@inproceedings{benlahbib-etal-2023-nlp,
title = "{NLP}-{LISAC} at {S}em{E}val-2023 Task 9: Multilingual Tweet Intimacy Analysis via a Transformer-based Approach and Data Augmentation",
author = "Benlahbib, Abdessamad and
Alami, Hamza and
Boumhidi, Achraf and
Benslimane, Omar",
editor = {Ojha, Atul Kr. and
Do{\u{g}}ru{\"o}z, A. Seza and
Da San Martino, Giovanni and
Tayyar Madabushi, Harish and
Kumar, Ritesh and
Sartori, Elisa},
booktitle = "Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.semeval-1.16",
doi = "10.18653/v1/2023.semeval-1.16",
pages = "121--124",
abstract = "This paper presents our system and findings for SemEval 2023 Task 9 Tweet Intimacy Analysis. The main objective of this task was to predict the intimacy of tweets in 10 languages. Our submitted model (ranked 28/45) consists of a transformer-based approach with data augmentation via machine translation.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="benlahbib-etal-2023-nlp">
<titleInfo>
<title>NLP-LISAC at SemEval-2023 Task 9: Multilingual Tweet Intimacy Analysis via a Transformer-based Approach and Data Augmentation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Abdessamad</namePart>
<namePart type="family">Benlahbib</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hamza</namePart>
<namePart type="family">Alami</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Achraf</namePart>
<namePart type="family">Boumhidi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Omar</namePart>
<namePart type="family">Benslimane</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Atul</namePart>
<namePart type="given">Kr.</namePart>
<namePart type="family">Ojha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="given">Seza</namePart>
<namePart type="family">Doğruöz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giovanni</namePart>
<namePart type="family">Da San Martino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Harish</namePart>
<namePart type="family">Tayyar Madabushi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ritesh</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elisa</namePart>
<namePart type="family">Sartori</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents our system and findings for SemEval 2023 Task 9 Tweet Intimacy Analysis. The main objective of this task was to predict the intimacy of tweets in 10 languages. Our submitted model (ranked 28/45) consists of a transformer-based approach with data augmentation via machine translation.</abstract>
<identifier type="citekey">benlahbib-etal-2023-nlp</identifier>
<identifier type="doi">10.18653/v1/2023.semeval-1.16</identifier>
<location>
<url>https://aclanthology.org/2023.semeval-1.16</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>121</start>
<end>124</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T NLP-LISAC at SemEval-2023 Task 9: Multilingual Tweet Intimacy Analysis via a Transformer-based Approach and Data Augmentation
%A Benlahbib, Abdessamad
%A Alami, Hamza
%A Boumhidi, Achraf
%A Benslimane, Omar
%Y Ojha, Atul Kr.
%Y Doğruöz, A. Seza
%Y Da San Martino, Giovanni
%Y Tayyar Madabushi, Harish
%Y Kumar, Ritesh
%Y Sartori, Elisa
%S Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F benlahbib-etal-2023-nlp
%X This paper presents our system and findings for SemEval 2023 Task 9 Tweet Intimacy Analysis. The main objective of this task was to predict the intimacy of tweets in 10 languages. Our submitted model (ranked 28/45) consists of a transformer-based approach with data augmentation via machine translation.
%R 10.18653/v1/2023.semeval-1.16
%U https://aclanthology.org/2023.semeval-1.16
%U https://doi.org/10.18653/v1/2023.semeval-1.16
%P 121-124
Markdown (Informal)
[NLP-LISAC at SemEval-2023 Task 9: Multilingual Tweet Intimacy Analysis via a Transformer-based Approach and Data Augmentation](https://aclanthology.org/2023.semeval-1.16) (Benlahbib et al., SemEval 2023)
ACL