InstructAlign, which are only used in the evaluation.
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Figure 2: Example of the alignment-based crosslingual instruction prompts, i.e., bilingual denoising (TLM), machine
translation (MT), and crosslingual semantic similarity (XSS) in comparison to the monolingual denoising (MLM).

2.2 Crosslingual Alignment

Crosslingual alignment is a widely explored con-
cept that allows language models (LMs) to align,
commonly at a word/sentence level, across dif-
ferent languages. Crosslingual alignment allows
the models to perform crosslingual inference with-
out requiring any tuning on the target task. Fung
(1997, 1998) a bilingual lexicon extraction method
through word-to-word alignment from word rela-
tion matrix. Fung and Cheung (2004) introduces
a bilingual lexicon and parallel sentence extrac-
tion method from aligning sentences from non-
parallel data via Bootstrapping and EM. Lample
et al. (2018b); Cao et al. (2020) introduces align
bilingual lexicon method that requires no parallel
data by performing embedding alignment across
different languages. This is then utilized to deal
with unsupervised machine translation Lample et al.
(2018a). A crosslingual pre-training objective for
building LMs, namely translation language model-
ing (TLM) (Conneau and Lample, 2019), has also
been explored which enforces token-level align-
ment between languages allowing the model to
learn aligned representation across multiple lan-
guages. In this work, we perform crosslingual
alignment through instruction by introducing bilin-
gual denoising instruction which is equivalent to
token-level alignment in TLM, and translation in-
struction which serves as sentence-level alignment
across different languages.

2.3 Continual Learning for Language Models

Continual learning is a paradigm to learn various
tasks gradually allowing the model to acquire new
knowledge over time(Delange et al., 2021). Using

a naive fine-tuning approach for continual learn-
ing causes the model to suffer from catastrophic
forgetting (CF) (French, 1999). Therefore, vari-
ous methods have been introduced to prevent CF.
Regularization-based methods (Kirkpatrick et al.,
2017; Liu et al., 2018; Aljundi et al., 2018) add a
regularization in the loss function to prevent the
model to be updated into a direction that causes CF.
Replay-based methods (Rolnick et al., 2019; Lopez-
Paz and Ranzato, 2017; Chaudhry et al., 2019a) add
samples from previous tasks to be incorporated dur-
ing learning the new task, which helps regularize
the model to avoid CF. Parameter isolation meth-
ods (Aljundi et al., 2017; Serrà et al., 2018; Mallya
and Lazebnik, 2018) prevent the model from CF
by learning new tasks using a new set of param-
eters while keeping the other parameters frozen
during fine-tuning. In this work, we apply expe-
rience replay (Rolnick et al., 2019), which is a
simple replay-based method by adding tasks from
previously learned languages when training new
languages without any loss modification.

3 Methodology

InstructAlign is a continual crosslingual instruction
tuning framework that allows the model to align
high-to-low resource languages through instruction
tuning. InstructAlign introduces two components,
i.e., 1) crosslingual alignment through instruction
tuning, which allows the model to align pre-trained
languages with the new languages through crosslin-
gual alignment, and 2) continual instruction tuning,
which applies continual learning into instruction
tuning to avoid catastrophic forgetting.
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Dataset Task #Lang. #L1 #L2 #L3 #Test

NusaX Sentiment Analysis 12 2 7 3 4400
NusaTranslation Sentiment Analysis 11+1 1 3 8 10400
NusaParagraph Emotion Recognition 10 0 4 6 5700
NusaParagraph Topic Classification 10 0 4 6 6250

Table 1: Statistics of all datasets used in the experiments. #Lang. denotes the #languages in each dataset.

3.1 Crosslingual Alignment through
Instruction

Given a parallel text pair (x, y) from two lan-
guages, the goal of crosslingual alignment is to
learn a mapping function f(.) parameterized by θ
such that f(x, θ) = f(y, θ). The (x, y) text pair
commonly comes in the form of a word pair or a
phrase pair (Lample et al., 2018b,a), but in theory,
it should be able to generalize to a sentence pair or
even a paragraph. With the goal of aligning two
parallel texts from two different languages, Instruc-
tAlign defines a set of alignment-based crosslin-
gual instructions by exploiting multiple alignment
objectives that can be achieved through a parallel
sentence. Specifically, we explore three different
objectives, i.e., bilingual denoising / translation lan-
guage modeling (TLM), machine translation (MT)
and crosslingual semantic similarity (XSS).

We first define a parallel sentence pair (X =
{x1, x2, . . . , xm}, Y = {y1, y2, . . . , yn}), where
xi and yi denote the i-th token of the sentence
X and Y , respectively. For bilingual denoising
(TLM), we model the problem as a conditional
denoising task. InstructAlign first applies a per-
turbation function gtlm(.) to the target sentence
Y that masks out part of the tokens in order to
get Ỹ = gtlm(Y ). The pair (X, Ỹ ) is then used
to generate a prompt using h(X, Ỹ , T tlm), result-
ing in an input-output data pair for prompting
(htlm(X, Ỹ , T tlm), Y ), where htlm(.) denotes a
bilingual denoising prompt generator and T tlm the
prompt template.

For the machine translation (MT) objec-
tive, we define the input-output data pair as
(hmt(X,Tmt), Y ), where hmt(.) denotes a ma-
chine translation prompt generator and Tmt de-
notes a machine translation prompt template. As
for the crosslingual semantic similarity (XSS) ob-
jective, we models the problem as an inference task
to predict whether two parallel sentences X and Y
are semantically similar. Specifically, we define
the input-output data pair as (hxss(X,Y, T xss), l)
where hxss(.) is a semantic similarity prompt gen-

erator, T xss denotes a semantic similarity prompt
template and l the binary label regarding whether
the sentences are semantically related or not. The
examples of the crosslingual alignment objectives
are shown in Figure 2.

3.2 Continual Instruction Tuning through
Experience Replay

Within the continual instruction tuning phase of
InstructAlign, experience replay (Rolnick et al.,
2019) is employed to minimize the catastrophic
forgetting problem. mhamdi-etal-2023-cross Ex-
perience replay works by storing some of the past
training data and using them during the optimiza-
tion step of the new data. These past data serve
as a regularization term that prevents the models
to forget past knowledge when learning from the
new data. The past data is collected from the in-
struction tuning data used when developing the
corresponding instruction-tuned model, which are
all supervised.

During the continual instruction tuning, Instruc-
tAlign takes only r randomly sampled data from
the past instruction tuning data. The sampled
past data is used during continual-instruction
tuning with a balanced sampling between the
past data and new data. More formally, we
define a past dataset Dold and a newly generated
crosslingual instruction dataset Dcli. On each
optimization step, InstructAlign samples data in an
interleaving manner resulting in a batch data B =
{sDold

1 , sD
new

1 , sD
old

2 , sD
new

2 , . . . , sD
old

n , sD
new

n }
with 2n samples, where sD

old

i and sD
new

i denote
a sample that is taken randomly from Dold and
Dnew, respectively. Since the samples are all
supervised, the optimization can be done by
optimizing the cross-entropy loss (Good, 1952)
from all the samples in the batch.

4 Experiment Setting

4.1 Continual-Instruction Tuning Dataset
During the InstructAlign tuning, we train the model
on 7 L2 languages from Malayo-Polynesian lan-
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Method L2 Weighted F1 (%) L1 Weighted F1 (%)

NT-S NX-S NP-E NP-T Avg. NX-S En NX-S Id NT-S Id Avg.

BLOOM & BLOOMZ Baseline

BLOOM-560M 57.62 21.80 2.80 5.34 21.89 29.26 21.13 61.47 37.29
BLOOM-1.1B 59.18 22.02 2.80 5.35 22.34 22.02 22.54 58.81 34.46
BLOOM-3B 44.98 21.21 2.80 5.35 18.59 24.03 21.17 58.30 34.50

BLOOMZ-560M 46.83 33.73 2.80 5.35 22.18 58.24 55.59 69.81 61.21
BLOOMZ-1.1B 64.01 41.50 2.80 5.35 28.42 57.41 58.58 80.40 65.46
BLOOMZ-3B 69.41 45.82 2.80 5.73 30.94 62.65 63.21 81.38 69.08

InstructAlign-Tuned BLOOMZ-560M

MLM r=100k 66.51 42.51 2.80 5.52 29.34 60.97 60.01 70.93 63.97
MT Obj. r=100k 66.42 41.20 2.82 5.40 28.96 60.96 58.09 64.18 61.08
TLM r=100k 69.24 42.91 2.87 5.43 30.11 61.65 58.52 72.40 64.19
XSS r=100k 68.10 45.83 2.84 5.53 30.58 61.89 58.22 71.27 63.79

InstructAlign-Tuned BLOOMZ-1.1B

MLM r=100k 71.46 45.73 2.84 5.49 31.38 61.30 60.83 73.25 65.13
MT Obj. r=100k 66.15 44.93 2.84 5.40 29.91 61.68 59.18 65.28 62.05
TLM r=100k 70.29 49.25 3.17 6.34 32.26 63.26 60.54 74.66 66.15
XSS r=100k 71.89 49.23 3.08 5.81 32.50 63.78 59.34 75.74 66.29

Table 2: Evaluation results of InstructAlign with BLOOMZ-560M and BLOOMZ-1.1B backbones. Compared to
BLOOM and BLOOMZ baselines, All InstructAlign-tuned models improve the zero-shot crosslingual performance
in L2 while also retaining the performance in L1.

guage family group, i.e., Sundanese (sun), Javanese
(jav), Balinese (ban), Minangkabau (min), Bugi-
nese (bug), Acehnese (ace), and Banjarese (bjn).
For the L1 languages, we utilize English (eng),
as English covers the majority of the pre-training
data in most LLMs, and Indonesian (ind), as the
language isclosely related to the target L2 lan-
guages. For the dataset, we utilize FLORES-200
dataset (Goyal et al., 2021; Team et al., 2022) as
the source of the parallel data where we combine
the validation and the test set producing a total of
∼2000 parallel sentences for each language pair
which is orders of magnitude smaller compared
the data size used for language adaptation used
in prior works(Pfeiffer et al., 2020; Cahyawijaya
et al., 2021; Alabi et al., 2022; Yong et al., 2022).

4.2 Models & Hyperparameters

We utilize BLOOMZ (Muennighoff et al., 2022)
as the backbone model. Specifically, we explore
InstructAlign on two model size, i.e., BLOOMZ-
560M and BLOOMZ-1.1B. For InstructAlign, we
evaluate three crosslingual alignment objectives,
i.e., TLM, XSS, and MT. The list of prompts used
for instruction tuning is described in Appendix A.
We use English prompts in all experiments. We

run all experiments with an initial learning rate
of 1e-5 with a linear learning rate decay and a
batch size of 32 for a fixed optimization step of
50,000. We run the InstructAlign on a single
RTX3090 GPU (24GB) using the AdamW opti-
mizer (Loshchilov and Hutter, 2019) and mixed-
precision training (Micikevicius et al., 2018). We
use a fixed number of replay samples r = 100000.

4.3 Evaluation Setting

After tuning with InstructAlign, the model is then
evaluated in a zero-shot crosslingual inference set-
ting, in which the model has never seen the task on
the target languages, but might have seen the task
on other seen languages. To retrieve the classifi-
cation label, we compute the joint probability of
the prompt with each label in the dataset and pick
the label which prompt the highest joint probability.
We consider 3 different prompts in English for the
zero-shot inference and take the average accuracy
and weighted F1 scores as the evaluation metrics.
The list of the prompts used in our evaluation is
shown in Appendix A. We use a single RTX1080Ti
GPU (11GB) to run the evaluation for all models.
To reduce the memory bottleneck during inference,
we run the evaluations using 8-bit inference via
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Figure 3: Average performance of various models across
different model scales on the L1 and L2 languages sub-
sets of the NT-S and NX-S datasets.

LLM.int8() (Dettmers et al., 2022). We provide the
performance comparison between 8-bit and 32-bit
evaluation in Appendix B.

Zero-Shot Evaluation Datasets For evaluating
the effectiveness of InstructAlign, we utilize four
multilingual Indonesian local languages datasets,
i.e., the sentiment analysis task from NusaX (NX-
S) (Winata et al., 2022), the sentiment analysis task
from NusaTranslation (NT-S) (Cahyawijaya et al.,
2023a), the topic classification task from NusaPara-
graph (NP-T) (Cahyawijaya et al., 2023a), and
the paragraph-level emotion recognition task from
NusaParagraph (NP-E) (Cahyawijaya et al., 2023a).
The detailed per-dataset statistics are shown in
Table 1. NusaX covers 12 languages including
2 L1 languages: English (eng) and Indonesian
(ind), 7 L2 languages: Acehnese (ace), Balinese
(ban), Buginese (bug), Banjarese (ban), Javanese
(jav), Minangkabau (min), and Sundanese (sun),
and 3 L3 languages: Toba Batak (bbc), Madurese
(mad), and Ngaju (nij). While NusaTranslation cov-
ers 11 languages, which includes 3 L2 languages:
Javanese (jav), Sundanese (sun), and Minangk-
abau (min), and 8 L3 languages: Ambon (abs),
Batak (btk), Betawi (bew), Bima (bhp), Madurese
(mad), Makassarese (mak), Musi (mui), and Re-
jang (rej). NusaParagraph covers 10 languages,
which includes 4 L2 languages: Sundanese, Ja-
vanese (jav), Minangkabau (min), and, and 6 L3
languages: Batak (btk), Betawi (bew), Madurese
(mad), Makassarese (mak), Musi (mui), Rejang
(rej). To expand the evaluation dataset for L1,
we add the Indonesian sentiment analaysis data
from IndoLEM (Koto et al., 2020) 3 as the Indone-

3The source translation data of NusaTranslation

Method L2 L1

Baselines

Random 40.28 30.88
Majority 32.34 21.17
BLOOMZ-560M 37.66 61.21

Single Objective

Monolingual Denoising (MLM) 36.71 53.14
Machine Translation (MT) 35.43 47.95
Bilingual Denoising (TLM) 45.48 53.28
Crosslingual Semantic Similarity (XSS) 44.55 54.05

Multi Objectives

MLM + MT 40.09 47.67
TLM + MT 42.93 48.75
XSS + MT 43.32 50.66
MLM + TLM 43.46 53.16
MLM + XSS 42.82 53.90
TLM + XSS 45.83 54.01

Table 3: Averaged Weighted F1 scores from various
InstructAlign objectives in the NT-S and NX-S datasets.
We use BLOOMZ-560M as the backbone.

sian (ind) subset of NT-S. More details about each
dataset can be found in Appendix C.

4.4 Baselines

For our baselines, we conduct zero-shot prompt-
ing using four different sizes of BLOOMZ, i.e.,
BLOOMZ-560M, BLOOMZ-1.1B, BLOOMZ-
1.7B, and BLOOMZ-3B, without any additional
language adaptation phase. In addition, to compare
the effectiveness of the crosslingual alignment, we
add continual instruction-tuned baselines that in-
corporate only monolingual denoising instructions,
which is equivalent to performing language adapta-
tion using MLM (Devlin et al., 2019).

5 Experiment Result

Effectiveness of InstructAlign Table 2 shows
the result of InstructAlign on both L1 and L2
languages. InstructAlign-tuned models with MT,
TLM, and XSS objectives significantly outperform
the comparable-sized BLOOM and BLOOMZ
baselines on L2 languages while retaining a similar
performance level as the original BLOOMZ mod-
els on L1 languages. Surprisingly, InstructAlign
with MLM objectives is also effective, yielding a
similar performance on L2 languages compared
to the crosslingual objectives. In § 6.1, we show
that this improvement only occurs after combin-
ing the MLM objective with the experience replay,
demonstrating the importance of continual instruc-
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Figure 4: ∆ weighted F1 of InstructAlign tuned BLOOMZ-560M with (left) TLM and (right) XSS objectives
various continual instruction-tuned approaches compared to the original BLOOMZ-560M baseline. Negative scores
indicate that the model performs worse compared to the baseline.

tion tuning during language adaption. While in the
NusaParagraph emotion recognition (NP-E) and
topic classification (NP-T) tasks, all baselines yield
a very low score, suggesting that the ability to solve
long text classification tasks do not emerge on that
scale (Wei et al., 2022b). Interestingly, InstructAl-
ign tuned models indicate consistent improvement,
although marginal, on these tasks, demonstrating
that an early emergence in L2 languages is possible
through InstructAlign.

Effect of Model Scaling As shown in Figure 3,
we observe that scaling increases the zero-shot per-
formance of BLOOMZ on both L1 and L2, but
the same does not apply to BLOOM, suggesting
the benefit of instruction tuning for better general-
ization to unseen tasks and languages. Moreover,
applying InstructAlign on larger BLOOMZ results
in higher overall zero-shot performance on both
L1 and L2. Specifically, InstructAlign-tuned mod-
els with 1.1 billion parameters yield ∼2% higher
performance compared to the 560 million parame-
ters InstructAlign-tuned models and even perform
competitively with the original 3 billion parameters
BLOOMZ model. This suggests that the scaling
law of language models (Kaplan et al., 2020; Hoff-
mann et al., 2022) also apply after InstructAlign
where larger-sized models tend to perform better
compared to their smaller counterpart. Detailed
experiment results are described in Appendix D.

6 Analysis and Discussion

6.1 Alignment Objectives

To better understand the effectiveness of each align-
ment objective, we conduct experiments by us-
ing a single objective, i.e., monolingual denois-

ing (MLM), machine translation (MT), bilingual
denoising (TLM) and crosslingual semantic simi-
larity (XSS), as well as multi objectives on various
combinations. We also test zero-shot prompting
without any additional language adaption phase
as a baseline for comparison. Note that contin-
ual instruction tuning through experience replay is
not applied (r=0) in these experiments since we
focused on the effect of alignment objectives.

As shown in Table 3, BLOOMZ 560M zero-shot
performs better than the random baseline on L1
while achieving a lower score on L2, showing that
BLOOMZ 560M is unable to be directly applied
to these L2 languages. For InstructAlign with a
single objective, similar to the result from prior
work (Yong et al., 2022), applying the MLM ob-
jective decays the performance of the model. Sim-
ilarly, using MT objective also decreases the per-
formance of both L1 and L2. Nevertheless, as
shown in Table 2, this problem can be mitigated
by applying continual learning. On the other hand,
both TLM and XSS help improve the model on
L2, indicating that these objectives are effective for
aligning L1 and L2 languages. Additionally, the
performance in L1 languages is also retained the
most when using the TLM and XSS objectives.

When combining multiple objectives during In-
structAlign, we observe the highest score when
combining TLM and XSS. Interestingly, adding
the MLM and MT objectives during InstructAlign
consistently yields a lower score compared to the
single TLM and XSS objectives for both L2 and L1
languages. These facts suggest that cross-lingual
objectives such as XSS and TLM, are effective
for learning new languages through cross-lingual
instruction-tuning with limited data.
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Figure 5: Correlation of ∆ weighted F1 from the Instruc-
tAlign tuned models to the corresponding BLOOMZ
backbone models on novel and unseen languages. R
denotes the Pearson correlation coefficient.

6.2 Continual Instruction Tuning

In order to assess the effectiveness of continual in-
struction tuning through experience replay, we con-
duct an experiment exploring the effect of different
numbers of replay samples r used in continual in-
struction tuning. Specifically, we explore 4 settings
of r, i.e., r = [0, 1000, 10000, 100000]. Figure 4
shows the performance of the InstructAlign tuned
models across different ranges of replay examples
r. When using no experience replay (r=0), the
performance of the pre-trained languages drops
significantly, and even further, the performances
on the novel languages also drop which suggests
that the multitask prompting capability for both
of these methods are degraded (Yong et al., 2022).
When r increases, a much smaller performance
degradation is observed on the L1 languages. In-
terestingly, the performance on novel languages
also improved when r increases which in the end,
increases the performance of the model across all
languages. These facts demonstrate the importance
of the experience replays for avoiding catastrophic
forgetting in continual instruction tuning.

6.3 Impact of InstructAlign on L3 Languages

We further assess the impact of aligning L2 lan-
guages through InstructAlign to other unseen In-
donesian languages which are within the same lan-
guage family group (L3). To assess the effective-
ness of transferability from the L2 languages to
L3 languages, we compute the correlation coeffi-
cient between ∆ weighted F1 score on the L2 and
L3 languages for each model compared to the cor-

Figure 6: Per language results of InstructAlign tuned
models in NusaX. red denotes L1 languages. teal de-
notes L2 languages. purple denotes L3 languages

responding baseline, and measure the Pearson’s
correlation coefficient (Rodgers and Nicewander,
1988; Freedman et al., 2007).

As shown in Figure 5, the correlation coefficient
between the performance improvement of L2 and
L3 languages is high with a Pearson’s correlation
coefficient of 0.96. This indicates the effective-
ness of the InstructAlign approach for not only
adapting to L2 languages but also to related L3 lan-
guages. Nevertheless, the improvement for unseen
language still depends on the language distances
as shown in Figure 6, where performance on Toba
Batak (bbc) and Buginese (bug) yield much lower
scores compares the other languages. This result
aligns with the analysis from NusaX (Winata et al.,
2022) which shows that the performances of Bug-
inese (bug) and Toba Batak (bbc) are the lowest
for both the multitask and zero-shot crosslingual
settings due to the relatively low vocabulary over-
lapping compared to other languages in NusaX.
This suggests that by performing , the model can
also understand unseen languages that are related to
the novel-adapted language, indicating the general-
ization of the crosslingual transfer from pre-trained
languages to novel and unseen languages

6.4 Conclusion

In this work, we address the challenge of increasing
the language coverage of instruction-tuned LLMs
by introducing a crosslingual continual instruc-
tion tuning method, InstructAlign. We demon-
strate that InstructAlign allows an instruction-tuned
LLM to effectively learn novel languages through
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alignment-based crosslingual instruction tuning ob-
jectives while retaining the existing multitask and
multilingual abilities. Based on our experiment re-
sults on four Indonesian local languages datasets,
InstructAlign effectively improves the understand-
ing of novel Indonesian local languages, improving
the language understanding performance on novel
languages by ∼5-10% weighted F1 score and also
demonstrates a better forward transfer performance
to other unseen Indonesian local languages by a
significant margin. In addition, we analyze vari-
ous objectives of InstructAlign and demonstrate
the effectiveness of alignment-based crosslingual
instruction tuning objectives compared to the tra-
ditional masked language modeling (MLM) for
learning novel languages with a limited amount of
data. Our work contributes to the advancement of
language adaptation methods for instruction-tuned
LLMs, especially for underrepresented languages.

7 Limitation and Future Works

7.1 Other Model Architectures

Despite the effectiveness of InstructAlign on
BLOOMZ, its effectiveness has not been explored
for different model architectures such as encoder-
decoder or other model architectures. Due to the
limited computing budget, we can only run the In-
structAlign experiment on a decoder-only model,
i.e., BLOOMZ, We encourage future works to ex-
plore the experiment in other model architectures.

7.2 Scaling to Larger LLMs

As described in §5, we hypothesize that
InstructAlign-tuned models follow the scaling laws
of language models (Kaplan et al., 2020; Hoffmann
et al., 2022). Nevertheless, we can only empiri-
cally show this scaling effect of InstructAlign in
BLOOMZ-560M and BLOOMZ-1.1B due to the
limited computing budget. We expect future works
to expand the exploration to larger-scale models.

7.3 Other Continual Learning Methods

In terms of continual learning methods, we only ex-
plore a single approach, i.e., experience replay (Rol-
nick et al., 2019), due to the efficient memory re-
quirement of this method. Further analysis and ex-
amination of other potential continual learning ap-
proaches, such as A-GEM (Chaudhry et al., 2019a)
and EWC (Liu et al., 2018), is another potential
research direction to be explored in future works.

7.4 Underrepresented Languages from Other
Language Family

There are many other underrepresented languages
such as indigenous languages of the Ameri-
cas (Ebrahimi et al., 2022), African (Adelani et al.,
2021, 2022), Indic (Kakwani et al., 2020; Kumar
et al., 2022), Austronesian (Winata et al., 2022;
Cahyawijaya et al., 2023b), and many others all
around the world. In this work, we only explore
InstructAlign for Malayo-Polynesian language fam-
ily group under the Austronesian language family,
specifically for Indonesian local languages. For
future work, we are eager to explore the general-
ization of InstructAlign and other language adap-
tation methods on other underrepresented and low-
resource languages.

Ethical Consideration

Our work highlights the importance of inclusivity
in LLM technology for underrepresented and ex-
tremely low-resource languages. During our study,
we are well aware of the ethical responsibility asso-
ciated with language research and the potential im-
pact it can have on communities. Our ultimate goal
is to promote linguistic diversity and contribute to
a more inclusive NLP landscape. We encourage
further collaboration and engagement with under-
represented and low-resource language communi-
ties to ensure that their voices are heard and their
needs are addressed in future language technology
development. We remain committed to the princi-
ples of ethical research, diversity, inclusivity, and
fairness, striving to mitigate biases and promote
social good through our work in the field of NLP.
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A Prompt List

In this section, we provide the list of the prompt
used in our experiment. For InstructAlign, we use
6 prompts for each objective. The prompt list for
bilingual denoising (TLM), machine translation
(MT), crosslingual semantic similarity (XSS), and
monolingual denoising (MLM) are shown in Ta-
ble 4, Table 5, Table 6, and Table 7, respectively.
For the evaluation, we employ 3 English prompts
for each task. The prompt list for sentiment anal-
ysis, emotion recognition, and topic classification
tasks are described in Table 8, Table 9, and Ta-
ble 10, respectively.

B Comparison Between LLM-int8() and
Full Precision Inference

We run all inference within our experiment with
8-bit quantization using LLM.int8() (Dettmers
et al., 2022). To the best of our knowl-
edge, the effectiveness of LLM.int8() (Dettmers
et al., 2022) has never been evaluated on
zero-shot prompting in low-resource language
cases. We evaluate datasets from various In-
donesian and local languages spoken in In-
donesian which are listed in IndoNLU (Wilie
et al., 2020) and NusaCrowd (Cahyawijaya et al.,
2023b). Specifically, we evaluate on 10 lan-
guages in NusaX (Winata et al., 2022), Javanese
IMDB (Wongso et al., 2021), IndoLEM Senti-
ment (Koto et al., 2020), IndoNLI (Mahendra et al.,
2021), SmSA (Purwarianti and Crisdayanti, 2019),
CASA (Ilmania et al., 2018), and Sundanese Twit-
ter Dataset for Emotion (Putra et al., 2020) datasets.
Based on the result shown in Table 11, there is
only a marginal performance different between 8-
bit quantization with LLM.int8() compared to the
full precision models, which suggests the general-
ization of LLM.int8() (Dettmers et al., 2022) for
zero-shot prompting in low-resource languages.

C Datasets Details

In this section, we describe the statistics for
each dataset use in the experiment. Table 12
shows the statistics for the sentiment analysis task
of NusaTranslation (Cahyawijaya et al., 2023a).
For the Indonesian subset, we take the first fold
of the IndoLEM sentiment (Koto et al., 2020),
which is the Indonesian sentiment analysis dataset
used as the source sentences in the NusaTransla-
tion (Cahyawijaya et al., 2023a). Table 13 shows

the statistics for the sentiment analysis task of
NusaX (Winata et al., 2022). Table 14 and Ta-
ble 15 display the statistics for the emotion recog-
nition and topic classification tasks of NusaPara-
graph (Cahyawijaya et al., 2023a), respectively.

D Detailed Experiment Results

In this section, we provide the complete experi-
mental result per dataset. Table 16 shows the ex-
periment results on the sentiment analysis task
of NusaTranslation. Table 17 shows the exper-
iment results on the sentiment analysis task of
NusaX (Winata et al., 2022). Table 18 and Ta-
ble 19 show the experiment results on the emo-
tion recognition and topic classification tasks of
NusaParagraph, respectively.
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Prompt in Bilingual Denoising (TLM) Task

[INPUT_TEXT]. Denoise the previous [INPUT_LANG] text to its
equivalent sentence in [CONTEXT_LANG]: [CONTEXT]\n[LABEL_TEXT]

Context in [CONTEXT_LANG]: [CONTEXT]\nFix the following [INPUT_LANG]
text "[INPUT_TEXT]" ensuring the meaning is equivalent with the
context. [LABEL_TEXT]

Context in [CONTEXT_LANG]: [CONTEXT]\nNoisy text in [INPUT_LANG]:
[INPUT_TEXT]\nHow would you fix the [INPUT_LANG] sentence to make the
meaning the same as the context? [LABEL_TEXT]

[INPUT_TEXT]. Denoise the previous [INPUT_LANG] sentence to it
equivalent sentence: [CONTEXT]\n[LABEL_TEXT]

Context: [CONTEXT]\nFix the following [INPUT_LANG] text
"[INPUT_TEXT]" ensuring the meaning is equivalent with the context.
[LABEL_TEXT]

Context: [CONTEXT]\nNoisy text in [INPUT_LANG]: [INPUT_TEXT]\nHow
would you fix the [INPUT_LANG] sentence to make the meaning the same
as the [CONTEXT_LANG] sentence? [LABEL_TEXT]

Table 4: Prompt used for Bilingual Denoising (TLM) task

Prompt in Machine Translation (MT) Task

Translate the following text from [SOURCE_LANG] to
[TARGET_LANG].\nText: [SOURCE_TEXT]\nTranslation: [TARGET_TEXT]

[SOURCE_TEXT]\nTranslate the text above from [SOURCE_LANG] to
[TARGET_LANG]. [TARGET_TEXT]

Text in [SOURCE_LANG]: [SOURCE_TEXT]\nHow would you translate that in
[TARGET_LANG]? [TARGET_TEXT]

Translate the following text to [TARGET_LANG].\nText:
[SOURCE_TEXT]\nTranslation: [TARGET_TEXT]

[SOURCE_TEXT]\nTranslate the text above to [TARGET_LANG].
[TARGET_TEXT]

Input text: [SOURCE_TEXT]\nHow would you translate that into
[TARGET_LANG]? [TARGET_TEXT]

Table 5: Prompt used for Machine Translation (MT) task

Prompt in Crosslingual Semantic Similarity (XSS) Task

[SOURCE_LANG] sentence: [SOURCE_TEXT]\n[TARGET_LANG] sentence:
[TARGET_TEXT]\nDo the two sentences have the same meaning? [LABEL]

Sentence A: [SOURCE_TEXT]\nSentence B: [TARGET_TEXT]\nDo sentence A
and sentence B have the same meaning? [LABEL]

[SOURCE_LANG] sentence: [SOURCE_TEXT]\n[TARGET_LANG] sentence:
[TARGET_TEXT]\nAre the two sentences equivalent? [LABEL]

Sentence A: [SOURCE_TEXT]\nSentence B: [TARGET_TEXT]\nAre sentence A
and sentence B equivalent? [LABEL]

Is the [SOURCE_LANG] sentence "[SOURCE_TEXT]" equivalent to the
[TARGET_LANG] sentence "[TARGET_TEXT]"? [LABEL]

Is the sentence "[SOURCE_TEXT]" equivalent to the sentence
"[TARGET_TEXT]"? [LABEL]

Table 6: Prompt used for Crosslingual Semantic Similarity (XSS) task
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Prompt in Monolingual Denoising (MLM) Task

Denoise the following noisy [SOURCE_LANG] text: "[SOURCE_TEXT]", to
make a correct sentence. [TARGET_TEXT]

Fix and complete the following [SOURCE_LANG] sentence:
[SOURCE_TEXT]\n[TARGET_TEXT]

Sentence in [SOURCE_LANG]: [SOURCE_TEXT]\nHow would you fix the
sentence to make a correct sentence? [TARGET_TEXT]

Denoise the following noisy text "[SOURCE_TEXT]" to make a correct
[SOURCE_LANG] sentence. [TARGET_TEXT]

Fix and complete the following sentence: [SOURCE_TEXT]\n[TARGET_TEXT]

Input text: [SOURCE_TEXT]\nHow would you fix the sentence to make a
correct [SOURCE_LANG] sentence? [TARGET_TEXT]

Table 7: Prompt used for Monolingual Denoising (MLM) task

Prompt in Sentiment Analysis Task

[INPUT]\nWhat would be the sentiment of the text above? [OPTIONS]?
[LABELS_CHOICE]

What is the sentiment of this text?\nText: [INPUT]\nAnswer with
[OPTIONS]: [LABELS_CHOICE]

Text: [INPUT]\n\nPlease classify the sentiment of above text.
Answer with [OPTIONS]: [LABELS_CHOICE]

Table 8: Prompt used for Sentiment Analysis task

Prompt in Emotion Recognition Task

[INPUT]\nWhat would be the emotion of the text above? [OPTIONS]?
[LABELS_CHOICE]

What is the emotion of this text?\nText: [INPUT]\nAnswer with
[OPTIONS]: [LABELS_CHOICE]

Text: [INPUT]\n\nPlease classify the emotion of above text. Answer
with [OPTIONS]: [LABELS_CHOICE]

Table 9: Prompt used for Emotion Recognition task

Prompt in Topic Classification Task

[INPUT]\nWhat would be the topic of the text above? [OPTIONS]?
[LABELS_CHOICE]

What is the topic of this text?\nText: [INPUT]\nAnswer with
[OPTIONS]: [LABELS_CHOICE]

Text: [INPUT]\n\nPlease classify the topic of above text. Answer
with [OPTIONS]: [LABELS_CHOICE]

Table 10: Prompt used for the Topic Classification task
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Model Prompt Lang. Acc Macro F1 Macro Prec. Macro Rec.

Full Precision

BLOOMZ-560M EN 47.58 33.25 37.97 43.11
BLOOMZ-560M ID 44.37 29.78 37.79 40.28
BLOOMZ-1B1 EN 52.26 37.90 40.48 45.79
BLOOMZ-1B1 ID 52.88 39.28 46.42 46.67
BLOOMZ-1B7 EN 51.44 36.90 41.90 45.10
BLOOMZ-1B7 ID 52.68 41.20 50.81 48.03

8-Bit Quantization

BLOOMZ-560M EN 47.56 34.67 40.94 42.97
BLOOMZ-560M ID 43.64 33.30 42.90 39.68
BLOOMZ-1B1 EN 50.68 37.52 40.37 44.56
BLOOMZ-1B1 ID 51.23 38.69 43.53 45.34
BLOOMZ-1B7 EN 49.71 35.05 42.11 43.57
BLOOMZ-1B7 ID 52.61 41.87 51.74 48.15
BLOOMZ-3B EN 54.80 40.78 46.59 48.24
BLOOMZ-3B ID 56.75 44.34 45.16 51.12

Table 11: Evaluation of full precision and 8-bit quantization on various Indonesian local languages datasets.
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Status Language Train Valid. Test

Pre-trained Indonesian (ind) 3638 399 1011

Seen
Javanese (jav) 3400 448 1200

Sundanese (sun) 3400 448 1200
Minangkabau (min) 3400 448 1200

Unseen

Ambon (abs) 250 98 500
Batak (btk) 3400 448 1200

Betawi (bew) 3400 448 1200
Bima (bhp) 260 100 500

Madurese (mad) 3400 448 1200
Makassarese (mak) 3400 448 1200

Musi (mui) 250 91 500
Rejang (rej) 250 78 500

Table 12: Statistics of NusaTranslation sentiment anal-
ysis dataset. Pre-trained denotes languages that are
already seen before the InstructAlign tuning. Seen
denotes languages that are seen during the InstructAl-
ign.Unseen denotes languages that are still unseen after
the InstructAlign.

Status Language Train Valid. Test

Pre-trained
English (eng) 500 100 400

Indonesia (ind) 500 100 400

Seen

Aceh (ace) 500 100 400
Bali (ban) 500 100 400

Banjar (bjn) 500 100 400
Bugis (bug) 500 100 400

Minang (min) 500 100 400
Javanese(jav) 500 100 400
Sunda (sun) 500 100 400

Unseen
Madura (mad) 500 100 400

Ngaju (nij) 500 100 400
Bataknese (bbc) 500 100 400

Table 13: Statistics of NusaX sentiment analysis dataset.
Pre-trained denotes languages that are already seen
before the InstructAlign. Seen denotes languages that
are seen during the InstructAlign.Unseen denotes lan-
guages that are still unseen after the InstructAlign.

Status Language Train Valid. Test

Unseen

Javanese (jav) 2800 440 800
Minangkabau (min) 2000 357 800

Sundanese (sun) 2400 400 800
Buginese (bug) 87 50 300

Seen

Batak (btk) 1150 292 500
Betawi (bew) 2700 430 800

Madurese (mad) 1000 263 500
Makassarese(mak) 1500 304 500

Musi (mui) 200 75 400
Rejang (rej) 136 50 300

Table 14: Statistics of NusaParagraph emotion recog-
nition dataset. Pre-trained denotes languages that are
already seen before InstructAlign. Seen denotes lan-
guages that are seen during InstructAlign.Unseen de-
notes languages that are still unseen after InstructAlign.

Status Language Train Valid. Test

Unseen

Javanese (jav) 2650 448 800
Minangkabau (min) 2400 399 800

Sundanese (sun) 2800 468 900
Buginese (bug) 93 50 300

Seen

Batak (btk) 1350 275 500
Betawi (bew) 2650 435 800

Madurese (mad) 1800 367 700
Makassarese(mak) 1500 376 700

Musi (mui) 168 80 400
Rejang (rej) 105 50 350

Table 15: Statistics of NusaParagraph topic classifica-
tion dataset. Pre-trained denotes languages that are
already seen before InstructAlign. Seen denotes lan-
guages that are seen during InstructAlign.Unseen de-
notes languages that are still unseen after InstructAlign.
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Model L1 L2 L3

ind jav min sun abs bew bhp btk mad mak mui rej

BLOOM 560m 61.47 56.09 58.13 58.63 62.53 58.42 49.72 56.05 54.02 53.97 60.27 55.55
BLOOM 1b1 58.81 59.05 59.33 59.16 47.87 58.23 60.85 58.95 58.79 58.83 54.92 57.73
BLOOM 3b 58.30 44.84 45.48 44.61 46.08 45.61 44.54 43.62 43.36 44.03 45.05 43.15

BLOOMZ 560m 69.81 43.00 50.97 46.51 45.23 47.87 33.13 36.69 36.84 35.30 61.42 36.21
BLOOMZ 1b1 80.40 61.32 68.95 61.75 61.07 66.94 46.18 50.20 49.71 50.66 70.31 52.01
BLOOMZ 3b 81.38 68.05 71.76 68.43 69.57 69.76 67.73 65.09 64.37 63.14 69.08 64.05

MLM BLOOMZ 560m 65.68 23.29 21.11 22.31 20.86 22.00 20.40 19.04 21.10 20.59 28.82 19.50
MLM BLOOMZ 560m-r=100k 71.93 63.89 69.37 66.27 64.46 65.38 56.12 62.68 58.20 56.51 67.73 58.12
MLM BLOOMZ 1b1-r=100k 73.25 71.18 72.24 70.95 62.67 67.65 56.07 59.22 58.60 60.38 68.10 60.27

MT BLOOMZ 560m 55.20 41.87 39.00 38.16 36.88 39.29 36.07 34.74 36.97 33.81 41.72 37.70
MT BLOOMZ 560m-r=100k 74.46 70.73 69.94 70.00 66.81 67.65 64.58 66.53 65.10 61.35 68.43 63.23
MT BLOOMZ 1b1-r=100k 70.86 59.62 62.22 61.63 54.37 57.97 49.95 50.22 51.31 52.22 60.25 50.30

TLM BLOOMZ 560m 71.57 66.74 66.05 66.94 63.06 65.64 59.00 61.07 61.31 61.13 65.30 63.17
TLM BLOOMZ 560m-r=1k 70.52 61.73 62.76 62.01 54.34 56.31 48.52 49.44 49.21 47.95 61.11 49.22
TLM BLOOMZ 560m-r=10k 72.82 66.27 66.22 66.76 62.29 63.32 59.61 61.27 60.35 60.32 63.60 60.49
TLM BLOOMZ 560m-r=100k 72.40 61.05 59.43 62.11 54.51 56.44 46.68 50.72 50.56 45.02 63.27 48.39
TLM BLOOMZ 1b1-r=100k 75.66 70.05 70.12 70.70 64.47 67.07 62.92 61.87 60.96 61.86 68.11 61.53

XSS BLOOMZ 560m 64.48 57.65 52.18 54.13 52.40 53.59 48.55 48.06 49.59 44.01 58.03 49.43
XSS BLOOMZ 560m-r=1k 69.34 63.55 62.84 65.45 65.20 64.15 59.11 60.53 62.34 61.58 63.51 58.36
XSS BLOOMZ 560m-r=10k 72.22 67.89 67.81 67.25 62.76 64.42 62.83 61.98 62.02 62.21 65.38 59.27
XSS BLOOMZ 560m-r=100k 71.27 68.34 67.89 68.07 61.58 68.69 62.66 65.73 63.44 58.24 70.24 64.92
XSS BLOOMZ 1b1-r=100k 76.75 72.40 71.40 71.87 63.75 65.45 60.27 61.27 60.10 63.21 66.16 60.49

Table 16: Experiment result on the sentiment analysis task of the NusaTranslation dataset

Model L1 L2 L3

eng ind ace ban bjn bug jav min sun bbc mad nij

BLOOM 560m 29.26 21.13 21.35 21.93 21.35 23.21 21.86 21.82 21.04 22.28 22.13 21.11
BLOOM 1b1 22.02 22.54 21.47 22.62 22.27 21.34 22.97 21.92 21.55 22.10 21.65 21.53
BLOOM 3b 24.03 21.17 21.31 21.17 21.18 21.35 21.17 21.17 21.17 21.19 21.20 21.17

BLOOMZ 560m 58.24 55.59 31.18 32.40 37.17 27.79 35.86 39.29 32.44 29.49 32.80 38.15
BLOOMZ 1b1 57.41 58.58 43.31 43.02 44.72 31.12 46.52 42.59 39.20 26.82 41.92 40.76
BLOOMZ 3b 62.65 63.21 48.81 48.40 55.27 23.47 54.26 51.11 39.41 32.42 38.88 41.68

MLM BLOOMZ 560m 49.99 49.33 31.74 28.37 34.32 25.76 33.89 31.27 29.20 28.43 32.08 30.98
MLM BLOOMZ 560m-R-100000 61.32 60.01 42.69 41.69 50.95 31.53 44.28 44.30 42.11 33.18 41.05 40.15
MLM BLOOMZ 1b1-R-100000 61.30 59.73 43.11 43.02 50.71 31.31 53.66 51.05 47.27 31.13 42.02 39.83

MT BLOOMZ 560m 47.24 41.41 31.78 33.78 34.69 28.44 35.47 35.15 36.01 26.86 26.69 27.49
MT BLOOMZ 560m-R-100000 60.09 54.18 39.11 42.59 46.22 34.50 43.37 41.31 41.31 35.95 38.54 39.84
MT BLOOMZ 1b1-R-100000 59.18 53.69 43.97 45.40 50.16 38.65 48.37 45.97 41.98 37.97 40.90 40.60

TLM BLOOMZ 560m 44.72 46.02 33.59 34.26 41.16 25.36 41.76 38.72 37.40 25.67 30.88 29.98
TLM BLOOMZ 560m-R-1000 58.05 54.59 43.03 37.06 46.55 34.02 43.21 43.24 39.59 33.99 38.16 37.39
TLM BLOOMZ 560m-R-10000 57.38 57.73 43.43 36.76 45.99 35.06 44.38 43.30 40.83 34.06 42.46 40.00
TLM BLOOMZ 560m-R-100000 61.65 56.50 41.78 41.36 48.15 31.19 48.89 44.12 44.90 33.78 41.51 37.90
TLM BLOOMZ 1b1-R-100000 64.26 63.54 52.22 51.35 58.19 41.87 59.48 59.67 56.99 38.26 48.11 48.01

XSS BLOOMZ 560m 53.93 53.19 43.60 41.73 47.09 37.79 47.29 45.36 43.42 32.59 41.66 40.79
XSS BLOOMZ 560m-R-1000 56.57 54.90 36.78 40.28 42.20 28.56 45.67 41.33 39.80 27.30 31.67 32.20
XSS BLOOMZ 560m-R-10000 55.62 57.84 44.24 44.03 50.04 32.87 48.92 45.55 45.64 36.38 40.36 43.12
XSS BLOOMZ 560m-R-100000 59.89 58.22 45.53 39.57 52.68 36.15 49.83 50.61 46.45 35.27 42.40 43.39
XSS BLOOMZ 1b1-R-100000 60.78 59.34 45.83 45.45 53.08 36.24 52.24 50.54 47.20 33.81 40.99 41.08

Table 17: Experiment result on the sentiment analysis task of the NusaX dataset
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Model L2 L3

bug jav min sun bew btk mad mak mui rej

BLOOM 560m 1.19 2.42 4.54 3.05 4.37 2.56 0.59 1.42 1.11 2.66
BLOOM 1b1 1.19 2.42 4.54 3.05 4.29 2.57 0.59 1.42 1.11 2.44
BLOOM 3b 1.19 2.42 4.54 3.05 4.29 2.57 0.59 1.42 1.11 2.44

BLOOMZ 560m 2.36 2.93 4.71 3.52 4.35 3.33 1.41 3.09 1.28 4.10
BLOOMZ 1b1 1.19 2.42 4.54 3.05 4.29 2.57 0.59 1.42 1.11 2.44
BLOOMZ 3b 1.19 2.42 4.54 3.05 4.29 2.57 0.59 1.42 1.11 2.44

MLM BLOOMZ 560m 1.19 2.51 4.63 3.04 4.29 2.57 0.59 1.42 1.11 2.44
MLM BLOOMZ 560m-R-100000 1.19 2.41 4.54 3.05 4.29 2.57 0.59 1.42 1.11 2.44
MLM BLOOMZ 1b1-R-100000 1.19 2.42 4.71 3.05 4.29 2.57 0.59 1.42 1.11 2.44

MT BLOOMZ 1b1-R-100000 1.60 2.76 4.77 3.54 4.27 2.56 0.59 1.42 1.12 2.44
MT BLOOMZ 560m 1.41 2.58 9.14 5.63 4.45 2.57 0.59 1.56 2.10 2.44
MT BLOOMZ 560m-R-100000 1.19 2.51 4.54 3.04 4.29 2.70 0.59 1.42 1.11 2.44

TLM BLOOMZ 560m 1.19 2.58 4.88 3.54 4.29 2.57 0.59 1.42 1.11 2.44
TLM BLOOMZ 560m-R-1000 1.19 2.50 5.10 3.14 4.29 2.57 0.59 1.42 1.12 2.44
TLM BLOOMZ 560m-R-10000 1.19 2.67 5.12 4.34 4.29 2.57 0.73 1.42 1.11 2.66
TLM BLOOMZ 560m-R-100000 1.40 2.42 4.54 3.13 4.29 2.71 0.73 1.42 1.11 2.44
TLM BLOOMZ 1b1-R-100000 1.19 2.41 4.63 3.13 4.29 2.57 0.59 1.42 1.12 2.44

XSS BLOOMZ 560m 1.54 3.12 4.65 3.77 4.29 2.71 0.59 1.42 1.11 2.44
XSS BLOOMZ 560m-R-1000 1.56 2.82 5.16 3.54 4.37 2.69 0.73 1.42 1.11 2.44
XSS BLOOMZ 560m-R-10000 1.39 2.84 5.56 4.10 4.29 2.57 0.59 1.43 1.28 2.44
XSS BLOOMZ 560m-R-100000 1.19 2.42 4.54 3.05 4.29 2.57 0.59 1.42 1.11 2.42
XSS BLOOMZ 1b1-R-100000 1.19 2.67 4.63 3.84 4.29 2.57 0.59 1.42 1.11 2.44

Table 18: Experiment result on the emotion recognition task of the NusaParagraph dataset
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Model L2 L3

bug jav min sun bew btk mad mak mui rej

BLOOM-560m 7.68 3.50 6.36 3.80 5.42 7.92 11.25 9.07 3.91 5.80
BLOOM-1b1 7.72 3.50 6.36 3.81 5.42 7.93 11.26 9.09 3.91 5.82
BLOOM-3b 7.72 3.50 6.36 3.81 5.42 7.93 11.26 9.09 3.91 5.82

BLOOMZ-560m 9.13 4.10 6.86 4.29 6.07 8.75 11.71 9.45 4.09 6.04
BLOOMZ-1b1 7.72 3.50 6.36 3.81 5.51 7.93 11.26 9.09 3.91 5.82
BLOOMZ-3b 7.72 4.21 6.70 4.30 7.55 8.33 11.28 9.19 7.30 5.82

MLM BLOOMZ-560m 8.15 3.50 6.36 3.81 5.42 7.93 11.26 9.09 3.91 5.82
MLM BLOOMZ-560m r=100000 7.72 3.49 6.52 4.36 5.51 7.93 11.27 9.09 4.08 5.82
MLM BLOOMZ-1b1 r=100000 7.72 3.50 6.36 3.81 5.42 7.93 11.26 9.09 3.91 5.82

MT BLOOMZ-560m 7.72 3.50 6.36 3.81 5.42 7.93 11.26 9.09 3.92 5.82
MT BLOOMZ-560m r=100000 7.72 3.58 6.37 3.93 5.52 7.94 11.22 9.19 3.92 5.82
MT BLOOMZ-1b1 r=100000 8.61 4.59 7.08 5.08 5.71 8.20 11.52 9.29 4.63 6.01

TLM BLOOMZ-560m 9.43 3.83 7.27 7.11 5.42 7.93 11.28 9.18 3.92 5.82
TLM BLOOMZ-560m r=1000 14.08 11.46 17.31 16.55 10.35 12.61 11.92 12.04 9.34 5.96
TLM BLOOMZ-560m r=10000 8.37 4.23 7.66 5.40 5.43 8.05 11.20 9.28 4.25 5.96
TLM BLOOMZ-560m r=100000 7.75 3.50 6.34 3.80 5.51 7.93 11.35 9.18 4.23 5.78
TLM BLOOMZ-1b1 r=100000 7.71 3.67 6.55 4.05 5.42 7.93 11.27 9.08 3.91 5.82

XSS BLOOMZ-560m 8.38 3.57 6.46 3.88 5.42 7.94 11.26 9.09 3.91 5.82
XSS BLOOMZ-560m r=1000 6.14 4.21 4.34 6.14 4.38 7.29 11.21 8.39 5.52 6.63
XSS BLOOMZ-560m r=10000 8.06 4.24 7.46 5.07 5.41 8.23 11.32 9.10 4.08 5.85
XSS BLOOMZ-560m r=100000 7.73 3.50 6.67 4.23 5.50 7.93 11.26 9.09 3.92 5.82
XSS BLOOMZ-1b1 r=100000 8.00 4.05 7.40 4.62 5.67 8.08 11.55 9.19 4.08 5.83

Table 19: Experiment result on the topic classification task of the NusaParagraph dataset


