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Abstract

Semeval 2023 task 1: Visual-WSD, In this pa-
per, we propose an ensemble of two Neural
network systems that ranks 10 images given a
word and limited textual context. We have used
OpenAI CLIP based models for the English
language and multilingual text-to-text transla-
tion models for Farsi-to-English and Italian-to-
English. Additionally, we propose a system
that learns from multilingual bert-base embed-
dings for text and ResNet101 embeddings for
the image. Considering all three languages into
account this system has achieved the fourth
rank.

1 Introduction

Visual word sense disambiguation (Visual-WSD)
(Raganato et al., 2023) is an important task for
understanding and measuring machine’s ability to
find correct image from a set of candidate images
given the word and the limited text context.

Word sense disambiguation (WSD) has long
been formulated and studied as an important prob-
lem in natural language processing since 1940s.
Visual Word Sense Disambiguation (Visual-WSD)
is a combination of natural language processing
and computer vision that involves identifying the
correct visual image of an ambiguous word using
limited context. For example, the word "bank" can
refer to a financial institution or the side of a river.
In the context of limited text data, such as “bank
erosion”, Visual-WSD aims to identify the image
displaying the correct meaning of the word in its
context. Visual-WSD is an important task in natu-
ral language processing and computer vision, as it
helps to improve the accuracy of systems that use
text and visual information together, such as im-
age captioning, video analysis and visual question
answering. Successful Visual-WSD can help im-
prove the accuracy of natural language processing
applications that rely on visual information.

We used an ensemble of two different ap-
proaches 1) Fine-tune CLIP (Radford et al., 2021)
base architecture 2) Joint Embedding. The first ap-
proach involves finetuning CLIP based model with
additional data and the second approach involves
mapping image and text-based features into a com-
mon vector space, which allows direct comparison
of the two features. This enables the model to learn
the relationship between visual and text features
and use this knowledge to determine the correct
sense of a word.

The proposed system has achieved the 4th overall
rank in this competition with the hit rate of 69.805
and mean reciprocal rank score of 78.230. The
system has achieved the second rank in English
language with the HIT rate of 83.153 and MRR
rate of 88.802, first rank in Italian with the HIT rate
of 84.262 and MRR rate of 89.048, lastly achieved
16th rank in Farsi language with the HIT rate of
42.000 and MRR rate of 56.841. The system lacked
understanding of Farsi language and struggle with
Farsi to English conversion.

2 Background

Three different types of datasets were released in
this competition. Trial and train dataset contained
words, limited context, 10 candidate images and
correctly labeled gold data. Test dataset consists of
word, limited context and 10 candidate images.

In the figure1: bank is an ambiguous word. It can
have multiple meanings like river bank, erosion of
bank, money bank, piggy bank, turning of airplane.
In this figure, context is mentioned as an erosion
bank hence the gold label.

The train and the trial data consists of English
language only, whereas test data includes English,
Italian and Farsi languages. Additionally we uti-
lized the MS-COCO (Lin et al., 2015) dataset in
conjunction with the Wikipedia Image Text (WIT)
dataset (Srinivasan et al., 2021), a vast multimodal
and multilingual dataset sourced from Wikipedia.
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Table 1: EDA: train-test-trial Dataset statistics

Dataset Count of
Data points

Contexts per
unique word

Count of
Word is

present in
context

Data
coverage of
Top 5 words

Data cover-
age of Top
10 words

Data
coverage of

Top 50
words

Data cover-
age of Top
100 words

Train+Trial 12885 1.03 12540 0.171 0.311 0.427 1.9351
Test [all] 968 1.56 621 2.273 4.339 6.405 27.789
Test [EN] 463 1.79 259 4.32 7.991 11.231 50.324
Test [IT] 305 1.46 208 5.574 10.492 15.41 64.59
Test [FA] 200 1.30 154 9.5 15.0 20.0 73.0

Figure 1: Example of candidate images and gold label;
Word : bank; Limited Context : bank erosion.

As mentioned in table 1, the train + trial data
distribution is slightly different from test dataset. In
train + trial data we have 1.03 contexts per unique
word whereas test data has 1.56. Percentage of
data covered by top 5 words in train+trial dataset if
0.171% whereas for the test dataset, it is 2.273%.

3 System overview

3.1 Fine-tune CLIP

CLIP stands for "Contrastive Language-Image Pre-
Training". It is a machine learning algorithm devel-
oped by OpenAI that is trained to learn the relation-
ship between text and images by pre-training on a
massive dataset of images and associated text cap-
tions. We also used data from MS-COCO dataset
(English captions) and WIT dataset (English, Farsi
and Italian dataset).

In the CLIP architecture (Figure 2), we take an
image-text caption as input. During prediction,
we provide a collection of candidate images (i)
and a set of text captions (t). Model generates
similarity score with i*t dimensional matrix. We
used this output for identifying the best matching
image for a given text caption. In our case we had

12,885 labeled image-text pairs. CLIP architecture
consists of 3 main components:

3.1.1 Image Encoder
This component is responsible for encoding the
input image into a set of feature vectors. These
features are able to capture different levels of visual
information, from low-level features such as edges
and colors to high-level features such as object
and scene semantics. We utilized ResNet50 as the
backbone for our CLIP model.

3.1.2 Text Encoder
This component encodes the input text prompt or
caption into a set of feature vectors that capture
the semantic meaning of the text. The encoder is
a transformer-based neural network and generally
works well with sentence structure. To utilize the
network at its best, we augmented 10 sentences
from a given word-context pair and used them as
captions for a specific image.

3.1.3 Contrastive Learning Objective
This component trains the image and text encoders
to map similar images and text pairs close together
in the shared feature space and dissimilar pairs far
apart. This is done by maximizing the agreement
between the similarity scores of positive pairs (i.e.,
images and text that belong together) and the simi-
larity scores of negative pairs (i.e., images and text
that do not belong together).

By jointly embedding images and text in a shared
feature space, CLIP can perform a variety of tasks,
such as zero-shot classification and image retrieval,
by simply comparing the distances between the
embeddings of different images and text prompts.
This allows CLIP to generalize to new tasks and
domains without the need for task-specific training
data.

At the end, We optimize the CLIP model using
symmetric cross entropy loss over these similar-
ity scores. According to the CLIP paper, despite
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Figure 2: OpenAI-CLIP model architecture

Figure 3: Joint Embedding [1 caption vs 10 images]
Model Architecture

observing an increase in validation loss, we contin-
ued training the model for a few additional epochs,
resulting in improved accuracy on the test dataset.

3.2 Joint Embedding [1 caption vs 10 images]

CLIP architecture tries to improve symmetric cross
entropy loss which contains loss due to images and
loss due to text captions. In our problem state-
ment we have 10 images and one word-context pair
and we have to rank candidate images which are
best suitable for give text and context pair. Hence
we propose a slight variation of CLIP architecture
(Figure 3) and its components are:

3.2.1 Image Encoder

We used pretrained ResNet101 model from pytorch
model hub (maintainers and contributors, 2016)
and applied fully connected layer (FC layer) for
dimensionality reduction followed by normaliza-
tion layer and dropout layer. We extracted 512
dimensional vectors for all 10 images.

3.2.2 Text Encoder
We used pretrained multilingual SBERT ar-
chitecture “sentence-transformers/distiluse-base-
multilingual-cased-v2” (Reimers and Gurevych,
2019) from hugging face. We generated 768 di-
mensional vectors for each word-context pair. We
added dropout layer and fully connected (FC) layer
for dimensionality reduction followed by normal-
ization layer and dropout layer to generate 512
dimentional vector.

3.2.3 Learning Objective
Finally, we utilized cosine similarity to compare
the image embeddings and text embeddings, while
adopting cross-entropy as the loss function.

Unlike fine-tuned clip, we did not apply prepro-
cessing to the text or image data. However, we
rotated the sequence of candidate images to pre-
vent any single image class from dominating during
training or prediction.

4 Experimental setup

4.1 Preprocessing

In our case, we did not used any image augmenta-
tions but we used sentences formed using words
and limited context. For the example mentioned
in figure 1, we generated following text augmenta-
tions:

this is a photo of a bank erosion
this is a photo of a bank erosion, a type of bank
a photo of a bank erosion
a photo of a bank erosion, a type of bank
this is a photo of a bank
this is a photo of a bank in context of bank
a photo of a bank in context of bank erosion
a photo of a bank in sense of bank erosion
a photo of a bank erosion in context of bank
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a photo of a bank erosion in sense of bank

We merged the trial dataset, train dataset, MS-
COCO, and WIT dataset to create a comprehensive
training dataset. Prior to training, we performed
basic preprocessing steps on the strings, such as
removing extra spaces and replacing emojis with
relevant words. Additionally, we leveraged the
Helsinki model from HuggingFace (Tiedemann
and Thottingal, 2020) to convert text and context
words from Italian to English and persiannlp model
from hugginface (Daniel Khashabi, 2020) and Farsi
to English.

4.2 Evaluation metrics
In this competition organizers proposed the follow-
ing evaluation metrics:

4.2.1 Hit Rate (HR)
HR is an abbreviation for hit rate, which denotes
the proportion of word-context pairs in which the
correct image is predicted with the highest score.
As demonstrated, a higher hit ratio indicates a
greater likelihood that the correct image is ranked
in the top 1 predicted images.

4.2.2 Mean Reciprocal Rank (MRR)
The Mean Reciprocal Rank (MRR) is a statistic
measure for evaluating any process that produces
a list of possible responses to a sample of queries,
ordered by probability of correctness. Similar to
the HR metric, MRR is higher the better metric.

We Trained our system on a single Tesla T4
GPU for 4 days. We used Adam optimizer with
learning rate of 5e-5, beta values of (0.9, 0.98), eps
of 1e-6 and weight decay of 0.2. Here the learning
rate is smaller compared to the one mentioned on
paper. After experimentation, we determined that
this learning rate was best suited for fine-tuning the
entire dataset.

Although we attempted to use the ViT-B/32
model while fine-tuning CLIP model as an alter-
native to ResNet50, the training time required for
ViT-B/32 proved to be impractical for our hardware
configuration.

5 Results

While fine-tuning the CLIP model, we placed
greater emphasis on loss values rather than HIT
rate or MRR. Additionally, we followed the ap-
proach outlined in the OpenAI paper and overfitted
our model, resulting in enhanced MRR and HIT

scores, despite observing an increase in validation
loss.

Unlike a fine-tuned CLIP model, we opted to
stop training our Joint Embedding 1 vs 10 model
once the validation loss ceased to improve. This
approach helped us prevent overfitting and ensured
that our model remained robust. Furthermore, we
evaluated best-performing model using multiple
metrics including MRR, HIT rate and validation
loss.

Table 2: Results

Model Hit Rate MRR Rank

Fine-tune CLIP [ALL] 69.80 78.23 4
Fine-tune CLIP [EN] 83.15 88.80 2
Fine-tune CLIP [IT] 84.26 89.04 1
Fine-tune CLIP [FA] 42.00 56.84 23
Joint Embed [1vs10][ALL] 69.56 76.57 5
Joint Embed [1vs10][EN] 82.93 87.21 3
Joint Embed [1vs10][IT] 84.26 87.49 2
Joint Embed [1vs10][FA] 41.50 55.02 25

6 Conclusion

Our proposed solution for task SemEval-2023 Task
1: V-WSD is able bridge the gap between computer
vision and natural language processing for English
and Italian language. As mentioned in table 2, we
achieved 1st and 2nd rank in IT and EN language
respectively. Improving performance for the Farsi
language may necessitate the use of additional data
and/or more sophisticated pretrained multilingual
models. We believe that our solution has zero shot
learning capability and can also work on unseen
data.
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