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Abstract
The web contains an abundance of user-
generated content. While this content is use-
ful for many applications, it poses many chal-
lenges due to the presence of offensive, biased,
and overall toxic language. In this work, we
present a system that identifies and classifies
sexist content at different levels of granularity.
Using transformer-based models, we explore
the value of data augmentation, use of ensem-
ble methods, and leverage in-context learning
using foundation models to tackle the task. We
evaluate the different components of our sys-
tem both quantitatively and qualitatively. Our
best systems achieve an F1 score of 0.84 for
the binary classification task – aiming to iden-
tify whether a given content is sexist or not –
and 0.64 and 0.47 for the two multi-class tasks
that aim to identify the coarse and fine-grained
types of sexism present in the given content
respectively.

1 Introduction

The web provides tremendous value, in part, be-
cause of how easy it is to publish new content and
for others to access it. This accessibility and open-
ness, however, comes at a cost. Today’s web with
its plethora of user-generated content is rife with
toxic, offensive, and obscene language. Therefore,
it has become essential to moderate this content at
scale. Removing the toxic content is even more crit-
ical for technologies that automatically index and
surface web-content to end users, as well as gen-
erative language models that utilize this content.
To address the need for content moderation, the
natural language processing (NLP) and machine
learning communities have put considerable effort
into the problem of automatically detecting toxic
language.

In this paper, we describe the system behind our
team’s submission to the SemEval-2023 “Explain-
able Detection of Online Sexism” shared task (Kirk

∗Equal contribution.

et al., 2023). There are three tasks – Task A, B and
C. Task A is a binary classification task and tasks
B and C are multi-class classification tasks with 4
and 11 classes respectively.

The current dominant approach to detecting
toxic language is to fine-tune sequence to sequence
transformer (Vaswani et al., 2017) models (Hanu
and Unitary team, 2020; Mutanga et al., 2020; Kim
et al., 2022; Markov et al., 2022). Our system
builds on this thread of research, and extends it by
applying methods to ensemble deep learning mod-
els (Wenzel et al., 2020; Gontijo-Lopes et al., 2022;
Wortsman et al., 2022). We ensemble transformers,
where each member of the ensemble uses a differ-
ent base architecture (i.e. BERT, RoBERTa, etc.),
different training data, and different training hyper-
parameter configurations. In addition, we explore
whether using in-context learning and weak-labels
from foundation models, such as GPT-3 (Brown
et al., 2020), further improve the performance.

Across Tasks A, B, and C, we find that our
ensembles of fine-tuned transformers consistently
reach higher macro F1 score on the test set than the
best individual model that we would have chosen
using macro F1 score on the development set. Con-
sistent with the preliminary experiments in (Worts-
man et al., 2022), however, the improvements we
observe are relatively small. This encouraging re-
sult suggests that ensembling fine-tuned transform-
ers has promise, but there is need for additional re-
search into techniques for selecting members of the
ensemble, and for computing the aggregated output.
For in-context learning using GPT-3 (Brown et al.,
2020), we find that the performance is competi-
tive to the fine-tuned models, but it provides mixed
results when used as a member of an ensemble.

2 Related Work

Work on automatically detecting abusive language
on the web goes back to 2009, when Yin et al.
(2009) proposed several features for detecting abu-
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sive user-generated content in “Web 2.0” applica-
tions. Yin et al. (2009) proposed two particularly
interesting features: template patterns that capture
common abusive phrases, and contextual features
that capture similarities between the language be-
ing classified and “nearby” language (e.g. the text
from a parent post on a message board). Template
patterns of abusive phrases are no longer used as ex-
plicit features for abusive language classifiers, but
have been used to create model “unit tests” to ex-
pose weaknesses of leading systems (Röttger et al.,
2021). The issue of whether context is important
for determining if a piece of text is offensive is still
debated (Pavlopoulos et al., 2020).

Djuric et al. (2015) was the first to use word vec-
tor representations in an abusive language classifier,
as opposed to discrete representations of words as
in a bag of words approach. They used the Le and
Mikolov (2014) model, but observed marginal im-
provements over a simpler bag of words approach
(0.8 AUC from 0.79). Nobata et al. (2016) built
on Djuric et al. (2015) and further experimented
with word and paragraph embeddings combined
with several “classical” features, such as character
and token n-grams, features derived from depen-
dency parses, and a suite of orthographic features.
On the dataset used in Djuric et al. (2015), the ap-
proach in Nobata et al. (2016) further improved the
AUC to 0.91. Surprisingly, however, the character
n-grams alone achieved AUC of 0.90, suggesting
that the word and paragraph embeddings offer only
marginal improvements to the problem.

Early word embedding approaches (Djuric et al.,
2015; Nobata et al., 2016) learned task specific
word vectors on relatively small corpora, on the
order of hundreds of thousands of texts. This may
explain the underwhelming performance observed
in these studies. Large “foundation models” have
improved this approach. Nikolov and Radivchev
(2019) was one of the first to show that fine-tuning
BERT for hate speech detection can significantly
improve over standard baselines like logistic regres-
sion and support vector classifiers. The Nikolov
and Radivchev (2019) work showed that BERT im-
proves performance the most for more fine-grained
classifications of hate speech, meaning going be-
yond the basic problem of binary classification of
the content. There have since been several pro-
posed extensions of the standard transformer fine-
tuning process. For instance, Tran et al. (2020)
shows that learning task-specific vocabularies for

transformers can marginally improve performance.
Although fine-tuned transformers have success-

fully “cracked” many text classification tasks, the
problem of hate speech detection remains difficult.
Progress on the problem is tricky because the judge-
ment of what is offensive is inherently subjective.
This has led to an active thread of ongoing research
focused on understanding the roles that data col-
lection, annotation guidelines, and annotator bi-
ases play on the quality of hate speech classifiers
(see, e.g., (Dixon et al., 2018; Fortuna et al., 2020;
Röttger et al., 2022; Garg et al., 2022).

Our system builds on ideas from the emerging
literature on methods for creating ensembles of
deep, “high-capacity” models (Wenzel et al., 2020;
Gontijo-Lopes et al., 2022; Wortsman et al., 2022).
The majority of experimental work in the space of
model ensemble has been in the area of computer
vision. Our paper contributes additional data to
the open question of whether ensembling of deep
models can successfully solve problems in the area
of natural language.

3 Data Selection

For each classification task, our approach involves
ensembling different fine-tunings of pre-trained
Transformer (Vaswani et al., 2017) based models.
These models vary in the selection of: base mod-
els, hyper-parameter configurations, and the data
used to fine-tune each model. Moreover, they make
use of weak-labels generated by prompting GPT-3
(Brown et al., 2020) using in-context learning. In
this section we go into the details of the data we
used for model training.

For all model trainings, we include the corpus of
gold-labeled training data provided for the shared
task (Kirk et al., 2023). For tasks A, B, and C, we
randomly sample 10% of the gold data, and use
it as a validation set to perform hyper-parameter
tuning. We choose the best model based on the per-
formance on the corresponding task’s official devel-
opment set. In addition to the gold data, we lever-
age a subset of the unlabeled Reddit and Gab data
released by the task organizers. We apply silver
labeling to this data and augment our original train-
ing data with it. To further augment the training
dataset, we use two existing public datasets: “EX-
IST” (Rodríguez-Sanchez et al., 2021) and “Call
Me Sexist” (Samory, 2021). Tables 1, 2, and 3
show the statistics of the gold, silver, and public
datasets utilized for Tasks A, B and C respectively.
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Train Dev. Test
Gold Silver (Reddit) Silver (Gab) Call Me Sexist EXIST Gold Gold

Non-Sexist 10,602 3,467 3,476 3,398 11,822 1,514 3,030
Sexist 3,398 3,533 3,524 486 1,809 486 970

Table 1: Distribution of gold, silver and public datasets used for Task A.

Train Dev. Test
Gold Silver (Reddit) Gold Gold

1. Threats 310 1,000 44 89
2. Derogation 1,590 1,500 227 454
3. Animosity 1,165 2,000 167 333
4. Prejudice 333 1,000 48 94

Table 2: Distribution of gold and silver datasets used for
Task B.

3.1 Public Datasets

For Task A, we include training data samples from
the publicly available datasets – (1) “Call Me
Sexist” (Samory, 2021) (2) “EXIST” (Rodríguez-
Sanchez et al., 2021). We randomly sample 5,000
samples from Call Me Sexist dataset to include
in models (G, I, J) and include the entire EXIST
corpus for models (L,M ) in our Task A results
Table 4.

3.2 Silver Labeling

To label the provided unlabeled data, we use a
weighted sum (weights = (0.75, 0.25)) of nor-
malized scores from two weak classifiers – (1)
RoBERTa and (2) Sentence Transformer, where
a higher score indicates a higher likelihood of sam-
ples belonging to the given class. We select a fixed
number of highest scored samples for each class
according to the task to generate additional silver-
labelled training dataset. Additionally, we create
an offensive term list for Task A to filter out some
samples from unlabelled corpus to get better silver-
labelled data.

For Task A, we use both the unlabeled Reddit
and Gab datasets, whereas for Tasks B and C we
only use samples from the unlabeled Reddit dataset;
we experimented with Gab dataset for both tasks
but observed lower performance when using it. For
Task A, we add 5,000 positive and 5,000 negative
samples each from both Reddit and Gab datasets,
increasing the training data size by 20,000 samples.
For Task C, we added 500 samples for each of the
11 classes only from the Reddit dataset, increasing
the training data size by 5,500 samples.

RoBERTa We fine-tune a RoBERTa (large) (Liu
et al., 2019) model using only the gold training data
provided for the task A and C.

Sentence Transformer We use a sentence trans-
former model (Reimers and Gurevych, 2020) that
maps sentences to a 384-dimensional dense vector
space, to generate a similarity score between each
labeled training sample and the unlabeled sample.
Using these similarity scores, for each unlabeled
sample we generate an average class score for all
classes for a given task. Based on the task, we se-
lect the highest and lowest scored samples to add
to the training data.

Offensive Term List For Task A, we utilize a
manually-created list of offensive terms. We col-
lect counts of how often terms from this manually-
created list occur in both the sexist and non-sexist
samples in the Task A gold training data, and take
the top terms when ranked by their ratio of sexist to
non-sexist mentions. Additionally, only terms that
appeared more than five times were included for
robustness. For gendered slurs, both singular and
plural variants of the same nouns were included re-
gardless of the frequency in the gold training data.
This offensive term-list was used to select unla-
beled training data samples from Reddit and Gab
to include as silver labeled training data for Task A.
The 5,000 silver labeled samples we include when
training Model L in our results Table 4 includes
only samples which contained at least one term
from this term list.

4 Models

As mentioned earlier, we use an ensemble of
Transformer-based models (Vaswani et al., 2017)
for the three tasks. To this end, we fine-tuned:
BERT (base-uncased) (Devlin et al., 2019),
RoBERTa (base and large) (Liu et al., 2019),
XLM-RoBERTa (large) (Conneau et al., 2020),
ELECTRA (base) (Clark et al., 2020), BERTweet
(large) (Nguyen et al., 2020), MiniLM (L12-
H384) (Wang et al., 2020), ALBERT (Lan et al.,
2020).

Additionally, we utilized in-context learning to
prompt GPT-3 (Brown et al., 2020) to generate pre-
dictions for the development and test set examples
for Task A. We follow a similar approach to (Chiu
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Train Dev. Test
Gold Silver (Reddit) Gold Gold

1.1 Threats of harm 56 500 8 16
1.2 Incitement and encouragement of harm 254 500 36 73
2.1 Descriptive attacks 717 500 102 205
2.2 Aggressive and emotive attacks 673 500 96 192
2.3 Dehumanising attacks and overt sexual objectification 200 500 29 57
3.1 Casual use of gendered slurs, profanities and insults 637 500 91 182
3.2 Immutable gender differences and gender stereotypes 417 500 60 119
3.3 Backhanded gendered compliments 64 500 9 18
3.4 Condescending explanations or unwelcome advice 47 500 7 14
4.1 Supporting mistreatment of individual women 75 500 11 21
4.2 Supporting systemic discrimination against women as a group 258 500 37 73

Table 3: Dataset distribution for Task C.

and Alexander, 2021).1 The prompt format we used
was the word "SENTENCE" followed by a ran-
domly selected training set example, then the word
"LABEL" followed by either the word "non-sexist"
or "sexist", to indicate the label of the preceding
example. We included K randomly sampled posi-
tive training set examples and K randomly sampled
negative training examples for each prompt.2 At
the end of the prompt, we included a development
or test set example followed by "LABEL" with no
following text, prompting for an example comple-
tion with either the word "non-sexist" or "sexist"
from the model. We used these prompt comple-
tions as predicted labels, which are included in our
results Tables 4 and 5.

4.1 Fine-tuning

In our approach, we fine-tune models for two en-
sembles: one ensemble of models for Task A and
another ensemble for Task C. For Task B, the fine-
grained labels from Task C to the coarse-grained
labels of Task B. For example, a “1.1 Threats of
harm” Task C label would map to the “1. Threats,
plans to harm and incitement” Task B label.

For Task A we use a weighted binary cross en-
tropy (BCE) loss function. The loss is equally
weighted between the positive and the negative
samples present in the training data for each fine-
tuned model.

For multi-class tasks, B and C, we take inspira-
tion from related work on hierarchical modeling
tasks using a shared loss function (Wu et al., 2017),
and treat both tasks as a single model with two
objectives. We capture the hierarchical structure
of the coarse and fine-grained labels for Task A
and B in this single model’s loss function. We

1The exact model version we used was "text-davinci-003".
2We experimented with K = 5, 10 and 20 and achieved the

best results using 5 examples.

create a composite loss computed of the sum of
(1) the standard cross entropy (CE) loss on all
11 Task C outputs, and (2) the cross entropy of
the Task C outputs projected onto the 4 outputs
for Task B, as shown in equation 1, where YB|C
is the true class and ŶB|C is the predicted class.
For example, we compute the model’s prediction
for “1. Threats, plans to harm and incitement”
as the sum of Pr(1.1 Threats of harm) and
Pr(1.2 Incitement and encouragement of harm).
The key intuition is that the model’s output
should be consistent at both the coarse and
the fine-grained levels, and that enforcing this
consistency will improve the model’s performance
in Task C. This loss function introduces an
additional hyper-parameter β that weights the Task
C loss against the Task B loss in the composite
calculation.3

LC = β · CE(YB , ŶB) + CE(YC , ŶC) (1)

4.2 Ensembling

As shown in (Wenzel et al., 2020), ensembling
different models with different hyperparameter set-
tings outperforms using a single model. Therefore,
we explore the performance of different ensembles
of models by measuring the performance of all
model combinations in the power set P(S), for the
set of models S for each of the tasks. For each task,
the predictions for a given ensemble of models is
based on the majority vote for each sample. Each
ensemble, as well as the individual models, were
evaluated on the development set for each task, and
the best performing setup was used to label the held
out test sets.

3We determined β empirically based on the performance
on the development set. Specific values can be found in Ap-
pendix A.
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F1 score
Model Non-sexist Sexist Macro

Majority Baseline 0.86 0.0 0.43
(A) BERT (L) 0.90 0.66 0.78
(B) ELECTRA (S) 0.91 0.69 0.80
(C) RoBERTa (B) 0.92 0.74 0.83
(D) RoBERTa (L) 0.92 0.70 0.81
(E) RoBERTa (L) 0.93 0.76 0.84
(F) RoBERTa (L) 0.92 0.74 0.83
(G) RoBERTa (L) 0.91 0.72 0.82
(H) RoBERTa (L) 0.93 0.75 0.84
(I) RoBERTa (L) 0.92 0.76 0.84
(J) RoBERTa (L) 0.92 0.73 0.82
(K) RoBERTa (L) 0.92 0.75 0.83
(L) RoBERTa (L) 0.93 0.76 0.85
(M) RoBERTa (L) 0.92 0.72 0.82
(N) XLM-R (L) 0.92 0.72 0.82
(O) GPT3 (Prompting) 0.85 0.61 0.73

ALL (A-O) 0.93 0.77 0.85
(E)+(F)+(H)+(I)+(L)+(O) 0.94 0.80 0.87

Table 4: Development set results for Task A. The final
row is for the best performing ensemble on the develop-
ment set of Task A.

5 Experiments

As mentioned earlier, we explore fine-tuning indi-
vidual models for each task. Tables 4, 6, and 8
report the performance of each individual model,
as well as the best ensemble for each of Tasks A, B,
and C respectively on the development sets. Tables
5, 7, and 9 report the performance of the best (i.e.
submitted) ensemble on the held-out test sets of the
three tasks. We report the macro F1 average of all
classes for each task – since it is the official met-
ric for all tasks – as well as the per-class F1 score.
As a baseline for comparison with our individual
models, we include a row with results from always
predicting the most frequent class in the training
data for a given task – “Majority Baseline” and
as a baseline for comparison with our best ensem-
bles, we include results for a simple ensemble of
all models trained for each task “ALL”.

Task A: Binary Sexism Detection For Task A,
the best performing ensemble includes five fine-
tunings of RoBERTa (Large), and predictions ob-
tained from prompting GPT-3, as described in Sec-
tion 4.

• Models E and F were trained on the gold train-
ing data set.

• Model H was trained on both the gold training
data set as well as 5,000 silver labeled Reddit
and Gab samples.

• Model I was trained on the gold training data
set, 5,000 silver labeled Reddit and Gab sam-
ples (which here were filtered to include only

F1 score
Model Non-Sexist Sexist Macro

Majority Baseline 0.86 0.0 0.43
(A) BERT (L) 0.90 0.75 0.77
(B) ELECTRA (S) 0.91 0.71 0.81
(C) RoBERTa (B) 0.92 0.75 0.84
(D) RoBERTa (L) 0.92 0.71 0.81
(E) RoBERTa (L) 0.92 0.76 0.84
(F) RoBERTa (L) 0.92 0.75 0.84
(G) RoBERTa (L) 0.91 0.73 0.82
(H) RoBERTa (L) 0.93 0.76 0.84
(I) RoBERTa (L) 0.91 0.74 0.82
(J) RoBERTa (L) 0.91 0.72 0.82
(K) RoBERTa (L) 0.91 0.74 0.83
(L) RoBERTa (L) 0.92 0.75 0.83
(M) RoBERTa (L) 0.91 0.70 0.80
(N) XLM-R (L) 0.91 0.72 0.81
(O) GPT3 (Prompting) 0.85 0.61 0.73

ALL (A-O) 0.93 0.77 0.85
(E)+(F)+(H)+(I)+(L)+(O) 0.92 0.77 0.84

Table 5: Test set results for Task A. The final row is the
test-set score for the ensemble that performed best on
the development set of Task A.

samples with terms from our curated term-
list), and 5,000 samples from the "Call Me
Sexist" corpus.

• Model L was trained on the gold training data
set and the entire EXIST corpus.

• Model O are predictions from prompting GPT-
3.

Tasks B and C For both Task B and Task C we
train one set of models A-H on the Task C labels
using the loss described in Section 4.1, with the
predicted labels for Task C mapped to their cor-
responding labels for Task B. All the models are
trained on gold training data set and silver labeled
Reddit samples.

For Task B the best performing ensemble in-
cludes models A, B, C, D, E which are fine-tunings
of BERT, ELECTRA, RoBERTa (Base), RoBERTa
(Large) and, RoBERTa (Large), respectively. For
Task C the best performing ensemble includes mod-
els B, D, E, F which are fine-tunings of ELECTRA,
RoBERTa (Large), RoBERTa (Large), and, XLM-
RoBERTa respectively. We also include scores
from GPT3 (Prompting) as Model I in Table 6. See
Appendix A.

6 Discussion

Task A Test set results for Task A show that our
submission of the best-performing ensemble on the
development set, which has an F1 score of 0.84, is
slightly outperformed by an ensemble of all mod-
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F1 score
Base Model Class 1 Class 2 Class 3 Class 4 Macro

Majority Baseline 0.0 0.64 0.0 0.0 0.16
(A) BERT (B) 0.66 0.71 0.58 0.56 0.63
(B) ELECTRA (L) 0.70 0.70 0.56 0.52 0.62
(C) RoBERTa (B) 0.61 0.66 0.55 0.64 0.62
(D) RoBERTa (L) 0.75 0.73 0.62 0.70 0.70
(E) RoBERTa (L) 0.69 0.71 0.60 0.63 0.66
(F) XLM-R (L) 0.62 0.69 0.57 0.55 0.61
(G) BERTweet (L) 0.70 0.73 0.56 0.60 0.65
(H) MiniLM (L12) 0.54 0.57 0.58 0.58 0.57
(I) GPT3 (Prompting) 0.47 0.58 0.43 0.00 0.37

ALL (A-I) 0.63 0.73 0.64 0.64 0.66
(A)+(B)+(C)+(D)+(E) 0.72 0.75 0.69 0.72 0.72

Table 6: Development set results for Task B. The final row is for the best performing ensemble on the development
set of Task B.

F1 score
Base Model Class 1 Class 2 Class 3 Class 4 Macro

Majority Baseline 0.0 0.64 0.0 0.0 0.16
(A) BERT (B) 0.67 0.68 0.62 0.46 0.61
(B) ELECTRA (L) 0.71 0.71 0.52 0.51 0.61
(C) RoBERTa (B) 0.62 0.66 0.55 0.50 0.58
(D) RoBERTa (L) 0.74 0.69 0.52 0.56 0.62
(E) RoBERTa (L) 0.74 0.70 0.59 0.51 0.64
(F) XLM-R 0.66 0.65 0.50 0.53 0.58
(G) BERTweet 0.73 0.71 0.54 0.48 0.62
(H) MiniLM 0.50 0.53 0.54 0.50 0.52

ALL (A-H) 0.74 0.71 0.61 0.52 0.64
(A)+(B)+(C)+(D)+(E) 0.72 0.69 0.61 0.55 0.64

Table 7: Test set results for Task B. The final row is the test-set score for the ensemble that performed best on the
development set of Task B.

els we trained for Task A, which has an F1 score
of 0.85. Here, the best ensemble on the develop-
ment set degrades in performance from 0.87 F1

on the development set to 0.84 F1 on the test set,
suggesting this ensemble may have overfit to the
development set. We also see that the simple aver-
age of predictions from all models we trained for
Task A gives us a result that does not degrade from
the development set to the test set.

When considering our individual Task A models,
we see little to no drop in performance (0.0 to 0.2
macro F1 difference) and models B,C, F even im-
prove on this test set. GPT-3 prompting also shows
no difference in performance on development and
test, although performance is lower than for most
of our individually trained Task A models. When
comparing with the individual models we trained,
we see that our best ensemble on the development
set out-performs our best individual model (L) for
this task. Submitting the best ensemble on the de-
velopment set rather than this best individual model
leads to an improvement in both precision (from
0.75 to 0.77) and macro average F1 (from 0.83 to
0.84).

Tasks B and C Results for Tasks B and C show a
stronger drop in performance when comparing the
development set results to the test set results. This
trend applies to not just our best performing ensem-
ble on development, but to all individual models we
trained. Despite this fact, our submitted ensemble
of models which performed best on the develop-
ment set also achieves the best performance on
the test set, compared to both a simple average of
all models we trained and compared to individual
model performance.

When comparing our performance between
Tasks B and C, we see that our approach of training
models for Task C using a combined loss for Task B
and C does allow us to achieve good results on Task
B as well, when mapping the Task C fine-grained
predicted labels to Task B coarse-grained labels.
For these tasks, we also explored a wider range of
models compared to Task A, which added to the
diversity of model predictions we could select from
for our ensemble.
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F1 score
Base Model 1.1 1.2 2.1 2.2 2.3 3.1 3.2 3.3 3.4 4.1 4.2 Macro

Majority Baseline 0.0 0.0 0.35 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.03
(A) BERT (B) 0.33 0.66 0.60 0.54 0.31 0.57 0.53 0.53 0.00 0.22 0.58 0.44
(B) ELECTRA (L) 0.44 0.59 0.61 0.51 0.45 0.55 0.45 0.32 0.00 0.27 0.54 0.52
(C) RoBERTa (B) 0.37 0.52 0.58 0.53 0.30 0.58 0.38 0.27 0.11 0.39 0.59 0.42
(D) RoBERTa (L) 0.56 0.71 0.61 0.50 0.43 0.61 0.51 0.53 0.22 0.50 0.66 0.53
(E) RoBERTa (L) 0.38 0.69 0.62 0.51 0.33 0.63 0.45 0.15 0.18 0.35 0.61 0.45
(F) XLM-R (L) 0.56 0.59 0.56 0.47 0.40 0.55 0.49 0.40 0.00 0.30 0.53 0.44
(G) BERTweet (L) 0.50 0.68 0.61 0.53 0.38 0.60 0.46 0.15 0.22 0.38 0.61 0.47
(H) MiniLM (L12) 0.56 0.46 0.45 0.28 0.24 0.58 0.45 0.25 0.13 0.44 0.51 0.40
(I) ALBERT v2 (XL) 0.50 0.50 0.47 0.43 0.31 0.49 0.44 0.40 0.00 0.36 0.43 0.39

ALL (A-I) 0.37 0.68 0.65 0.57 0.37 0.64 0.53 0.38 0.00 0.50 0.60 0.48
(B)+(D)+(E)+(F) 0.59 0.69 0.66 0.56 0.51 0.67 0.54 0.67 0.18 0.50 0.65 0.56

Table 8: Per-class and macro-F1 development set results for Task C. The final row is for the best performing
ensemble on the development set of Task C.

F1 score
Base Model 1.1 1.2 2.1 2.2 2.3 3.1 3.2 3.3 3.4 4.1 4.2 Macro

Majority Baseline 0.0 0.0 0.35 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.03
(A) BERT (B) 0.43 0.59 0.54 0.52 0.37 0.65 0.50 0.23 0.00 0.24 0.39 0.41
(B) ELECTRA (L) 0.46 0.65 0.60 0.55 0.43 0.57 0.37 0.00 0.00 0.38 0.49 0.41
(C) RoBERTa (B) 0.33 0.53 0.52 0.51 0.40 0.57 0.39 0.26 0.20 0.37 0.45 0.41
(D) RoBERTa (L) 0.59 0.68 0.57 0.54 0.41 0.51 0.52 0.23 0.00 0.49 0.55 0.46
(E) RoBERTa (L) 0.46 0.67 0.56 0.58 0.41 0.62 0.52 0.22 0.00 0.36 0.50 0.44
(F) XLM-R (L) 0.35 0.59 0.54 0.50 0.34 0.47 0.45 0.28 0.17 0.27 0.48 0.40
(G) BERTweet (L) 0.48 0.68 0.57 0.57 0.46 0.59 0.46 0.21 0.00 0.21 0.51 0.43
(H) MiniLM (L12) 0.21 0.45 0.48 0.25 0.27 0.57 0.49 0.00 0.00 0.27 0.45 0.31

ALL (A-I) 0.48 0.66 0.59 0.56 0.47 0.63 0.54 0.28 0.00 0.39 0.50 0.46
(B)+(D)+(E)+(F) 0.53 0.68 0.59 0.57 0.44 0.62 0.53 0.29 0.00 0.38 0.53 0.47

Table 9: Per-class and macro-F1 test set results for Task C. The final row is the test-set score for the ensemble that
performed best on the development set of Task C.

6.1 Error Analysis
Since the Task C categories are the most fine-
grained, we investigated for which Task C cate-
gories our model under-performed by comparing
the ensemble predictions on the development set
with the task C development set gold labels. A con-
fusion matrix from the development set is reported
in Figure 1. Table 10 show examples of where the
data was mislabeled for each. The majority of the
development set errors stemmed from the failure
of the model to distinguish between:

• Labels 2.2 (Aggressive and emotive attacks)
and 3.1 (Casual use of gendered slurs, profan-
ities and insults)

• Labels 2.1 (Descriptive attacks) and 2.2 (Ag-
gressive and emotive attacks)

• Labels 2.1 (Descriptive attacks) and 3.2 (Im-
mutable gender differences and gender stereo-
types)

2.2 (Aggressive and emotive attacks) vs. 3.1 (Ca-
sual use of gendered slurs, profanities and in-
sults) This was the most frequent error category

on the development set for our best ensemble of
models. Our model often confused the two labels
due to the subtlety of casual versus aggressive use
of gendered slurs. Documents with both labels
may contain such slurs, but the implications of
those slurs can be quite different. For example, in
Table 10, the third example shows the speaker’s
intention and feeling by directly calling someone
a slur. This is different from examples labeled as
3.1 (Casual use of gendered slurs, profanities and
insults), where the writers are not intentionally at-
tacking the women but rather casually expressing
sexism through their use of slurs. For example,
in the fourth example in Table 10 the speaker is
not directly attacking women but rather grouping
all women into loyal and disloyal, an unfair artifi-
cial categorization, which is emphasized with the
speaker’s use of a gendered slur. We again could
improve our models by including additional silver
labeled samples that contain these gendered slurs,
and manually placing them into two groups of ex-
amples with casual mentions of gendered slurs or
direct, intentional use of slurs.
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rewire_id Gold Pred Text

12120 2.1 2.2
Treat a ***** like a
lady, and treat a lady
like a *****.

12306 2.2 2.1

How do block people
from following me? A
bunch of nasty women
are following me on
gab.i’m disgusted!!

13595 2.2 3.1

That‚Äôs is more
likely your meth *****
mom‚Äôs job. Go ****
yourself, Nazi ***.

17438 3.1 2.2
I’d rather have a loyal
friend than a dumb
****

16460 3.2 2.1

Do you want answers
or not? You asked
trp and we answered.
Just because you don’t
like the answer doesn’t
make it false - that’s a
woman’s line of think-
ing.

Table 10: Development set examples from our error
analysis. The predicted labels are generated using best
performing ensemble from Table 8 (B, D, E, F). Gen-
dered slurs in example text have been omitted and re-
placed with ****.

2.1 (Descriptive attacks) vs. 2.2 (Aggressive and
emotive attacks) This was the second most fre-
quent error category on the development set for
our best ensemble of models. As stated on the
shared task website label schema, 2.1 (Descrip-
tive attacks) is for descriptive attacks that dispar-
age women through generalizations, which differs
from 2.2 (Aggressive and emotive attacks) where
the speaker expresses negative sentiment towards
women in the document. Many of these 2.2 (Ag-
gressive and emotive attacks) documents contain
the first person pronoun “I”, expressing how the
speaker is feeling. A future direction to improve the
ability of our model to distinguish a sentence that
displays direct negative emotions from the speaker,
versus a generalized negative emotion, is to include
additional silver labeled training data that contain
both “I”-statements, and such attacks on women.

2.1 (Descriptive attacks) vs 3.2 (Immutable gen-
der differences and gender stereotypes) This
was the third most frequent error category on the
development set for our best ensemble of models.
This case is unique in the sense that the majority of
cases were documents labeled 3.2 being mislabeled
as 2.1 (Descriptive attacks), rather than the oppo-
site. For example, in Table 10, the fifth example

1.1 1.2 2.1 2.2 2.3 3.1 3.2 3.3 3.4 4.1 4.2
ensemble predictions

1.
1

1.
2

2.
1

2.
2

2.
3

3.
1

3.
2

3.
3

3.
4

4.
1

4.
2

go
ld

 la
be

ls

1 1 1
1 5 2 1 1 1

2 9 2 1 7 1 2 1
1 3 19 1 14 3 1
2 1 4 3 4 1

3 27 3 1
2 15 2 2 1 2 2 4

1 1 1
1 2 1 1 1

1 2 1 1
1 5 3 5 2

Task C (Dev) Confusion Matrix

Figure 1: Confusion matrix for Task C development set.

has the phrase “that’s a woman’s line of thinking”.
Here, the intention of the speaker is not directly
attacking one or more women, but rather express-
ing an attitude about how women think, which is
a gendered stereotype. This statement may not be
obviously sexist to all readers. Much of the inten-
tion of the sentences in the 2.1 (Descriptive attacks)
labeled data (as in our second example in Table 10)
is to directly attack women through sexist gener-
alizations. We believe our model was not able to
distinguish these two fine grained cases because it
could not distinguish if a statement was directly or
indirectly sexist.

We see errors for category 3.2 (Immutable gen-
der differences and gender stereotypes) as some of
the most challenging for our models to overcome,
due to how stereotypes around gender differences
may be stated indirectly: these documents may not
include any explicit profanity or gendered slurs,
or other obvious hallmarks of sexism in the text.
Additionally, examples of class 3.2 (Immutable
gender differences and gender stereotypes) are less
frequent in the gold training and development data.
In order to make improvements to our model, we
believe collecting additional annotated data using
the annotation guidelines written by the shared task
organizers is the right direction.

7 Conclusion

In this paper, we described our team’s submis-
sion to SemEval-2023’s “Explainable Detection of
Online Sexism” shared task, that aims to identify
whether or not a given content is sexist (Task A), as
well as the broad (Task B) and fine-grained (Task C)
class of sexist content present in the given text (e.g.,
prejudice, animosity, derogation, etc.). We find that
utilizing a combination of data augmentation – both
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through publicly available datasets as well as silver
labeling – and ensembling different transformer-
models gives us the best performance. In addition,
we also explored using in-context learning using
GPT-3, and found that it yields mixed results, help-
ing us achieve better performance for Task A but
not for Tasks B or C.
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A Appendix

A.1 Training Hyper-parameters
We chose the Adam optimizer (Kingma and Ba,
2015) with (β1, β2) = (0.9, 0.98) and an initial
learning rate of 5e-5, gradient accumulation of 4
and different batch sizes for different base mod-
els. For regularization, we use weight decay of
1e-2. To train the model for Task A, we use binary
cross-entropy criterion weighted with respect to the
proportion of positive and negative samples in the
training data set. For Task B and C we use the loss
described in Section 4.1 Equation 1.

We train each model for 20 epochs with early
stopping and a patience of 3 epochs without im-
provement on validation set loss.

For Task B and C we introduced the hyperparam-
eter β when combining the loss functions for both
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tasks (as explained in Section 4.1). All models we
trained for Tasks B and C use β = 0.25 except for
model (E) which uses β = 0.1.
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