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Abstract

Court Judgement Prediction with Explanation
(CJPE) is a task in the field of legal analysis and
evaluation, which involves predicting the out-
come of a court case based on the available le-
gal text and providing a detailed explanation of
the prediction. This is an important task in the
legal system as it can aid in decision-making
and improve the efficiency of the court process.
In this paper, we present a new approach to
understanding legal texts, which are normally
long documents, based on data-oriented meth-
ods. Specifically, we first try to exploit the char-
acteristic of data to understand the legal texts.
The output is then used to train the model using
the Longformer architecture. Regarding the ex-
periment, the proposed method is evaluated on
the sub-task CJPE of the SemEval-2023 Task 6.
Accordingly, our method achieves top 1 and top
2 on the classification task and explanation task,
respectively. Furthermore, we present several
open research issues for further investigations
in order to improve the performance in this re-
search field.

1 Introduction

The sub-task of CJPE invites participants to analyze
a legal judgment document to predict the outcome
of the case and justify their prediction with rele-
vant sentences from the document that contributes
to the decision(Malik et al., 2021b). The objec-
tive of predicting court judgments is to enhance
the efficiency and accuracy of the legal system
by providing decision-makers with valuable pre-
dictions and insights. Transformer-based models,
such as BERT (Devlin et al., 2018) and RoBERTa
(Liu et al., 2019), currently dominate most natural
language processing (NLP) tasks, including text
classification. However, the quadratic complexity
of their attention mechanisms imposes limits on
the maximum input length (512 sub-word tokens in
BERT, RoBERTa), which may not be able to handle
all the meaning in the legal domain where longer

documents are common(Malik et al., 2021b).
To address this issue, sparse-attention models,

such as LongFormer (Beltagy et al., 2020) and Big-
Bird (Zaheer et al., 2020), increase the maximum
input length to 4096 sub-word tokens, which may
improve the performance in understanding legal
documents. This paper focuses on investigating the
data and experimenting with various large models,
as we believe this sub-task involves processing long
documents. Using the Longformer and TF-IDF
features(Zhang et al., 2011), we achieve superior
results and apply them to the explanation task. In
the explanation task, we design a linear explana-
tion algorithm and show the mechanism effectively
inference the most important sentences leading to
the decision of judgment. We also provide exten-
sive experiments to analyse the capability of our
proposed model on capturing semantic information
in judgments. The main contributions of this study
are summarized below:

• We analyse judgment corpus and show its
unique characteristics that leads to model des-
ignation decision.

• We propose a novel approach for judgment de-
cision prediction and explanation by enhanc-
ing Longformer with global information TF-
IDF.

• We conduct a comprehensive experiment on
both prediction and explanation tasks to jus-
tify the improvements of our proposed method
over other baseline approaches.

In the SemEval 2023 Task 6(Modi et al., 2023),
we have achieved the top-1 ranking for the sub-
task legal judgment prediction, and top-2 ranking
for the sub-task court judgment prediction and ex-
planation1. Our implementation is available via
Github2.

1https://codalab.lisn.upsaclay.fr/competitions/9558
2https://github.com/thanhdath/semeval-2023-legaleval
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2 Related Work

Pretrained language models, which are trained on
large-scale unsupervised corpora, have shown their
effectiveness in various downstream tasks with
limited training samples such as text classifica-
tion(Minaee et al., 2021) and text generation(Li
et al., 2021).

For text classification, traditional methods often
apply a "short encoder" such as BERT(Malik et al.,
2021b), RoBERTa(Malik et al., 2021b) and XL-
Net(Yang et al., 2019). Although these methods
have archived promising performance on various
domains including news’ topic classification and
movie reviews analysis(Minaee et al., 2021), they
can only adapt to maximum 512 tokens, while real-
world documents such as court judgments could
be extremely large(Xiao et al., 2018). Therefore,
more advanced algorithms including hierarchical
models HAN(Yang et al., 2016), BERT + CNN
and XLNet + BiGRU(Malik et al., 2021b) were
invented to capture the semantic of arbitrary long
documents. However, these methods are still not
optimal due to two reasons. Firstly, longer docu-
ments also cause more noisy information, the meth-
ods have no mechanism to automatically de-noise
trivial information of judgments such as case num-
ber and introduction which do not contribute to
the judgment decision(Malik et al., 2021a). Sec-
ondly, the provided algorithms cannot be trained
on an end-to-end fashion. The language models
BERT and XLNet are not optimized to capture the
characteristics of this specific legal domain.

While judgment decision prediction could be
done automatically by machine learning, providing
an explanation of the decision is crucial. This en-
ables lawyers and courts to verify the correctness
of machine answers. There has been a vast amount
of research in model interpretability including
LIME(Ribeiro et al., 2016), SHAP(Lundberg and
Lee, 2017), and BreakDown(Staniak and Biecek,
2018). However, most of the explainers measure
the important scores at word-level or highlight a
short phrase only. Retrieving key sentences that
lead to model decisions like CJPE tasks would re-
quire algorithm modification.

3 Court Judgment Data Analysis

Malik et al. (2021b) has mentioned that most of
the important information is often located in the
last part of the documents. As in the structure of
judgment, it often begins with a preamble and is

Figure 1: The percentage of documents and explanation
sentences covered by given maximum tokens length.

followed by state facts of the case, courts analy-
sis(Kalamkar et al., 2022). Therefore, we illustrate
the percentage of covered documents given a maxi-
mum tokens length. Here we choose Longformer
tokenizer which segments the input text from ILDC
dataset into subwords, and we examine if the num-
ber of subwords exceeds the given maximum to-
kens length. We also visualize the percentage of
important sentences covered by the maximum to-
ken length. This is done by analysing if the last part
of the documents contains the important sentences
provided in ILDC expert dataset. All visualizations
are shown in Figure 1.

With the maximum tokens length 512, the per-
centage of document coverage is only 8.8 and only
14.8% of important sentences are within the learned
area. Therefore, using a simple encoder such
as BERT(Devlin et al., 2018) and RoBERTa(Liu
et al., 2019) cannot learn to predict the decision
of the judgment. Using sparse-attention algo-
rithm that supports larger models such as Long-
former(Beltagy et al., 2020), BigBird(Zaheer et al.,
2020) which support 4096 tokens can capture the
semantic of about 82.9% documents. We also see
that 99% of the important sentences are covered
by about 11,000 tokens, this inspires us to design
a hierarchical model using Longformer as a pri-
mary encoder, as it requires only 3 chunks to cover
almost all documents. However, adding more in-
formation from the first part could add more noise
and cause the learning process harder to optimize.

4 Methodology

4.1 System architecture

We first describe our architecture for the sub-task
CJPE in Figure 2, which encompasses three main
parts: an Encoder, a TF-IDF vectorizer, and a clas-
sifier. Given an input containing an unprocessed
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Figure 2: Our proposed system architecture. Accordingly, the architecture obtains four components, which are: i)
Encoder layer for enabling contextual representation; ii) TF-IDF vectorizer for enriching global information; iii)
Document Representation combining both features; and iv) Classifier for predicting the output.

legal case, we employ an Encoder model (such as
RoBERTa Large or Longformer) to vectorize the
document into an embedding space. This document
embedding often well-captures the semantic infor-
mation of a document thanks to the advancement of
the Transformer architecture(Vaswani et al., 2017).
For processing large documents, we have the option
to select either the first or last chunk to represent
the document, and the exceed tokens are truncated.

The Encoder could be short as it is often limited
to the maximum tokens length (e.g. 512, 4096).
Therefore, we enhance the document representa-
tion by concatenating the output of the Encoder
with TF-IDF features. A TF-IDF feature is a doc-
ument vector that captures the information from
the whole document. This gives global informa-
tion about the document and gives more evidence
to predict the judgment decision. We assume that
word-level counting would also help better predict
the judgment decision. For example, if a judgment
consists of a significant number of words "kill"
and "dead", the decision would very likely to be
accepted. Because the TF-IDF feature dimension
could be exceedingly large, we try to build a vo-
cabulary V consisting of meaningful words only.
The vocabulary is built from the train data set. In
which, we filter the rare words by using a frequency
threshold F . All words that have the number of
occurrences w less than F are truncated. The most
common words are also filtered out since they are
mainly stop-words and give zero information to the
decision prediction task. The concatenated feature
between Encoder and TF-IDF is thus forwarded to
a classifier, in order to generate the probability of a
document for each class.

4.2 Text Classification

For the classification task, our classifier includes
two feed-forward layers aiming to reduce the num-
ber of output nodes to two desired classes (Ac-

cepted and Denied). Each feed-forward layer fol-
lows by a Tanh activation and a Dropout(Srivastava
et al., 2014). This would avoid over-fitting prob-
lems and also increase the generalization of the
model. The input to the classifier is the concate-
nated features of a Longformer encoder and the
TF-IDF features, and the output is the final predic-
tion for the classification task.

The model is trained in an end-to-end fashion
with the traditional cross-entropy loss function. In
which, we optimize the parameters of both the en-
coder and classifier at the same time with a small
learning rate.

4.3 Explanation

Assume that the model is well-trained for the judg-
ment decision prediction task. Given a decent clas-
sification model g which output the vector of pre-
diction probabilities (p0, p1) for each class "De-
nied" and "Accepted", respectively. A document
D = {s0, ..., sN−1} is a sequence of N sentences.
The explanation task aims to estimate the impor-
tant score for each sentence si using a measurement
function f . We define a linear estimator f , as the
function for calculating the important score of sen-
tences, which is computed as follows:

f(si) = gm(D)− gm(D \ {si}) (1)

where m = argmax(g(D)) ∈ {0, 1} is the pre-
dicted label for a document D. The equation 1
comes from a simple perspective that if a sentence
si is masked and the model cannot correctly predict
the label of D, it means the sentence si is impor-
tant. We iteratively compute the important score
for each sentence in the document and obtain a
set {f(s0), ..., f(sN−1)}. Later we rank this set
to select the top-K most influence sentences to the
decision of judgment. Also note that if the clas-
sification model leverage only the last part of a
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Encoder Truncation side #Chunks Chunk size
F1-macro

ILDC SemEval dev SemEval test
XLNet + BiGRU* - - 512 0.78+ - -
TF-IDF - - - 0.57 0.56 -
LegalBERT right 1 512 0.54 0.57 -
RoBERTa right 1 512 0.54 0.69 -
Longformer right 1 4096 0.80 0.77 -
LegalBERT left 1 512 0.74 0.65 -
RoBERTa left 1 512 0.78 0.67 -
Longformer left 1 4096 0.86 0.70 -
Longformer Hmean left 3 4096 0.81 0.68 -
Longformer Hwsum left 3 4096 0.82 0.75 -
Longformer T left 1 4096 0.87 0.79 -
Longformer F left 1 4096 0.86 0.84 0.732
Longformer F&T left 1 4096 0.86 0.86 0.748

Table 1: Court decision prediction performance on ILDC and SemEval 2023 dataset. The reported baselines * are
taken from (Malik et al., 2021b), where the report result + is selected by the best result of ILDC split (single/multi)
dataset. The results on the SemEval test set are the results on the leaderboard.

document, we only rank the important score for
sentences in the learned part.

5 Experiment

5.1 Datasets

We perform experiments on two datasets for CJPE
tasks including ILDC(Malik et al., 2021b) and Se-
mEval 2023 Task 6 dataset. Although the SemEval
2023 dataset is a subset of ILDC, the characteris-
tics of the two datasets are different, and therefore,
the prediction accuracy on the two datasets could
be varied. Specifically, the SemEval 2023 test set
is only used to evaluate submissions on the leader-
board.

5.2 Hyperparameters Setting

All experiments were produced on a single A100
40Gb GPU and the hyperparameters are set as fol-
lows: the number of training epochs 5 and the
learning rate 2e-5. For the ILDC dataset, we set
the frequency threshold for constructing vocabu-
lary F = 350 and this results in the vocabulary
size |V | = 12, 315. For the SemEval dataset, F
is set as 100, |V | = 13, 063. During the training
process, we evaluate the prediction accuracy on the
validation set after each training epoch and save
the best model for inference.

5.3 Court judgment prediction

In this section, we compare the effectiveness of
different encoder architectures, including Legal-
BERT(Chalkidis et al., 2020), RoBERTa(Liu et al.,

2019) and Longformer(Beltagy et al., 2020). Since
judgment documents often exceed the maximum
sequence sizes of pre-trained language models, we
configure three settings to learn the semantics of
long documents. These settings include 1) trun-
cating the document from either the left side or
right side, and 2) designing a hierarchical learn-
ing process which is represented in the Appendix
section. The prediction performance is shown in
Table 1. In which, we use the notation Longformer
H to indicate the Hierarchical model using Long-
former as a primary encoder, mean and wsum are
aggregator functions. Longformer F represents
the Longformer model that trained on ILDC and
Finetuning on SemEval dataset, and Longformer T
(TF-IDF) represents our proposed model enriched
by TF-IDF document vector.

The experiment has shown that a powerful en-
coder architecture is crucial for learning seman-
tic representations of judgments. Longformer
achieve the best results compared to LegalBERT
and RoBERTa. In particular, a normal Longformer
model without an enriching process achieves 0.86
F1-macro on the ILDC test set. When applying
hierarchical learning, we did not see the improve-
ments of F1-macro on the ILDC dataset. Long-
former H is even worse than a normal Longformer
applying for the last part of the document. This
is because a larger document includes more noisy
information. However, the opposite tendency is
observed on SemEval 2023 dataset, this could be
due to dataset characteristics. By enriching the
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Model name EM #S
ILDC expert SemEval

ROUGE-1 ROUGE-2 ROUGE-L ROUGE-2
XLNet + BiGRU* - 40% 0.451+-0.051 0.297+-0.003 0.424+-0.016 -
Longformer Linear 40% 0.660+-0.057 0.533+-0.072 0.646+-0.064 -
Longformer SHAP 40% 0.641+-0.045 0.508+-0.055 0.623+-0.052 -
Longformer T Linear 40% 0.655+-0.057 0.534+-0.072 0.641+-0.065 -
Longformer F SHAP 40% 0.628+-0.043 0.491+-0.056 0.610+-0.051 -
Longformer F SHAP 10 0.413+-0.013 0.269+-0.012 0.396+-0.011 0.046
Longformer F&T SHAP 40% 0.625+-0.042 0.484+-0.055 0.606+-0.051 -
Longformer F&T SHAP 10 0.408+-0.012 0.259+-0.013 0.390+-0.011 0.047

Table 2: Court prediction explanation performance on ILDC and SemEval 2023 dataset. The reported results * are
taken from (Malik et al., 2021b). The results on the SemEval dataset are public on the leaderboard.

Longformer model with global document informa-
tion TF-IDF, we achieve slightly better accuracy
with 0.87 F1-macro on ILDC. In addition, the TF-
IDF vector paves the way for our Longformer F
to get the top-1 score on SemEval 2023 Task 6
leaderboard with the F1-macro 0.748.

5.4 Judgment explanation

We compare our proposed method with two expla-
nation mechanisms (EM) including a linear mask-
ing strategy and SHAP(Lundberg and Lee, 2017).
We report the average and standard deviation val-
ues for different metrics ROUGE-1, ROUGE-2,
and ROUGE-L since each document is annotated
by 5 experts. We also try with two settings for
selecting the number of retrieved sentences (#S),
either selecting the maximum top 10 the most im-
portant sentences or the maximum top 40%. It
should be noted that the sentences that contribute
negative values to the decision are filtered. Table 2
illustrates our judgment prediction accuracy com-
pared to baseline approaches with different settings.
The experiment has shown that choosing the num-
ber of retrieved sentences is crucial for explaining
the judgment decision, as the ROUGE values from
selecting the top 40% sentences are higher com-
pared to the top 10. We also notice that the complex
explanation method SHAP is worst than the sim-
pler version Linear. This could be because SHAP
was invented for inferencing the most important
words that contribute to the prediction but are not
compatible with sentence-level inference.

6 Leader-board of the Task

Table 3 show the results on the leaderboard for
subtask C in SemEval 2023 Task 63. Although

3https://codalab.lisn.upsaclay.fr/competitions/9558#results

Subtask C1 Subtask C2
Team F1 Team F1 ROUGE-2
Ours 0.7485 Team 1 0.5417 0.0473
Team 2 0.7228 Ours 0.4797 0.0470
Team 3 0.6782 Team 3 0.4789 0.0465
Team 4 0.6771 Team 4 0.4781 0.0411
Team 5 0.6735 Team 5 0.4781 0.0410

Table 3: Leaderboard result of subtask C.

we achieved top-1 with a score of 0.748 F1-macro
in subtask C1, the performance on C2 is much
lower compared to C1 with 0.479 F1-macro. We
suspect that the text or domain of subtask C2 may
differ from that of subtask C1, which causes the
performance reduction.

7 Conclusions

In this paper, we fine-tuned the Longformer model
by incorporating TF-IDF features and employed
various techniques to explain the CJPE task. Along
with implementation, we experimented with dif-
ferent input settings and parameters to discover
the best possible solution. As for future research,
we aim to delve deeper into the SHAP theory and
investigate ways to improve the explanation task
beyond the simple linear method. Additionally,
we are interested in exploring novel strategies to
train and represent documents and identify essen-
tial features that influence court predictions and
also the explanation task. Further investigation on
discovering a more effective approach to leverage
the hierarchy technique for large-scale language
models presents an opportunity for enhancement
in this endeavor and ought to be acknowledged.
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8 Appendix

8.1 Hierarchical Longformer for Court
Judgment Prediction

In this section, we provide model details and im-
plementation of Hierarchical Longformer, which
is mentioned in the experiment section. The hier-
archical architecture aims to learn the semantic of
arbitrary long documents. Given a document D,
we first split D into chunks with overlapping 100
tokens, and select maximum C chunks from the
ending of the document. This enhances the learn-
ing area for Longformer compared to the original
one which supports only 4096 tokens. By using
3 chunks, we can cover mostly all documents in
the ILDC corpus, as 99% of important sentences is
within 11.000 last tokens (see Section 3).

Let hi = g(ci) be the chunk representation of
chunk ci, where g represents an encoder. Using
hierarchical model, the document representation is
computed as follows:

ZD = aggregator({h0, ..., hC−1}) (2)

where aggregator aims to aggregate chunk em-
beddings to a vector. aggregator could be a mean,
sum, or attention function. In this work, since
the number of chunks is small when using the en-
coder Longformer. We use mean and weighted
sum (wsum) aggregators instead of complex mech-
anisms such as attention. The mean function sim-
ply takes the element-wise mean of the vectors in
{h0, ..., hC−1}.

Inspired from the work of Pham et al. (2021)
which computed the graph embedding by applying
the weighted sum function on node representations.
We consider chunk embedding equals to node-level
and the document vector is similar to graph embed-
ding. Thus, the weighted matrix S ∈ RC×1 for
every chunks is computed as follow:

S = softmax(MLP ({h0, ..., hC−1})) (3)

where MLP includes two linear layers with a non-
linear activation function ReLU. The MLP func-
tion transforms chunk representations into scalar

values which represent the important scores of each
chunk. Thus, the overall document embedding ZD

is the weighted sum of chunk embeddings:

ZD =
C−1∑

i=0

Sihi (4)

The document embedding is thus forwarded to
a classifier as introduced in Section 4.1 to predict
the decision.

Hierarchical models could easily lead to the out-
of-memory issue. This is because the memory
needed to store model parameters and gradient val-
ues is about C times higher compared to a non-
hierarchical one. However, we have implemented
the hierarchical model which enables mini-batch
gradient descent and end-to-end training thanks to
the support of Huggingface(Wolf et al., 2020) and
PyTorch Scatter4 libraries.

8.2 Implementation details of Shapley values
for model explanation

This section provides details on the implementa-
tion of SHAP(Lundberg and Lee, 2017) for court
judgment explanation. SHAP (SHapley Additive
exPlanations) is a technique based on game the-
ory that is used to clarify the results produced
by a machine learning model. It links the ap-
propriate allocation of credit with explanations
that are focused on specific instances by utiliz-
ing the well-established Shapley values as well
as LIME (Local Interpretable Model-agnostic Ex-
planations)(Ribeiro et al., 2016).

Since the original SHAP aims to measure the
importance at word-level, we implemented our
method with some modifications with the help of
the SHAP library 5 (Lundberg and Lee, 2017) and
Huggingface (Wolf et al., 2020). In particular, we
modified the masker function from the SHAP li-
brary code to compound the entire sentence as a
single feature. So, the output will calculate the im-
portance score for each sentence in the chunks. Af-
ter estimating the important scores for all sentences,
we rank them and select the top-K most influential
sentences. Those sentences with negative scores
are filtered out. Details of our implementation can
be found via Github6.

4https://github.com/rusty1s/pytorch_scatter
5https://github.com/slundberg/shap
6https://github.com/thanhdath/semeval-2023-legaleval
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