@inproceedings{pritzkau-2023-nl4ia,
title = "{NL}4{IA} at {S}em{E}val-2023 Task 3: A Comparison of Sequence Classification and Token Classification to Detect Persuasive Techniques",
author = "Pritzkau, Albert",
editor = {Ojha, Atul Kr. and
Do{\u{g}}ru{\"o}z, A. Seza and
Da San Martino, Giovanni and
Tayyar Madabushi, Harish and
Kumar, Ritesh and
Sartori, Elisa},
booktitle = "Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.semeval-1.110",
doi = "10.18653/v1/2023.semeval-1.110",
pages = "794--799",
abstract = "The following system description presents our approach to the detection of persuasion techniques in online news. The given task has been framed as a multi-label classification problem. In a multi-label classification problem, each input chunkin this case paragraphis assigned one of several class labels. Span level annotations were also provided. In order to assign class labels to the given documents, we opted for RoBERTa (A Robustly Optimized BERT Pretraining Approach) for both approachessequence and token classification. Starting off with a pre-trained model for language representation, we fine-tuned this model on the given classification task with the provided annotated data in supervised training steps.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pritzkau-2023-nl4ia">
<titleInfo>
<title>NL4IA at SemEval-2023 Task 3: A Comparison of Sequence Classification and Token Classification to Detect Persuasive Techniques</title>
</titleInfo>
<name type="personal">
<namePart type="given">Albert</namePart>
<namePart type="family">Pritzkau</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Atul</namePart>
<namePart type="given">Kr.</namePart>
<namePart type="family">Ojha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="given">Seza</namePart>
<namePart type="family">Doğruöz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giovanni</namePart>
<namePart type="family">Da San Martino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Harish</namePart>
<namePart type="family">Tayyar Madabushi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ritesh</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elisa</namePart>
<namePart type="family">Sartori</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The following system description presents our approach to the detection of persuasion techniques in online news. The given task has been framed as a multi-label classification problem. In a multi-label classification problem, each input chunkin this case paragraphis assigned one of several class labels. Span level annotations were also provided. In order to assign class labels to the given documents, we opted for RoBERTa (A Robustly Optimized BERT Pretraining Approach) for both approachessequence and token classification. Starting off with a pre-trained model for language representation, we fine-tuned this model on the given classification task with the provided annotated data in supervised training steps.</abstract>
<identifier type="citekey">pritzkau-2023-nl4ia</identifier>
<identifier type="doi">10.18653/v1/2023.semeval-1.110</identifier>
<location>
<url>https://aclanthology.org/2023.semeval-1.110</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>794</start>
<end>799</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T NL4IA at SemEval-2023 Task 3: A Comparison of Sequence Classification and Token Classification to Detect Persuasive Techniques
%A Pritzkau, Albert
%Y Ojha, Atul Kr.
%Y Doğruöz, A. Seza
%Y Da San Martino, Giovanni
%Y Tayyar Madabushi, Harish
%Y Kumar, Ritesh
%Y Sartori, Elisa
%S Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F pritzkau-2023-nl4ia
%X The following system description presents our approach to the detection of persuasion techniques in online news. The given task has been framed as a multi-label classification problem. In a multi-label classification problem, each input chunkin this case paragraphis assigned one of several class labels. Span level annotations were also provided. In order to assign class labels to the given documents, we opted for RoBERTa (A Robustly Optimized BERT Pretraining Approach) for both approachessequence and token classification. Starting off with a pre-trained model for language representation, we fine-tuned this model on the given classification task with the provided annotated data in supervised training steps.
%R 10.18653/v1/2023.semeval-1.110
%U https://aclanthology.org/2023.semeval-1.110
%U https://doi.org/10.18653/v1/2023.semeval-1.110
%P 794-799
Markdown (Informal)
[NL4IA at SemEval-2023 Task 3: A Comparison of Sequence Classification and Token Classification to Detect Persuasive Techniques](https://aclanthology.org/2023.semeval-1.110) (Pritzkau, SemEval 2023)
ACL