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Abstract

In this paper, we present our system for the tex-
tual entailment identification task as a subtask
of the SemEval-2023 Task 7: Multi-evidence
Natural Language Inference for Clinical Trial
Data. The entailment identification task aims
to determine whether a medical statement af-
firms a valid entailment given a clinical trial
premise or forms a contradiction with it. Since
the task is inherently a text classification task,
we propose a system that performs binary clas-
sification given a statement and its associated
clinical trial. Our proposed system leverages
a human-defined prompt to aggregate the in-
formation contained in the statement, section
name, and clinical trials. Pre-trained language
models are then finetuned on the prompted in-
put sentences to learn to discriminate the in-
ferential relation between the statement and
clinical trial. To validate our system, we con-
duct extensive experiments with a wide vari-
ety of pre-trained language models. Our best
system is built on DeBERTa-v3-large, which
achieves an F1 score of 0.764 and secures the
fifth rank in the official leaderboard. Further
analysis indicates that leveraging our designed
prompt is effective, and our model suffers from
a low recall. Our code and pre-trained mod-
els are available at https://github.com/HKUST-
KnowComp/NLI4CT.

1 Introduction

Recently, the proliferation of Clinical Trial Re-
ports (CTRs) provides a large-scale reference base
of scientific and factual knowledge for medical
practitioners to make evidence-based clinical di-
agnoses (Zlabinger et al., 2020). However, it also
posits the challenge that clinical practitioners can-
not memorize all current literature in order to pro-
vide up-to-date personalized evidence-based med-
ical care (DeYoung et al., 2020). With the recent
advances in Natural Language Processing (NLP)
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Figure 1: A demonstration of textual entailment and
contradiction between the medical statements and clini-
cal trial records. The statement may claim one or two
CTRs on a specific section.

systems, multiple language models pre-trained in
the medical domain have been proposed to tackle
medical NLP tasks efficiently (Rasmy et al., 2021;
Lewis et al., 2020b; Liu et al., 2022; Kanakara-
jan et al., 2021). This makes NLP systems more
practical and feasible to support the large-scale in-
terpretation and retrieval of medical evidence (Mar-
shall et al., 2020; Molinet et al., 2022; Pradeep
et al., 2022; Yasunaga et al., 2022). Though cur-
rent works study the application of state-of-the-art
NLP techniques in the medical domain extensively,
evaluation benchmarks are still not comprehensive
enough. In this manner, Jullien et al. (2023) pro-
pose the Multi-evidence Natural Language Infer-
ence for Clinical Trial Data (NLI4CT) task by con-
structing an effective evaluation benchmark based
on a collection of breast cancer CTRs1, statements,
and explanations. All the collected data are in En-
glish, and the labels are annotated by domain ex-
perts. Specifically, the annotated statements make
some specific types of claims about the informa-

1Extracted from https://clinicaltrials.gov/ct2/home
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tion contained in one of the sections in the CTR
premise that can be either focusing on one CTR
only or comparing a pair of CTRs. The collected
benchmark is associated with two proposed sub-
tasks, which address both discrimination and re-
trieval problems. In this paper, we focus on the
first task, textual entailment identification, which
aims to determine the inferential relation between
a medical statement and the collected clinical tri-
als. Given a statement and CTR pair, the objective
is to predict whether the statement affirms a valid
entailment of the CTR or forms a contradiction
with it, as shown in Figure 1. A system with supe-
rior performance on this task can retrieve medical
entailment in real-life CTRs and provide clinical
practitioners with accurate predictions of treatment
outcomes (Katsimpras and Paliouras, 2022), which
in turn aids in diagnosis and treatment (Zhang et al.,
2020b).

With the recent advancement in Pre-Trained
Langauge Models (PTLMs) on text classification
tasks (Howard and Ruder, 2018; Wang et al.,
2023b), we propose a simple yet effective system
that is purely built based on fine-tuning PTLM.
By using a carefully designed textual prompt, we
aggregate the clinical statement, the claimed sec-
tion name, and related CTR premises together
for the models to learn cohesively. The models
are asked to perform binary classification given a
prompted input sentence, which stands for discrim-
inating whether the statement claims an entailment
or forms a contradiction. To validate the effective-
ness of our proposed system, we evaluate a wide
variety of PTLMs on both the validation and testing
sets and study the ablation of our designed prompt.

Extensive experiment results demonstrate that
our system maximally achieves an F1 score of
0.764 and ranks fifth on the official leaderboard.
Specifically, DeBERTa-v3 (He et al., 2023b)
achieves the best performance and is much more
performant than other PTLMs, which highlights
its strong language modeling capability. While
the large version of other PTLMs may be hard to
converge and cannot surpass their respective base
version, DeBERTa-v3-large significantly outper-
forms its smaller version. Further analysis results
demonstrate that dropping our designed prompt
leads to performance drops, which demonstrates
the effectiveness of our designed prompt. How-
ever, we observe that our model can only achieve
a recall score of 0.772, which ranks thirteenth on

Train Dev Test

#data 1700 200 500
Avg.Length 19.67 18.68 21.63

Table 1: Statistics of the dataset (Jullien et al., 2023).
We report the number of data and the average number
of tokens in the statements within each split.

the official leaderboard and is a key bottleneck that
prevents our system from achieving a higher F1
score. Future works should focus on improving the
models’ robustness in discriminating true positive
examples. Our work studies the performance of
various PTLMs on medical multi-evidence natu-
ral language reasoning. The experimental results
can greatly help clinical practitioners to provide
personalized care. We thus make our data, code,
and finetuned models publicly available2 for future
contributions.

2 Problem Definition

In the textual entailment identification task, each
input data contains three components: a medical
statement, a section name indicating which sec-
tion the statement claims about, and one or two
CTR records that serve as the evidence to verify
the statement. Specifically, if the statement only
makes claims about one certain trial, then only the
corresponding trial will be used as input data. On
the other hand, if the statement claims a compar-
ison between a primary trial and a second trial,
both CTRs need to be considered and are provided
to the model as input information. Consequently,
the textual entailment identification task aims to
determine the inferential relation between the med-
ical statement and the associated section(s) in the
claimed CTR(s). There are two possible inferential
relations for each statement: entailment and con-
tradiction. Models are expected to predict whether
each statement affirms an entailment or forms a
contradiction given the associated section from the
claimed CTR(s).

Formally, denote the medical statement as t, the
section name as st, the inferential relation as rt,
and one CTR as C = {Cs1, Cs2, Cs3, ..., Cs|C|}.
If two CTRs are involved, they are denoted as C1

and C2. The models will be given (t, st, Cst) or
(t, st, C

1
st , C

2
st) as input and required to predict yt

that will be compared against rt.
We use the dataset provided by Jullien et al.
2https://github.com/HKUST-KnowComp/NLI4CT
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Figure 2: Overview of our proposed framework with the BERT family as the representative model.

(2023) to study this task. In the dataset, a total
of 2,400 statements are split evenly across the dif-
ferent sections and classes. The statements and
evidence are generated by clinical domain experts,
clinical trial organizers, and research oncologists
from the Cancer Research UK Manchester Insti-
tute and the Digital Experimental Cancer Medicine
Team. Each Clinical Trial Report (CTR) consists of
4 sections: Eligibility criteria, Intervention, Results,
and Adverse events. It may contain 1-2 patient
groups, which may receive different treatments or
have different baseline characteristics. Detailed
statistics are provided in Table 1. More explana-
tions regarding the CTRs and sections are provided
in Appendix A.

3 System Overview

In this section, we introduce our proposed system.
A general sketch is presented in Figure 2.

3.1 Prompt Design

The first step is to aggregate different input com-
ponents into a whole sentence before performing
further classification. Following the definition in
Section 2, we extract t, st, C1

st , C
2
st and use a dis-

crete prompt to concatenate them together. For
each section in a clinical trial, we use commas
to link each section’s evidence into a paragraph
to incorporate the prompt. To efficiently separate
different components instead of introducing exter-
nal natural language guidance, we leverage several
predefined separator tokens, denoted as [SEP], to
perform the isolation. The exact prompt used for
training can then be denoted as “t [SEP] st [SEP]
C1
st [SEP] C2

st”. Other pre-defined special tokens,

such as [CLS], [BOS], [EOS], are appended at their
appropriate positions. The prompted sentences are
further passed as input to the language models.

3.2 Encoder Model Selection

We experiment with a wide collection of popu-
lar transformer-based (Vaswani et al., 2017) pre-
trained language models as text encoders to obtain
the embedding of the prompted input sentences.

BERT (Devlin et al., 2019): BERT is the very
first bidirectional language model that is purely
based on transformer architecture. It is pre-trained
by using Masked Language Modeling (MLM) and
Next-Sentence Prediction (NSP) objectives.

BioClinical-BERT (Alsentzer et al., 2019):
BioClinical-BERT is a BERT model that is pre-
trained using the medical notes from a database
containing electronic health records from ICU pa-
tients at the Beth Israel Hospital in Boston. It is
considered to be a domain-specific language model
that is potentially effective in clinical NLP tasks.

ALBERT (Lan et al., 2020): ALBERT is a vari-
ant of BERT that leverages two parameter reduction
techniques, factorized embedding parameterization
and cross-layer parameter sharing, to improve its
parameter-efficiency. A sentence order prediction
loss during pretraining is also introduced to replace
the original NSP objective.

BART (Lewis et al., 2020a): BART is an
encoder-decoder model that uses a bidirectional
encoder and an autoregressive decoder to perform
sequence-to-sequence modeling. It is pre-trained
with the objectives of corrupting text with an ar-
bitrary noising function and learning a model to
reconstruct the original text. It has been shown to
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Backbone PTLM / Method Validation Testing

F1 Prec. Rec. F1 Prec. Rec.

BERT-base 110M 69.2 60.4 81.0 58.1 58.2 58.0
BERT-large 340M 70.9 61.3 84.0 61.5 57.5 66.0

BioClinical-BERT-base 110M 65.3 56.1 78.0 59.6 58.5 60.8

ALBERT-v2-base 12M 67.1 50.5 100.0 64.4 55.3 77.2
ALBERT-v2-large 18M 67.1 50.8 99.0 66.7 50.0 100.0
ALBERT-v2-xlarge 60M 67.1 50.8 99.0 66.8 50.1 100.0
ALBERT-v2-xxlarge 235M 67.1 50.5 100.0 66.2 50.1 97.6

BART-base 139M 67.3 50.8 100.0 65.6 49.9 95.6
BART-large 406M 66.9 50.7 98.0 63.8 58.5 70.0

RoBERTa-base 110M 70.7 62.8 81.0 60.7 58.0 63.6
RoBERTa-large 340M 67.6 63.7 72.0 56.5 59.2 54.0

DeBERTa-v3-base 214M 75.8 86.0 67.7 65.6 65.2 66.0
DeBERTa-v3-large 435M 81.5 75.9 88.0 76.4 75.7 77.2

ELECTRA-base 110M 70.3 78.0 63.9 61.4 60.5 62.4
ELECTRA-large 340M 76.1 71.7 81.0 66.5 70.7 62.8

GPT2-base 117M 39.0 31.0 52.5 60.3 51.4 72.8
GPT2-medium 345M 44.2 38.0 52.8 64.6 50.8 88.8
GPT2-large 774M 61.5 60.0 63.2 56.0 55.5 56.4

Table 2: Full experiment results (%) of the textual entailment identification task on both validation and testing sets
by various language models. We report the F1, precision (Prec.), and recall (Rec.) scores for every model. The best
performances with respect to F1 scores are bold-faced.

be effective on both generative and discriminative
NLP tasks.

RoBERTa (Liu et al., 2019): RoBERTa is a vari-
ant of BERT that is obtained by using an improved
recipe for training BERT models. The training
takes advantage of dynamic masking, full sentences
without NSP loss, large mini-batches, and a large
byte-level byte-pair encoding strategy. As a result,
the performance of RoBERTa is significantly im-
proved compared with the traditional BERT model.

ELECTRA (Clark et al., 2020): ELECTRA in-
troduces a new way of pretraining MLM language
models by corrupting the input by replacing some
tokens with plausible alternatives sampled from a
small generator network instead of performing the
traditional input masking. In addition, the model
is asked to predict whether each token in the cor-
rupted input was replaced by a generator sample
instead of predicting the original identity of the
masked tokens. It is much more efficient than pre-
vious pretraining approaches and can achieve com-
parable results.

DeBERTa (He et al., 2021, 2023b): DeBERTa
is the current state-of-the-art language model that
improves the BERT and its variants by using dis-
entangled attention and enhanced mask decoder.
Meanwhile, the training efficiency of DeBERTa is
also improved using ELECTRA-Style pre-training

with gradient disentangled embedding sharing. Per-
formances on downstream natural language under-
standing tasks are significantly improved compared
with previously introduced models.

GPT2 (Radford et al., 2019; Brown et al., 2020):
GPT2 is a generative language model that is pre-
trained using a Causal Language Modeling (CLM)
objective. In addition, the model takes a batch
of sequences of the continuous text of a certain
length as inputs, and the respective targets are the
same sequence with one token shifted to the right.
It also uses a masking mechanism to ensure that
the prediction of a specific token is only based on
previous existing tokens instead of future tokens.
Such autoregressive training enables GPT2 to be
extremely powerful in generating texts.

Considering the unique design and training ob-
jective function of each model, we adopt different
extraction strategies for different models to extract
the representation embedding of the input sentence
from the token embeddings encoded by the lan-
guage models. Specifically, for language models
with a masked language modeling objective, in-
cluding BERT, ALBERT, RoBERTa, DeBERTa,
and ELECTRA, the embedding of the [CLS] to-
ken is used as the representation vector. While for
autoregressive generative models such as BART
and GPT2, the embedding of the last token in the
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decoder is used as the representation of the input
sequence. Such a strategy best utilizes the informa-
tion provided by the encoder PTLM (Fang et al.,
2022).

Two linear layers are connected after the encoder
language model to perform binary classification on
the representation vectors. Tanh function is used
as the activation function (Nwankpa et al., 2018)
and two dropout (Srivastava et al., 2014) layers are
added appropriately to avoid overfitting.

3.3 Model Training

Denote the prompted input sentence as xi with
|xi| tokens, the inferential relation label as yi. All
models, denoted as θ, are trained using a standard
cross-entropy loss, as shown in Equation 1. The
predictions of xi, denoted as θ(xi), will be used to
compute the loss against the truth label yi.

L(xi, θ) = −
|x|∑

i=1

yi log(θ(xi)) (1)

4 Experimental setup

The data split for training, validation, and testing
sets follows the original split as released by Jul-
lien et al. (2023). Our system is built upon the
Huggingface Transformers3 Library (Wolf et al.,
2020). pre-trained tokenizers and language mod-
els are applied directly for further finetuning. The
training and evaluation codes are mainly adapted
from Fang et al. (2021b,a, 2023). We use a default
learning rate of 5e-6 with a batch size of 4 to train
the models. An AdamW (Loshchilov and Hutter,
2019) optimizer is used to update the parameters.
The max sequence length for the tokenizer is set
to 512, which is the most common longest input
length for PTLMs. The models are evaluated on
the validation every 10 steps by using precision,
recall, and F1 scores (Powers, 2020). Early stop-
ping is used where the best checkpoint is selected
when the largest validation F1 score is achieved.
The best checkpoint is further submitted to the Co-
daLab platform to acquire test set performances.
We train our models with a sufficiently large num-
ber of epochs to ensure that underfitting does not
occur. All experiments are repeated three times
using different random seeds, and the average per-
formance is reported. Four NVIDIA RTXA6000
(48G) and four NVIDIA RTX3090 (24G) graphical

3https://huggingface.co/docs/transformers

cards are used as the computational infrastructures.
The number of parameters for every model is re-
ported in Table 2. All testing set performances
are acquired through submissions on the official
CodaLab platform.

5 Results

The full results are shown in Table 2. We can ob-
serve that PTLMs with a Masked Language Mod-
eling (MLM) objective generally can achieve satis-
factory performance. The majority of them achieve
an F1 score of above 0.6 on the test set. The GPT2
family, on the other hand, struggles with the task
and can only achieve comparable performances
when the parameter is over 700 million, which is
nearly seven times more than other discriminative
PTLMs. One possible reason is that autoregressive
language modeling is not that competitive at classi-
fication tasks, and the GPT2 model cannot learn the
negative samples well. Our best model is finetuned
based on the DeBERTa-v3-large, which reaches a
0.764 F1 score and is significantly outperforming
other models. This may be due to the fact that
DeBERTa-v3-large possesses the largest number of
parameters, and its disentangled parameter-sharing
technique is effective for evidence-understanding
tasks (He et al., 2023b). Such a result enables our
model to secure a fifth rank on the official leader-
board and implies that advanced PTLM can be
proficient in solving the textual entailment identifi-
cation task.

PTLM F1. Prec. Rec.

DeBERTa-v3-large 76.4 75.7 77.2

⋄ w/o Special Token 73.4 73.5 73.2
⋄ w/o Statement 61.1 57.1 65.6

Table 3: Ablation study on our prompt used for infor-
mation aggregation. w/o stands for dropping a specific
component. Prec. and Rec. refer to precision and recall,
respectively.

We further study the ablation of our proposed
prompt. DeBERTa-v3-large finetuned on two dif-
ferent input prompts are compared as baselines.
Special Token stands for replacing the separator
tokens [SEP] with natural language guidance such
as “the evidence from CTR1 is”. Statement stands
for using the statement only for prediction. The
results, shown in Table 3, support our claim that
leveraging predefined special tokens as separators
and concatenating evidence after the statement is

5

https://huggingface.co/docs/transformers/index


effective.
Meanwhile, our best model’s precision score is

ranked fourth, and the recall score is ranked thir-
teenth. This indicates that the model is wrongly
classifying many entailments as contradictions,
which causes a relatively low recall and is con-
sidered a major limitation of our system. By fur-
ther observing the errors made by our system, we
find that challenging CTR-statement pairs involv-
ing complex or mathematical reasoning (Ferreira
and Freitas, 2020) are often wrongly classified. In
addition, due to the length of some CTR premises
being much longer than the PTLM’s input max
length, important pieces of evidence may be trun-
cated and failed to provide guidance when mak-
ing inferences on the statement. In our paper, we
ignore this issue due to the fact that such cases
infrequently occur through our manual inspection.
However, positional encoding techniques such as
relative position representation (Shaw et al., 2018)
should be implemented to compensate for such in-
formation loss.

In addition, we foresee three lines of future
works that can be addressed to enhance the sys-
tem’s robustness further: (1) Leveraging evidence
retrieval (Yadav et al., 2021; Conforti et al., 2020)
or abstractive summarization (de Vargas Feijó and
Moreira, 2023; Mao et al., 2022) to reduce the
noise caused by irrelevant evidence and present the
model with the most influential evidence. (2) Ap-
plying augmentation techniques (He et al., 2022;
Wang et al., 2023a; Wu et al., 2022; Qin and
Joty, 2022) and aligning medical inferences against
large eventuality knowledge graphs (Zhang et al.,
2022, 2020a; Röder et al., 2018) to mine inferen-
tial knowledge scalably and train the model more
robustly. (3) Leveraging GPT3.5 (Brown et al.,
2020; Ouyang et al., 2022), ChatGPT4 or other
advanced large language models to generate or ex-
tract (He et al., 2023a) key evidence as they have
shown strong capabilities in these tasks (Chan et al.,
2023).

6 Conclusion

In this paper, we propose to finetune pre-trained
language models to tackle the task of textual entail-
ment identification as a solution to SemEval2023
Task 7. By using a discrete prompt to aggregate
the medical statement and CTR premises, we max-
imally achieve an F1 score of 0.764 and ranked

4https://chat.openai.com/chat

fifth in the official leaderboard. Analysis experi-
ments also prove the effectiveness of our proposed
prompt. However, our system suffers from an ex-
cessively low recall rate. This indicates that the
model misclassifies too many entailments as con-
tradictions. Future work can focus on improving
the ability of the model to identify entailments and
improve its robustness. Our work demonstrates that
applying a larger pre-trained language model can
effectively identify clinical trial entailments, which
can be applied to real-world scenarios. All of our
code, data, and models are publicly available for
future contributions.
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