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Abstract
This paper presents our submitted system to
AfriSenti SemEval-2023 Task 12: Sentiment
Analysis for African Languages. The AfriSenti
consists of three different tasks, covering mono-
lingual, multilingual, and zero-shot sentiment
analysis scenarios for African languages. To
improve model generalization, we have ex-
plored the following steps: 1) further pre-
training of the AfroXLM Pre-trained Language
Model (PLM), 2) combining AfroXLM and
MARBERT PLMs using a residual layer, and
3) studying the impact of metric learning and
two out-of-distribution generalization training
objectives. The overall evaluation results show
that our system has achieved promising results
on several sub-tasks of Task A. For Tasks B
and C, our system is ranked among the top six
participating systems.

1 Introduction

The widespread use of the internet and social me-
dia platforms has enabled billions of users world-
wide to communicate with each other, express their
opinions, and share their experiences. This has
led to the proliferation of content from various
spoken languages and dialects. To deal with the
huge amount of available textual corpora on the
Web, various Natural Language Processing (NLP)
tools and applications have been proposed. How-
ever, most of these NLP tools and applications
have been developed for high-resource languages
where both labeled and unlabeled data are highly
available, while low-resource languages, such as
African languages and dialects, still suffering from
data scarcity (Nekoto et al., 2020; Marivate et al.,
2020). Hence, there is a large gap between what has
been achieved for high-resource languages and low-
resource languages in NLP (Wang et al., 2021b;
Ogueji et al., 2021; Alabi et al., 2022; Adebara and
Abdul-Mageed, 2022; Adebara et al., 2022a).

In recent years, there has been an increasing in-
terest in NLP for African languages and dialects.

On the one hand, various research works have
been introduced to leverage existing unlabeled data
for training or adapting existing multilingual lan-
guage models to African languages and dialects
(Ogueji et al., 2021; Alabi et al., 2022; Adebara
et al., 2022b). On the other hand, several studies
have been published on collecting, curating, and
building labeled resources and corpora for African
languages. These studies have tackled several NLP
applications such as machine translation (Emezue
and Dossou, 2021), named entity recognition (Ade-
lani et al., 2021), language and dialect identifica-
tion (Adebara et al., 2022a), and sentiment analysis
(El Mahdaouy et al., 2021; El Mekki et al., 2021;
Mabokela and Schlippe, 2022; Muhammad et al.,
2022). Nevertheless, the existing studies remain
limited to a few African languages and dialects
(Adebara and Abdul-Mageed, 2022; Adebara et al.,
2022b).

In order to address the aforementioned limita-
tions for sentiment analysis in African languages,
Muhammad et al. (2023b) have organized the
AfriSenti shared task. AfriSenti consists of three
tasks for monolingual, multilingual, and zero-shot
cross-lingual transfer learning for sentiment anal-
ysis in African languages. The dataset of the
shared task covers 14 African languages and di-
alects (Muhammad et al., 2023a).

In this paper, we present our participating sys-
tem to AfriSenti shared task. In order to encode
the input texts, we have investigated the use of
AfroXLM (Alabi et al., 2022) and MARBERT
(Abdul-Mageed et al., 2021) pre-trained language
models. To improve the performance of our mod-
els, we have explored the following steps: 1) fur-
ther pre-training of the AfroXLM PLM using the
whole word masking objective (Cui et al., 2019), 2)
combing AfroXLM and MARBERT PLMs using a
projection (both PLMs have different embedding
sizes) and a residual layer, and 3) studying the im-
pact of several training objectives. To do so, we
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have employed the following training objectives:

• Task A: SoftTriple loss (Qian et al., 2019) for
class-wise text embedding alignment.

• Tasks B and C: SoftTriple loss (Qian et al.,
2019), the correlation alignment (CORAL)
(Sun and Saenko, 2016) and the regularized
Mixup (RegMixup) (Pinto et al., 2022) objec-
tives for cross-lingual features alignment and
for improving model generalization.

The official submission results demonstrate that
our system has achieved promising results on sev-
eral tracks of Task A. Besides, it is ranked among
the top ten participating systems on Task B (6th)
and Task C (6th and 4th on zero-shot Tigrinya and
Oromo, respectively).

2 Background

2.1 Task and Data Description

The AfriSenti-SemEval Shared Task presents three
challenging tasks for sentiment analysis in African
languages (Muhammad et al., 2023b). The shared
task’s datasets are collected from Twitter and cover
14 African languages and dialects (Muhammad
et al., 2023a). The tweets are labeled using nega-
tive, neutral, or positive sentiment polarities. The
AfriSenti includes the following tasks, where par-
ticipating teams may submit their results to one or
more tasks and sub-tasks:

• Task A: Monolingual Sentiment Classifica-
tion. It consists of 12 tracks and covers Hausa,
Yoruba, Igbo, Nigerian Pidgin, Amharic,
Algerian Arabic, Moroccan Arabic/Darija,
Swahili, Kinyarwanda, Twi, Mozambican Por-
tuguese, and Xitsonga (Mozambique Dialect).

• Task B: Multilingual Sentiment Classifica-
tion. In this task, the training data of the 12
languages and dialects of Task A were com-
bined into a single dataset for building mul-
tilingual sentiment analysis models and sys-
tems.

• Task C: Zero-Shot Sentiment Classification.
It aims to leverage the training data of Task A
for zero-shot sentiment analysis in Tigrinya
and Oromo. The participant may use all or
part of the training data of Task A.

2.2 Related Work

During the past few years, there has been a
widespread interest in training and fine-tuning
large transformer-based language models for NLP
applications and tools. These language models
are trained on large unlabeled text corpora us-
ing self-supervised training objectives such as
Causal Masked Modeling, Masked Language Mod-
eling, and Translation Language Modeling (Devlin
et al., 2019; Conneau et al., 2020). Following this
trend, several PLMs have been introduced for low-
resource languages such as African languages and
dialects. These PLMs are either pre-trained from
scratch or adapted to the African languages and
dialects by further pre-training of existing multilin-
gual PLMs (Ogueji et al., 2021; Abdul-Mageed
et al., 2021; Alabi et al., 2022; Adebara et al.,
2022b). Indeed, in a research work, Adebara et al.
(2022b) have shown the effectiveness of fine-tuning
these PLMs on the down-stream tasks for African
languages in comparison to their multilingual coun-
terparts.

Recently, researchers have shown an increased
interest in building tools and resources for senti-
ment analysis in African languages and dialectal
Arabic. In the context of Arabic dialects, several
shared tasks and datasets have been introduced
for sentiment analysis (Rosenthal et al., 2017;
Abu Farha et al., 2021, 2022; Al-Ayyoub et al.,
2019). Nevertheless, few resources have been pro-
posed for other African languages and dialects
(Mabokela and Schlippe, 2022; Muhammad et al.,
2022). To address this limitation, ? have organized
the AfriSenti shared task.

In order to deal with the problem of distribu-
tion shift in deep learning, several domain/out-of-
distribution generalization methods have been in-
troduced (Wang et al., 2021a). The aim is to learn
from one or multiple training domains to learn mod-
els that generalize to other related but unseen do-
mains. One of the main approaches to domain
generalization is to learn domain-invariant repre-
sentation by minimizing the discrepancy metric
between the output distributions of the training do-
mains. This can be achieved using either a domain
adversarial training or minimizing a distance be-
tween training domain output features, such as the
Maximum Mean Discrepancy (MMD) and Correla-
tion Alignment (CORAL) (Sun and Saenko, 2016;
Wang et al., 2021a). MMD and CORAL are pop-
ular unsupervised domain adaptation methods for
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domain feature alignment. Nevertheless, for super-
vised class-wise feature alignment, several metric
learning methods have been proposed, such as the
SoftTriple loss (Qian et al., 2019). The aim is to
learn a function that maps data instances of the
same class label close to each other, while pushing
away instances with different labels. Besides, other
methods rely on generating diverse and rich data to
boost the generalization performance. For instance,
Mixup based methods generate new data by per-
forming linear interpolation between any two data
instances and their labels with a weight sampled
from a Beta distribution (Pinto et al., 2022).

3 System Overview

In this section, we present the employed models’
architectures as well as the explored training objec-
tives.

3.1 Tweet Encoders

For input tweet encoding, we have explored the
use of MARBERT and AfroXLM (large) PLMs
as well as their combination using a residual layer.
MARBERT is a transformer-based encoder, pre-
trained on 1B Arabic tweets (Abdul-Mageed et al.,
2021). The employed pre-training data covers
both modern standard Arabic and dialectal Ara-
bic. AfroXLM is introduced by adapting the mul-
tilingual XLM-R PLM using unlabeled text cor-
pora from 17 African languages as well as 3 high-
resource languages: Arabic, English, and French.

In order to combine both MARBERT and
AfroXLM, we have employed one dense layer
to project MARBERT’s embedding into a vector
space of 1024 dimensions. Then, we have utilized a
residual layer to combine the projected embedding
of MARBERT and the embedding of AfroXLM.
Next, we will denote the combination of MAR-
BERT and AfroXLM encoders by DUO.

For tweets sentiment classification, we have im-
plemented a classifier that consists of one dropout
layer and one classification layer.

3.2 Further pre-training

In order to adapt the AfroXLM to tweet data, we
have built a 12GB pre-training dataset using the
AfriSenti training data as well as existing African
text corpora:

• The AfriSenti (?) training data is duplicated
five times.

• The WebCrawl African multilingual parallel
corpora (Vegi et al., 2022).

• The lafand-mt dataset (Adelani et al., 2022).

• the African News Corpus (Adelani and Alabi,
2022).

• The Maghrebi partition of the IADD dataset
(Zahir, 2022).

We have performed further pre-training on the
built dataset using the whole word masking objec-
tive (Cui et al., 2019). Models using our adapted
AfroXLM will then be denoted next by adding the
suffix _wwm.

3.3 Training objectives

In addition to the cross-entropy loss, we have
assessed the performance of the SoftTriple loss
(Qian et al., 2019), correlation alignment (CORAL)
(Sun and Saenko, 2016) and the regularized Mixup
(Pinto et al., 2022) as auxiliary losses. The lat-
ter training objectives are employed on the out-
put embeddings of the used tweet encoders. We
will denote by the suffixes _st, _coral, and _mix
the models that are trained using SoftTriple loss,
CORAL, and the regularized Mixup, respectively.
It is worth mentioning that CORAL and the regular-
ized Mixup are used for Tasks B and C to improve
model generalization. For models that combine the
cross-entropy loss with the aforementioned three
training objectives (SoftTriple loss, CORAL, and
the regularized Mixup), we have relied on the auto-
matically weighted multi-task loss (Kendall et al.,
2018) to weight the importance of each loss.

4 Experimental Setup

We have implemented our models using Pytorch1

framework as well as Pytorch Lightning2, Hugging
Face Transformers3, and PyTorch Metric Learning4

libraries. All experiments are conducted using a
Dell PowerEdge XE8545 server, having 2 AMD
EPYC 7713 64-Core Processor 1.9GHz, 1TB of
RAM, and 4 NVIDIA A100-SXM4-80GB GPUs.

For adaptive pre-training, we have used a learn-
ing rate of 5× 10−5 and a batch size of 8 per GPU
device. The number of epochs is fixed to 3, while

1https://pytorch.org/
2https://www.pytorchlightning.ai/
3https://github.com/huggingface/transformers
4pytorch-metric-learning
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Table 1: The obtained F1 scores (%) on the development set of Task A.

am ma ha ig yo twi pcm dz pt sw kr ts avg

MARBERT 39.3 79.74 76.34 77.57 67.74 53.81 73.99 69.98 61.68 45.23 59.54 51.46 63.03
AfroXLM 65.47 66.62 80.43 80.01 76.66 53.54 49.28 68.08 68.9 63.96 69.57 52.74 66.27
AfroXLM_wwm 63.57 76.03 81.34 81.76 78.74 60.2 76.91 68.08 71.93 60.48 70.94 59.56 70.80
DUO 64.25 78.11 75.5 78.4 72.24 55.7 76.14 72.27 67.63 59.95 70.77 56.53 68.96
DUO_wwm 61.7 78.79 81.63 81.25 78.95 65.36 78.34 69.22 71.4 61.52 71.05 55.1 71.19
DUO_wwm_st 64.79 81.16 81.45 81.03 80.21 59.38 76.03 72.56 71.88 58.11 69.24 62.65 71.54

the other hyper-parameters are fixed to their default
values of the employed pre-training script5.

For model fine-tuning on the AfriSenti tasks, we
have fixed the learning to 1× 10−5, the dropout to
0.2, the maximum sequence length to 128, and the
number of epochs to 10. The batch size is fixed to
16 for the tracks of Task A and to 64 for Tasks B
and C, respectively.

For Task A, all models are trained on one lan-
guage data and validated on its corresponding offi-
cial development set, except the Moroccan Darija
where 20% of the training dataset is used for model
validation. For Task B, we have used the provided
official development set for model validation. For
Task C, we have performed model validation by
combing Tigrinya and Oromo official development
sets into a single validation set.

5 Results

In this section, we present the obtained develop-
ment and official results of our models on the
AfriSenti tasks.

Table 2: The obtained results (%) on the development
set of Task B.

Accuracy F1

MARBERT 69.22 69
AfroXLM 74.91 74.88
AfroXLM_wwm 75.12 75.08
DUO 75.49 75.49
DUO_wwm 75.66 75.66
DUO_wwm_st 75.45 75.46
DUO_wwm_st_coral 75.83 75.82
DUO_wwm_st_coral_mix 76.26 76.28

5.1 Task A

Table 1 presents the obtained weighted F1 scores
on the 12 tracks of Task A. The results show that
MARBERT outperforms AfroXLM on both Mo-

5script: run_mlm_wwm.py

roccan and Algerian dialects. Besides, further pre-
training of the AfroXLM, namely AfroXLM_wwm
outperforms the original AfroXLM on most tracks.
Additionally, the combinations of MARBERT and
AfroXLM (DUO and DUO_wwm) yield better re-
sults than using a single encoder. On average, the
DUO_wwm_st has obtained the best performance.

5.2 Task B

Table 2 summarizes the obtained on Task B. In
line with the obtained results on Task A, further
pre-training and the combination of MARBERT
and AfroXLM improve the sentiment classification
performance on Task B. The best results are ob-
tained using the model that combines MARBERT
and the adapted AfroXLM encoders and trained
using the metric learning loss as well as the out-of-
distribution generalization loss functions (model
denoted by DUO_wwm_st_coral_mix).

5.3 Task C

Table 3 presents the obtained results on Task C. In
contrast to Tasks A and B, Task C results show that
adaptive pre-training has a negative impact on the
model performance. This might be explained by
the low coverage of the Tigrinya and Oromo lan-
guages in the built pre-training data. However, the
combination of MARBERT and AfroXLM_wwm
(DUO_wwm) yields the best performance on the
Oromo track. For the Tigrinya, the best results are
obtained by using metric learning, correlation align-
ment, and the regularized Mixup training objectives
(model denoted by DUO_wwm_st_coral_mix).

5.4 Official submissions

For the official evaluation results, we have sub-
mitted the results of DUO_wwm for Task A and
DUO_wwm_st_coral_mix for Task B and C.

Table 4 summarizes our obtained official results
on the AfriSenti Tasks (A, B, and C). The obtained
results demonstrate that our system achieves very
promising results. Indeed, it is ranked among the
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Table 3: The obtained results (%) on the development set of Task C.

tg or

Accuracy F1 Accuracy F1

MARBERT 31.4 16.38 37.62 34.22
AfroXLM 63.31 61.47 54.54 53.87
AfroXLM_wwm 61.55 60.57 52.27 52.03
DUO 59.04 59.66 54.79 52.75
DUO_wwm 58.04 58.78 56.31 56.10
DUO_wwm_st 60.55 60.47 53.03 52.28
DUO_wwm_st_coral 60.80 61.49 53.28 53.25
DUO_wwm_st_coral_mix 62.56 62.16 55.55 55.66

Table 4: The official results (%) of our submitted system.

Task Task A Task B Task C

Lang am ma ha ig yo twi pcm dz pt sw kr ts Multi. tg or

F1 72.18 60.15 82.04 81.51 76.01 66.98 69.14 72.02 67.35 60.26 70.71 56.13 71.95 69.53 45.27
Rank 2 6 2 3 12 6 10 4 18 15 11 5 6 6 4

top ten systems on seven tracks of Task A as well
as Task B and C.

6 Conclusion

In this paper, we have presented our participat-
ing system to the AfriSenti shared task for sen-
timent analysis in African languages. We have
investigated the combination of MARBERT and
AfroXLM PLMs on the three AfriSenti Tasks. Be-
sides, we have shown the impact of further pre-
training of the AfroXLM on our models’ perfor-
mance. We have also explored metric learning and
three out-of-distribution generalization training ob-
jectives for improving model generalization.

The overall evaluation results show that our sys-
tem has achieved very promising results on several
sub-tasks of Task A. For Task B and C, our system
is ranked among the top ten participating systems
on Task B (6th) and Task C (6th and 4th on zero-
shot Tigrinya and Oromo, respectively).
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