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Abstract

This paper describes SemEval-2022’s shared
task "Explainable Detection of Online Sexism".
The fine-grained classification of sexist con-
tent plays a major role in building explainable
frameworks for online sexism detection. We
hypothesize that by encoding dependency infor-
mation using Graph Convolutional Networks
(GCNs) we may capture more stylistic infor-
mation about sexist contents. Online sexism
has the potential to cause significant harm to
women who are the targets of such behavior. It
not only creates unwelcoming and inaccessible
spaces for women online but also perpetuates
social asymmetries and injustices. We believed
improving the robustness and generalization
ability of neural networks during training will
allow models to capture different belief distri-
butions for sexism categories. So we proposed
adversarial training with GCNs for explainable
detection of online sexism. In the end, our
proposed method achieved very competitive re-
sults in all subtasks and shows that adversarial
training of GCNs is a promising method for the
explainable detection of online sexism.

1 Introduction

Online platforms have become a major source of
communication, where people express their opin-
ions and views. The online world, however, is not
immune to sexism, and increasing social media us-
age has led to the proliferation of hate speech and
offensive language (Alzeer and Amin, 2020). It is
critical to automatically identify such content in
order to prevent its spread. This study aims to iden-
tify and classify sexism in social media texts. The
detection of sexism in online conversations requires
identifying offensive language and gender-biased
text.

Sexism involves the use of abusive or negative
language directed towards women based on their

∗Equal contribution. Listing order is random.

gender, or in conjunction with other identity at-
tributes such as race, religion, or gender identity.
This form of online hate speech is a significant
obstacle to gender equality. Women are dispropor-
tionately impacted by hateful and offensive content
on social media platforms, including misogynis-
tic and sexist posts, which can lead to real-world
violence against them (Deal et al., 2020). The au-
tomatic detection and categorization of these types
of tweets and posts can be a valuable tool for so-
cial scientists and policymakers in their efforts to
combat sexism through research.

Detecting and categorizing instances of sexism
in social media posts can be a complicated and
arduous process, particularly when the content in-
volves sarcasm and various types of sexist language.
Recent research has identified multiple factors that
make identifying sexist content on social media par-
ticularly challenging (Younus and Qureshi, 2022).
These reasons include the use of subtle forms of
expression with microaggressions woven into the
language, the presence of diverse contexts such as
ongoing popular events and conversations, and the
potential impact of the platform or language used
on determining whether a statement is considered
sexist or not.

In recent years, graph convolutional networks
(GCN) (Kipf and Welling, 2016) and language
models have shown significant promise in the field
of natural language processing. It is possible to
develop robust frameworks for detecting and cate-
gorizing online sexism posts using GCN’s ability
to model complex relationships in graph data. This
is coupled with the language model’s capability to
understand the context and semantics of text.

Adversarial training has been shown to be effec-
tive in improving the robustness of neural models
by incorporating a small perturbation into the in-
put data during training (Vidgen et al., 2021) (Kirk
et al., 2022). This makes it more difficult for the
model to make incorrect predictions. Therefore,
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we propose a novel framework for detecting online
sexism posts that combines graph-based models,
language models, and adversarial training. Our pro-
posed framework leverages the strengths of each
component to detect and categorize subtle forms
of sexism in social media content. Additionally, it
can enhance the robustness of the model against
adversarial attacks.

Our code is available on GitHub for researchers.
1 This paper is organized as follows: A description
of the task and its subtasks can be found in Section
2. Section 3 reviews related research. The theoret-
ical background of the neural model is presented
in section 4. Section 5 presents implementation
details, while 6 describes experiments and results.
The conclusions of the paper can be found in sec-
tion 7.

2 Task Description

Explainable Detection of Online Sexism (EDOS)
(Kirk et al., 2023) is a SemEval 2023 task that aims
to facilitate the development and assessment of
models capable of detecting online sexism in social
media posts. Human experts in English have manu-
ally annotated social media posts for this task. The
following three subtasks are involved in EDOS:

Binary Sexism Detection (Task A): The first
subtask of the EDOS task is the detection of bi-
nary sexism. In this task, systems need to predict
whether a given social media post is sexist.

Category of Sexism (Task B): For posts that
are classified as sexist in Task A, the systems have
to predict one of four categories: (1) threats, (2)
derogation, (3) animosity, or (4) prejudiced discus-
sions.

Fine-grained Vector of Sexism (Task C): Sys-
tems have to predict one of 11 fine-grained vectors
if posts are classified as sexist in Task A.

3 Related Works

For the IberLEF 2022 dataset, de Paula and da Silva
(2022) implemented multilingual versions of BERT,
RoBERTa, and the monolingual versions of Elec-
tra, and GPT2 and achieved the highest results us-
ing back-translation to English with BERT and
RoBERTa language models.

With ByT5 as a token-free language model,
Younus and Qureshi (2022) proposes to combine
byte-level modeling with attention-based neural

1https://github.com/MarSanTeam/
Explainable_Detection_of_Online_Sexism

networks through tabular modeling via TabNet,
which can take into account platform and language
aspects to detect sexism effectively.

By incorporating recurrent components, Abburi
et al. (2021) proposes a neural model for the detec-
tion and classification of sexism, combining repre-
sentations obtained using RoBERTa and linguistic
features such as Empath and Hurtlex. In addition
to that, Abburi et al. (2021) incorporates external
knowledge-specific features into the learning pro-
cess using emoticons and hashtags.

Jiang et al. (2022) proposes a large Chinese lex-
icon of abusive and gender-related terms, called
SexHateLex, and the first Chinese sexism dataset
called Sina Weibo Sexism Review (SWSR). These
authors analyse the characteristics of the dataset
and how Chinese sexism manifests. SWSR pro-
vides labels at different levels of granularity, in-
cluding sexism or non-sexism, sexism category,
and target type. Additionally, the paper uses state-
of-the-art machine learning models for the three
sexism classification tasks. The research aims to
broaden the scope of research in sexism detection
and contribute to combating online sexism. A com-
bination of Graph Convolutional Neural Networks
(GCN) with different edge creation strategies is
applied in Wilkens and Ognibene (2021) as well
as an ensemble approach for combining graph em-
beddings from different GCN models. To capture
the linguistic and structural characteristics of sexist
posts, the model uses graph-based representations
of social media content.

A study from Kalra and Zubiaga (2021) explores
the use of deep neural networks, including Long-
Short-Term Memory (LSTMs) and Convolutional
Neural Networks (CNNs), to identify sexism in a
social media text. Using transfer learning through
Bidirectional Encoder Representations from Trans-
formers (BERT) and DistilBERT models, as well as
data augmentation, the models classify sexism in a
dataset of Sexism Identification in Social Networks
(EXIST) tasks. With data augmentation, BERT
and a multi-filter CNN model produce comparable
results.

The authors in Sharifirad et al. (2019) use Con-
volutional Neural Networks (CNNs) to develop
classifiers to detect and annotate different types of
sexism. Using CNN models, the study detects se-
mantic categories of n-grams and clusters them to
improve the classification task by improving the
understanding of sexism. As part of the study, the
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authors examine more precise categories of sexism
in social media and examine CNN filters, which
can help identify the most important n-grams.

To perform document classification, Yao et al.
(2019) employ Text Graph Convolutional Networks
(Text GCN). A tensor graph convolutional network
based on semantic, syntactic, and sequential graphs
is introduced in Liu et al. (2020) for document clas-
sification. Furthermore, Lin et al. (2021) combine
BERT and GCN to improve the performance of
text classification.

Gender differences can further compound the
challenges of detecting sarcasm and irony. Stud-
ies have shown that men and women use sarcasm
differently, with men often using it as a form of ag-
gression or dominance, while women may use it to
express their frustration or as a coping mechanism
in situations where they lack power. Moreover, so-
cietal norms and gender stereotypes can influence
the way that sarcasm is perceived and interpreted,
with women often being judged more harshly for
their use of sarcasm than men. These factors must
be considered when attempting to detect sarcasm
and irony in written or spoken language (van de
Kerkhof, 2018; Najafi and Tavan, 2022; Rahgouy
et al., 2022; Tavan et al., 2022; Giglou et al., 2022).

4 System Overview

This section presents our proposed model which
consists of three modules: the encoder module, the
GCN module, and the classifier module. The input
text is encoded into a feature representation by the
encoder module, and relevant features are extracted
by the GCN module based on the graph structure.
As a final step, the Classifier module uses these
extracted features to classify the input text. After
each epoch, the encoder module updates all node
embeddings. Figure 1 shows the overview of our
proposed model.

4.1 Encoder Module

In the Encoder module, BERTweet (Nguyen et al.,
2020) was implemented in order to convert tokens
to their corresponding embedding vector. By incor-
porating the transformer’s encoder and a BiLSTM
layer at the top of the BERTweet model, we are able
to extract more informative features and improve
the performance of the model. In this module, the
transformer uses a multi-head attention mechanism
to identify relationships between tokens, which is
particularly useful for detecting sexist contextual

GCN Module Encoder Module

Concat

Classifier Module

Input

Figure 1: An overview of the proposed model.

features. As a result of our architecture, informa-
tive features can be extracted from the input text in
an effective manner. Furthermore, it illustrates the
importance of leveraging advanced neural network
architectures in order to enhance the performance
of NLP models.

4.2 Graphs Constructor

We construct multiple heterogeneous text graphs
(G1, G2, and G3) with shared nodes to represent
text documents that possess various linguistic prop-
erties, following the TensorGCN (Liu et al., 2020)
approach. These graphs are denoted as G(V,E,A),
where V (|V | = n) represents the set of nodes (ver-
tices), E represents the set of edges, and A repre-
sents the graph adjacency matrix (edge weights).

These graphs are built using two types of word
and document nodes, which incorporate semantic,
syntactic, and sequential features. These graphs
also have two types of edges: word-document
edges and word-word edges. The word-document
edges in all three graphs are created based on
the frequency of words within documents, and
their edge weights are determined by the term
frequency-inverse document frequency (TF-IDF)
method. The word-word edges in G1, G2, and G3,
are constructed based on syntactic dependency, se-
mantic similarity, and local sequential context, re-
spectively.

To initialize the matrix X ∈ Rn×m, which con-
tains all n nodes along with their embeddings, we
utilize BERTweet. For each node, document, or
word, the output of the [CLS] token is used as a
node embedding.

Semantic-based Graph: A semantic-based
graph’s adjacency matrix is constructed using
BERTweet. The process involves extracting word
semantic embeddings from the input text, comput-
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ing the cosine similarity between words, and check-
ing if the score exceeds a predetermined threshold.
Whenever the threshold is exceeded, it indicates
a semantic relationship between the words in the
input text. This computation is carried out across
the entire corpus, and all semantically related word
pairs are counted. The calculation process is illus-
trated in equation 1.

dsemantic(wi, wj) =
Nsemantic(wi, wj)

Ntotal(wi, wj)
(1)

The meaning of the variables in equation 1 is
as follows: dsemantic(wi, wj) represents the edge
weight of the semantic relationship between words
wi and wj . The variables Nsemantic(wi, wj) and
Ntotal(wi, wj) correspond to the number of times
wi and wj have a semantic relationship in the cor-
pus and the total number of times they appear to-
gether in one sample, respectively.

Syntactic-based Graph: Syntactic adjacency
matrices are generated by identifying the syntactic
relationships among words in a corpus. We use
a spacy parser as the basis of our syntactic parser.
The parser output can be visualized as an undi-
rected graph to facilitate analysis. Over the entire
corpus, we count the number of times each pair
of words has syntactic dependency. This method
is used to compute the edge weight of each word
pair. The equation below demonstrates how this
calculation is performed.

dsyntactic(wi, wj) =
Nsyntactic(wi, wj)

Ntotal(wi, wj)
(2)

where dsyntactic(wi, wj) represents the edge
weight for the syntactic relationship between words
wi and wj in the graph. Nsyntactic(wi, wj) is the
number of times wi and wj have a syntactic depen-
dency in the corpus, and Ntotal(wi, wj) is the total
number of times wi and wj appear together in the
one sample.

Sequential-based Graph: The method of learn-
ing text representations commonly involves ana-
lyzing sequential context to identify the local co-
occurrence of words. This approach is widely used
for constructing an adjacency matrix. We employ
a sliding window strategy and Point-wise Mutual
Information (PMI) to capture sequence context in-
formation.

A PMI score was developed because the perfor-
mance was better than calculating word frequency.

This was based on the intuition that the best way
to measure the association between two words is
to calculate how often they co-occur in the corpus
compared to how often they could have appeared
by chance (Jurafsky and Martin, 2021).

As a result, we are able to calculate the weight
of the edge connecting each pair of words. These
words are treated as nodes in a graph based on
their sequential relationship. The equation below
demonstrates how the calculation is carried out:

dsequential(wi, wj) =

PMI(wi, wj) = log
p(wi, wj)

p(wi)p(wj)

p(wi, wj) =
N(wi, wj)

N(windows)
(3)

p(wk) =
N(wk)

N(windows)

In equation 3, N(wk) represents the number of
sliding windows that contain the word wk. Sim-
ilarly, N(wi, wj) refers to the number of sliding
windows in the same corpus that contains both the
words i and j. Finally, N(windows) represents the
total count of sliding windows in the corpus.

4.3 GCN Module

GCNs are a type of neural network specifically de-
signed for processing graph data, where nodes are
connected by edges. GCNs aim to generate embed-
ding vectors for each individual node in the graph,
using information from its immediate neighbor-
hood. GCN achieves this by applying convolutional
layers directly to the graph structure. However,
since a single convolutional layer can only cap-
ture information from a node’s immediate neigh-
borhood, stacking multiple GCN layers enables the
integration of information from larger neighbor-
hoods, resulting in richer node embeddings.

The GCN formula, represented by equation 4, is
a mathematical function that takes in a graph rep-
resentation as input and outputs the corresponding
node embeddings. The formula involves several
key components, including the input node features
represented by matrix H(l), the graph adjacency
matrix represented by matrix Ã, and the weight
matrix for layer l represented by matrix W (l). Ad-
ditionally, the formula utilizes matrix D̃, which is
the degree matrix of the augmented graph, and σ is
a nonlinear activation function.

1014



word 1
word 2

word 3

word 4

word 5

document 1

document 2

semantic-base graph

word 1
word 2

word 3

word 4

word 5

document 1

document 2

syntactic-base graph

word 1
word 2

word 3

word 4

word 5

doc 1

doc 2

sequential-base graph

Semantic GCN

Syntactic GCN

Sequential GCN

MaxPool

Semantic GCN

Syntactic GCN

Sequential GCN

MaxPool

Graph Constructor GCN Module

Node Embedding

Input data

Figure 2: The proposed GCN module

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l)W (l)) (4)

The GCN module is designed to extract local
graph features by utilizing the introduced graphs.
The GCN module is shown in Figure 2. Initially,
each graph is processed by a single-layer GCN,
which generates embedding vectors for each node
based on its immediate neighborhood. In order to
create a new node embedding vector, the maximum
value of the resulting node embeddings is accumu-
lated. To obtain richer node embeddings, we repeat
the procedure with another GCN layer to obtain
information from larger neighborhoods. To merge
the information from the three graphs, we use the
maximum value of the three node embedding vec-
tors as the final node embedding. This approach
ensures that the final node embedding contains the
most informative features from all three graphs.

By leveraging the power of GCNs and combin-
ing information from multiple graphs, our method
is capable of effectively capturing and utilizing
the structural and relational information present in
complex graphs.

4.4 Classifier Module
Finally, to determine the probabilities of the labels,
the softmax classifier is used. This module is a
simple softmax classifier that is used to predict a
label ŷ from a set of discrete classes. The softmax
classifier takes X as input:

X = Xgnn ⊕Xencoder

P (y | X) = softmax(WX + b) (5)

ŷ = argmax(P (y | X))

Here, the variable X represents the concatena-
tion of GNN module features and Encoder module

features. The weight matrix W has dimensions of
Rh∗n, the bias vector b has dimensions of Rn, and
n represents the number of classes.

4.5 Adversarial Training

Adversarial training is a technique used to improve
the robustness and generalization ability of neural
networks by training them on adversarial exam-
ples. The most effective way to do this is by adding
small perturbations to the input during the training
process. Specifically, we employ the Projected Gra-
dient Descent (PGD) method (Madry et al., 2017),
which adds a small perturbation to the original in-
put example in the direction of the gradient of the
parameters that maximize the loss. By repeatedly
applying this technique, the model learns to handle
adversarial examples more effectively, resulting
in enhanced robustness and generalization. Our
proposed model incorporates perturbations in both
the embedding layer of BERTweet and the node
embedding of each graph.

Adversarial training has proven to be an effective
defense against adversarial attacks and can signifi-
cantly improve the performance of neural networks
on challenging tasks. The resulting models are ca-
pable of handling a variety of inputs and can be
used in a wide range of applications. The follow-
ing is a formulation of adversarial training (Madry
et al., 2017):

min
θ

E(x,y)∼D

[
max
δ∈S

L(θ, x+ δ, y)

]
(6)

In equation 6, x represents the original input
example, y represents the true label for the input
example, and L is a loss function that measures
the discrepancy between the model’s prediction
and the true label. The perturbation δ is added to
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the input example x to create an adversarial exam-
ple, and the set S specifies the allowable range of
perturbations that can be added to the input. By
minimizing the objective function, we can find the
optimal value of θ that makes the model more ro-
bust to adversarial examples, and thus improves its
overall performance.

5 Experimental Setup

This section is structured into two distinct parts.
Firstly, we describe our data pre-processing ap-
proach in detail. Secondly, we discuss the imple-
mentation details.

Pre-processing: The dataset contained URLs
and user mentions, which could confuse the model
in labeling the data. Therefore, these items were
removed during preprocessing. Additionally, the
text was converted to lowercase and all numbers
were removed. These steps help to reduce com-
plexity, improve uniformity, and increase accuracy,
especially in tasks like sexism detection.

Furthermore, the graph constructor utilizes a
number of preprocessing techniques, which are
only used in the graph constructor, not in the lan-
guage model. The first step is to remove stop words
that are commonly used but do not convey much
meaning. Subsequently, all words within the text
are lemmatized. The last step involves removing
words that appear in the text less than three times.

Implementation Details: PyTorch is employed
to implement the model, which was trained on high-
performance NVIDIA V100 GPUs. To fine-tune
each subtask, hyper-parameters were adjusted us-
ing the development set. The model is trained using
the back-propagation algorithm with the Adam op-
timizer, which had a learning rate of 1e-5. An early
stopping method is employed by monitoring the
validation loss in min mode with patience of five.
A batch size of 32 is used for each subtask and
cross-entropy loss with class-weights (sklearn is
used to calculate class-weights 2) is used in cases of
data imbalance. Additionally, a maximum length
of 70 tokens is used in all experiments. (Only 41
samples have more than 70 tokens.)

The transformer consists of eight attention heads,
while the Position-wise feed-forward layer has a
hidden size of 2048. Additionally, one layer of
Bi-LSTM with 512 units is used. The GCN layers

2https://scikit-learn.org/stable/
modules/generated/sklearn.utils.class_
weight.compute_class_weight.html

Model F1-score(%)
Dev Test

Subtask A
BERTweet 79.04 78.26

BERT-Large 77.05 76.43
XLM-RoBERTa-Large 76.70 75.75

T5-Large 77.46 75.66
Subtask B

BERTweet 56.86 56.82
Bert-Large 46.35 47.24

XLM-RoBERTa-Large 55.25 50.34
T5-Large 39.33 37.79

Subtask C
BERTweet 42.23 36.15
Bert-Large 37.78 33.31

XLM-RoBERTa-Large 31.61 33.02
T5-Large 10.03 10.75

Table 1: Macro f1-score for three subtasks using differ-
ent language models.

have output channels set to 1024, followed by a
ReLU function, and a dropout rate of 0.2 is used.
The window size in sequential-base graphs is set to
ten.

6 Experiments and Analysis

This section reviews various baselines and com-
pares them with the proposed model. The first
challenge is to identify the most appropriate token
contexts based on language models. Consequently,
we first analyze the performance of different lan-
guage models for each task, including BERTweet,
BERT-Large Devlin et al. (2018), XLM-RoBERTa
Conneau et al. (2019), and T5-Large Raffel et al.
(2020). According to our analysis, BERTweet out-
performs all other models with a higher macro F1-
Score. The results of the different language models
are presented in table 1.

Table 2 displays the macro F1-score results for
three subtasks, A, B, and C, obtain by adding dif-
ferent architecture. The highest macro F1-score
for each subtask is shown in bold text, and the
best-performing model for each subtask achieves
an macro F1-score of 85.78%, 70.82%, and 48.94%
for subtasks A, B, and C, respectively. These re-
sults suggest that the encoder module with GCN
module and adversarial training performs the best
across all three subtasks.

Analysis of Encoders and GCN modules: Ac-
cording to table 2, BERTweet’s performance on
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Model F1-score(%)
Dev Test

Subtask A
BERTweet 79.04 78.26

BERTweet + 1 layer GCN 84.75 84.87
BERTweet + GCN module 85.16 85.09

Encoder + 1 layer GCN 85.05 84.48
Encoder + GCN module 85.66 85.07
Encoder + GCN module 85.78 85.18

+ Adversarial training (ours)
Subtask B

BERTweet 56.86 56.82
BERTweet + 1 layer GCN 67.41 61.99
BERTweet + GCN module 67.08 62.51

Encoder + 1 layer GCN 70.45 64.12
Encoder + GCN module 69.95 63.92
Encoder + GCN module 70.82 66.09

+ Adversarial training (ours)
Subtask C

BERTweet 42.23 36.15
BERTweet + 1 layer GCN 50.32 46.4
BERTweet + GCN module 48.29 46.77

Encoder + 1 layer GCN 48.38 47.98
Encoder + GCN module 48.54 48.16
Encoder + GCN module 48.94 48.22

+ Adversarial training (ours)

Table 2: Comparison of F1-scores for various archi-
tecture on Subtask A, B, and C. We use the term "En-
coder" to refer to our proposed encoder module, while
"BERTweet" represents the use of BERTweet alone as
the encoder module. Similarly, "GCN module" refers
to our proposed GCN module, whereas "1 layer GCN"
represents the use of only one layer of GCN in our pro-
posed model.

subtasks A, B, and C is improved by the addition
of one layer of GCN, however, it is still lower than
the proposed Encoder module with GCN module.
In all three subtasks, the proposed Encoder module
with one layer of GCN performs slightly better than
BERTweet with one layer of GCN. Through the
addition of the GCN module, the Encoder module
has further improved its performance on subtasks
A, B, and C, making it the best-performing model
on these subtasks.

Analysis of adversarial training: Table 2
clearly demonstrates the effectiveness of adversar-
ial training in enhancing the model’s performance
across all three subtasks. Specifically, subtask A
achieved a 0.09 percentage point increase in F1-
score, rising from 85.08% to 85.17%, while subtask

B experienced a notable improvement with a 2.17
percentage point increase, from 63.92% to 66.09%.
In subtask C, the macro F1-score slightly improved
from 48.16% to 48.22%. These results demonstrate
the efficacy of incorporating adversarial training to
enhance the model’s overall performance.

Constructor Setup F1-score(%)
Dev Test

Subtask A
submitted 85.78 85.18
no-lemma 85.08 84.12

no-remove-stopwords 84.82 84.04
no-lemma +

84.41 83.62
no-remove-stopwords

Subtask B
submitted 79.04 78.26
no-lemma 70.19 65.51

no-remove-stopwords 69.66 65.27
no-lemma +

67.54 64.46
no-remove-stopwords

Subtask C
submitted 48.94 48.22
no-lemma 47.64 46.45

no-remove-stopwords 47.28 45.96
no-lemma +

46.93 45.94
no-remove-stopwords

Table 3: Macro F1-score for different graph construc-
tor setups. The term "submitted" refers to the model
we have submitted for the competition that lemmatizes
and removes stopwords as part of the preprocessing
step. "No-lemma" refers to a preprocessing approach
that removes only stopwords from the text before con-
structing the graph. In the term "no-remove-stopwords",
lemmatization is the only preprocessing step. The term
"no-lemma-no-remove-stopwords" is applied to a pre-
processing approach that does not use any lemmatiza-
tion or stopword removal.

Analysis of graph constructor: As shown in
table 3, the model we submitted to the leaderboard
(our model) outperforms the other models in all
three subtasks (A, B, and C). In particular, for sub-
task A, our model achieved the highest macro F1-
score on both the development and test sets, with
scores of 85.78% and 85.18%, respectively. In
subtasks B and C, the "no-lemma" and "no-remove-
stopwords" models show a significant decrease
in performance compared to our model, indicat-
ing that both lemmatization and stopword removal
are critical preprocessing steps for constructing
the graph. The "no-lemma-no-remove-stopwords"
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Figure 3: Comparison of the F1 scores of single syntactic, semantic, and sequential graphs with concatenated graphs.
The first chart corresponds to Task A, the second to Task B, and the third to Task C.

Figure 4: The test set document embeddings are visualized using t-SNE. The first row corresponds to Task A, the
second row corresponds to Task B, and the third row corresponds to Task C.

model shows the lowest macro F1-score across all
subtasks.

Also, it is important to note that the perfor-
mance difference between the "no-lemma" and
"no-remove-stopwords" models is relatively small
compared to our model, suggesting that both pre-
processing steps may have a similar impact on the
model’s overall performance.

Figure 3 compares the F1 scores obtained by sin-
gle syntactic, semantic, and sequential graphs with
concatenated graphs for Sexism detection. The
findings of the figure suggest that using concate-
nated graphs yields better results compared to using
a single graph in sexism detection.

6.1 Document Visualization

In order to visually represent the document embed-
dings learned by our proposed model, we employ
t-SNE Van der Maaten and Hinton (2008), a pow-
erful tool for high-dimensional data visualization.
Figure 4 shows the results of our document visual-
ization, demonstrating the 2048-dimensional em-
beddings of test documents learned by our model

across all tasks from the initial step to epoch 4.
This visualization illustrates the performance of
the proposed model in generating discriminative
embeddings of documents. As shown in figure 4, it
is apparent that the differentiation between classes
improves across epochs.

7 Conclusion

Our study presents a novel approach for identi-
fying various types of sexist posts by combining
graph and language models. To capture contextual
information from the input text, we utilize the en-
coder module, which is composed of a BERTweet
model, a transformer, and a bidirectional LSTM
layer. Additionally, we utilize syntactic, semantic,
and sequence-based graphs to extract information
from the graph structure. By integrating context
and graph-based features, our proposed model out-
performs existing models in identifying sexist posts
and their various types.

In order to evaluate the performance of the pro-
posed model, several experiments are conducted.
In the experiments, it is demonstrated that the com-
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bination of contextual features extracted from the
encoder module and graph-based features provides
a reasonable range of results for the detection of
online sexism that is explainable due to achieving
better performance on fine-grained detection.
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