@inproceedings{heinisch-etal-2023-accept,
title = "{ACCEPT} at {S}em{E}val-2023 Task 3: An Ensemble-based Approach to Multilingual Framing Detection",
author = "Heinisch, Philipp and
Plenz, Moritz and
Frank, Anette and
Cimiano, Philipp",
editor = {Ojha, Atul Kr. and
Do{\u{g}}ru{\"o}z, A. Seza and
Da San Martino, Giovanni and
Tayyar Madabushi, Harish and
Kumar, Ritesh and
Sartori, Elisa},
booktitle = "Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.semeval-1.187",
doi = "10.18653/v1/2023.semeval-1.187",
pages = "1347--1358",
abstract = "This paper describes the system and experimental results of an ensemble-based approach tomultilingual framing detection for the submission of the ACCEPT team to the SemEval-2023 Task 3 on Framing Detection (Subtask 2). The approach is based on an ensemble that combines three different methods: a classifier based on large language models, a classifier based on static word embeddings, and an approach that uses external commonsense knowledge graphs, in particular, ConceptNet. The results of the three classification heads are aggregated into an overall prediction for each frame class. Our best submission yielded a micro F1-score of 50.69{\%} (rank 10) and a macro F1-score of 50.20{\%} (rank 3) for English articles. Our experimental results show that static word embeddings and knowledge graphs are useful components for frame detection, while the ensemble of all three methods combines the strengths of our three proposed methods. Through system ablations, we show that the commonsenseguided knowledge graphs are the outperforming method for many languages.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="heinisch-etal-2023-accept">
<titleInfo>
<title>ACCEPT at SemEval-2023 Task 3: An Ensemble-based Approach to Multilingual Framing Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Heinisch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Moritz</namePart>
<namePart type="family">Plenz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anette</namePart>
<namePart type="family">Frank</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Cimiano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Atul</namePart>
<namePart type="given">Kr.</namePart>
<namePart type="family">Ojha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="given">Seza</namePart>
<namePart type="family">Doğruöz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giovanni</namePart>
<namePart type="family">Da San Martino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Harish</namePart>
<namePart type="family">Tayyar Madabushi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ritesh</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elisa</namePart>
<namePart type="family">Sartori</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the system and experimental results of an ensemble-based approach tomultilingual framing detection for the submission of the ACCEPT team to the SemEval-2023 Task 3 on Framing Detection (Subtask 2). The approach is based on an ensemble that combines three different methods: a classifier based on large language models, a classifier based on static word embeddings, and an approach that uses external commonsense knowledge graphs, in particular, ConceptNet. The results of the three classification heads are aggregated into an overall prediction for each frame class. Our best submission yielded a micro F1-score of 50.69% (rank 10) and a macro F1-score of 50.20% (rank 3) for English articles. Our experimental results show that static word embeddings and knowledge graphs are useful components for frame detection, while the ensemble of all three methods combines the strengths of our three proposed methods. Through system ablations, we show that the commonsenseguided knowledge graphs are the outperforming method for many languages.</abstract>
<identifier type="citekey">heinisch-etal-2023-accept</identifier>
<identifier type="doi">10.18653/v1/2023.semeval-1.187</identifier>
<location>
<url>https://aclanthology.org/2023.semeval-1.187</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>1347</start>
<end>1358</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ACCEPT at SemEval-2023 Task 3: An Ensemble-based Approach to Multilingual Framing Detection
%A Heinisch, Philipp
%A Plenz, Moritz
%A Frank, Anette
%A Cimiano, Philipp
%Y Ojha, Atul Kr.
%Y Doğruöz, A. Seza
%Y Da San Martino, Giovanni
%Y Tayyar Madabushi, Harish
%Y Kumar, Ritesh
%Y Sartori, Elisa
%S Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F heinisch-etal-2023-accept
%X This paper describes the system and experimental results of an ensemble-based approach tomultilingual framing detection for the submission of the ACCEPT team to the SemEval-2023 Task 3 on Framing Detection (Subtask 2). The approach is based on an ensemble that combines three different methods: a classifier based on large language models, a classifier based on static word embeddings, and an approach that uses external commonsense knowledge graphs, in particular, ConceptNet. The results of the three classification heads are aggregated into an overall prediction for each frame class. Our best submission yielded a micro F1-score of 50.69% (rank 10) and a macro F1-score of 50.20% (rank 3) for English articles. Our experimental results show that static word embeddings and knowledge graphs are useful components for frame detection, while the ensemble of all three methods combines the strengths of our three proposed methods. Through system ablations, we show that the commonsenseguided knowledge graphs are the outperforming method for many languages.
%R 10.18653/v1/2023.semeval-1.187
%U https://aclanthology.org/2023.semeval-1.187
%U https://doi.org/10.18653/v1/2023.semeval-1.187
%P 1347-1358
Markdown (Informal)
[ACCEPT at SemEval-2023 Task 3: An Ensemble-based Approach to Multilingual Framing Detection](https://aclanthology.org/2023.semeval-1.187) (Heinisch et al., SemEval 2023)
ACL