@inproceedings{pichardo-estevez-etal-2023-i2c,
title = "{I}2{C}-{H}uelva at {S}em{E}val-2023 Task 9: Analysis of Intimacy in Multilingual Tweets Using Resampling Methods and Transformers",
author = "Pichardo Estevez, Abel and
Mata V{\'a}zquez, Jacinto and
Pach{\'o}n {\'A}lvarez, Victoria and
El Balima Cordero, Nordin",
editor = {Ojha, Atul Kr. and
Do{\u{g}}ru{\"o}z, A. Seza and
Da San Martino, Giovanni and
Tayyar Madabushi, Harish and
Kumar, Ritesh and
Sartori, Elisa},
booktitle = "Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.semeval-1.104",
doi = "10.18653/v1/2023.semeval-1.104",
pages = "758--762",
abstract = "Nowadays, intimacy is a fundamental aspect of how we relate to other people in social settings. The most frequent way in which we can determine a high level of intimacy is in the use of certain emoticons, curse words, verbs, etc. This paper presents the approach developed to solve SemEval 2023 task 9: Multiligual Tweet Intimacy Analysis. To address the task, a transfer learning approach was conducted by fine tuning various pre-trained languagemodels. Since the dataset supplied by the organizer was highly imbalanced, our main strategy to obtain high prediction values was the implementation of different oversampling and undersampling techniques on the training set. Our final submission achieved an overall Pearson{'}s r of 0.497.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pichardo-estevez-etal-2023-i2c">
<titleInfo>
<title>I2C-Huelva at SemEval-2023 Task 9: Analysis of Intimacy in Multilingual Tweets Using Resampling Methods and Transformers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Abel</namePart>
<namePart type="family">Pichardo Estevez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jacinto</namePart>
<namePart type="family">Mata Vázquez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Victoria</namePart>
<namePart type="family">Pachón Álvarez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nordin</namePart>
<namePart type="family">El Balima Cordero</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Atul</namePart>
<namePart type="given">Kr.</namePart>
<namePart type="family">Ojha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="given">Seza</namePart>
<namePart type="family">Doğruöz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giovanni</namePart>
<namePart type="family">Da San Martino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Harish</namePart>
<namePart type="family">Tayyar Madabushi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ritesh</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elisa</namePart>
<namePart type="family">Sartori</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Nowadays, intimacy is a fundamental aspect of how we relate to other people in social settings. The most frequent way in which we can determine a high level of intimacy is in the use of certain emoticons, curse words, verbs, etc. This paper presents the approach developed to solve SemEval 2023 task 9: Multiligual Tweet Intimacy Analysis. To address the task, a transfer learning approach was conducted by fine tuning various pre-trained languagemodels. Since the dataset supplied by the organizer was highly imbalanced, our main strategy to obtain high prediction values was the implementation of different oversampling and undersampling techniques on the training set. Our final submission achieved an overall Pearson’s r of 0.497.</abstract>
<identifier type="citekey">pichardo-estevez-etal-2023-i2c</identifier>
<identifier type="doi">10.18653/v1/2023.semeval-1.104</identifier>
<location>
<url>https://aclanthology.org/2023.semeval-1.104</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>758</start>
<end>762</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T I2C-Huelva at SemEval-2023 Task 9: Analysis of Intimacy in Multilingual Tweets Using Resampling Methods and Transformers
%A Pichardo Estevez, Abel
%A Mata Vázquez, Jacinto
%A Pachón Álvarez, Victoria
%A El Balima Cordero, Nordin
%Y Ojha, Atul Kr.
%Y Doğruöz, A. Seza
%Y Da San Martino, Giovanni
%Y Tayyar Madabushi, Harish
%Y Kumar, Ritesh
%Y Sartori, Elisa
%S Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F pichardo-estevez-etal-2023-i2c
%X Nowadays, intimacy is a fundamental aspect of how we relate to other people in social settings. The most frequent way in which we can determine a high level of intimacy is in the use of certain emoticons, curse words, verbs, etc. This paper presents the approach developed to solve SemEval 2023 task 9: Multiligual Tweet Intimacy Analysis. To address the task, a transfer learning approach was conducted by fine tuning various pre-trained languagemodels. Since the dataset supplied by the organizer was highly imbalanced, our main strategy to obtain high prediction values was the implementation of different oversampling and undersampling techniques on the training set. Our final submission achieved an overall Pearson’s r of 0.497.
%R 10.18653/v1/2023.semeval-1.104
%U https://aclanthology.org/2023.semeval-1.104
%U https://doi.org/10.18653/v1/2023.semeval-1.104
%P 758-762
Markdown (Informal)
[I2C-Huelva at SemEval-2023 Task 9: Analysis of Intimacy in Multilingual Tweets Using Resampling Methods and Transformers](https://aclanthology.org/2023.semeval-1.104) (Pichardo Estevez et al., SemEval 2023)
ACL