
Proceedings of the The 17th International Workshop on Semantic Evaluation (SemEval-2023), pages 1131–1137
July 13-14, 2023 ©2023 Association for Computational Linguistics

SAB at SemEval-2023 Task 2: Does Linguistic Information Aid in Named
Entity Recognition?

Siena Biales
University of Tübingen
sienab1@gmail.com

Abstract
This paper describes the submission to
SemEval-2023 Task 2: Multilingual Complex
Named Entity Recognition (MultiCoNER II)
by team SAB. This task aims to encourage
growth in the field of Named Entity Recog-
nition (NER) by focusing on complex and dif-
ficult categories of entities, in 12 different lan-
guage tracks. The task of NER has historically
shown the best results when a model incorpo-
rates an external knowledge base or gazetteer,
however, less research has been applied to ex-
amining the effects of incorporating linguistic
information into the model. In this task, we ex-
plored combining NER, part-of-speech (POS),
and dependency relation labels into a multi-task
model and report on the findings. We deter-
mine that the addition of POS and dependency
relation information in this manner does not
improve results.

1 Introduction

Named Entity Recognition (NER, Grishman and
Sundheim, 1996) is a well established Natural Lan-
guage Processing (NLP) task which entails ex-
tracting named entities (NEs), or specific types of
proper nouns, from a text and classifying the type
of entity. In the original task from 1996, entities
were considered either a person, organization, or
geographic location, but since then the classes have
expanded to include more complex entity types
such as creative works (book or film titles, etc.),
groups, and products. While it can be considered
a task on its own, NER has many applications in-
cluding Information Extraction (IE) and Question
Answering (QA) (Sun et al., 2018).

Complex named entities (such as titles of cre-
ative works, products, or groups) are especially dif-
ficult for NER systems, because unlike traditional
NEs which are generally noun phrases, complex
named entities may take various other forms (Ash-
wini and Choi, 2014). In addition, the domain of
complex named entities is constantly expanding as

new movies, books, and products are released. As
a result, NER models must be adaptable in order to
successfully identify and classify such entities.

SemEval-2023 Task 2: Multilingual Complex
Named Entity Recognition II (MultiCoNER II, Fe-
tahu et al., 2023b) is a shared task with the aim
of investigating methods of identifying complex
named entities in 11 individual language tracks, as
well as a multilingual track. This task is a sequel
to SemEval-2022 Task 11 (Malmasi et al., 2022b),
but with different language tracks and a much more
in-depth set of entity classes. Apart from having 33
fine-grained entity classes, the task also included
simulated errors added to some of the test set lan-
guage tracks to make the task more realistic and
challenging.

A large portion of NLP research focuses on En-
glish and neglects lower-resource languages (Kle-
men et al., 2022). The language tracks defined in
the task are English (EN), Spanish (ES), Hindi (HI),
Bangla (BN), Chinese (ZH), Swedish (SV), Farsi
(FA), French (FR), Italian (IT), Portuguese (PT),
Ukrainian (UK), and German (DE), as well as a mul-
tilingual track (MULTI), to include a mix of high-
and low-resource languages. It is interesting to
note that each language either has approximately
9,700 training samples, or approximately 16,500
training samples. The 33 fine-grain entity classes
can be generalized to 6 coarse parent classes: lo-
cation, creative work, group, person, product, and
medical.

Results from last year’s MultiCoNER challenge
indicated that transformers alone could not achieve
high scores on complex named entities without
the use of external knowledge bases or ensembles
(Malmasi et al., 2022b). For this task, rather than
attempting to achieve the top score, we explore
how much can be gained by incorporating linguis-
tic data (part-of-speech and dependency relation
information) into a multi-task setup built on XLM-
RoBERTa (XLM-R, Conneau et al., 2020).
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2 Related Work

The notion of training NER and POS tasks in a
multi-task setup was first proposed by Collobert
and Weston in 2008. They utilized a Time-Delay
Neural Network (TDNN, Waibel et al., 1989) to
jointly train a network on six NLP tasks including
POS and NER, and demonstrated that multi-task
learning improved the generalization of the tasks.

Transformer architectures have shown promis-
ing results for NER on the common benchmark
datasets CoNLL03 and OntoNotes (Devlin et al.,
2019), however, BiLSTM architectures with a CRF
layer have also achieved high performance (Huang
et al., 2015). Most NER systems use some form of
additional information, from POS tags to gazetteers
or knowledge bases (Ratinov and Roth, 2009).

Klemen et al. (2022) analyze the effect of adding
morphological features to long short-term memory
(LSTM) and BERT models for NER, among other
tasks. These morphological features include POS
tags and universal feature embeddings. As with
the experiments described in this paper, the addi-
tional linguistic information was obtained using
Stanza. The paper experiments on 11 different lan-
guages, although there is minimal overlap with the
languages examined in this task. They use BIO
tagging for the NER task, but only include location,
person, and organization as named entity classes.
Unlike the XLM-R model used for the submitted
system described in this paper, they use the cased
multilingual BERT base model for their experi-
ments.

They conclude that the additional information
does not make a practical difference in the BERT-
based model, although many of the languages do
display a slight improvement when the additional
information is applied to the LSTM model. This
suggests that BERT already captures this informa-
tion. It is unclear, however, if this should also hold
for the multi-task setup on XLM-R at the center of
the experiments in this paper.

Nguyen and Nguyen (2021) introduce PhoNLP,
a multi-task learning model for joint part-of-speech
tagging, named entity recognition and dependency
parsing in Vietnamese. The model has a BERT-
based encoding layer followed by three decod-
ing layers of POS tagging, NER and dependency
parsing. They employ PhoBERTbase (Nguyen and
Tuan Nguyen, 2020), a pre-trained Vietnamese lan-
guage model, to encode the sentences. Then, the
three tasks’ decoding layers are applied.

They conclude from their experiments that
PhoNLP’s joint multi-task learning model performs
better than single-task training on PhoBERT in
Vietnamese, demonstrating that multi-task learn-
ing with POS and dependency tags applied with a
transformers encoder can potentially be beneficial
to this task.

3 Data

The dataset used for this exploration is Multi-
CoNER v2 (Fetahu et al., 2023a). It is the second
iteration of the original MultiCoNER dataset (Mal-
masi et al., 2022a). This dataset was assembled
with the specific goal of addressing the contempo-
rary challenges in NER with a focus on complex
named entity recognition. The data is uncased,
and often the text is very short, providing minimal
context to the model. Additionally, it includes a
large number of syntactically complex entities like
movie titles, and long-tail entity distributions.

The test set that systems were evaluated on is
far larger than the training and dev splits. The
reasoning for this is to assess the generalizability
of the models.

Named entities are categorized into a total of
33 classes, within 6 coarse parent classes: loca-
tion (LOC), creative work (CW), group (GRP), person
(PER), product (PROD), and medical (MED).

The label distributions of the training data are not
even across classes, and only vaguely even across
languages. The PER coarse-grain class on average
represents about a third of the entities. LOC, GRP,
and CW all represent about 15-17% of entity labels
each. The least represented coarse classes are MED
and PROD, which at worst represent under 5% of
entities (FR), and at best only represent 11% (HI).

Hindi has the most even class distribution, with
the greatest disparity being 17 percentage points
between PER and CW. Italian has the worst dis-
parity of the language tracks, with 34 percentage
points between the PER and MED classes.

Noise was added to 30% of the instances on the
test sets of (EN, ES, SV, PT, FR, ZH, and IT). The
noise was added to either the context or entity to-
kens and is meant to represent typing errors based
on the keyboard layout of the respective languages.
The goal of this is to help determine whether the
noise in entity tokens has an impact on NER pre-
diction.
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4 Methodology

In this section, we discuss the setup and methods
used in the final model.

4.1 Preprocessing

The original dataset was in CoNLL format, with
samples separated by blank lines, and each word
of the sample in the first column, with the NER
class label in the fourth column in BIO format.
In order to facilitate easier dataset loading within
the scripts, the dataset was first preprocessed into
JSON format, which could then be loaded into the
training scripts using the HuggingFace datasets
library.

We wanted to utilize part-of-speech (POS) in-
formation as well as dependency relation informa-
tion as part of our model. To obtain this on the
dataset provided to us, we utilized Stanza (Qi et al.,
2020) to tag all languages in the dataset with uni-
versal POS (UPOS) tags except for Bangla. For
this, we were able to obtain POS tags using the
bnlp1 Python library, which were then manually
mapped to UPOS format. Unfortunately, depen-
dency relation labels were unavailable for Bangla.
All of the POS and dependency relation tags were
then included in the JSON dataset file as part of the
preprocessing script.

4.2 Hyperparameter Tuning

Due to the sheer number of models to be trained,
tuning hyperparameters for each model individu-
ally within the timeframe was not feasible for this
task. The hyperparameters selected for tuning were
learning rate, weight decay, and warm-up ratio. Pri-
marily, hyperparameter tuning was performed on
the German and English datasets, as those were
the languages whose results could be manually ana-
lyzed, and they represented the two sizes of training
samples present in the dataset, with German having
9,785 training samples and English having 16,778.
The best set of hyperparameters found were then
applied to the other languages.

The hyperparameter search was a Bayes search
done using the Weights & Biases (wandb)2 Python
library. The batch size used for all multi-task mod-
els was 8. A more thorough explanation of the
hyperparameter search and final hyperparameter
selection is included in Appendix A.

1https://github.com/sagorbrur/bnlp
2https://wandb.ai/

4.3 Model Setup
The base model used in this task is XLM-
RoBERTabase (henceforth referred to as XLM-R)
(Conneau et al., 2020). The larger models could
not be used due to limited computational resources,
however, since our goal was primarily to observe
relative changes rather than obtain the top score,
this was sufficient for the task.

The primarily investigated model used was a
multi-task setup utilizing the POS and dependency
relation labels, in addition to the NER labels pro-
vided in the dataset. The setup consisted of a sep-
arate base XLM-R model per task, but a single
shared encoder. This could be configured to train
using any combination of the NER, POS, and de-
pendency relation tags. Each individual model in
the multi-task setup was fed the same complete
list of possible class labels across tasks. The ba-
sic structure of the multi-task model is shown in
Figure 1.

For all submissions apart from the Bangla and
MULTI tracks, the full multi-task setup using all
three tag sets was used. Bangla was trained with
only NER and POS data due to the lack of depen-
dency relation data available, and due to this gap
in the dependency relation tags, the multilingual
track could not be trained on all three tag sets with-
out completely excluding Bangla from the training.
Thus, the multilingual track was also only trained
using NER and POS data.

Shared RoBERTa encoder

NER
model

POS
model

DEP
model

Figure 1: The multi-task model consists of a shared
encoder and separate heads for each of the three tasks.

5 Results

Systems in this task were evaluated by F1 score on
all 33 fine-grained classes as well as the 6 coarse-
grained classes. The official ranking metric is the
overall fine-grained macro-averaged F1 score. The
test set included simulated errors in 7 of the lan-
guage tracks (EN, ES, SV, PT, FR, ZH, and IT) in
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Scores BN DE EN ES FA FR HI IT PT SV UK ZH MULTI
Baseline F1 0.65 0.61 0.55 0.59 0.56 0.59 0.68 0.61 0.58 0.61 0.62 0.53 0.64
Overall F1 0.56 0.55 0.51 0.48 0.52 0.55 0.62 0.57 0.54 0.58 0.59 0.44 0.59

Clean scores 0.54 0.51 0.58 0.60 0.58 0.62 0.48
Noisy scores 0.45 0.43 0.49 0.52 0.48 0.51 0.33

Dev scores 0.68 0.64 0.52 0.52 0.59 0.59 0.74 0.64 0.64 0.63 0.65 0.58 0.63

Table 1: Macro-averaged F1 scores on the clean and noisy test sets individually, as well as base NER model results
on the test set and development set F1 scores from the submitted models for comparison.

Category BN DE EN ES FA FR HI IT PT SV UK ZH MULTI
LOC 0.83 0.81 0.78 0.75 0.72 0.75 0.84 0.78 0.79 0.88 0.82 0.67 0.81
MED 0.75 0.75 0.63 0.64 0.58 0.61 0.78 0.64 0.65 0.70 0.71 0.52 0.69

PROD 0.57 0.60 0.49 0.54 0.55 0.55 0.65 0.57 0.60 0.64 0.63 0.43 0.61
PER 0.81 0.87 0.87 0.87 0.79 0.89 0.83 0.91 0.87 0.89 0.88 0.76 0.89
GRP 0.78 0.72 0.64 0.67 0.66 0.67 0.82 0.72 0.71 0.71 0.76 0.62 0.73
CW 0.65 0.69 0.63 0.65 0.63 0.73 0.66 0.79 0.68 0.69 0.69 0.51 0.72

Table 2: Coarse-grained F1 scores for each language track evaluated on the test set.

order to make the task more realistic and difficult.
We submitted across all language tracks, achiev-

ing our best results on Hindi. Table 1 shows the
results for each language track on the test set, and
also displays the baseline and development set eval-
uation for comparison. In our experiments, we
observed that the multi-task models could not out-
perform our baseline model. The most likely factor
is the shared class labels across models, which was
done in order to ensure the encoder would never
be confused about duplicate IDs corresponding to
different class labels. Although theoretically, the
models should easily be able to learn that some
labels are never used, this seems to not be the case.
This is likely a result of using cross entropy loss
in the models. With such a large label space, the
theoretical worst case cross entropy is much higher,
resulting in worse scores.

We can also see from the scores on the noisy
test data in Table 1 that our system may not be
very robust against such errors. The F1 scores on
the corrupt data drop approximately 10 percentage
points compared to the clean data across all affected
language tracks.

From the coarse-grained F1 scores on the test set
shown in Table 2, we can observe several trends.
The PROD class consistently has the worst perfor-
mance across all tracks. CW or MED are the second
worst performing classes across all language tracks.
The best performing classes are LOC and PER. These
results are in line with expectations based on the
known challenges of identifying and classifying

open-class entity types such as products and cre-
ative works.

The full table of fine-grained F1 scores on the
test set for the submitted models can be found in
Appendix B. Identifying artwork seems to be par-
ticularly challenging for the models across all lan-
guages. Even the best performing model, Hindi,
obtained an F1 score of 0.043 on artwork. Soft-
ware seems like a comparatively easier form of
creative work for the models, although still some-
what difficult. As expected, labels in the LOC and
PER categories are the easiest for the models to
identify.

As previously mentioned, our best performing
language track was Hindi. It was interesting that
English did not perform particularly well, consid-
ering that English is a high-resource language and
Hindi is less so. Upon investigating why Hindi
might have performed so well, one hypothesis is
that it may be due to the proportion of unseen en-
tities in the test data. While English has approxi-
mately 72% unseen entities in the development set
and 62% in the test set, the test set for Hindi has a
mere 28.7% unseen entities. This drastic difference
may be why Hindi achieved such higher scores
than English.

The goal of building a multi-task setup was to
hopefully show improvement on the task of NER
when including additional information from POS
and dependency relation tags. However, as pre-
viously discussed, this unfortunately was not the
case. Worse than adding nothing useful to the
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model, the additional information actually showed
a markedly detrimental impact on the task. Klemen
et al. (2022) showed that BERT-based models did
not benefit from extra POS information, but it did
not harm the models.

There are many speculations which might ex-
plain these results. It may be that with the multi-
task setup, the NER task was not seen frequently
enough within the 10 epoch training span. This
could be explored in future work either by extend-
ing the number of training epochs, or altering the
NER task’s learning rate, hopefully making the
model favor the NER task. Another speculation
is that the additional information may have hurt
results because the POS and dependency relation
labels were generated using Stanza, and are not
necessarily all correct. Perhaps they are adding
more noise than useful information.

6 Conclusion

This paper describes the multi-task system built on
XLM-R submitted to the MultiCoNER II shared
task at SemEval 2023 by SAB. Our system explores
utilizing part-of-speech and dependency relation
information, in addition to the named entity recog-
nition labels provided in the dataset.

We obtain the strongest results on the Hindi lan-
guage track, which we attribute to the data’s far
lower percentage of unseen entities in the test set
than other languages. The simulated noise in the
test set also consistently lowers scores by approxi-
mately 10 percentage points, indicating that these
models do not generalize very well. We also show
that our multi-task model using POS and depen-
dency relation information does more harm than
good for this NER task.

In future experiments we will explore separating
out the labels for each model in the multi-task setup,
to observe if this had an effect on the loss function.
We would also potentially explore other means of
obtaining the part-of-speech and dependency rela-
tion information besides Stanza, as every tagger
produces different results of varying quality. Addi-
tionally it would be interesting to see if a different
type of tokenizer (i.e. character-based instead of
sub-word) would perform better or worse when
tested on the simulated errors in the test dataset.
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A Hyperparameter tuning

Table 3 shows the search criteria of the hyperpa-
rameters for the models. Batch size was held con-
sistent at 8 and the searches were performed over
7 epochs. The learning rate was selected from a
log uniform distribution within the range of 1e-3
and 1e-6. Weight decay and warm-up ratio were
selected from an array of values ranging from 0
to 0.1. These searches were primarily performed

Hyperparameter Values
Learning rate 1e-3 to 1e-6
Weight decay 0, 0.05, 0.1

Warm-up ratio 0, 0.001, 0.01, 0.05, 0.1

Table 3: The hyperparameter values searched over for
each model.

on English and German, but the MULTI model re-
quired its own hyperparameter search, as well as
Bangla, since those models could not include the
dependency relation task.

The final hyperparameters used depended on
whether the language’s dataset was of compara-
ble size to English or German, with the exception
of Bangla and MULTI. The hyperparameters used
in the final models are shown in Table 4. All mod-
els were trained for 10 epochs, and then the top
model in the final three epochs was selected. All
models were also trained with batch size 8.

B Fine-grained results

Table 5 shows the full fine-grained results of the
multi-task model on all 33 classes in the dataset.
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Model Learning rate Weight decay Warm-up ratio
DE, HI, ZH 3.5e-5 0.1 0.06

EN, ES FA, FR, IT, PT, SV, UK 5e-5 0.1 0.1
BN 1.5e-5 0.1 0

MULTI 4e-6 0.1 0.05

Table 4: The hyperparameter values used in the final models.

Fine-grained class BN DE EN ES FA FR HI IT PT SV UK ZH MULTI
Station 0.82 0.63 0.70 0.60 0.76 0.69 0.80 0.64 0.68 0.71 0.71 0.70 0.72

HumanSettlement 0.83 0.84 0.82 0.79 0.75 0.77 0.85 0.82 0.82 0.90 0.85 0.67 0.83
Facility 0.61 0.57 0.57 0.52 0.52 0.59 0.59 0.64 0.56 0.66 0.60 0.51 0.61

OtherLOC 0.63 0.43 0.46 0.24 0.32 0.43 0.65 0.42 0.66 0.89 0.56 0.40 0.64
Symptom 0.62 0.39 0.41 0.15 0.49 0.51 0.67 0.47 0.36 0.46 0.46 0.22 0.46

AnatomicalStructure 0.68 0.69 0.58 0.60 0.47 0.48 0.79 0.58 0.59 0.69 0.72 0.51 0.65
Disease 0.75 0.70 0.58 0.59 0.54 0.59 0.77 0.56 0.63 0.67 0.65 0.51 0.65

Medication/Vaccine 0.71 0.73 0.65 0.64 0.65 0.62 0.74 0.66 0.67 0.71 0.76 0.47 0.70
MedicalProcedure 0.71 0.67 0.53 0.54 0.54 0.51 0.71 0.56 0.58 0.56 0.54 0.42 0.61

Drink 0.68 0.52 0.44 0.49 0.49 0.49 0.74 0.55 0.56 0.63 0.59 0.26 0.56
OtherPROD 0.46 0.50 0.38 0.42 0.51 0.47 0.56 0.48 0.57 0.58 0.54 0.33 0.53

Food 0.52 0.54 0.44 0.47 0.53 0.44 0.66 0.46 0.54 0.60 0.58 0.45 0.54
Vehicle 0.60 0.52 0.40 0.38 0.47 0.42 0.69 0.46 0.45 0.54 0.55 0.46 0.51

Clothing 0.27 0.42 0.46 0.37 0.26 0.47 0.70 0.43 0.37 0.47 0.46 0.29 0.47
Cleric 0.57 0.36 0.42 0.47 0.47 0.53 0.70 0.65 0.57 0.52 0.54 0.29 0.54

SportsManager 0.37 0.42 0.50 0.47 0.52 0.50 0.26 0.64 0.48 0.45 0.58 0.40 0.53
Athlete 0.59 0.68 0.72 0.70 0.55 0.72 0.72 0.82 0.65 0.69 0.78 0.63 0.74

Politician 0.51 0.46 0.49 0.51 0.54 0.54 0.59 0.50 0.55 0.60 0.51 0.38 0.55
Artist 0.60 0.67 0.71 0.70 0.71 0.75 0.64 0.81 0.72 0.71 0.69 0.59 0.75

Scientist 0.27 0.32 0.36 0.11 0.29 0.38 0.37 0.39 0.30 0.33 0.42 0.25 0.40
OtherPER 0.38 0.41 0.39 0.45 0.38 0.42 0.45 0.43 0.46 0.46 0.48 0.35 0.46

ORG 0.79 0.60 0.51 0.51 0.53 0.50 0.79 0.50 0.58 0.59 0.63 0.51 0.61
SportsGRP 0.81 0.80 0.72 0.68 0.81 0.72 0.90 0.76 0.75 0.78 0.84 0.71 0.77

MusicalGRP 0.52 0.58 0.52 0.61 0.59 0.64 0.62 0.73 0.64 0.67 0.75 0.50 0.68
CarManufacturer 0.58 0.52 0.48 0.50 0.64 0.59 0.73 0.63 0.58 0.54 0.62 0.43 0.60

PrivateCorp 0.51 0.18 0.26 0.18 0.32 0.39 0.65 0.21 0.00 0.23 0.20 0.30 0.34
AerospaceManufacturer 0.13 0.60 0.40 0.16 0.74 0.43 0.08 0.31 0.25 0.18 0.32 0.54 0.51

PublicCorp 0.59 0.51 0.46 0.56 0.58 0.53 0.69 0.61 0.71 0.53 0.70 0.38 0.60
VisualWork 0.58 0.59 0.57 0.58 0.71 0.77 0.58 0.86 0.63 0.68 0.69 0.46 0.73

Software 0.74 0.65 0.56 0.68 0.56 0.62 0.76 0.65 0.68 0.67 0.75 0.39 0.71
MusicalWork 0.40 0.64 0.60 0.56 0.49 0.58 0.40 0.75 0.65 0.65 0.59 0.38 0.67
WrittenWork 0.65 0.67 0.55 0.56 0.47 0.69 0.66 0.53 0.54 0.64 0.64 0.54 0.63

ArtWork 0.04 0.51 0.32 0.12 0.08 0.38 0.04 0.49 0.07 0.19 0.31 0.30 0.34

Table 5: Fine-grained F1 scores for each language track on the test set, grouped by coarse-grained category.

1137


