@inproceedings{mihalcea-nisioi-2023-clark,
title = "{C}lark {K}ent at {S}em{E}val-2023 Task 5: {SVM}s, Transformers, and Pixels for Clickbait Spoiling",
author = "Mihalcea, Dragos-stefan and
Nisioi, Sergiu",
editor = {Ojha, Atul Kr. and
Do{\u{g}}ru{\"o}z, A. Seza and
Da San Martino, Giovanni and
Tayyar Madabushi, Harish and
Kumar, Ritesh and
Sartori, Elisa},
booktitle = "Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.semeval-1.167",
doi = "10.18653/v1/2023.semeval-1.167",
pages = "1204--1212",
abstract = "In this paper we present an analysis of our approaches for the 2023 SemEval-2023 Clickbait Challenge. We only participated in the sub-task aiming at identifying different clikcbait spoiling types comparing several machine learning and deep learning approaches. Our analysis confirms previous results on this task and show that automatic methods are able to reach approximately 70{\textbackslash}{\%} accuracy at predicting what type of additional content is needed to mitigate sensationalistic posts on social media. Furthermore, we provide a qualitative analysis of the results, showing that the models may do better in practice than the metric indicates since the evaluate does not depend only on the predictor, but also on the typology we choose to define clickbait spoiling.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mihalcea-nisioi-2023-clark">
<titleInfo>
<title>Clark Kent at SemEval-2023 Task 5: SVMs, Transformers, and Pixels for Clickbait Spoiling</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dragos-stefan</namePart>
<namePart type="family">Mihalcea</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sergiu</namePart>
<namePart type="family">Nisioi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Atul</namePart>
<namePart type="given">Kr.</namePart>
<namePart type="family">Ojha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="given">Seza</namePart>
<namePart type="family">Doğruöz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giovanni</namePart>
<namePart type="family">Da San Martino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Harish</namePart>
<namePart type="family">Tayyar Madabushi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ritesh</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elisa</namePart>
<namePart type="family">Sartori</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper we present an analysis of our approaches for the 2023 SemEval-2023 Clickbait Challenge. We only participated in the sub-task aiming at identifying different clikcbait spoiling types comparing several machine learning and deep learning approaches. Our analysis confirms previous results on this task and show that automatic methods are able to reach approximately 70\textbackslash% accuracy at predicting what type of additional content is needed to mitigate sensationalistic posts on social media. Furthermore, we provide a qualitative analysis of the results, showing that the models may do better in practice than the metric indicates since the evaluate does not depend only on the predictor, but also on the typology we choose to define clickbait spoiling.</abstract>
<identifier type="citekey">mihalcea-nisioi-2023-clark</identifier>
<identifier type="doi">10.18653/v1/2023.semeval-1.167</identifier>
<location>
<url>https://aclanthology.org/2023.semeval-1.167</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>1204</start>
<end>1212</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Clark Kent at SemEval-2023 Task 5: SVMs, Transformers, and Pixels for Clickbait Spoiling
%A Mihalcea, Dragos-stefan
%A Nisioi, Sergiu
%Y Ojha, Atul Kr.
%Y Doğruöz, A. Seza
%Y Da San Martino, Giovanni
%Y Tayyar Madabushi, Harish
%Y Kumar, Ritesh
%Y Sartori, Elisa
%S Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F mihalcea-nisioi-2023-clark
%X In this paper we present an analysis of our approaches for the 2023 SemEval-2023 Clickbait Challenge. We only participated in the sub-task aiming at identifying different clikcbait spoiling types comparing several machine learning and deep learning approaches. Our analysis confirms previous results on this task and show that automatic methods are able to reach approximately 70\textbackslash% accuracy at predicting what type of additional content is needed to mitigate sensationalistic posts on social media. Furthermore, we provide a qualitative analysis of the results, showing that the models may do better in practice than the metric indicates since the evaluate does not depend only on the predictor, but also on the typology we choose to define clickbait spoiling.
%R 10.18653/v1/2023.semeval-1.167
%U https://aclanthology.org/2023.semeval-1.167
%U https://doi.org/10.18653/v1/2023.semeval-1.167
%P 1204-1212
Markdown (Informal)
[Clark Kent at SemEval-2023 Task 5: SVMs, Transformers, and Pixels for Clickbait Spoiling](https://aclanthology.org/2023.semeval-1.167) (Mihalcea & Nisioi, SemEval 2023)
ACL