@inproceedings{arlim-etal-2023-gunadarmaxbrin,
title = "{G}unadarma{XBRIN} at {S}em{E}val-2023 Task 12: Utilization of {SVM} and {A}fri{BERT}a for Monolingual, Multilingual, and Zero-shot Sentiment Analysis in {A}frican Languages",
author = "Arlim, Novitasari and
Riyanto, Slamet and
Rodiah, Rodiah and
Siagian, Al Hafiz Akbar Maulana",
editor = {Ojha, Atul Kr. and
Do{\u{g}}ru{\"o}z, A. Seza and
Da San Martino, Giovanni and
Tayyar Madabushi, Harish and
Kumar, Ritesh and
Sartori, Elisa},
booktitle = "Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.semeval-1.120",
doi = "10.18653/v1/2023.semeval-1.120",
pages = "869--877",
abstract = "This paper describes our participation in Task 12: AfriSenti-SemEval 2023, i.e., track 12 of subtask A, track 16 of subtask B, and track 18 of subtask C. To deal with these three tracks, we utilize Support Vector Machine (SVM) + One vs Rest, SVM + One vs Rest with SMOTE, and AfriBERTa-large models. In particular, our SVM + One vs Rest with SMOTE model could obtain the highest weighted F1-Score for tracks 16 and 18 in the evaluation phase, that is, 65.14{\%} and 33.49{\%}, respectively. Meanwhile, our SVM + One vs Rest model could perform better than other models for track 12 in the evaluation phase.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="arlim-etal-2023-gunadarmaxbrin">
<titleInfo>
<title>GunadarmaXBRIN at SemEval-2023 Task 12: Utilization of SVM and AfriBERTa for Monolingual, Multilingual, and Zero-shot Sentiment Analysis in African Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Novitasari</namePart>
<namePart type="family">Arlim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Slamet</namePart>
<namePart type="family">Riyanto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rodiah</namePart>
<namePart type="family">Rodiah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Al</namePart>
<namePart type="given">Hafiz</namePart>
<namePart type="given">Akbar</namePart>
<namePart type="given">Maulana</namePart>
<namePart type="family">Siagian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Atul</namePart>
<namePart type="given">Kr.</namePart>
<namePart type="family">Ojha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="given">Seza</namePart>
<namePart type="family">Doğruöz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giovanni</namePart>
<namePart type="family">Da San Martino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Harish</namePart>
<namePart type="family">Tayyar Madabushi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ritesh</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elisa</namePart>
<namePart type="family">Sartori</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes our participation in Task 12: AfriSenti-SemEval 2023, i.e., track 12 of subtask A, track 16 of subtask B, and track 18 of subtask C. To deal with these three tracks, we utilize Support Vector Machine (SVM) + One vs Rest, SVM + One vs Rest with SMOTE, and AfriBERTa-large models. In particular, our SVM + One vs Rest with SMOTE model could obtain the highest weighted F1-Score for tracks 16 and 18 in the evaluation phase, that is, 65.14% and 33.49%, respectively. Meanwhile, our SVM + One vs Rest model could perform better than other models for track 12 in the evaluation phase.</abstract>
<identifier type="citekey">arlim-etal-2023-gunadarmaxbrin</identifier>
<identifier type="doi">10.18653/v1/2023.semeval-1.120</identifier>
<location>
<url>https://aclanthology.org/2023.semeval-1.120</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>869</start>
<end>877</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T GunadarmaXBRIN at SemEval-2023 Task 12: Utilization of SVM and AfriBERTa for Monolingual, Multilingual, and Zero-shot Sentiment Analysis in African Languages
%A Arlim, Novitasari
%A Riyanto, Slamet
%A Rodiah, Rodiah
%A Siagian, Al Hafiz Akbar Maulana
%Y Ojha, Atul Kr.
%Y Doğruöz, A. Seza
%Y Da San Martino, Giovanni
%Y Tayyar Madabushi, Harish
%Y Kumar, Ritesh
%Y Sartori, Elisa
%S Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F arlim-etal-2023-gunadarmaxbrin
%X This paper describes our participation in Task 12: AfriSenti-SemEval 2023, i.e., track 12 of subtask A, track 16 of subtask B, and track 18 of subtask C. To deal with these three tracks, we utilize Support Vector Machine (SVM) + One vs Rest, SVM + One vs Rest with SMOTE, and AfriBERTa-large models. In particular, our SVM + One vs Rest with SMOTE model could obtain the highest weighted F1-Score for tracks 16 and 18 in the evaluation phase, that is, 65.14% and 33.49%, respectively. Meanwhile, our SVM + One vs Rest model could perform better than other models for track 12 in the evaluation phase.
%R 10.18653/v1/2023.semeval-1.120
%U https://aclanthology.org/2023.semeval-1.120
%U https://doi.org/10.18653/v1/2023.semeval-1.120
%P 869-877
Markdown (Informal)
[GunadarmaXBRIN at SemEval-2023 Task 12: Utilization of SVM and AfriBERTa for Monolingual, Multilingual, and Zero-shot Sentiment Analysis in African Languages](https://aclanthology.org/2023.semeval-1.120) (Arlim et al., SemEval 2023)
ACL