VTCC-NLP at SemEval-2023 Task 6:Long-Text Representation Based on Graph Neural Network for Rhetorical Roles Prediction

Hiep Nguyen, Hoang Ngo, Nam Bui


Abstract
Rhetorical Roles (RR) prediction is to predict the label of each sentence in legal documents, which is regarded as an emergent task for legal document understanding. In this study, we present a novel method for the RR task by exploiting the long context representation. Specifically, legal documents are known as long texts, in which previous works have no ability to consider the inherent dependencies among sentences. In this paper, we propose GNNRR (Graph Neural Network for Rhetorical Roles Prediction), which is able to model the cross-information for long texts. Furthermore, we develop multitask learning by incorporating label shift prediction (LSP) for segmenting a legal document. The proposed model is evaluated on the SemEval 2023 Task 6 - Legal Eval Understanding Legal Texts for RR sub-task. Accordingly, our method achieves the top 4 in the public leaderboard of the sub-task. Our source code is available for further investigation\footnote{https://github.com/hiepnh137/SemEval2023-Task6-Rhetorical-Roles}.
Anthology ID:
2023.semeval-1.155
Volume:
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)
Month:
July
Year:
2023
Address:
Toronto, Canada
Editors:
Atul Kr. Ojha, A. Seza Doğruöz, Giovanni Da San Martino, Harish Tayyar Madabushi, Ritesh Kumar, Elisa Sartori
Venue:
SemEval
SIG:
SIGLEX
Publisher:
Association for Computational Linguistics
Note:
Pages:
1121–1126
Language:
URL:
https://aclanthology.org/2023.semeval-1.155
DOI:
10.18653/v1/2023.semeval-1.155
Bibkey:
Cite (ACL):
Hiep Nguyen, Hoang Ngo, and Nam Bui. 2023. VTCC-NLP at SemEval-2023 Task 6:Long-Text Representation Based on Graph Neural Network for Rhetorical Roles Prediction. In Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023), pages 1121–1126, Toronto, Canada. Association for Computational Linguistics.
Cite (Informal):
VTCC-NLP at SemEval-2023 Task 6:Long-Text Representation Based on Graph Neural Network for Rhetorical Roles Prediction (Nguyen et al., SemEval 2023)
Copy Citation:
PDF:
https://aclanthology.org/2023.semeval-1.155.pdf