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Abstract

We present our entry to the Multi-evidence Nat-
ural Language Inference for Clinical Trial Data
task at SemEval 2023. We submitted entries for
both the evidence retrieval and textual entail-
ment sub-tasks. For the evidence retrieval task,
we fine-tuned the PubMedBERT transformer
model to extract relevant evidence from clinical
trial data given a hypothesis concerning either a
single clinical trial or pair of clinical trials. Our
best performing model achieved an F1 score
of 0.804. For the textual entailment task, in
which systems had to predict whether a hypoth-
esis about either a single clinical trial or pair of
clinical trials is true or false, we fine-tuned the
BioLinkBERT transformer model. We passed
our evidence retrieval model’s output into our
textual entailment model and submitted its out-
put for the evaluation. Our best performing
model achieved an F1 score of 0.695.

1 Introduction

1.1 Background
A large number of clinical trial reports are freely
available online; for example, the National Library
of Medicine’s clinical trials repository1 lists over
440,000 clinical trial studies. These represent a
valuable resource for researchers and medical prac-
titioners but leveraging this data can be challenging
due to the large volume of historical clinical tri-
als and the rate at which new trials are conducted
(Bastian et al., 2010).

Efforts to efficiently extract key information
from clinical trial reports have been numerous and
varied. Several studies aimed to streamline the
systematic review process with a view to transition-
ing experimental medicines into the clinic more
quickly. Blake and Lucic (2015) built a system to
automatically identify clinical trial interventions
and comparators along with their associated end-
points. Kiritchenko et al. (2010) created a system

1https://clinicaltrials.gov

combining a statistical text classifier for relevant
sentence identification with a rule-based informa-
tion extractor to automatically extract 21 key pieces
of information from clinical trial records. The sys-
tem included a web interface to allow users to re-
view a modify the extracted information. Sum-
merscales et al. (2011) addressed the challenge
of efficiently extracting and reporting clinical trial
research outputs to medical practitioners. Their
system extracts key information from research ab-
stracts and calculates summary statistics relevant
to evidence based medicine.

Other groups have built resources to facilitate
the development of tools to streamline the analysis
of clinical trial reports. Nye et al. (2018) annotated
character spans corresponding to the population,
intervention, comparator, and outcomes (PICO) in
a set of 5000 clinical trial abstracts and mapped
the interventions to a medical vocabulary. Lehman
et al. (2019) presented a data set of full-text clinical
trial articles paired with over 10,000 hypotheses
about an intervention’s effect with respective to
a given outcome and comparator alongside sev-
eral baseline systems for predicting whether an
intervention significantly reduced, significantly in-
creased, or had no effect with respect to an out-
come. DeYoung et al. (2020) extended the data set
by 25%, introduced an abstract only version, and
provided stronger baseline models.

1.2 NLI4CT data set

The NLI4CT data set (Jullien et al., 2023) com-
prises 1000 clinical trial records along with 2400
hypotheses, relevant trial record section labels, rel-
evant subsection evidence labels (i.e. which lines
in the corresponding section contain evidence), and
entailment labels (i.e. is the hypothesis true or
false). The data set is divided into training, devel-
opment, and test sets. The training set contains
1700 statements referencing 852 trials in total; the
development set contains 200 statements referenc-
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Hypothesis Type Section Count
Single Results 86

Eligibility Criteria 181
Adverse Events 207

Intervention 251
Comparison Results 292

Eligibility Criteria 361
Adverse Events 341

Intervention 181

Table 1: Combined training and development set hy-
pothesis and section type statistics.

ing 101 trials; and the test set contains 500 state-
ments referencing 250 trials. Note that the clinical
trials included in the training and development sets
overlap completely, whereas the test set references
an additional 148 trials that do not feature in either
the training set or the development set.

Each clinical trial record is split into four sec-
tions: eligibility criteria, which outlines prospec-
tive participants’ attributes and medical history con-
straints; intervention, which describes any treat-
ments received by the participants; results, which
details the outcome of the trial; and adverse events,
which lists any observed harmful outcomes as a
result of an intervention. Each example in the train-
ing and development sets includes a hypothesis
which makes some claim about either a single clin-
ical trial or a pair of clinical trials; the relevant
section label which defines the clinical trial record
section containing the evidence required to confirm
or deny the hypothesis; relevant line indices, which
define which lines in the relevant section contain
evidence; and a hypothesis entailment label. The
test set does not contain the relevant line indices
or entailment labels. Table 1 lists relevant clinical
trial section and hypothesis type statistics.

1.3 Tasks
1.3.1 Task 1: Textual entailment
The goal of the textual entailment task was to build
a system that, when presented with either a single
clinical trial record or pair of clinical trial records, a
relevant clinical trial section label, and a hypothesis
about the trial - or pair of trials - is able to predict
if the hypothesis is true or false.

1.3.2 Task 2: Evidence retrieval
The goal of the evidence retrieval task was to build
a system that is able to identify which lines in a

relevant clinical trial record section are relevant
to a given hypothesis. Again, the system may be
presented with either a single clinical trial record
or a pair of clinical trial records.

2 Method

Our approach focused on fine-tuning pre-trained
BERT-based transformer models for both tasks (De-
vlin et al., 2019). BERT based models can process
sequences of up to 512 tokens. The text associated
with each trial typically corresponds to a signif-
icantly larger number of tokens. Fortunately, in
both tasks we only needed to consider one section
of the clinical trial record which greatly reduced
the amount of text the system must process.

Even so, as Figure 1 shows, if we concatenate
the hypothesis with the relevant clinical trial record
section for each example, the token count exceeds
the BERT token limit for ~21% of the examples;
this issue is particularly pronounced in the eligibil-
ity criteria section where nearly half of the exam-
ples exceed the token limit. If we consider only
the relevant parts of each relevant trial record sec-
tion, concatenate them with the hypothesis and
tokenize the combined text, ~5% exceed the to-
ken limit (Figure 2). Therefore, if we are able to
accurately identify the relevant evidence prior to
making an entailment prediction, we don’t need to
worry about the token limit in the vast majority of
cases. Consequently, we decided to tackle the ev-
idence retrieval task before attempting the textual
entailment task in order to filter the amount of text
input into the model.

All models were trained using the transform-
ers library (Wolf et al., 2019) with the PyTorch
(Paszke et al., 2019) back-end. Table 2 lists the
hyper-parameters that were tuned for each model.
Training was repeated 3 times - with different ran-
dom seeds - for each hyper-parameter combination
and the final model weights were chosen according
to the validation set macro-averaged F1 score.

2.1 Textual entailment

We fine-tuned the BioLinkBERT-base transformer
(Yasunaga et al., 2022) for textual entailment pre-
diction. BioLinkBERT builds on previous do-
main specific transformer models by incorporating
PubMed citation information during pre-training.
BioLinkBERT performs strongly across a range
of biomedical natural language processing tasks
and, pertinently for this task, has shown improved
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Figure 1: Combined training and development set con-
catenated hypothesis and section text token count distri-
butions for each clinical trial record section.

multi-hop reasoning when compared with other
high performing transformer models (Yasunaga
et al., 2022). Clinical trial records were processed
following Algorithm 1 before they were passed to
the BioLinkBERT model. In summary, the hypoth-
esis, primary trial evidence, and secondary trial ev-
idence were concatenated, and prefixed with "Hy-
pothesis:";"Primary Evidence:"; and "Secondary
Evidence:", respectively.

We fine-tuned BioLinkBERT to minimise the
negative log likelihood loss using the AdamW
(β1 = 0.9, β2 = 0.999) optimiser (Loshchilov and
Hutter, 2017). We trained the model with early-
stopping - using the development set loss as the
stopping criteria - for a maximum of 30 epochs
with a warm-up ratio of 0.1 and an early stopping
patience of 8; the model’s development set perfor-
mance was evaluated every 25 training steps. We
trained the model using mixed precision training
on a pair of NVIDIA V100 Tesla GPUs.

2.2 Evidence retrieval

We fine-tuned PubMedBERT (Gu et al., 2020) for
the evidence retrieval task. In order to train a model
that is able to identify relevant evidence given a hy-
pothesis, we pre-processed the training and devel-
opment sets according to Algorithm 2. In summary,
for each hypothesis we iterated through each asso-
ciated trial record and section, building examples
of up to 512 tokens containing the hypothesis and
concatenated lines taken from the section. These
were tokenized and token-level relevance labels

Figure 2: Combined training and development set con-
catenated hypothesis and relevant subsection text token
count distributions for each clinical trial record section.

Algorithm 1 Procedure for pre-processing hy-
potheses and evidence before passing them to Bi-
oLinkBERT.
Input: Hypothesis + evidence lines.
Output: BioLinkBERT input string.

▷ Add the hypothesis.
BioLinkBERT_input←["Hypothesis:", hypothesis]

▷ Add primary trial evidence.
BioLinkBERT_input←[BioLinkBERT_input, "Primary Evidence:"]

for evidence in primary evidence do
BioLinkBERT_input←[BioLinkBERT_input, evidence]

end for

▷ Optionally add secondary trial evidence.
if ∃ secondary evidence then

BioLinkBERT_input←[BioLinkBERT_input, "Secondary Evidence:"]

for evidence in secondary evidence do
BioLinkBERT_input←[BioLinkBERT_input, evidence]

end for
end if

were generated - tokens associated with relevant
and irrelevant lines were assigned 1 and 0 labels,
respectively; special tokens were labelled with -1
(our chosen loss function ignored these).

At training time the model expects a sequence of
512 tokens with corresponding labels and attempts
to predict each token’s relevance. We fine-tuned
our model to minimise the negative log likelihood
loss using the AdamW (β1 = 0.9, β2 = 0.999, λ =
0.01) optimiser (Loshchilov and Hutter, 2017) on
a single NVIDIA V100 Tesla GPU. We trained the
model with early-stopping - using the token-level
Matthews Correlation Coefficient as the stopping
criteria - for a maximum of 30 epochs, with an early
stopping patience of 15; the model’s performance
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Textual Entailment Parameter Grid
Parameter Values
Batch size 8, 16
Learning rate 1e-5, 2e-5, 3e-5, 5e-5
AdamW weight decay 0, 0.01, 0.1

Evidence Retrieval Parameter Grid
Parameter Values
Batch size 16, 32
Learning rate 1e-5, 3e-5, 5e-5

Table 2: Hyper-parameter values used during grid-
search. Optimal values are printed in boldface.

Model Precision Recall F1
Textual entailment 0.668 0.724 0.695
Evidence retrieval 0.814 0.795 0.804

Table 3: Test set performance for best performing mod-
els in each sub-task.

was evaluated using the development set every 200
training steps.

Given our model was trained to predict relevant
tokens - as opposed to relevant line indices - we
had to further process the model’s output when
generating predictions for the final evaluation. We
experimented with assigning relevant line indices
according to the following schemes: a line is pre-
dicted to be relevant if any of its constituent tokens
are predicted to be relevant; a line is predicted to be
relevant if the majority of its tokens are predicted
to be relevant; and finally, a line is predicted to be
relevant if all of its constituent tokens are predicted
to be relevant.

3 Results

3.1 Evidence retrieval

Table 3 lists the best performing evidence retrieval
model’s test set performance. Table 4 shows the
evidence retrieval performance for each of the dif-

Section Precision Recall F1
Results 0.868 0.948 0.906
Eligibility Criteria 0.563 0.611 0.586
Adverse Events 0.812 0.973 0.885
Intervention 1.0 0.988 0.994

Table 4: Evidence retrieval model development set per-
formance for each record section.

Algorithm 2 Procedure for generating evidence
retrieval task training and validation examples.
Input: Hypotheses, clinical trial section text,
relevant line labels, tokenizer.
Output: List of token/token label list pairs.

token_limit← 512
special_token_count← 3
tokens_and_labels← []

▷ Iterate through the examples.
for each example do

token_limit← token_limit− special_token_count
hypothesis_token_count←# tokens in hypothesis
token_limit← token_limit− hypothesis_token_count

▷ Examples may refer to one or two trials - iterate through them.
for each clinical trial listed in example do

▷ Clinical trial records contain 4 sections - iterate through them.
for each section do

lines← lines in section
relevant_line_indices← relevant line indices
line_labels← []
starting_line_index← 0
line_index← 0
token_running_total← hypothesis_token_count

for each line in lines do
line_token_count←# tokens in line

if line_index in relevant_line_indices then
line_labels← [line_labels, [−→1 line_token_count×1]]

else
line_labels← [line_labels, [−→0 line_token_count×1]]

end if

▷ Check if token limit exceeded or final line reached.
if line_token_count+token_running_total>token_limit
or final line reached then

▷ Concatenate hypothesis with lines and tokenize.
example_tokens←tokenizer([

hypothesis,
lines[starting_line_index:line_index]

])

▷ Assign token-level labels.
token_level_labels←[

−−→1 hypothesis_token_count+2×1, ▷ [CLF]/
hypothesis/
[SEP] tokens.

line_labels[starting_line_index:line_index], ▷ Trial
text token labels.

−−→1 1×1
▷ [SEP] token.

]

▷ Pad labels to maximum model length.
pad_token_count←max(

0,
token_limit - (line_token_count+token_running_total)

)

token_level_labels←[
token_level_labels,

−−→1 pad_token_count×1

]

▷ Store tokens and token labels.
tokens_and_labels← [

tokens_and_labels,
(example_tokens, example_labels)

]
end if

▷ Reset token running total and starting line index.
if line_token_count+token_running_total>token_limit then

token_running_total←hypothesis_token_count
starting_line_index←line_index

end if

▷ Update token running total and increment line index.
token_running_total←line_token_count
line_index←line_index+1

end for
end for

end for
end for
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ferent clinical trial record sections. There’s a large
discrepancy in performance across the different sec-
tions. The model performs poorly when identifying
evidence in eligibility criteria, with an F1 score of
0.586; conversely the model does exceptionally
well when identifying evidence in the intervention
section, with an F1 score of 0.994. Figure 3 helps
explains this discrepancy - the box plot shows the
distribution of the difference between the total num-
ber of lines in each example and the number of rel-
evant lines in each example for each section. The
box plots generated for the results and eligibility
criteria sections are very different: in the results
box plot, any non-zero differences are considered
outliers, whereas the eligibility criteria plot has a
median difference of 15 and exhibits much greater
variance. The task of predicting which lines are
relevant in an intervention section is almost trivial,
doing the same for the eligibility criteria section is
much more difficult. The results and adverse event
box plots suggest they may be easier for the evi-
dence retrieval model to process than the eligibility
criteria. The results in Table 4 reflect this with the
model performing well on both sections. Of the
three token prediction to line prediction conversion
procedures we tried, we found that predicting a
line to be relevant if any of its constituent tokens
were predicted to be relevant worked best, although
the performance difference between the approaches
was minimal.

Figure 3: Box plot showing difference in section line
count and relevant line count.

3.2 Textual entailment
Table 3 lists the best performing textual entailment
model’s test set performance. Table 5 lists the
model’s development set performance for each clin-
ical trial section type. Note that the model used

Section Precision Recall F1
Results 0.719 0.714 0.713
Eligibility Criteria 0.843 0.839 0.839
Adverse Events 0.693 0.692 0.692
Intervention 0.722 0.722 0.722
Combined 0.746 0.745 0.745

Hypothesis Type Precision Recall F1
Single 0.743 0.743 0.743
Comparison 0.752 0.750 0.749

Table 5: Textual entailment model development set per-
formance (macro average). Top: performance for each
record section. Bottom: performance for each hypothe-
sis type.

the ground-truth evidence to generate the predic-
tions, which explains why the scores are signifi-
cantly higher than the test set scores. The model
performs significantly better when evaluating hy-
potheses relating to eligibility criteria than any of
the other section types; the model performs sim-
ilarly well across each of the remaining section
types. Table 5 lists the model’s performance when
evaluating hypotheses concerning a single clinical
trial, and hypotheses concerning a pair of trials; the
model performs equally well in both settings.

3.3 Conclusion
We implemented a pipeline approach to textual
entailment prediction in clinical trials data. Our
chosen method was primarily motivated by the fact
a significant proportion of hypothesis statement -
relevant trial record section pairs included in the
data set exceed the maximum token limit specified
by high-performing domain specific transformer
models. Identifying evidence containing lines in
relevant sections, concatenating them and combin-
ing these with the hypothesis greatly reduced the
number of examples that exceeded the token limit.
We fine-tuned PubMedBERT for evidence retrieval.
Our best performing model achieved an F1 score
of 0.804 (10th place). We observed evidence re-
trieval performance varied significantly across sec-
tion types; this is a reflection of the data set char-
acteristics: the distribution of relevant line counts
varies significantly by section. We fine-tuned Bi-
oLinkBERT - a model that has demonstrated im-
proved multi-hop reasoning when compared with
PubMedBERT - to perform textual entailment pre-
diction. Our entailment prediction model achieved
an F1 score of 0.695 (9th place). The entailment

1291



prediction model performed best when evaluating
hypotheses focusing on clinical trial eligibility cri-
teria (its performance did not vary significantly
across the other section types). While the pipeline
approach reduces the number of data set examples
that exceed the token limit, ~5% of examples still
exceed the token limit. We truncated evidence to-
ken sequences that exceeded the token limit before
passing them to the textual entailment prediction
model. In future work we’d like to include se-
quences that exceed the token limit - perhaps by ap-
plying the model in a strided fashion and averaging
its outputs, or using a model with a longer attention
span. While the sequential pipeline model is simple
and effective, a single model - trained to perform
both tasks - would be more efficient and possibly
more robust to mislabelled evidence data as the
model could learn to identify relevant evidence us-
ing the textual entailment signal in addition to the
relevant line indices. We plan to investigate this in
future work.

References
Hilda Bastian, Paul Glasziou, and Iain Chalmers. 2010.

Seventy-five trials and eleven systematic reviews a
day: How will we ever keep up? PLOS Medicine,
7(9):1–6.

Catherine Blake and Ana Lucic. 2015. Automatic end-
point detection to support the systematic review pro-
cess. Journal of Biomedical Informatics, 56:42–56.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Jay DeYoung, Eric Lehman, Benjamin E. Nye,
Iain James Marshall, and Byron C. Wallace. 2020.
Evidence inference 2.0: More data, better models.
CoRR, abs/2005.04177.

Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas, Naoto
Usuyama, Xiaodong Liu, Tristan Naumann, Jianfeng
Gao, and Hoifung Poon. 2020. Domain-specific lan-
guage model pretraining for biomedical natural lan-
guage processing. CoRR, abs/2007.15779.

Mael Jullien, Marco Valentino, Hannah Frost, Paul
O’Regan, Donal Landers, and André Freitas. 2023.
Semeval-2023 task 7: Multi-evidence natural lan-
guage inference for clinical trial data. In Proceed-
ings of the 17th International Workshop on Semantic
Evaluation.

Svetlana Kiritchenko, Berry de Bruijn, Simona Carini,
Joel Martin, and Ida Sim. 2010. Exact: Automatic
extraction of clinical trial characteristics from journal
publications. BMC medical informatics and decision
making, 10:56.

Eric Lehman, Jay DeYoung, Regina Barzilay, and By-
ron C. Wallace. 2019. Inferring which medical treat-
ments work from reports of clinical trials. CoRR,
abs/1904.01606.

Ilya Loshchilov and Frank Hutter. 2017. Fixing
weight decay regularization in adam. CoRR,
abs/1711.05101.

Benjamin Nye, Junyi Jessy Li, Roma Patel, Yinfei Yang,
Iain Marshall, Ani Nenkova, and Byron Wallace.
2018. A corpus with multi-level annotations of pa-
tients, interventions and outcomes to support lan-
guage processing for medical literature. In Proceed-
ings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 197–207, Melbourne, Australia. Association
for Computational Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward Z.
Yang, Zach DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Jun-
jie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. CoRR, abs/1912.01703.

Rodney L. Summerscales, Shlomo Argamon, Shangda
Bai, Jordan Hupert, and Alan Schwartz. 2011. Au-
tomatic summarization of results from clinical trials.
In 2011 IEEE International Conference on Bioinfor-
matics and Biomedicine, pages 372–377.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
and Jamie Brew. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. CoRR,
abs/1910.03771.

Michihiro Yasunaga, Jure Leskovec, and Percy Liang.
2022. Linkbert: Pretraining language models with
document links.

1292

https://doi.org/10.1371/journal.pmed.1000326
https://doi.org/10.1371/journal.pmed.1000326
https://doi.org/https://doi.org/10.1016/j.jbi.2015.05.004
https://doi.org/https://doi.org/10.1016/j.jbi.2015.05.004
https://doi.org/https://doi.org/10.1016/j.jbi.2015.05.004
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/2005.04177
http://arxiv.org/abs/2007.15779
http://arxiv.org/abs/2007.15779
http://arxiv.org/abs/2007.15779
https://doi.org/10.1186/1472-6947-10-56
https://doi.org/10.1186/1472-6947-10-56
https://doi.org/10.1186/1472-6947-10-56
http://arxiv.org/abs/1904.01606
http://arxiv.org/abs/1904.01606
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
https://doi.org/10.18653/v1/P18-1019
https://doi.org/10.18653/v1/P18-1019
https://doi.org/10.18653/v1/P18-1019
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703
https://doi.org/10.1109/BIBM.2011.72
https://doi.org/10.1109/BIBM.2011.72
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
https://doi.org/10.48550/ARXIV.2203.15827
https://doi.org/10.48550/ARXIV.2203.15827

